
Copyright Law (Fisher 2021) Google v. Oracle	
	

Google v. Oracle

United States Supreme Court

April 5, 2021

01 BREYER, J., delivered the opinion of the Court, in which ROBERTS, C. J., and
SOTOMAYOR, KAGAN, GORSUCH, and KAVANAUGH, JJ., joined.
THOMAS, J., filed a dissenting opinion, in which ALITO, J., joined. BAR-
RETT, J., took no part in the consideration or decision of the case.

02 JUSTICE BREYER delivered the opinion of the Court.

03 Oracle America, Inc., is the current owner of a copyright in Java SE, a computer
program that uses the popular Java computer programming language. Google,
without permission, has copied a portion of that program, a portion that enables
a programmer to call up prewritten software that, together with the computer’s
hardware, will carry out a large number of specific tasks. The lower courts have
considered (1) whether Java SE’s owner could copyright the portion that Google
copied, and (2) if so, whether Google’s copying nonetheless constituted a “fair
use” of that material, thereby freeing Google from copyright liability. The
Federal Circuit held in Oracle’s favor (i.e., that the portion is copyrightable and
Google’s copying did not constitute a “fair use”). In reviewing that decision, we
assume, for argument’s sake, that the material was copyrightable. But we hold
that the copying here at issue nonetheless constituted a fair use. Hence, Google’s
copying did not violate the copyright law.

04 I

05 In 2005, Google acquired Android, Inc., a startup firm that hoped to become
involved in smartphone software. Google sought, through Android, to develop a
software platform for mobile devices like smartphones. A platform provides the
necessary infrastructure for computer programmers to develop new programs
and applications. One might think of a software platform as a kind of factory
floor where computer programmers (analogous to autoworkers, designers, or
manufacturers) might come, use sets of tools found there, and create new
applications for use in, say, smartphones. …

06 Google envisioned an Android platform that was free and open, such that
software developers could use the tools found there free of charge. Its idea was
that more and more developers using its Android platform would develop ever
more Android-based applications, all of which would make Google’s Android-
based smartphones more attractive to ultimate consumers. Consumers would
then buy and use ever more of those phones. That vision required attracting a
sizeable number of skilled programmers.

07 At that time, many software developers understood and wrote programs using

Copyright Law (Fisher 2021) Google v. Oracle	
	

the Java programming language, a language invented by Sun Microsystems
(Oracle’s predecessor). About six million programmers had spent considerable
time learning, and then using, the Java language. Many of those programmers
used Sun’s own popular Java SE platform to develop new programs primarily
for use in desktop and laptop computers. That platform allowed developers using
the Java language to write programs that were able to run on any desktop or
laptop computer, regardless of the underlying hardware (i.e., the programs were
in large part “interoperable”). Indeed, one of Sun’s slogans was “‘write once,
run anywhere.’”

08 Shortly after acquiring the Android firm, Google began talks with Sun about the
possibility of licensing the entire Java platform for its new smartphone
technology. But Google did not want to insist that all programs written on the
Android platform be interoperable. As Android’s founder explained, “[t]he
whole idea about [an] open source [platform] is to have very, very few
restrictions on what people can do with it,” and Sun’s interoperability policy
would have undermined that free and open business model. Apparently, for
reasons related to this disagreement, Google’s negotiations with Sun broke down.
Google then built its own platform.

09 The record indicates that roughly 100 Google engineers worked for more than
three years to create Google’s Android platform software. In doing so, Google
tailored the Android platform to smartphone technology, which differs from
desktop and laptop computers in important ways. A smartphone, for instance,
may run on a more limited battery or take advantage of GPS technology. The
Android platform offered programmers the ability to program for that
environment. To build the platform, Google wrote millions of lines of new code.
Because Google wanted millions of programmers, familiar with Java, to be able
easily to work with its new Android platform, it also copied roughly 11,500 lines
of code from the Java SE program. The copied lines of code are part of a tool
called an Application Programming Interface, or API.

10 What is an API? The Federal Circuit described an API as a tool that “allow[s]
programmers to use . . . prewritten code to build certain functions into their own
programs, rather than write their own code to perform those functions from
scratch.” Through an API, a programmer can draw upon a vast library of
prewritten code to carry out complex tasks. For lay persons, including judges,
juries, and many others, some elaboration of this description may prove useful.

11 Consider in more detail just what an API does. A computer can perform
thousands, perhaps millions, of different tasks that a programmer may wish to
use. These tasks range from the most basic to the enormously complex. Ask the
computer, for example, to tell you which of two numbers is the higher number
or to sort one thousand numbers in ascending order, and it will instantly give
you the right answer. An API divides and organizes the world of computing
tasks in a particular way. Programmers can then use the API to select the
particular task that they need for their programs. In Sun’s API (which we refer

Copyright Law (Fisher 2021) Google v. Oracle	
	

to as the Sun Java API), each individual task is known as a “method.” The API
groups somewhat similar methods into larger “classes,” and groups somewhat
similar classes into larger “packages.” This method-class-package
organizational structure is referred to as the Sun Java API’s “structure, sequence,
and organization,” or SSO.

12 For each task, there is computer code, known as “implementing code,” that in
effect tells the computer how to execute the particular task you have asked it to
perform (such as telling you, of two numbers, which is the higher). The
implementing code (which Google independently wrote) is not at issue here. For
a single task, the implementing code may be hundreds of lines long. It would be
difficult, perhaps impossible, for a programmer to create complex software
programs without drawing on prewritten task-implementing programs to
execute discrete tasks.

13 But how do you as the programmer tell the computer which of the implementing
code programs it should choose, i.e., which task it should carry out? You do so
by entering into your own program a command that corresponds to the specific
task and calls it up. Those commands, known as “method calls,” help you carry
out the task by choosing those programs written in implementing code that will
do the trick, i.e., that will instruct the computer so that your program will find
the higher of two numbers. If a particular computer might perform, say, a million
different tasks, different method calls will tell the computer which of those tasks
to choose. Those familiar with the Java language already know countless method
calls that allow them to invoke countless tasks.

14 And how does the method call (which a programmer types) actually locate and
invoke the particular implementing code that it needs to instruct the computer
how to carry out a particular task? It does so through another type of code, which
the parties have labeled “declaring code.” Declaring code is part of the API. For
each task, the specific command entered by the programmer matches up with
specific declaring code inside the API. That declaring code provides both the
name for each task and the location of each task within the API’s overall
organizational system (i.e., the placement of a method within a particular class
and the placement of a class within a particular package). In this sense, the
declaring code and the method call form a link, allowing the programmer to
draw upon the thousands of prewritten tasks, written in implementing code.
Without that declaring code, the method calls entered by the programmer would
not call up the implementing code.

15 The declaring code therefore performs at least two important functions in the
Sun Java API. The first, more obvious, function is that the declaring code
enables a set of shortcuts for programmers. By connecting complex imple-
menting code with method calls, it allows a programmer to pick out from the
API’s task library a particular task without having to learn anything more than a
simple command. For example, a programmer building a new application for
personal banking may wish to use various tasks to, say, calculate a user’s balance

Copyright Law (Fisher 2021) Google v. Oracle	
	

or authenticate a password. To do so, she need only learn the method calls
associated with those tasks. In this way, the declaring code’s shortcut function
is similar to a gas pedal in a car that tells the car to move faster or the QWERTY
keyboard on a typewriter that calls up a certain letter when you press a particular
key. As those analogies demonstrate, one can think of the declaring code as part
of an interface between human beings and a machine.

16 The second, less obvious, function is to reflect the way in which Java’s creators
have divided the potential world of different tasks into an actual world, i.e.,
precisely which set of potentially millions of different tasks we want to have our
Java-based computer systems perform and how we want those tasks arranged
and grouped. In this sense, the declaring code performs an organizational
function. It determines the structure of the task library that Java’s creators have
decided to build. To understand this organizational system, think of the Dewey
Decimal System that categorizes books into an accessible system or a travel
guide that arranges a city’s attractions into different categories. Language itself
provides a rough analogy to the declaring code’s organizational feature, for
language itself divides into sets of concepts a world that in certain respects other
languages might have divided differently. The developers of Java, for example,
decided to place a method called “draw image” inside of a class called “graphics.”

17 Consider a comprehensive, albeit farfetched, analogy that illustrates how the
API is actually used by a programmer. Imagine that you can, via certain
keystrokes, instruct a robot to move to a particular file cabinet, to open a certain
drawer, and to pick out a specific recipe. With the proper recipe in hand, the
robot then moves to your kitchen and gives it to a cook to prepare the dish. This
example mirrors the API’s task-related organizational system. Through your
simple command, the robot locates the right recipe and hands it off to the cook.
In the same way, typing in a method call prompts the API to locate the correct
implementing code and hand it off to your computer. And importantly, to select
the dish that you want for your meal, you do not need to know the recipe’s
contents, just as a programmer using an API does not need to learn the imple-
menting code. In both situations, learning the simple command is enough.

18 Now let us consider the example that the District Court used to explain the
precise technology here. Id., at 980–981. A programmer wishes, as part of her
program, to determine which of two integers is the larger. To do so in the Java
language, she will first write java.lang. Those words (which we have put in bold
type) refer to the “package” (or by analogy to the file cabinet). She will then
write Math. That word refers to the “class” (or by analogy to the drawer). She
will then write max. That word refers to the “method” (or by analogy to the
recipe). She will then make two parentheses (). And, in between the parentheses
she will put two integers, say 4 and 6, that she wishes to compare. The whole
expression—the method call—will look like this: “java.lang.Math.max(4, 6).”
The use of this expression will, by means of the API, call up a task-implementing
program that will determine the higher number.

Copyright Law (Fisher 2021) Google v. Oracle	
	

19 In writing this program, the programmer will use the very symbols we have
placed in bold in the precise order we have placed them. But the symbols by
themselves do nothing. She must also use software that connects the symbols to
the equivalent of file cabinets, drawers, and files. The API is that software. It
includes both the declaring code that links each part of the method call to the
particular task-implementing program, and the implementing code that actually
carries it out. …

20 Now we can return to the copying at issue in this case. Google did not copy the
task-implementing programs, or implementing code, from the Sun Java API. It
wrote its own task-implementing programs, such as those that would determine
which of two integers is the greater or carry out any other desired (normally far
more complex) task. This implementing code constitutes the vast majority of
both the Sun Java API and the API that Google created for Android. For most
of the packages in its new API, Google also wrote its own declaring code. For
37 packages, however, Google copied the declaring code from the Sun Java API.
As just explained, that means that, for those 37 packages, Google necessarily
copied both the names given to particular tasks and the grouping of those tasks
into classes and packages.

21 In doing so, Google copied that portion of the Sun Java API that allowed
programmers expert in the Java programming language to use the “task calling”
system that they had already learned. As Google saw it, the 37 packages at issue
included those tasks that were likely to prove most useful to programmers
working on applications for mobile devices. In fact, “three of these packages
were . . . fundamental to being able to use the Java language at all.” By using the
same declaring code for those packages, programmers using the Android
platform can rely on the method calls that they are already familiar with to call
up particular tasks (e.g., determining which of two integers is the greater); but
Google’s own implementing programs carry out those tasks. Without that
copying, programmers would need to learn an entirely new system to call up the
same tasks.

22 We add that the Android platform has been successful. Within five years of its
release in 2007, Android-based devices claimed a large share of the United
States market. As of 2015, Android sales produced more than $42 billion in
revenue.

23 In 2010 Oracle Corporation bought Sun. Soon thereafter Oracle brought this
lawsuit in the United States District Court for the Northern District of California.

24 II

25 The case has a complex and lengthy history. At the outset Oracle complained
that Google’s use of the Sun Java API violated both copyright and patent laws.
For its copyright claim, Oracle alleged that Google infringed its copyright by
copying, for 37 packages, both the literal declaring code and the nonliteral

Copyright Law (Fisher 2021) Google v. Oracle	
	

organizational structure (or SSO) of the API, i.e., the grouping of certain
methods into classes and certain classes into packages. For trial purposes the
District Court organized three proceedings. The first would cover the copyright
issues, the second would cover the patent issues, and the third would, if
necessary, calculate damages. The court also determined that a judge should
decide whether copyright law could protect an API and that the jury should
decide whether Google’s use of Oracle’s API infringed its copyright and, if so,
whether a fair use defense nonetheless applied.

26 After six weeks of hearing evidence, the jury rejected Oracle’s patent claims
(which have since dropped out of the case). It also found a limited copyright
infringement. It deadlocked as to whether Google could successfully assert a fair
use defense. The judge then decided that, regardless, the API’s declaring code
was not the kind of creation to which copyright law extended its protection. The
court noted that Google had written its own implementing code, which
constituted the vast majority of its API. It wrote that “anyone is free under the
Copyright Act to write his or her own code to carry out exactly the same” tasks
that the Sun Java API picks out or specifies. Google copied only the declaring
code and organizational structure that was necessary for Java-trained
programmers to activate familiar tasks (while, as we said, writing its own
implementing code). Hence the copied material, in the judge’s view, was a
“system or method of operation,” which copyright law specifically states cannot
be copyrighted.

27 On appeal, the Federal Circuit reversed. That court held that both the API’s
declaring code and its organizational structure could be copyrighted. It pointed
out that Google could have written its own declaring code just as it wrote its own
implementing code. And because in principle Google might have created a
whole new system of dividing and labeling tasks that could be called up by
programmers, the declaring code (and the system) that made up the Sun Java
API was copyrightable.

28 The Federal Circuit also rejected Oracle’s plea that it decide whether Google
had the right to use the Sun Java API because doing so was a “fair use,” immune
from copyright liability. The Circuit wrote that fair use “both permits and
requires ‘courts to avoid rigid application of the copyright statute when, on
occasion, it would stifle the very creativity which that law is designed to foster.’”
But, it added, this “is not a case in which the record contains sufficient factual
findings upon which we could base a de novo assessment of Google’s
affirmative defense of fair use.” And it remanded the case for another trial on
that question. Google petitioned this Court for a writ of certiorari, seeking review
of the Federal Circuit’s copyrightability determination. We denied the petition.

29 On remand the District Court, sitting with a jury, heard evidence for a week. The
court instructed the jury to answer one question: Has Google “shown by a
preponderance of the evidence that its use in Android” of the declaring code and
organizational structure contained in the 37 Sun JavaAPI packages that it copied

Copyright Law (Fisher 2021) Google v. Oracle	
	

“constitutes a ‘fair use’ under the Copyright Act?” After three days of deliber-
ation the jury answered the question in the affirmative. Google had shown fair
use.

30 Oracle again appealed to the Federal Circuit. And the Circuit again reversed the
District Court. The Federal Circuit assumed all factual questions in Google’s
favor. But, it said, the question whether those facts constitute a “fair use” is a
question of law. Deciding that question of law, the court held that Google’s use
of the Sun Java API was not a fair use. It wrote that “[t]here is nothing fair about
taking a copyrighted work verbatim and using it for the same purpose and
function as the original in a competing platform.” It remanded the case again,
this time for a trial on damages.

31 Google then filed a petition for certiorari in this Court. It asked us to review the
Federal Circuit’s determinations as to both copyrightability and fair use. We
granted its petition.

32 III

33 A

34 Copyright and patents, the Constitution says, are to “promote the Progress of
Science and useful Arts, by securing for limited Times to Authors and Inventors
the exclusive Right to their respective Writings and Discoveries.” Art. I, §8, cl.
8. Copyright statutes and case law have made clear that copyright has practical
objectives. It grants an author an exclusive right to produce his work (sometimes
for a hundred years or more), not as a special reward, but in order to encourage
the production of works that others might reproduce more cheaply. At the same
time, copyright has negative features. Protection can raise prices to consumers.
It can impose special costs, such as the cost of contacting owners to obtain
reproduction permission. And the exclusive rights it awards can sometimes stand
in the way of others exercising their own creative powers. See generally
Twentieth Century Music Corp. v. Aiken, 422 U. S. 151, 156 (1975); Mazer v.
Stein, 347 U. S. 201, 219 (1954).

35 Macaulay once said that the principle of copyright is a “tax on readers for the
purpose of giving a bounty to writers.” T. Macaulay, Speeches on Copyright 25
(E. Miller ed. 1913). Congress, weighing advantages and disadvantages, will
determine the more specific nature of the tax, its boundaries and conditions, the
existence of exceptions and exemptions, all by exercising its own constitutional
power to write a copyright statute.

36 Four provisions of the current Copyright Act are of particular relevance in this
case. First, a definitional provision sets forth three basic conditions for obtaining
a copyright. There must be a “wor[k] of authorship,” that work must be “original,”
and the work must be “fixed in any tangible medium of expression.” 17 U. S. C.
§102(a); see also Feist Publications, Inc. v. Rural Telephone Service Co., 499

Copyright Law (Fisher 2021) Google v. Oracle	
	

U. S. 340, 345 (1991) (explaining that copyright requires some original “creative
spark” and therefore does not reach the facts that a particular expression
describes).

37 Second, the statute lists certain kinds of works that copyright can protect. They
include “literary,” “musical,” “dramatic,” “motion pictur[e],” “architectural,”
and certain other works. §102(a). In 1980, Congress expanded the reach of the
Copyright Act to include computer programs. And it defined “computer program”
as “‘a set of statements or instructions to be used directly or indirectly in a com-
puter in order to bring about a certain result.’” §10, 94 Stat.3028 (codified at 17
U. S. C. §101).

38 Third, the statute sets forth limitations on the works that can be copyrighted,
including works that the definitional provisions might otherwise include. It says,
for example, that copyright protection cannot be extended to “any idea,
procedure, process, system, method of operation, concept, principle, or
discovery” §102(b). These limitations, along with the need to “fix” a work
in a “tangible medium of expression,” have often led courts to say, in shorthand
form, that, unlike patents, which protect novel and useful ideas, copyrights
protect “expression” but not the “ideas” that lie behind it. See Sheldon v. Metro-
Goldwyn Pictures Corp., 81 F. 2d 49, 54 (CA2 1936) (Hand, J.); B. Kaplan, An
Unhurried View of Copyright 46–52 (1967).

39 Fourth, Congress, together with the courts, has imposed limitations upon the
scope of copyright protection even in respect to works that are entitled to a
copyright. For example, the Copyright Act limits an author’s exclusive rights in
performances and displays, §110, or to performances of sound recordings, §114.
And directly relevant here, a copyright holder cannot prevent another person
from making a “fair use” of copyrighted material. §107.

40 We have described the “fair use” doctrine, originating in the courts, as an
“equitable rule of reason” that “permits courts to avoid rigid application of the
copyright statute when, on occasion, it would stifle the very creativity which that
law is designed to foster.” Stewart v. Abend, 495 U. S. 207, 236 (1990). The
statutory provision that embodies the doctrine indicates, rather than dictates,
how courts should apply it. The provision says:

41 “[T]he fair use of a copyrighted work, . . . for purposes such as
criticism, comment, news reporting, teaching . . . scholarship, or
research, is not an infringement of copyright. In determining
whether the use made of a work in any particular case is a fair
use the factors to be considered shall include—

42 “(1) the purpose and character of the use, including whether such
use is of a commercial nature or is for nonprofit educational
purposes;

43 “(2) the nature of the copyrighted work;

Copyright Law (Fisher 2021) Google v. Oracle	
	

44 “(3) the amount and substantiality of the portion used in relation
to the copyrighted work as a whole; and

45 “(4) the effect of the use upon the potential market for or value
of the copyrighted work.” §107.

46 In applying this provision, we, like other courts, have understood that the
provision’s list of factors is not exhaustive (note the words “include” and
“including”), that the examples it sets forth do not exclude other examples (note
the words “such as”), and that some factors may prove more important in some
contexts than in others. See Campbell v. Acuff-Rose Music, Inc., 510 U. S. 569,
577 (1994); Harper & Row, Publishers, Inc. v. Nation Enterprises, 471 U. S.
539, 560 (1985); see also Leval, Toward a Fair Use Standard, 103 Harv. L. Rev
1105, 1110 (1990) (Leval). In a word, we have understood the provision to set
forth general principles, the application of which requires judicial balancing,
depending upon relevant circumstances, including “significant changes in
technology.” Sony Corp. of America v. Universal City Studios, Inc., 464 U. S.
417, 430 (1984); see also Aiken, 422 U. S., at 156 (“When technological change
has rendered its literal terms ambiguous, the Copyright Act must be construed
in light of its basic purpose”).

47 B

48 Google’s petition for certiorari poses two questions. The first asks whether
Java’s API is copyrightable. It asks us to examine two of the statutory provisions
just mentioned, one that permits copyrighting computer programs and the other
that forbids copyrighting, e.g., “process[es],” “system[s],” and “method[s] of
operation.” Pet. for Cert. 12. Google believes that the API’s declaring code and
organization fall into these latter categories and are expressly excluded from
copyright protection. The second question asks us to determine whether
Google’s use of the API was a “fair use.” Google believes that it was.

49 A holding for Google on either question presented would dispense with Oracle’s
copyright claims. Given the rapidly changing technological, economic, and
business-related circumstances, we believe we should not answer more than is
necessary to resolve the parties’ dispute. We shall assume, but purely for
argument’s sake, that the entire Sun Java API falls within the definition of that
which can be copyrighted. We shall ask instead whether Google’s use of part of
that API was a “fair use.” Unlike the Federal Circuit, we conclude that it was.

50 IV

51 The language of §107, the “fair use” provision, reflects its judge-made origins.
It is similar to that used by Justice Story in Folsom v. Marsh, 9 F. Cas. 342, 348
(No. 4,901) (CCMass. 1841). That background, as well as modern courts’ use
of the doctrine, makes clear that the concept is flexible, that courts must apply it
in light of the sometimes conflicting aims of copyright law, and that its
application may well vary depending upon context. Thus, copyright’s protection

Copyright Law (Fisher 2021) Google v. Oracle	
	

others to compete runs counter to the statutory purpose of promoting creative
expression”); Lexmark Int’l, 387 F. 3d, at 544 (noting that where a subsequent
user copied a computer program to foster functionality, it was not exploiting the
programs “commercial value as a copyrighted work” (emphasis in original)).
After all, “copyright supplies the economic incentive to [both] create and
disseminate ideas,” Harper & Row, 471 U. S., at 558, and the reimplementation
of a user interface allows creative new computer code to more easily enter the
market.

103 The uncertain nature of Sun’s ability to compete in Android’s market place, the
sources of its lost revenue, and the risk of creativity-related harms to the public,
when taken together, convince that this fourth factor—market effects—also
weighs in favor of fair use.

104 The fact that computer programs are primarily functional makes it difficult to
apply traditional copyright concepts in that technological world. See Lotus
Development Corp., 49 F. 3d, at 820 (Boudin, J., concurring). In doing so here,
we have not changed the nature of those concepts. We do not overturn or modify
our earlier cases involving fair use—cases, for example, that involve “knockoff ”
products, journalistic writings, and parodies. Rather, we here recognize that
application of a copyright doctrine such as fair use has long proved a cooperative
effort of Legislatures and courts, and that Congress, in our view, intended that it
so continue. As such, we have looked to the principles set forth in the fair use
statute, §107, and set forth in our earlier cases, and applied them to this different
kind of copyrighted work.

105 We reach the conclusion that in this case, where Google reimplemented a user
interface, taking only what was needed to allow users to put their accrued talents
to work in a new and transformative program, Google’s copying of the Sun Java
API was a fair use of that material as a matter of law. The Federal Circuit’s
contrary judgment is reversed, and the case is remanded for further proceedings
in conformity with this opinion.

106 It is so ordered.

107 JUSTICE THOMAS, with whom JUSTICE ALITO joins, dissenting.

108 Oracle spent years developing a programming library that successfully attracted
software developers, thus enhancing the value of Oracle’s products. Google
sought a license to use the library in Android, the operating system it was
developing for mobile phones. But when the companies could not agree on terms,
Google simply copied verbatim 11,500 lines of code from the library. As a result,
it erased 97.5% of the value of Oracle’s partnership with Amazon, made tens of
billions of dollars, and established its position as the owner of the largest mobile
operating system in the world. Despite this, the majority holds that this copying
was fair use.

Copyright Law (Fisher 2021) Google v. Oracle	
	

109 The Court reaches this unlikely result in large part because it bypasses the
antecedent question clearly before us: Is the software code at issue here protected
by the Copyright Act? The majority purports to assume, without deciding, that
the code is protected. But its fair-use analysis is wholly inconsistent with the
substantial protection Congress gave to computer code. By skipping over the
copyrightability question, the majority disregards half the relevant statutory text
and distorts its fair-use analysis. Properly considering that statutory text,
Oracle’s code at issue here is copyrightable, and Google’s use of that
copyrighted code was anything but fair.

110 I

111 In the 1990s, Oracle created a programming language called Java. Like many
programming languages, Java allows developers to prewrite small subprograms
called “methods.” Methods form the building blocks of more complex programs.
This process is not unlike what legislatures do with statutes. To save space and
time, legislatures define terms and then use those definitions as a shorthand. For
example, the legal definition for “refugee” is more than 300 words long. Rather
than repeat all those words every time they are relevant, the U. S. Code
encapsulates them all with a single term that it then inserts into each relevant
section. Java methods work similarly. Once a method has been defined, a
developer need only type a few characters (the method name and relevant inputs)
to invoke everything contained in the subprogram. A programmer familiar with
prewritten methods can string many of them together to quickly develop
complicated programs without having to write from scratch all the basic
subprograms.

112 To create Java methods, developers use two kinds of code. The first, “declaring
code,” names the method, defines what information it can process, and defines
what kind of data it can output. It is like the defined term in a statute. The second,
“implementing code,” includes the step-by-step instructions that make those
methods run.1 It is like the detailed definition in a statute.

113 Oracle’s declaring code was central to its business model. Oracle profited
financially by encouraging developers to create programs written in Java and
then charging manufacturers a fee to embed in their devices the Java software

	
1 Consider what the relevant text of a simple method—designed to return the largest of three
integers—might look like:
public static int MaxNum (int x, int y, int z) {
if (x >= y && x >= z) return x;
else if (y >= x && y >= z) return y;
else return z;
}
The first line is declaring code that defines the method, including what inputs (integers x, y, and
z) it can process and what it can output (an integer). The remainder is implementing code that
checks which of the inputs is largest and returns the result. Once this code is written, a
programmer could invoke it by typing, for example, “MaxNum (4, 12, 9).”

Copyright Law (Fisher 2021) Google v. Oracle	
	

platform needed to run those programs. To this end, Oracle created a work called
Java 2 Platform, Standard Edition, which included a highly organized library
containing about 30,000 methods. Oracle gave developers free access to these
methods to encourage them to write programs for the Java platform. In return,
developers were required to make their programs compatible with the Java
platform on any device. Developers were encouraged to make improvements to
the platform, but they were required to release beneficial modifications to the
public. If a company wanted to customize the platform and keep those
customizations secret for business purposes, it had to pay for a separate license.

114 By 2005, many companies were racing to develop operating systems for what
would become modern smartphones. Oracle’s strategy had successfully
encouraged millions of programmers to learn Java. As a result, Java software
platforms were in the vast majority of mobile phones. Google wanted to attract
those programmers to Android by including in Android the declaring code with
which they were now familiar. But the founder of Android, Andrew Rubin,
understood that the declaring code was copyrighted, so Google sought a custom
license from Oracle. At least four times between 2005 and 2006, the two
companies attempted to negotiate a license, but they were unsuccessful, in part
because of “trust issues.”

115 When those negotiations broke down, Google simply decided to use Oracle’s
code anyway. Instead of creating its own declaring code—as Apple and
Microsoft chose to do—Google copied verbatim 11,500 lines of Oracle’s
declaring code and arranged that code exactly as Oracle had done. It then
advertised Android to device manufacturers as containing “Core Java
Libraries.” Oracle predictably responded by suing Google for copyright
infringement. The Federal Circuit ruled that Oracle’s declaring code is
copyrightable and that Google’s copying of it was not fair use.

116 II

117 The Court wrongly sidesteps the principal question that we were asked to
answer: Is declaring code protected by copyright? I would hold that it is.

118 Computer code occupies a unique space in intellectual property. Copyright law
generally protects works of authorship. Patent law generally protects inventions
or discoveries. A library of code straddles these two categories. It is highly
functional like an invention; yet as a writing, it is also a work of authorship.
Faced with something that could fit in either space, Congress chose copyright,
and it included declaring code in that protection.

119 The Copyright Act expressly protects computer code. It recognizes that a
“computer program” is protected by copyright. See 17 U. S. C.
§§109(b), 117, 506(a). And it defines “‘computer program’” as “a set of
statements or instructions to be used directly or indirectly in a computer in order
to bring about a certain result.” §101. That definition clearly covers declaring

Copyright Law (Fisher 2021) Google v. Oracle	
	

code—sets of statements that indirectly perform computer functions by
triggering prewritten implementing code.

120 Even without that express language, declaring code would satisfy the general
test for copyrightability. “Copyright protection subsists . . . in original works of
authorship fixed in any tangible medium of expression.” §102(a). “Works of
authorship include . . . literary works,” which are “works . . . expressed in words,
numbers, or other verbal or numerical symbols.” §§101, 102(a). And a work is
“original” if it is “independently created by the author” and “possesses at least
some minimal degree of creativity.” Feist Publications Inc., v. Rural Telephone
Service Co., 499 U. S. 340, 345 (1991). The lines of declaring code in the Java
platform readily satisfy this “extremely low” threshold. First, they are expressed
in “words, numbers, or other verbal or numerical symbols” and are thus works
of authorship. Second, as Google concedes, the lines of declaring code are
original because Oracle could have created them any number of ways.

121 Google contends that declaring code is a “method of operation” and thus
excluded from protection by §102(b). That subsection excludes from copyright
protection “any idea, procedure, process, system, method of operation, concept,
principle, or discovery, regardless of the form in which it is described, explained,
illustrated, or embodied.” This provision codifies the “idea/expression
dichotomy” that copyright protection covers only the “the author’s expression”
of an idea, not the idea itself. Golan v. Holder, 565 U. S. 302, 328 (2012). A
property right in the idea itself “can only be secured, if it can be secured at all,
by letters-patent.” Baker v. Selden, 101 U. S. 99, 105 (1880). Thus, for example,
a “method of book-keeping” is not protected by copyright, but the expression
describing that accounting method is. So too, a person who writes a book
inventing the idea of declaring code has a copyright protection in the expression
in the book, but not in the idea of declaring code itself. Google acknowledges
that implementing code is protected by the Copyright Act, but it contends that
declaring code is much more functional and thus is a “method of operation”
outside the scope of protection.

122 That argument fails. As the majority correctly recognizes, declaring code and
implementing code are “inextricably bound” together. Declaring code defines
the scope of a set of implementing code and gives a programmer a way to use it
by shortcut. Because declaring code incorporates implementing code, it has no
function on its own. Implementing code is similar. Absent declaring code,
developers would have to write every program from scratch, making complex
programs prohibitively time consuming to create. The functionality of both
declaring code and implementing code will thus typically rise and fall together.

123 Google’s argument also cannot account for Congress’ decision to define
protected computer code as “a set of statements or instructions to be
used directly or indirectly in a computer in order to bring about a certain
result.” §101 (emphasis added). Hence, Congress rejected any categorical
distinction between declaring and implementing code. Implementing code

Copyright Law (Fisher 2021) Google v. Oracle	
	

orders a computer operation directly. Declaring code does so indirectly by
incorporating implementing code. When faced with general language barring
protection for “methods of operation” and specific language protecting declaring
code, the “‘specific governs the general.’”

124 This context makes clear that the phrase “method of operation” in §102(b) does
not remove protection from declaring code simply because it is functional. That
interpretation does not, however, render “method of operation” meaningless. It
is “given more precise content by the neighboring words with which it is
associated.” Other terms in the same subsection such as “idea,” “principle,” and
“concept” suggest that “method of operation” covers the functions and ideas
implemented by computer code—such as math functions, accounting methods,
or the idea of declaring code—not the specific expression Oracle created. Oracle
cannot copyright the idea of using declaring code, but it can copyright the
specific expression of that idea found in its library.

125 Google also contends that declaring code is not copyrightable because the
“merger doctrine” bars copyright protection when there is only one way to
express an idea. That argument fails for the same reasons
Google’s §102(b) argument fails. Even if the doctrine exists, Google admits that
it is merely an application of §102(b). And, in any event, there may have been
only one way for Google to copy the lines of declaring code, but there were
innumerable ways for Oracle to write them. Certainly, Apple and Microsoft
managed to create their own declaring code.

126 III

127 The Court inexplicably declines to address copyrightability. Its sole stated
reason is that “technological, economic, and business-related circumstances” are
“rapidly changing.” That, of course, has been a constant where computers are
concerned.

128 Rather than address this principal question, the Court simply assumes that
declaring code is protected and then concludes that every fair-use factor favors
Google. I agree with the majority that Congress did not “shiel[d] computer
programs from the ordinary application” of fair use. But the majority’s
application of fair use is far from ordinary. By skipping copyrightability, the
majority gets the methodology backward, causing the Court to sidestep a key
conclusion that ineluctably affects the fair-use analysis: Congress rejected
categorical distinctions between declaring and implementing code. But the
majority creates just such a distinction. The result of this distorting analysis is
an opinion that makes it difficult to imagine any circumstance in which declaring
code will remain protected by copyright.

129 I agree with the majority that, under our precedent, fair use is a mixed question
of fact and law and that questions of law predominate. Because the jury issued
a finding of fair use in favor of Google, we must construe all factual disputes

