Sie können das Glossar über das Suchfeld oder das Stichwortalphabet durchsuchen.

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Alle
Aktuelle Sortierung Nachname (aufsteigend) Sortiert nach: Nachname ändern nach (absteigend) | Vorname

Seite:  1  2  3  (Weiter)
  Alle

Julia Macario e Souza

Julia Macario e Souza

Julia Macario e Souza

Marcador Genético

von Julia Macario e Souza - Donnerstag, 23. Mai 2024, 11:02
 

Locus que apresenta alelos facilmente classificados podem ser utilizados em estudos genéticos. Pode, ainda, ser uma variante genética ou polimorfismo de nucleotídeo único (SNP)  ou polimorfismo repetição curta em tandem (STRP)  ou qualquer outra características do DNA que permita que diferentes versões de um locus (ou o seu produto) sejam distintos uns dos outros e seguido em estudos familiares.



Referência do texto

NUSSBAUM, Robert L.; MCINNES, Roderick R.; WILLARD, Huntington F. Thompson & Thompson: genética médica. 8. ed. Rio de Janeiro: Elsevier, 2016.


 

Julia Macario e Souza

Medicina Evolutiva

von Julia Macario e Souza - Donnerstag, 23. Mai 2024, 11:00
 

A Medicina Evolutiva pode ser definida como a aplicação da teoria da evolução por seleção natural à compreensão de problemas de saúde humana. A Medicina Evolutiva está estruturada em torno da ideia principal de que as características biológicas funcionais resultam de processos evolutivos, adaptativos. Procura-se, com isso, entender muitas doenças em termos de vulnerabilidades das adaptações legadas por nossa herança filogenética, como no caso de desajustes do corpo humano em relação ao ambiente moderno. 


Referência do texto 

STEARNS, S. C.; MEDZHITOV, R. Evolutionary medicine. Sunderland: Sinauer Associates, 2016.

 

Julia Macario e Souza

Metacêntrico

von Julia Macario e Souza - Donnerstag, 23. Mai 2024, 10:59
 

Cromossomo que apresenta o centrômero central e braços de tamanho, aparentemente, igual no comprimento.


Referência do texto

NUSSBAUM, Robert L.; MCINNES, Roderick R.; WILLARD, Huntington F. Thompson & Thompson: genética médica. 8. ed. Rio de Janeiro: Elsevier, 2016.

 

 

Julia Macario e Souza

Metilação do DNA

von Julia Macario e Souza - Donnerstag, 23. Mai 2024, 10:56
 

A metilação do DNA envolve a modificação de bases de citosina por metilação do carbono na quinta posição no anel de pirimidina. A metilação extensa do DNA é uma marca de genes reprimidos e é um mecanismo difundido e associado ao estabelecimento de programas específicos de expressão gênica durante a diferenciação e o desenvolvimento celular. Tipicamente, a metilação ocorre no C de nucleotídeos CpG e inibe a expressão gênica pelo recrutamento de proteínas específicas de ligação a metil-CpG, que, por sua vez, recrutam enzimas de modificação da cromatina para silenciar a transcrição.

Referência do texto

NUSSBAUM, Robert L.; MCINNES, Roderick R.; WILLARD, Huntington F. Thompson & Thompson: genética médica. 8. ed. Rio de Janeiro: Elsevier, 2016.

 

 

AM

Anna Maria Cavichioli Poiani

AM

Cromossomo acrocêntrico

von Anna Maria Cavichioli Poiani - Samstag, 18. Mai 2024, 00:44
 

·       Cromossomo no qual o centrômero está posicionado próximo à extremidade da estrutura. Isso resulta em cromossomos com braços curtos (p).

       Referências: Genetica Médica. Schaefer & Thompson Jr. (2015). 1ª Edição. Editora Artmed.

                                 https://site.unifesp.br/ucgenetica/sacgen?view=category&id=2




 

AM

Cromossomopatia

von Anna Maria Cavichioli Poiani - Samstag, 18. Mai 2024, 00:44
 

• Os cromossomos são as estruturas que reúnem e distribuem a informação genética de uma geração celular para a próxima durante a mitose e a meiose. A euploidia é a composição cromossômica normal de um indivíduo (eu = verdadeiro ou normal; ploide = múltiplo). Desvios envolvendo a perda ou o ganho de um ou mais cromossomos são aneuploidias, ou múltiplos "não verdadeiros". Um poliploide possui vários múltiplos de cromossomos, como, por exemplo, triploides (3n) e tetraploides (4n). Quando ocorrem, as alterações cromossômicas numéricas são quase sempre muito mais graves do que uma mutação em um único gene, ou mutação de ponto, porque muitos genes diferentes e, portanto, vários processos bioquímicos, estão envolvidos. O número cromossômico também pode ser alterado por fusão ou fissão das regiões centroméricas, embora esse fenômeno seja tipicamente mais importante quando se compara homologias de braço cromossômico em espécies relacionadas.

Aberrações cromossômicas, ou alterações em estrutura, ocorrem quando a ligação dos genes nos cromossomos e entre eles é alterada. Alterações cromossômicas estruturais ocorrem mais comumente devido a quebras que não são corretamente reparadas durante a replicação. Quebras cromossômicas são muito comuns. Uma estimativa é de que uma média de 55.000 quebras de fita simples e nove quebras de dupla-fita ocorram em moléculas do DNA em cada núcleo por dia. A grande maioria delas é corrigida, mas se várias fitas afetadas estiverem próximas umas das outras, as extremidades quebradas podem ser religadas de maneira incorreta três tipos de aberrações podem afetar o conteúdo genético de um cromossomo individual. Se duas quebras forem reparadas de maneira que o segmento interveniente seja descartado, uma porção do cromossomo não estará mais ligada a um centrômero e será perdida do núcleo na próxima vez em que ele se dividir. Isso gera uma deleção ou deficiência.

• Vários mecanismos podem fazer com que uma porção do cromossomo esteja presente duas vezes, duplicação. A ordem dos genes ao longo do cromossomo também pode ser alterada. Por exemplo, se duas quebras no cromossomo forem reparadas de maneira que extremidades alternativas sejam ligadas, o segmento interveniente estará agora revertido, criando uma inversão. Além das alterações óbvias no conteúdo genético causadas por essas aberrações, especialmente nas duplicações 2 deficiências, ocorrem mutações de ponto se os pontos de quebra do DNA estiverem na região codificadora de um gene. Além disso, relações topológicas entre cromossomos em sinapse na prófase I da meiose podem causar consequências secundárias para a composição genética de um óvulo fertilizado. Finalmente, as aberrações podem afetar mais de um cromossomo ao mesmo tempo. Quando uma porção de um cromossomo é religada um cromossomo de um grupo de ligação diferente, o resultado é chamado de translocação. As translocações simples envolvem o movimento de uma porção de um cromossomo para outro. Quando esse cromossomo translocado é transmitido a um descendente, há cópias extras dos genes carregados na região translocada. As translocações recíprocas envolvem a troca complementar de segmentos entre dois cromossomos não homólogos. Se ambos os cromossomos translocados forem transmitidos para o descendente, não haverá alteração no conteúdo total do genoma. Mas se apenas um deles for transmitido, o descendente carregará um conteúdo cromossômico desbalanceado. Dessa forma, as translocações alteram como os genes estão arranjados em grupos de ligação e podem ter consequências secundárias devido ao modo como os cromossomos alterados segregam na meiose.



Referências: Genetica Médica. Schaefer & Thompson Jr. (2015). 1ª Edição. Editora Artmed.

                       Genética Médica. Thompson & Thompson (2008)


 

AM

Cromossomos Homológos

von Anna Maria Cavichioli Poiani - Samstag, 18. Mai 2024, 00:35
 

Na citogenética, cromossomos homólogos são um par de cromossomos em que um é herdado paternalmente e o outro é de origem materna. Geralmente têm tamanho e formatos semelhantes, quando vistos sob o microscópio, e contêm os mesmos loci, exceto os dois cromossomos sexuais (X e Y) nos homens, que são parcialmente homólogos. Cromossomos homólogos se emparelham durante a meiose I e sofrem o “crossing over”, sendo separados na anáfase I da meiose.

ReferênciasGenética Médica. Thompson & Thompson. 8ª Edição. Editora Elsevier.

 

AM

Crossing-Over

von Anna Maria Cavichioli Poiani - Samstag, 18. Mai 2024, 00:43
 

Crossover ou crossing over é o intercâmbio recíproco de segmentos entre as cromátides de cromossomos homólogos, no decorrer da prófase da primeira divisão meiótica, onde os pares de cromossomos homólogos trocam material por meio da montagem de uma ponte física entre eles. Quando o crossover desigual ocorre entre cromátides desalinhados, há a possibilidade de se levar à duplicação do segmento envolvido em uma cromátide e à eliminação do outro na outra, sendo causa frequente de mutações.

Referências: Genetica Médica. Schaefer & Thompson Jr. (2015). 1ª Edição. Editora Artmed.

                       Genética Médica. Thompson & Thompson. 8ª Edição. Editora Elsevier.

 

LM

Larissa Marques Januario Silva

LM

Microarranjo

von Larissa Marques Januario Silva - Mittwoch, 22. Mai 2024, 20:55
 

Microarranjos, são ferramentas de biotecnologia que permitem a análise de expressão gênica em larga escala. Eles consistem em pequenos suportes, geralmente de vidro ou plástico, que contêm milhares de sondas de DNA organizadas em um formato e ordem específica. Esses dispositivos são usados para medir a expressão de muitos genes simultaneamente, ajudando na identificação de perfis de expressão gênica associados a diferentes condições biológicas ou estados de doenças.

São utilizados por exemplo para comparar padrões de expressão gênica entre diferentes amostras, como células normais e cancerígenas, também podem ser usados para identificar variações genéticas como polimorfismo.

Referências:

1 Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo (SP), Brasil 2 Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo (SP), Brasil Rev Bras Psiquiatr. 2007;29(4):370-4 Camila Guindalini,1,2 Sergio Tufik1 Uso de microarrays na busca de perfis de expressão gênica - aplicação no estudo de fenótipos complexos 

IAxecfKjuTbq7y5WpC_7wu9VBm2kSVUEEod1yiCImoz6gdpmNIid8w1VO4al8dgE0DuCCgpe-092PiNZVSBSp_21aZkaQB60KipXCRlhqFQB743Y-38p3NomejPIdLgrg_0vFap2nOheAt274HvQpOQ


 

LM

MicroRNA

von Larissa Marques Januario Silva - Mittwoch, 22. Mai 2024, 20:57
 

Os microRNAs (miRNAs) são pequenas moléculas de RNA não codificantes, com cerca de 20-25 nucleotídeos de comprimento, que desempenham um papel crucial na regulação pós-transcricional da expressão gênica. Eles funcionam ligando-se a sequências complementares em moléculas de RNA mensageiro (mRNA), resultando na degradação do mRNA ou na inibição da sua tradução. Assim, os miRNAs influenciam muitos processos biológicos, incluindo desenvolvimento, diferenciação celular, proliferação,resistência à apoptose e resposta ao estresse.

Os miRNAs são estudados por seu potencial como biomarcadores para diagnóstico e prognóstico de doenças, bem como alvos terapêuticos. Sua estabilidade em fluidos corporais e especificidade de expressão em diferentes tecidos e estados de doenças os tornam candidatos promissores para aplicações clínicas.

J5_fhOo_xdmyJQSfNQKYMKvXpUe8kDJzotq0BGgLXUfHkpPh5mUKY9vuA9yLRb8sRI8ACqfnCVD4W7y4vODJ9mwSiTxGjlunbxkUP2qHC3SefYacravYvA3sii1K6u2t-FCrMUq1su-YdTx4nJ08z9I

Referências:

Bartel, D. P. (2004). MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116(2), 281-297. Discussão abrangente sobre a biogênese e função dos miRNAs.

Calin, G. A., & Croce, C. M. (2006). MicroRNA Signatures in Human Cancers. Nature Reviews Cancer, 6(11), 857-866. Artigo que destaca a relevância dos miRNAs na oncologia, descrevendo padrões de expressão em diferentes tipos de câncer.



 


Seite:  1  2  3  (Weiter)
  Alle