Navegar usando este índice

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Todos
Critério de ordenação atual: Sobrenome crescente Ordenar por: Sobrenome Mude para decrescente | Nome

Página: (Anterior)   1  2  3  4  5  6  7  8  9  10  ...  22  (Próximo)
  Todos

Carolina Attya

Carolina Attya

Carolina Attya

Elemento regulador:

por Carolina Attya - quinta-feira, 23 mai. 2024, 09:58
 

Um elemento regulador na genética é uma região específica do DNA que controla a expressão de um gene. Esses elementos desempenham um papel crucial na regulação da atividade gênica, determinando quando e onde um gene será ativado ou desativado dentro de uma célula ou organismo. Eles podem estar localizados próximos ao gene que regulam (como os promotores e enhancers) ou em locais mais distantes (como os silenciadores).

Exemplo 1: Promotores

Os promotores são elementos reguladores que ficam próximos ao início de um gene e são responsáveis por iniciar o processo de transcrição, no qual a informação contida no gene é copiada para uma molécula de RNA. Um exemplo é o promotor do gene da insulina, que é ativado em células pancreáticas quando há um aumento nos níveis de glicose no sangue, desencadeando a produção de insulina para regular o metabolismo da glicose.


Exemplo 2: Enhancers

Os enhancers são elementos reguladores que podem estar localizados a distâncias consideráveis do gene que controlam e aumentam a taxa de transcrição do gene quando se ligam a proteínas ativadoras específicas. Por exemplo, no desenvolvimento embrionário, os enhancers podem regular a expressão de genes responsáveis pela formação de estruturas anatômicas complexas. Um enhancer específico pode ativar genes necessários para o desenvolvimento de membros em um estágio particular do desenvolvimento.


Exemplo 3: Silenciadores

Os silenciadores são elementos reguladores que inibem a transcrição do gene quando se ligam a proteínas repressoras. Eles são importantes para controlar a expressão gênica em diferentes tecidos e estágios de desenvolvimento. Por exemplo, silenciadores podem desligar genes envolvidos no desenvolvimento de tecidos específicos que não são necessários em um estágio particular do desenvolvimento ou em um tecido específico.

4NKQ7UYAXLrsGen4oWdg2Ke1t7R04vmrprV7K2RK386LEMXJukGrLmLn4b6dalhTCJn4xpLXfNCDKw-0mdV5OjH8YtU3gbUOSJJfXl71GCvXh5NNCr3JhiSDLZOz7lRDoSOjbngAT1gYaMe4Iu8hMSA



Referência bibliográfica: Thompson & Thompson - Genética Médica



 

RB

Rynara Batista

RB

Transcrição, Transgênico, Transposição, Transposons

por Rynara Batista - quarta-feira, 22 mai. 2024, 12:30
 

.

 

AB

Anna Beatriz de Souza

AB

Célula-Tronco

por Anna Beatriz de Souza - segunda-feira, 20 mai. 2024, 21:44
 

As células-tronco são células não especializadas do corpo humano. Elas são capazes de se diferenciar em qualquer célula de um organismo e ter a capacidade de auto renovação. As células-tronco existem tanto em embriões quanto em adultos.

Tipos:

Células-tronco totipotentes são capazes de se dividir e se diferenciar em células de todo o organismo. Ex: zigoto.

As células-tronco pluripotentes formam células de todas as camadas germinativas, mas não estruturas extra embrionárias, como a placenta. Ex: Células tronco-embrionárias (ESCs). As células-tronco pluripotentes induzidas derivam da camada epiblástica de embriões implantados; são artificialmente geradas a partir de células somáticas e funcionam de forma semelhante às pluripotentes.

Células-tronco multipotentes têm uma capacidade mais limitada de mudar do que as PSCs, mas elas podem se especializar em células discretas de linhagens celulares específicas. Ex: célula-tronco hematopoiética, que pode se desenvolver em vários tipos de células sanguíneas. Após a diferenciação, uma célula-tronco hematopoiética se torna uma célula oligopotente. Suas habilidades de diferenciação são então restritas às células de sua linhagem.

Células-tronco oligopotentes podem se diferenciar em vários tipos celulares. Uma célula-tronco mielóide é um exemplo que pode se dividir em glóbulos brancos, mas não em glóbulos vermelhos.

Células-tronco unipotentes têm a capacidade de diferenciação mais restrita, sendo capazes de formar apenas um tipo de célula (ex: queratinócitos), e se dividem repetidamente. Isso as torna promissoras para uso terapêutico na medicina regenerativa. 

Referência: TABATABAEI MOHAMMADI, A. et al. Stem Cell Book. [s.l: s.n.]. p. 4–6

 

AB

Centimorgan

por Anna Beatriz de Souza - segunda-feira, 20 mai. 2024, 21:35
 

A unidade de distância entre dois genes é o centimorgan, cM, que corresponde a 1% de probabilidade de dois genes se separarem por um evento de recombinação, na meiose. 

Referência: MILTON MUNIZ. Citogenética. Florianópolis: [s.n.]. p. 50

 

AB

Centrômero

por Anna Beatriz de Souza - segunda-feira, 20 mai. 2024, 21:34
 

Centrômero, ou constrição primária, é a região heterocromática do cromossomo que, no ciclo celular após a fase S, e durante a divisão celular até a anáfase, mantém as cromátides-irmãs unidas. 

ibrR48WHpZVEoYUkjLaTUEZYPf4MlYhiIqJfC8doJnnuq3kc-VyD2eDGXiBPZnhdke8IiOhrVlt-66CSEGlAhsDvq0c_Fox5GEyKVQCquqKHOGSwARAsH2G4yyWRbe4366vCh4j_Ac7hcBiyT_VUyM0

Fonte: MILTON MUNIZ. Citogenética. p.28

Referência:‌ MILTON MUNIZ. Citogenética. Florianópolis: [s.n.]. p. 36

 

AB

Citogenética

por Anna Beatriz de Souza - segunda-feira, 20 mai. 2024, 21:31
 

A citogenética é a ciência que estuda os cromossomos como estrutura física no transporte dos genes durante a mitose, a meiose e a reprodução. Ela tem como objeto de investigação a célula e utiliza os mecanismos da herança e da continuidade genética como método. Em suma, a citogenética analisa a estrutura e o comportamento dos cromossomos na transmissão da informação genética entre as células e durante a reprodução dos organismos.

Referência: MUNIZ, M. Citogenética. Florianópolis: [s.n.]. p. 9–15

 

BB

Bruna Borges Peixinho Ramos

BB

DNA nuclear

por Bruna Borges Peixinho Ramos - quinta-feira, 23 mai. 2024, 10:25
 

O DNA nuclear, é o material genético encontrado no núcleo das células eucarióticas. Ele carrega as informações genéticas necessárias para o desenvolvimento, funcionamento e reprodução dos organismos. O DNA nuclear é composto por uma sequência de nucleotídeos que codificam proteínas, bem como regiões não codificantes que desempenham papéis regulatórios e estruturais. Tem como característica dupla hélice, nucleotídeos, genes e cromossomos. O DNA nuclear apresenta como função a codificação de Proteínas, regulação Gênica, reparo e Replicação do DNA, transmissão Genética.


Referências:

Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. Capítulo 4, Estrutura do DNA.

Lodish H, Berk A, Zipursky SL, et al. Molecular Cell Biology. 4th edition. New York: W. H. Freeman; 2000. Seção 5.1, Estrutura do DNA e Cromossomos.

Watson JD, Baker TA, Bell SP, et al. Molecular Biology of the Gene. 7th edition. Cold Spring Harbor Laboratory Press; 2013. Capítulo 8, Estrutura e Função do DNA.


 

BB

DNA polimerase

por Bruna Borges Peixinho Ramos - quinta-feira, 23 mai. 2024, 15:18
 

A DNA polimerase é uma enzima essencial no processo de replicação do DNA, responsável por sintetizar novas cadeias de DNA a partir de um molde de DNA existente. Ela atua adicionando nucleotídeos complementares à fita molde de DNA durante a síntese da nova cadeia de DNA. Existem várias classes de DNA polimerases, cada uma com funções específicas em diferentes processos celulares. A principal função da DNA polimerase é catalisar a formação de ligações fosfodiéster entre os nucleotídeos, permitindo a extensão da cadeia de DNA, durante a replicação do DNA, a DNA polimerase atua de forma precisa e altamente coordenada para garantir a fidelidade na cópia do material genético.

Classes de DNA Polimerases:

1.     DNA Polimerases de replicação: como a DNA polimerase δ e ε, envolvidas na replicação do DNA durante o ciclo celular.

·       Dosagem: A dose típica varia de 50 a 500 unidades por reação.

·       Formas farmacêuticas: Disponível em forma de pó liofilizado ou solução concentrada.

·       Via de administração: Pode ser administrada por via intravenosa ou tópica, dependendo da aplicação clínica.

2.     DNA Polimerases reparadoras: como a DNA polimerase β, envolvida na reparação do DNA danificado.

3.     Outras DNA Polimerases: incluindo a DNA polimerase γ presente nas mitocôndrias e a DNA polimerase θ envolvida na reparação de quebras de dupla fita.

Referências:

Kunkel TA. DNA replication fidelity. J Biol Chem. 2004;279(17):16895-16898.

Joyce CM, Steitz TA. Function and structure relationships in DNA polymerases. Annu Rev Biochem. 1994;63:777-822.

 

BB

DNA recombinante

por Bruna Borges Peixinho Ramos - quinta-feira, 23 mai. 2024, 15:32
 

O DNA recombinante é uma molécula deDNA que foi manipulada em laboratório, combinando material genético de diferentes fontes. Esse processo envolve a inserção de um ou mais fragmentos de DNA em uma molécula de DNA hospedeira, resultando em uma nova sequência de DNA que não existe naturalmente. Essa técnica revolucionária permite aos cientistas criar novas sequências de DNA com características específicas, como a produção de proteínas terapêuticas, o estudo de genes e a modificação genética de organismos.O DNA recombinante tem como características origem diversificada: Pode ser derivado de diferentes organismos, incluindo bactérias, plantas, animais e até mesmo humanos.

Técnica de clonagem: Envolve a inserção de um fragmento de DNA em um vetor de clonagem, como um plasmideo bacteriano, para replicação e expressão. Aplicações diversas: Utilizado em pesquisas científicas, biotecnologia, medicina, agricultura e outras áreas.

 

Referências:

  1. Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002.
  2. Berg JM, Tymoczko JL, Gatto GJ Jr, et al. Biochemistry. 8th edition. New York: W H Freeman; 2015.
 

BB

DNase

por Bruna Borges Peixinho Ramos - quinta-feira, 23 mai. 2024, 13:31
 

A DNase, ou desoxirribonuclease, é uma enzima que catalisa a clivagem de ligações fosfodiéster no DNA de fita dupla ou fita simples. Essa clivagem resulta na degradação do DNA em fragmentos menores. As DNases desempenham um papel crucial em vários processos biológicos, incluindo replicação, reparo e recombinação do DNA, bem como na regulação da expressão gênica. Existem dois tipos de DNase sendo eles, Endonucleases que tua clivando o DNA internamente, gerando fragmentos menores. E o Exonucleases que Cliva o DNA a partir das extremidades, removendo nucleotídeos sequencialmente. Além disso o DNase apresenta algumas funções como, Replicação e Reparo do DNA, Regulação Gênica, Apoptose.

Uso em Laboratório:

Purificação de DNA: DNases são frequentemente utilizadas em protocolos de extração de DNA para remover contaminações por ácidos nucleicos.

Análise de Expressão Gênica: Em técnicas como PCR e RT-qPCR, a pré-tratamento com DNase evita a amplificação de DNA residual.

Referências:

Suck D, Oefner C. Structure of DNases. In: Lennarz WJ, Lane MD, editors. Encyclopedia of Biological Chemistry. Academic Press; 2004. p. 1-6.

Kornberg RD, Baker TA. DNA Replication. 2nd edition. University Science Books; 2005. Chapter 7, Nucleases and the Recombination of DNA.

Schär P, Fritsch O. DNA Repair Mechanisms. Molecular Biotechnology. 1998;9(1):73-82.


 


Página: (Anterior)   1  2  3  4  5  6  7  8  9  10  ...  22  (Próximo)
  Todos