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KEY POINTS

� Industry faces unique challenges to bring artificial intelligence (AI) to positron emission tomography
(PET) clinical workflows.

� There are new AI ecosystems created to facilitate the use of AI in clinics.

� New computing ecosystems can include reconstructions of vendor neutral format raw PET list-
mode data.

� Custom workflows including image reconstructions and list-mode data processing can be used in
new AI ecosystems.
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Research Europe, Röntgenstr. 22, Hamburg 22335, Germa
Columbia, BC Cancer, BC Cancer Research Institute, 675
Columbia V5Z 1L3, Canada; h Department of Physics, U
Research Institute, 675 West 10th Avenue, Office 6-1
i Department of Radiology and Imaging Sciences, Clinica
Pike, Bethesda, MD 20892, USA; j Department of Compu
Maryland Baltimore County, Baltimore, MD, USA; k Dep
Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104
lege London, UCL Hospital Tower 5, 235 Euston Road,
Consulting Ltd, 10 Laneway, London SW15 5HX, UK
* Corresponding author.
E-mail address: a.sitek@sanoscience.org

PET Clin 16 (2021) 483–492
https://doi.org/10.1016/j.cpet.2021.06.006
1556-8598/21/� 2021 Elsevier Inc. All rights reserved.
The recent popularity of artificial intelligence (AI)
heralded as a game-changing technology has
generated high hopes for breakthrough advance-
ments and changes across the entire health care
industry. The specific area of clinical positron
emission tomography (PET) imaging is no excep-
tion. In this work, we provide an industry perspec-
tive on specific opportunities and challenges for
PET arising by the emergence of AI and deep
learning (DL) methods.

DL1 is a machine learning technique which uses
deep neural networks to create a variety of models
which can process raw data. In recent years, DL
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has demonstrated significantly promising results
for several PET applications, including segmenta-
tion, reconstruction, outcome modeling, decision
support, and so forth.2–8

In this work, a manufacturer is defined as an in-
dustry member manufacturing PET scanners, and
a vendor as an industry member providing AI and
other processing software solutions. These two
groups are not exclusive. In the present work, we
sometimes interchangeably use the terms deep
learning and artificial intelligence, although AI
(and its subset machine learning) are wider fields.
The recent spike of interest in AI is due to
increased popularity of DL, especially the use of
convolutional neural networks (CNNs), which is
why we use this convention in this article.
The article is organized as follows. Section Chal-

lenges for commercialization identifies selected
challenges in the adoption of AI from the industry
point of view. They are general and not PET spe-
cific. The goal of this section is not to discuss po-
tential solutions to those challenges but rather
paint a perspective on specific challenges from
the industry point of view. In section Looking into
the future of AI in PET, specific applications of AI
in PET are discussed in more detail. In particular,
a concept of reconstruction of the list-mode (LM)
data on demand is combined with AI algorithms
and presented.

CHALLENGES FOR COMMERCIALIZATION

One of the main concerns for industry is to release
reliable, extensively tested and validated products
that impact disease and patient management. For
the purpose of this article, we define a reliable
product as working as intended and within a set
of predefined specifications. Equally important,
the product should demonstrate clinical utility. In
this section, we discuss some of the major con-
cerns and obstacles the industry has to overcome.

Development and Clinical Evidence

Access to data
Obtaining large amounts of data to develop AI
products is challenging, and often ownership of
the data is not with the industry. The need for
obtaining sufficient amounts of data for training,
which encompass all expected variations in the
data, that is, population-based variations (both
locally and geographically), body locations, dis-
ease state variations (including normal/nondi-
sease cases), and so forth, adds further
challenges. Federated learning (FL) is an approach
that may at least partially alleviate the issue. In FL,
AI models are trained based on data that never
leave the medical institutions9 and therefore data
security and privacy are much less of a concern.
The paradigm of FL is being widely explored (eg,
the work on FL from the London Medical Imaging
& AI Center for Value-Based Healthcare10,11).

Ground truth
In some applications of AI such as supervised
learning, obtaining ground truth will present a great
challenge. Ground truth can be obtained from an
independent measurement (eg, biopsy, postmor-
tem analysis), clinical outcomes (death, morbidity),
or previous diagnoses (eg, radiology reports), or
new reads or annotations can be used. Ideally,
the data sets should be large, but new reads and
annotations make data preparation a lengthy and
expensive process.

Robustness
Of particular, commercial interest is a reliable, reg-
ulatory cleared product that performs according to
specifications regardless of geographic location,
patient mix, and local preferences and guidelines.
Unfortunately, AI algorithms can generalize poorly
and are dependent on the data sets used to train
and test the algorithms. An AI algorithm may pro-
duce unreliable results if characteristics of the
input deviate from the training data. This has crit-
ical consequences. It is acceptable to publish an
AI algorithm tested on homogeneous data (eg,
from a single or small number of institutions using
well-defined study inclusion criteria) as long as
those limitations are transparently disclosed in
the publication. However, a commercially avail-
able product ought to be applied to real life data
that may be more diverse and complex than
single-center study data, whichmay render certain
limitations of an algorithm as nonacceptable. In
general radiology, there are many large publicly
available data sets which can be used to test
generalization of developed AI algorithms. Unfor-
tunately, there are few such sets available that
include PET data, making the development of AI
algorithms for PET more difficult.

Underspecification
Another obstacle to generalization of AI is a
recently documented problem of underspecifica-
tion.12 This term denotes the problem that if we
train the same model a number of times with
slightly different initial weights on the same large
data set and achieve similar performance on the
test set, there is no guarantee that those models
will perform the same in the real world. This is a
very difficult problem to tackle and extremely
important from the industry point of view as the
real-world performance is what matters. When
many models are trained on the same set of data
with random initial weights and applied to a certain
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unseen real-world scenario, some models may
work and some other models may not. At the
phase of model development, it is difficult to tell
which of those models will work and which ones
will not. Testing models with diverse real-world
data will alleviate the problem although not
entirely. Therefore, we emphasize the importance
of postmarket surveillance after algorithm deploy-
ment which becomes even more important than
classical (not DL) offerings.

Clinical value
When commercializing AI algorithms, there is a
need to demonstrate that the product provides
clinical value and evidence that supports the
intended use. To generate such data that can be
used as evidence for potential regulatory claims
that translate into customer value, often multi-
center, multireader studies are required. Here,
we emphasize that often one develops an excel-
lent technological solution to a clinical problem,
but when introduced to clinical workflows, it is
not widely used in routine clinical practice by clini-
cians. Appropriately designed external evaluation
studies at clinical sites by clinicians could mitigate
the problem.

Regulatory Pathways

AI’s towering dependence on data exposes
MedTech�s regulatory and privacy challenges
more than ever before: compounded by the sharp
teeth that GDPR has afforded the EU, with global
effects, academia and industry are only now
learning to safely share massive amounts of data.

Regulatory bodies, too, increasingly demand
being shown the data used to train the AI parts
of software submitted for their approval. However,
basing approval on the data creates the conun-
drum as once approved that retraining with new
data would invalidate it and burden industry and
administration with incessant reapproval cycles.
Luckily, everybody agrees a solution is direly
needed. In the United States, the FDA is working
on an action plan, and the EU has just released a
white paper with very similar thoughts.13–15 Obvi-
ously, an eventual worldwide joint framework will
be key for industry and data-owning individuals
alike.

Return on Investment

The health care industry requires a reasonable re-
turn of investment to create or sustain a viable
business. For applications of AI in PET products,
investment in development should be properly
justified by balancing the growth potential of the
AI technology with the considerable risks. AI may
require a nontraditional business model in which
subscription approaches, architectures open to
third parties such as marketplaces, and new eco-
systems are used. It is an industry challenge to
figure out why and how clients would pay for AI
innovations.

Understanding AI

Explainability
Explainability is an important factor associated
with the adoption of AI from the commercial point
of view. In short, in DL methods, the decisions
made by AI are often opaque, black box decisions.
For more details on this problem, please refer to
the study by Arrieta and colleagues.16 For AI algo-
rithms to succeed in the commercial world, the
users of the algorithms have to gain trust in
them. For example, a clear explanation on how
the AI algorithm arrived at a certain classification
can increase trust in the subsequent clinical deci-
sions which AI recommends.

Education and trust
It is critically important to educate users about AI’s
capabilities and, even more importantly, its limita-
tions. Most current applications of neural networks
are some form of image denoising where very
noisy images, presumably from short- or low-
dose scans, are converted into images that appear
less noisy. However, this does not mean that
nothing is lost because of shorter or lower dose
scans. Users need to understand that the quanti-
tative lesion/region of Interest performances of
their images are still governed by the statistics of
the acquisition. AI can mimic longer or higher
dose scans by making backgrounds smoother
but cannot create the information that is lost due
to shorter or lower dose scans. Nonetheless, we
note that AI can improve image quality such as
lesion detectability or signal-to-noise ratio by us-
ing better priors, system models, data correction,
or noise models learned from data.

Another related topic is how clinicians determine
the reliability of lesion standardized uptake values.
They may look at how noisy a large, approximately
constant region such as the liver is and decide that
smoother regions indicate more reliable lesion
quantitation. For typical reconstruction algorithms
such as Ordered-subset expectation maximization
(OSEM), this approach works reasonably well
because if the noise correlation lengths are short,
the single-image-noise in the liver is related to the
standard deviation of a single liver voxel, which is
in turn related to the standard deviations
of individual lesion voxels which finally determine
the standard deviation of the lesion SUV. In
contrast, when the background is smoothed using
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AI-based methods, this connection is lost. The
single-image-noise in the liver may be greatly
reduced without any significant changes to the
lesion ensemble noise properties. Therefore, a clini-
cian looking at an image denoised with neural net-
works should be cautious about interpreting the
variability (or uncertainty) of the lesion SUV. It
should also be noted that denoising could intro-
duce an additional bias in the lesion SUV.

Combining human and AI insights
In the foreseeable future, human decision-makers
will be augmented/assisted and not replaced by
automated algorithms. Unavoidably there will be
situations where a human opinion is different
from that of an algorithm. This creates opportu-
nities and challenges because the combination
of AI and humans may create a better and more
accurate decision.17,18 However, it creates a prob-
lem on how to meaningfully combine human and
AI insights. The final decision in the foreseeable
future will be made by humans, and some solu-
tions are needed to deal with disagreements.
One such approach could be that AI provides ex-
planations or examples from the past of similar im-
ages with known outcomes, which may persuade
the physician. Another resolution of such conflicts
could be that we teach the AI algorithm to consider
the physician’s arguments for the different opinion
(similarly as the difference in opinions is resolved
between two physicians) and then to recompute
the estimates. It is however unclear how this can
be accomplished in the current workflows and re-
quires future research. These are important ethical
issues of paramount importance to industry which
need to be resolved with cooperation with stake-
holders including clinical and ethical experts, pa-
tient advocacy groups, governmental bodies,
and of course, the industry.19 Finally, we anticipate
that, when AI makes a clinical decision without hu-
man intervention some day perhaps in the not-too-
distant future, we will face a complex problem of
who is liable for a wrong decision made by AI,
similar to self-driving car liability.

Failures

Critical failures
If algorithms do not perform according to specifi-
cations, it constitutes a major problem for vendors.
For example, DL-based image reconstruction can
be unstable resulting in severe artifacts.20 This risk
is often a consequence of the poor generalization
of the AI algorithms and the fact that results pre-
sented by an AI algorithm are often not explain-
able. If a spectacular error is made by AI, it is
very damaging to the perception of a product
even if it works within specified characteristics.
When publishing an article, the same penalty is
applied if the algorithm had an error or a spectac-
ular error. However, when we deploy an AI prod-
uct, a spectacular failure could be much more
detrimental to the trust in the algorithm. These
types of errors, although very damaging, are very
hard to mitigate with the current state of knowl-
edge about neural networks. On a positive note,
as much as critical failures of AI are damaging to
its reputation, they are at least easily identifiable
as errors. There are some safety features that
can be used (“graceful failure”). For example, if
we use AI to compute quantitative values and if
the computed values are outside of the physio-
logic range, one may display a message that AI
failed to compute the value rather than providing
it to the user. For classification problems, these
types of mitigations are much more difficult to
implement. This is certainly important from an in-
dustry point of view and an important direction of
future research.

Uncertainty estimation
Clear communication to the interpreting physician
of uncertainty in the AI result is crucial in building
trust in the AI system because, as previously dis-
cussed, no AI system will be perfect or able to
handle the huge range of real-world inputs. It is
not practical, or even possible, for AI developers
to aim for a perfect result every time, so communi-
cation of uncertainty is of paramount impor-
tance.21,22 Large uncertainty alerts about low
confidence in provided inference. This is particu-
larly true for nuclear imaging techniques which
produce data with high noise compared with other
modalities, and this noise may translate to uncer-
tainty in reconstructed images and AI decisions.
Suppose we develop an AI algorithm which auto-
matically detects the volume of interest (VOI) of
abnormal uptake of FDG, ideally the algorithm
would also provide an estimation of uncertainty
on the VOI size and SUV. This uncertainty can be
expressed by providing a range of values that
with a high likelihood contains the true value (con-
fidence intervals). This can also be done using
Bayesian approaches where each value of the vol-
ume or SUV is assigned probability of being true.23

Estimation of such uncertainty can be accom-
plished with neural networks using approximations
to Bayesian approaches24,25 or some other
approximate methods.26,27

Malicious AI, adversarial attacks
Another potential concern is that AI and DL
methods either by accident or maliciously may
introduce perturbations in the images. Some of
these perturbations can be imperceptible to



Fig. 1. Conceptual depiction of AI used at the PET
scanner during data acquisition. Gray arrows indicate
input to AI (data acquired so far, other data acquired
in the past, and criteria for decision-making) and red
arrow indicates output from AI.
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humans but may have a drastic effect on AI out-
comes. For example, in an image manufactured
by malicious AI, the analyzing AI may detect a tu-
mor with 100% certainty which remains
completely invisible to a human observer. For
more on adversarial attacks refer to the study by
Ma and colleagues.28 When used for PET image
reconstruction, AI may also introduce perturba-
tions with image textures different from those ob-
tained by standard iterative methods, which may
be misinterpreted as abnormalities.

To Err is Human. How Does This Apply to AI?

Another issue that industry faces is to roll out prod-
ucts that will over time earn the trust of radiologists
and nuclear medicine physicians and convince
them to use algorithmic advice. We already drew
the reader’s attention to challenges associated
with explainability. Algorithm aversion is another,
potentially more serious, obstacle which may pre-
vent seamless acceptance of AI solutions. Human
decision-makers are averse to algorithmic predic-
tions after seeing them perform; even with evi-
dence of noninferiority of the AI algorithm,
humans still tend to follow advice given by humans
because people more quickly lose confidence in
algorithms than in human forecasters after
observing them repeating a mistake.29 Algorithmic
aversion may be a major obstacle to adoption of
AI. AI algorithms used in augmenting human
decision-making will likely have to be held to
very high standards by enforcing interuser and
extrauser reproducibility. If we can, we should
also provide quantitative values with confidence
measures (see also section Regulatory Pathways).
Confidence is also important for yes/no or other
classification decision tasks, and some type of
confidence measures should always be provided.

LOOKING INTO THE FUTURE OF AI IN PET

Various academic medical centers worldwide are
currently investing to incorporate AI in both
research and clinical research settings as a pre-
lude to AI-supported clinical workflows. For those
applications, AI is largely used to scale and auto-
mate data analysis for large cohorts in multiyear
studies whereby thousands of images are
analyzed retrospectively. In clinical research, AI
is typically used for clinical decision support as a
“second opinion” to that of the clinician, to in-
crease the saliency of structures and functions of
interest in images while increasing efficiency of
acquisition, and/or to identify possible regions or
planes of interest in images so the clinician may
improve diagnosis, increase efficiency, and mini-
mize fatigue.30–32
The important question for the industry is how
we bring AI into the clinical workflow in an efficient
and scalable way. In section AI During PET Data
Acquisition, we consider using AI during PET
data acquisition. In section Vendor-Neutral Data-
Processing Platforms, we explore new AI ecosys-
tems already proposed elsewhere33–35 and
discuss how to leverage the uniqueness of PET
raw data (eg, LM) in such ecosystems.

AI During PET Data Acquisition

AI offers a whole new array of promising ap-
proaches that have the potential to optimize the
utility of PET imaging by adjusting controllable pa-
rameters based on the specific patient anatomy,
patient physiology, and scanner type. The basic
idea of how to achieve this is summarized in
Fig. 1. We present the ability of AI algorithms to
combine various types of information to provide
just-in-time inferences which help to create high-
fidelity PET data at the PET scanner while data
are being acquired.

In this section, we provide example scenarios of
how such AI inferences can be applied. In scenario
1, while the data are being acquired during a
single-bed position, AI analyses the data acquired
(Fig. 1) and uses criteria of acceptable data quality
to determine if a sufficient number of counts were
acquired up to this moment. An example of what
problem this may partially solve is patient motion.
If AI detects substantial patient motion, it triggers
additional time for data acquisition also informing
the operator. In scenario 2, suppose we scan a pa-
tient to determine whether the SUV in a given VOI
changed versus the SUV measured in a previous
PET scan. We provide the AI the previous PET/
CT scan, data acquired, and maximum threshold
for uncertainty of a decision (Fig. 1). We want to
know if the SUV increased/decreased by 20%
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with 95% certainty. AI analyzes the data and com-
putes the maximum possible certainty that can be
reached and the additional acquisition time to
reach it.
The PET scanner is also a location where

manufacturer-specific AI can be deployed. Once
the raw data are created and the image is recon-
structed, an AI algorithm can generate insights
which can be sent to Picture archiving and
communication system (PACS) or other destina-
tions along with the data. Such solutions may be
very effective as the manufacturer controls the
type of data the AI algorithm is exposed to. The
downside is of course that it is limited to individual
manufacturers.

Vendor-Neutral Data-Processing Platforms

An effective approach to deployment of AI in radi-
ology and other clinical environments is unclear. It
is likely however that in the near future, we will
have hundreds of AI algorithms approved for use
in clinics and operating on different parts of clinical
workflow and data. If we do not have a common
platform to deploy them and rather depend on
each AI vendor to use their own methods, the
deployment and growth of AI in PET could stall
as the complexity quickly becomes
unmanageable.
To address this, new vendor-neutral data-pro-

cessing platforms (VNDPs) are proposed.33–35 In
radiology, the VNDPs are interfaced with PACS.
AI and other algorithms can process the data
pulled from PACS and other hospital IT systems.
After processing, the output can be sent back to
the PACS, be saved on different archives, or dis-
played as shown in Fig. 2. We will not discuss
these workflows in detail here and refer the reader
to references available on this topic (vid.33–35).
Software units that operate in VNDPs can be
stacked together if their output/input type fits.
Once stacked, blocks can be replaced by different
blocks or stack of blocks. Such an architecture
has a similarity with those used by smartphones34
back to original storage, other archive, or displayed. Inte
sources of information are omitted for clarity. Application
because software units are “sitting” on the plat-
form and are activated if the “right” data arrives
and they can be swapped/updated on user re-
quests. Using this analogy, we will refer to the soft-
ware units as “apps” (Fig. 2).
To provide an example of data processing in a

VNDP platform, let us consider Fig. 2 and process-
ing by apps 4, 5, and 6. The input consists of PET/
CT images. App 4 segments the liver using CT,
app 5 detects liver lesions using PET and CT,
and app 6 performs diagnosis and computes
SUV using PET and CT if lesions were detected.
Note that outputs from apps 4 and 5 are used by
app 6.
Extended VNDP platform—processing
standardized LM
Archiving PET data in a raw LM format has many
advantages as it gives the ability to retrospectively
reconstruct images on demand. There are many
examples of where such flexibility is beneficial.
For example, when training AI algorithms, it allows
the developer to create a larger variety of images
in terms of resolution and noise from just a single
raw datafile. It also allows the developer to vary
the total number of counts simulating different
doses. The LM format may contain information
about deposited energy and time-of-flight per
event information, exact crystal pairs in which
the gamma photons were detected, which may
lead to development of improved reconstruction
algorithms or correction algorithms compared
with histogram (sinogram) data. As timing informa-
tion is available for each event, it allows for various
patient motion corrections.
The availability of LM data in new ecosystems

would open opportunities to processing PET
data, training new AI algorithms, and deriving AI
inferences. The data reconstruction in such an
ecosystem would just be another processing
app which can be inserted in the processing pipe-
line (recon apps in Fig. 3). An example of such
processing could be, for example, raw LM data
Fig. 2. Simplified PET data flows in
new AI ecosystems. Data stored in,
for example, PACS is pulled to the
VNDP platform where they are pro-
cessed by software units (‘apps’).
Apps can be used as a single processor
(app 1) or stacked (eg, app 2 and 3 or
apps 4, 5, and 6). VNDP platforms
allow for creation of custom work-
flows with custom apps. Output
from VNDP platform can be sent

ractions with hospital information systems and other
s of AI before data reach storage are not shown.



Fig. 3. PET data flow in VNDP. Orange arrows show
dataflow in the new AI ecosystem with standard PET
images processed by a single AI app. Green arrows
show new PET-specific dataflows proposed in this
work. SLM can be reconstructed by recon app and
processed by AI app. In the third example, SLM is pre-
processed (eg, randoms correction) and then recon-
structed by the recon app. Interactions with hospital
information systems and other sources of information
are omitted for clarity.
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correction for randoms or scatter which could be
performed before image reconstruction. Ideally, in
such an ecosystem, one would like to standardize
the format of LM data to make it easier for ven-
dors to develop apps which would work directly
on LM data irrespective of the type of scanner
the data were generated on. We refer to such a
format as standardized LM (SLM) format. To
perform state-of-the-art reconstruction, recon-
struction applications need information including
geometry, detector calibration, sensitivity, and
so forth, which would have to be included in the
SLM. We note that such a format does not exist
at the time of writing this article as each scanner
vendor uses a proprietary format. We note that
standards for raw data are long established in
Single Photon Computed Tomography
(SPECT),36,37 and more recently in MRI.38 The
SLM format for PET needs to be designed and
approved by all stakeholders. A first step toward
this goal would be that manufacturers disclose
nonsensitive parts of their file formats, as some
have already agreed to in the context of open-
source projects.39–41
Fig. 4. LM data are reconstructed using vendor-
specific proprietary software at the scanner. Each
manufacturer creates manufacturer-specific AI models
(PPI-AI) to transform the parent PET image to child im-
ages needed for various clinical and research tasks.
Extended VNDP platform—processing parent
PET image
Although SLM in the VNDP platform provides
enormous flexibility in constructing custom pro-
cessing pipelines, handling LM files presents chal-
lenges. They are very large files (3–20 GB), and
storage and network demands are considerable.
Each vendor has a proprietary highly optimized
software program which reconstructs images
directly from the LM or sinograms created from
the LM. Reconstruction software may have spe-
cific computing hardware requirements that may
not be readily available in the VNDP platform.

AI offers an alternative approach toward
creating a practical platform for generalization of
the reconstruction process across different scan-
ners and manufacturers without explicitly using
LM files. The suggested approach gives up some
generalizability compared with the SLM approach
described in section 3.2.1, but it is more practical
and well suited for use within a VNDP platform.
We refer to this concept as the parent PET image
(PPI) and summarize it in Fig. 4.

The main idea is that instead of handling SLM in
the new ecosystem as shown in Fig. 3, we recon-
struct on the scanner a parent image (or images)
and use it instead of SLM in the VNDP platform. In
the VNDP platform, PPI is then used to generate
on demand various child images (Fig. 4). The gen-
eration of child images from the PPI is performed
using deep CNNs referred to in this article as PPI-
AI. The PPI-AI are types of apps in the ecosystem
(Fig. 2) that convert PPIs to child images.

The PPI can be, for example, the high-fidelity im-
age. PPI can actually also be a set of images, such
as high-fidelity images with and without attenua-
tion correction, resolution modeling, and so forth.
If time-of-flight is available, it could also contain
back-projections at different angles, as used by
the DIRECT method.42 There are many possibil-
ities on how to define PPI, and research is needed
to determine which of those choices would be
optimal. The PPI is reconstructed on the scanner,
and it is stored in PACS possibly along with some
child images. The PPI can be pulled to the VNDP
platform and almost instantaneously converted
to any child image as the inference using the
PPI-AI CNN model is fast. Once converted to a
child image, it can be further processed by AI
apps or other apps as a regular PET image (Fig. 5).

Looking at Fig. 4, the PPI can be converted to a
high-fidelity image, the best utility image that a
vendor can generate from the LM file. When
training AI apps to be used in new ecosystems
(Fig. 2), we would like to use images of various
quality with various artifacts for the app to be
more robust and general. A PPI-AI model can be



Fig. 5. PET data flow in VNDP with
parent PET image (PPI) concept. Or-
ange arrows show dataflow in the
new AI ecosystem with standard PET
images processed by a single AI app.
Green arrows show new PET-specific
dataflows proposed in this work. PET
parent image is pulled from PACS
and converted by PPI-AI app to a
PET image which is processed by a sin-
gle AI app. Interactions with hospital
information systems and other sour-
ces of information are omitted for
clarity.
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trained to generate poorer quality images from the
PPI. Examples of such are shown as different
noise/resolution tradeoff and lower dose child im-
ages in Fig. 4.
There are ongoing efforts to harmonize and

standardize results obtained on different scan-
ners.43,44 This can also be done using the PPI
by creating harmonized child images. For this,
we would require collaboration between vendors
to create a single PPI-AI CNN model which could
generate harmonized images from PPIs of
different vendors. We can take this concept
further and imagine a situation where the user
points a cursor on a lesion when viewing a high-
fidelity image, the standardized image is created
in the background transparently to the user, and
the viewing system displays standardized SUV
values.
The fifth child image example provided in Fig. 4

is physiologic motion (eg, respiratory) correction
using PPI-AI. If no motion correction is applied, re-
gions of the PPI with motion will appear blurry.
PPI-AI models can be trained to recover resolution
from blurred PPIs. Alternatively, a PPI could
contain several images, for example, in different
motion states, or one in end-expiration and one
without motion correction, from which a fully
motion-corrected image can be produced.
The training of PPI-AI models is conceptually

straightforward. Suppose we want to create a
PPI-AI model that generates from the PPI a
half-dose image, first, we identify a training set
which contains, for example, 1000 PET scans
from some patient population. Then, we recon-
struct those 1000 images from LM data using
only half of the counts available in the LM.
Then, we create PPIs by reconstructing images
using all counts and high-fidelity reconstructions.
We train neural networks (PPI-AI) with PPIs as
the input and half-dose images as the target.
This completes the creation of the PPI-AI model.
Similarly, any other PPI-AI model can be trained.
In the aforementioned steps, we assumed that
high-fidelity reconstruction image is the PPI,
but this may not necessarily be the optimal
choice as already discussed.
A disadvantage of using the PPI compared with

SLM is that the PPI contains less information than
the LM file. Timing information is not available, and
although the PPI can in general be a dynamic (or
ECG-gated) sequence, it cannot be time reframed
to a different sequence. We also do not have ac-
cess to deposited energy, time of flight, and so
forth. However, we remember that some of the in-
formation is transferred to PPI-AI models during
training. Intuitively, during PPI-AI inference, when
child images are generated from the PPI, not
only the information in the PPI is used but also
the information “stored” in PPI-AI models.
Another disadvantage of PPI is that if a manu-

facturer improves the tomographic reconstruction
algorithm and wants to update it on the scanner,
all PPI-AI models have to be retrained, which could
be an automated process, but it is computationally
intensive. If novel reconstruction is to be applied
retrospectively to data acquired in the past, the
PPIs have to be updated as well.
SUMMARY

In section Challenges for commercialization, we
presented important challenges for creating and
adopting AI solutions in clinics from the point of
view of the industry. In section Looking into the
future of AI in PET, we concentrated on PET
explored unique to PET applications of AI during
data acquisition. We examined a flexible and scal-
able ecosystem for deployment of AI and
described a synergy of such systems with an
idea of SLM data and the other solution presented
here based on the PPI concept.
There are emerging new workflows and data

ecosystems in radiology. In addition to facilitating
AI deployment, they provide a tremendous oppor-
tunity for the PET community to transform the cur-
rent paradigm of PET data processing.
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CLINICS CARE POINTS
� Reconstruct PET data on demand (eg, just
before or during reading) from raw data
such as standardized list-mode data or parent
PET images.

� Use raw data as a part of the “patient medical
record.”

� Include “DICOM push” for ease of raw data
transfer/storage/management.

� Archive raw data which is essential for future
improved reconstruction with motion correc-
tion, harmonization, or comparison with
prior images.

� Process raw data in new AI ecosystems.
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