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For Theresa, my closest friend and confidant.
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‘In the mountains, the shortest route is from peak to peak, but for 

that you must have long legs.’

-Friedrich Nietzsche in Thus Spoke Zarathustra

‘Methinks that in looking at things spiritual, we are too 

much like Oysters observing the sun through the water, 

and thinking that water the thinnest of air.’

-Herman Mellville in Moby Dick

‘At every crisis in one's life, it is an absolute salvation to have some sympa-

thetic friend to whom you can think aloud without restraint or misgiving.’

-Woodrow Wilson

‘On peut rire de tout, mais pas avec n'importe qui.'

-Pierre Desproges

-Edwin Hall,  Am. J. Math,  2, 287 (1879)

‘It has been stated above that in the experiments thus far tried the 

current apparently tends to move, without actually moving, toward 

the side of the conductor.  I have in mind a form of apparatus which 

will, I think, allow the current to follow this tendency and move 

across the lines of magnetic force.  If this experiment succeeds, one 

or two others immediately suggest themselves.’
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ABSTRACT

A complete understanding of the the ν = 5
2 fractional quantum hall effect (FQHE)

continues to be among the most exciting problems in semiconductor physics. It is widely be-

lieved that this unique electron state is described by the Moore-Read Pfaffian wavefunction,

resulting from a BCS-like pairing of composite fermions. In recent years this wavefunction

has received special interest owing to its non-abelian quantum statistics which underlies a

new paradigm for fault tolerant quantum computation. However, in spite of several theoret-

ical advancements, an unequivocal experimental verification of the Moore-Read description

is still missing.

We studied the 5
2 state in a very high quality 2DEG sample with the lowest electron

density reported to date, by nearly a factor of two. We demonstrate that large discrepancies

between experimentally measured values of the 5
2 energy gap, and theoretical calculations

based on the Moore-Read theory, can not be trivially attributed to disorder as has conven-

tionally been assumed. Using a tilted field geometry, we investigated the effect of applying

an in-plane magnetic field on the 5
2 state. We observe the 5

2 energy gap to collapse linearly

with the in-plane field, whereas the neighbouring 7
3 shows a strong enhancement. The

opposite behaviour between the two states is in startling contrast to theory which predicts

both gaps should be similarly suppressed. Since the early theoretical foundation in support

of the Moore-Read interpretation presumed the two states should behave the same, our

experimental finding of opposite behaviour may necessitate a fundamental rethinking of

the nature of the 5
2 FQHE.

A crucial step towards verifying the Moore-Read description of the ν = 5
2 FQHE will be

an unambiguous measurement of its spin state. In an effort to measure the 5
2 spin directly,

we implemented a resistively detected nuclear magnetic resonance (RDNMR) technique.

I report on our detailed study of the anomalous RDNMR lineshape around ν = 1, and

discuss progress made towards measuring the 5
2 spin with this technique.
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ABRÉGÉ

Une compréhension complète de l’effet Hall quantique fractionnaire (EHQF) à ν =
5
2 continue à faire partie des problèmes les plus passionnants de la physique des semi-

conducteurs. On estime généralement que cet état électronique unique est décrit par

la fonction d’onde de Moore-Read connue sous le nom de “Pfaffien”, résultant d’un ap-

pariement de type BCS de fermions composites. Cette fonction d’onde a récemment suscité

un intérêt tout particulier en raison de ses statistiques quantiques non-abéliennes qui sous

tendent un nouveau paradigme pour le calcul quantique insensible aux défaillances. En

dépit de plusieurs avancées théoriques, il manque toutefois une vérification expérimentale

définitive de la description Moore-Read.

Nous avons étudié l’état 5
2 dans un gaz électronique bidimensionnel de très haute

mobilité ayant la plus faible densité d’électrons reportée à ce jour, ceci de par un fac-

teur proche de deux. Nous démontrons que les importants écarts entre les valeurs du gap

d’énergie à 5
2 mesurées expérimentalement et les calculs théoriques basés sur la théorie

Moore-Read ne peuvent pas être uniquement attribués au désordre, comme cela a tradi-

tionnellement été proposé. En utilisant un champ à géométrie inclinée, nous avons étudié

l’effet de l’application d’un champ magnétique dans le plan sur l’état 5
2 . Nous observons

une décroissance linéaire du gap d’énergie à 5
2 en fonction du champ magnétique dans le

plan, tandis que le gap d’énergie d’état fractionnaire voisin 7
3 exhibe une forte augmenta-

tion. Le comportement opposé des deux états est en contraste avec la théorie qui prévoit

que les deux gaps doivent être supprimés par l’application d’un champ magnétique dans le

plan, ce qui nécessite un nouvel examen de la nature de l’EHQF 5
2 .

Une étape cruciale vers la vérification de la description Moore-Read de l’EHQF ν = 5
2

sera une mesure définitive de son état de spin. Dans un effort visant à mesurer directement

le spin de l’état 5
2 , nous avons mis en place une technique de résonance magnétique nucléaire

détectée résistivement (RMNDR). Je détaille notre étude de la forme du signal de RMNDR

autour de ν = 1, et expose les progrès réalisés en vue de mesurer le spin de l’état 5
2 à l’aide

de cette technique.
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STATEMENT OF ORIGINALITY

The work described in this thesis represents original scholarship by the author, and has

not been submitted for a degree or diploma at any other institution. This thesis contains

no material previously written or published by any other persons excepted where references

are made.

Several physical designs described in the thesis are the authors own ideas, and were

constructed and implemented by the author. These are described in detail in Chapter 3

and include, but are not limited to

• Experimental cold finger, designed to achieve maximal sample cooling and retro-fitted

to a commercially purchased dilution refrigerator.

• In-situ sample rotator that allows transport measurement to be performed in a ro-

tated field geometry.

• Implementation of a resistively detected nuclear magnetic resonance (RDNMR) mea-

surement scheme. While the RDNMR technique was developed previously, our unique

design offers several improvements including incorporation of a fixed, rigid, RF coil;

design of a custom sample holder highly specialized in several ways; and incorporation

of a custom designed AC bridge to improve measurement sensitivity.

• Implementation of all infrastructure for the dilution refrigerator operation and sample

measurement.

Chapters 4, 5 and 6 describe experimental results obtained from examination of a

unique GaAs 2DEG sample, supplied by Bell Laboratories. Portions of Chapter 4 and

5 were published as original work with the author of this thesis appearing as the first

author in each publication [Dean et al., Phys. Rev. Lett., 100, 146803 (2008) and Dean

et al., Phys. Rev. Lett., 101, 186806 (2008), respectively]. Highlights of this research that

represent a significant and important contribution to the study of the quantum Hall effect

include

• Observation of the 5
2 fractional quantum Hall effect in a new low-field regime, by

nearly a factor of two smaller than than previously reported.

• Identification that disorder does not trivially account for the reported discrepancy

between the measured 5
2 energy gap and the corresponding theoretically predicted

value.
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• Observation that the 5
2 and neighbouring 7

3 FQHE states behave oppositely in a titled

field geometry, representing a startling contradiction with theoretical predictions.

• First-ever evidence of skyrmion excitation in the second Landau level.

• Experimental demonstration of several important questions regarding the theoretical

description of the 5
2 FQHE state, motivating the need for further theoretical and

experimental studies.

Chapter 6 describes implementation and examination of the RDNMR technique. A sum-

mary of the author’s investigation of the anomalous lineshape near exact filling of the

lowest Landau level was published as original work in a conference proceedings [Dean et

al., Physica E, 40, 990 (2008)]. A second publication, featuring the analysis of our first-ever

observed current-induced inversion of this lineshape, is in preparation. The observation of

an RDNMR response near the 5
2 FQHE state, presented at the end of Chapter 6, represents

an important fist step towards direct measurement of the 5
2 spin, which so far has not been

reported in the literature.
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CHAPTER 1

Introduction

The history of the quantum Hall effect has continually been marked by unexpected

new experimental discoveries. The quantum Hall effect (QHE) was first discovered

in 1980, when Klaus von Klitzing demonstrated quantization in the Hall resistance of a

2D electron system, at high magnetic fields [1]. Observation of this entirely new quantum

phenomenon quickly gave birth to a rich new field of physics. Moreover, von Klitzing’s

discovery of exact quantization in the Hall resistance in units h/e2, depending only on

fundamental constants, gave us a new standard of resistance.

In 1982 Daniel Tsui and Horst Stormer [2] observed the characteristic features of the

quantum Hall effect, i.e. exact quantization in the Hall resistance together with a zero

value in the magnetoresistance, but occurring at 1
3 fractional filling of the lowest Lan-

dau level. This surprising discovery called into question early theories of the quantum

Hall effect, which described states occurring only at integer values of Landau level filling.

It was quickly realized that, while the QHE could be mostly understood in terms of a

non-interacting single-electron picture, understanding the fractional quantum Hall effect

(FQHE) would require the explicit inclusion of electron-electron interactions [3] into the

theory. Studies of these often subtle and complex many-body effects has since been the

source of major breakthroughs in our understanding of strongly interacting electrons in

two dimensional systems. Chief among these is the composite fermion picture of the in-

compressible FQH liquid [4,5], extremely successful at explaining both the complete series

of fractional quantum Hall states observed in the lowest Landau level, and the absence of

such a liquid at precisely half-filling.

In 1987 Willett et al. reported the observation of a quantum hall state at even de-

nominator fractional filling ν = 5
2 [6–8]. This discovery was later confirmed unambiguously

by Pan et al. who demonstrated exact quantization in the corresponding Hall resistance

to an accuracy better than 2 × 10−6 [9]. Remarkably, the 5
2 state (and equivalently its
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Introduction 1.0

particle-hole conjugate at 7
2 fractional filling) remains the only even-denominator state in

the more than 100 unique FQH states that have been identified over the past 25 years.

With this singular exception, every other FQH state is found at odd-denominator fractional

filling, obeying the so-called “odd-denominator rule”. Theoretical models of the fractional

quantum Hall effect all reflect this rule giving FQH states that occur at, and only at,

odd-denominator rational fractions [3, 4, 10–13]. The otherwise strict adherence to the

odd-denominator rule together with the many successes of the theories that describe this

rule makes the appearance of a quantum Hall state at even denominator a truly surprising

and unexpected discovery. In 1991, Moore and Read [14] proposed an elegant many-body

wavefunction to explain the appearance of the 5
2 FQH state. The so called Moore-Read

Pfaffian, which describes a condensation of Bosons resulting from a BCS-like pairing of

composite electrons at half filling, is now widely believed to be the correct description of

the 5
2 state. However, support for the Moore-Read wavefunction remains mostly theoretical

with an unequivocal experimental verification still conspicuously missing.

The Moore-Read Pfaffian has received special interest owing to its predicted exotic

(non-Abelian) quantum statistics. On its own, discovery of a new kind of quantum particle

would represent an important milestone in physics research. However, the Moore-Read

Pfaffian has received particular attention for its potential technological applications. Kitaev

proposed [15] that the topology in a system of non-Abelian particles would have a robust

and therefore stable quantum property, which could be used to construct a fault-tolerant

quantum computer. This represents a new paradigm in the attempt to achieve quantum

computation, which so far has not been possible with conventional approaches. In recent

years, the possibility that the 5
2 state possesses the necessary quantum properties to realize

the topological quantum computer [16,17] sparked a renewed interest in this state, and now

more than ever underlines the importance in verifying whether the Moore-Read description

is indeed correct.

Recent experiments [18,19] have measured the e∗ = e/4 fractional charge expected for

excitations from the Moore-Read ground state at 5
2 . However this measurement alone does

not rule out other, Abelian, pairing wavefunctions which could also exhibit e/4 charged

excitations. The key feature that distinguishes the Moore-Read Pfaffian from other pro-

posed theories of the 5
2 FQHE is its spin polarization. While the Moore-Read Pfaffian

describes a fully spin-polarized paired-state, all other candidate wavefunctions result from

a spin-unpolarized pairing. Measurement of the spin-polarization therefore remains the

most important missing piece of the puzzle in our attempt to understand the origins of the
5
2 state.
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Introduction 1.1 Outline of thesis

In the following thesis, I describe our efforts to measure experimentally the spin polar-

ization of the 5
2 FQH state. Our approach was two-fold. First, we investigated the 5

2 state

in a very high quality sample with a remarkably low density. This allowed us to examine

the 5
2 at a much lower magnetic field than previously observed (by nearly a factor of two)

which for the first time i) allowed observation of the 5
2 in a region of strong Landau level

coupling and ii) allowed us to follow up on the first tilted field experiments of Eisenstein et

al. [7,8] but with much higher sensitivity in the low tilt (i.e. low parallel field) regime than

previously possible. Secondly, and in parallel, we implemented and characterized a newly

developed resistively detected nuclear magnetic resonance (RDNMR) measurement tech-

nique, which promises to allow direct measurement of the 5
2 spin by exploiting interactions

with the surrounding nuclear spin.

Our investigation of our low density sample lead to several observations [20,21] regard-

ing our understanding of the 5
2 FQHE state. In particular, our results call into question

the usual assumption that disorder effects at 5
2 explain in a trivial way the large dis-

crepancy between the theoretically predicted energy gap for a Moore-Read state, and the

gap measured experimentally [20]. Our tilted field experiment raised further important

questions regarding the Moore-Read description where, for the first time, we identify a

startling contradiction in the behaviour of the 5
2 under tilt when compared with neigh-

bouring states [21]. Finally, we obtained a response signal near ν = 5
2 using the resistively

detected NMR scheme. This preliminary measurement represents an important first step

towards a direct measurement of the 5
2 spin state.

1.1 Outline of thesis

I first begin with an introduction to the quantum Hall effect. Here I review important

experimental discoveries and theoretical developments in both the integer and fractional

quantum Hall effect, leading up to the discovery of the anomalous 5
2 state. I then give a

detailed description of 5
2 FQHE. After presenting a summary of the Moore-Read theory,

I review the theoretical and experimental support in favour of this description. At the

end of this chapter, I highlight known shortcomings, and discrepancies of the Moore-Read

Pfaffian as it applies to the 5
2 state and outline the need for further experimentation.

In Chapter 3, I describe in detail the apparatus I designed and constructed in our

effort to study the 5
2 state. I review conventional transport techniques used to study the

physics of interacting electrons in 2D, and outline novel approaches that I developed over

the course of my studies.

3



Introduction 1.1 Outline of thesis

In the remainder of the thesis (Chapters 4 to 6), I present the results of our investi-

gation into the 5
2 FQHE. First, I discuss our examination of the 5

2 state in our very high

quality, low density, sample. Results from conventional activation energy gap studies [20],

and from using a tilted field geometry [21], are presented and discussed in terms of the

Moore-Read Pfaffian wavefunction. I then describe our implementation of the newly de-

veloped RDNMR measurement technique. We characterized and optimized the RDNMR

scheme by first examining the ν = 1 integer quantum Hall effect, where it is easy to obtain

strong responsive signals. I present our investigation of the anomalous lineshape obtained

at ν = 1 including our discovery of a current induced inversion in the signal shape [22].

Having characterized the technique, we applied RDNMR measurements to the 5
2 FQHE,

which I discuss at the end of the thesis. Finally, I review the current status of a bridge

measurement scheme we developed that together with the RDNMR technique should al-

low for a full analysis of the spin nature of the 5
2 state. In the final chapter I conclude by

summarizing our main findings and propose future studies based on our results.

4
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CHAPTER 2

Theory and Historical Context

In the following chapter I give a review of the quantum Hall effect by discussing in parallel

important experimental discoveries and theoretical breakthroughs. The overarching aim

of this chapter is to provide a theoretical framework for our study of the even-denominator
5
2 FQHE while simultaneously giving historical context to our findings. Towards this ef-

fort, I first give a broad overview of the integer and fractional quantum Hall effect. I then

discuss in detail the experimental and theoretical foundations that have lead to our cur-

rent understanding of the 5
2 FQHE, with an emphasis on important remaining questions

regarding the origin of this enigmatic phenomenon.

2.1 Quantum Hall Effect

2.1.1 Classical Hall Effect

Nearly 130 years ago, Edwin Hall discovered the now famous Hall effect. Applying

current through a thin foil sample in the presence of a large magnetic field, he observed a

voltage develop in the direction transverse to the direction of current flow. This so called

Hall voltage, VH , was found to vary proportionally with current and with the size of the

applied field

VH ∝ I, B. (2.1)

This observation is now easily explained by the Lorentz force interaction which states

that a charged particle moving in a magnetic field experiences a torque given by

FB = e(v × B) (2.2)
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Figure 2–1: Schematic cartoon of the Hall effect. Application of a magnetic field causes a build
up of charge on one side of the sample (due to the Lorentz force interaction) resulting in a voltage
difference along the transverse (Hall) direction. The charge imbalance however gives rise to an
electric field, yielding an electrostatic force that opposes the Lorentz force. The size of the Hall
voltage is determined by the equilibrium condition between these forces.(see text).

where FB is the Lorentz force, e is the charge of the electron, v is the electron velocity (in

this case the drift velocity defined by the current flow) and B is the magnetic field vector.

The Lorentz force causes electrons to drift in the transverse direction resulting in charge

accumulation on one side of the sample. This charge imbalance in turn creates an electric

field, giving rise to an electrostatic force, given by

Fe =
eVH

w
(2.3)

where e is the electron charge, w is the width of the sample and VH is the voltage difference

across the sample, i.e. the Hall voltage.

The electrostatic force opposes the Lorentz force, so that as the Hall voltage increases

equilibrium is quickly established (Fig. 2–1). Equating the two forces (Eqns. 2.2 and 2.3)

gives

eVH

w
= evdB. (2.4)

Now, the current flow through the sample is defined by

I = NevdA (2.5)

7
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where N is the electron density, vd is the electron drift velocity, and A is the cross sectional

area through which the current flows, i.e. A = w d where d is the sample thickness. Rear-

ranging Eqn. 2.5 for the velocity and substituting into Eqn. 2.4 gives the full relationship

between the hall voltage and the current and magnetic field to be

VH =
IB

Ned
(2.6)

where d is the thickness of the sample, and N is the electron density per unit volume. If we

consider a thin sample, the electron density is mostly defined by the planar density, and so

it is useful to instead consider the 2D electron density per unit area, n = Nd, which gives

the Hall voltage to be

VH =
IB

ne
. (2.7)

Transport in the longitudinal direction (i.e. in the direction of the applied current) is

unaffected by the B field and so the longitudinal resistance, Rxx, is given simply by Ohms

law relation

Rxx =
Vxx

I
(2.8)

where Vxx is the voltage drop across the sample in the longitudinal direction and I is the

current flow. While in the transverse direction there is no actual current flow since the

system reaches equilibrium (for a given current and magnetic field), it is conventional to

define a similar resistance relation, determined by dividing the transverse Hall voltage by

the longitudinal current. From Eqn. 2.7 this gives the Hall resistance, RH = VH/I, to be

RH =
B

ne
. (2.9)

Importantly, the Hall resistance depends only on the size of the magnetic field and the

electron density, i.e. no other physical parameters such as sample size, geometry, etc.

play a role. The Hall resistance (voltage) is often denoted by Rxy (Vxy) reflecting that it

is measured in the transverse direction. Throughout this thesis, however, I will use the

convention that denotes the Hall direction by a subscript H .

2.1.2 Integer Quantum Hall Effect

In 1980, performing a similar experiment to Edwin Hall’s but in the quantum regime

(very low temperature, and in the 2D limit), Klaus von Klitzing discovered the quantum

Hall effect [1]. In von Klitzing’s experiment, shown in Fig. 2–2, the basic Hall effect was

8
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Figure 2–2: Plot from von Klitzing’s discovery of the quantum Hall effect [1]. Plateaus in the
Hall resistance were observed to be quantized to integer multiples of h/e2, together with vanishing
resistance in the longitudinal direction.

observed, namely the Hall resistance varies with magnetic field1 , however at well defined

values of B field, plateaus appear in the hall resistance, together with vanishing resistance

measured in the longitudinal direction. The plateaus were found to be exactly quantized

at values

RH =
1

i

h

e2
(2.10)

where i is integer valued, h is Plank’s constant, and e is the electron charge. Both the

quantized plateau in RH and the zero resistance value in Rxx can be understood in terms

of Landau levels in a 2D system.

In the presence of a magnetic field, the electron energy states collapse onto quantized

circular orbits in the plane transverse to the B field, separated by a well defined gap (Fig.

2–3). In the strictly 2D limit the LL levels represent the only energy levels the electrons

can occupy. Note that this differs from the 3D case where electrons are likewise confined to

LLs in the x-y plane, but can take on any value in the quasi-continuous energy spectrum

1 In his von Klitzing’s experiment he equivalently varied the electron density by applying
a gate voltage.

9



Theory and Historical Context 2.1 Quantum Hall Effect

along the z-direction. Solving the Schrodinger equation in 2D for a single electron in the

presence of a magnetic field gives the the Landau level (LL) energy to be

EN = (N + 1/2)~ωc (2.11)

where N=0,1,2... is the LL index and ωc is the cyclotron frequency, given by

ωc =
eB

m∗
(2.12)

where B is the magnetic field and m∗ is the effective electron mass (m∗ = 0.067me in

GaAs). In the absence of a magnetic field, the density of states (DOS) in 2D is constant

as a function of energy. With a magnetic field turned on however, the density of states

collapses onto a series of highly degenerate δ-functions (in the ideal, zero disorder case),

corresponding to the Landau Levels. In real samples, the δ-functions are broadened due to

disorder scattering. The LL degeneracy, i.e. the number of states per LL (per unit area)

varies with the size of the B field according to

nB =
eB

h
(2.13)

where the spin degeneracy has not been included, which, for spin degenerate system would

contribute an additional factor of two. As the magnetic field is increased, the degeneracy of

the LLs, or in other words the size of the LLs (in k-space), increases so that it requires more

electrons to fill up each LL. At very low temperatures, electrons fill the lowest available

energy states in the usual way so that LLs are filled sequentially up to the Fermi level. At

low temperatures and low magnetic fields a large number of LLs will in general be filled.

As the magnetic field is increased the LL degeneracy increases resulting in fewer and fewer

LLs being occupied until at sufficiently large values of B only the lowest LL contains any

electrons. Between these two extremes there exists special cases where an integer number

of LLs are exactly filled, occurring at magnetic field values of

Bν =
1

ν

nh

e
(2.14)

where ν = n
nB

is termed the filling fraction. The filling fraction gives the ratio between

the number of electrons and the number of available states per LL. For example ν = 1

indicates the lower spin branch of the lowest LL (N=0) is exactly filled; ν = 3
2(= 1 + 1

2)

indicates the lower spin branch of the lowest LL is completely filled plus exactly half of the

10
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Figure 2–3: (a) Application of a magnetic field causes the electron energy states to collapse onto
concentric circular orbits (in k-space), separated by a well defined gap. (b) Increasing the magnetic
field increases the size of the LLs so that fewer and fewer LLs are occupied if the electron density
remains fixed. At special values of the B field (far right panel) an integer number of LLs are
exactly filled, and the Fermi level lies in the gap between adjacent LLs. The LLs are shown as
disorder broadened, rather than as ideal (unrealistic) δ-functions in the DOS.

upper spin branch in the lowest LL is filled, while at ν = 2 both spin branches of the LL

level are exactly filled, and so on.

It is useful to note that there are several equivalent definitions of the filling fraction

ν =
n

nB
= n

h

eB
= n

Φo

B
= n 2πl2B (2.15)

which can all be derived from the above equations, where Φo = h/e is the definition of the

flux quantum, and 2πl2B is simply the area of a Landau level whose radius is the magnetic

length, lB =
√

~/eB. In particular, it can be illuminating to note that from the definition

of the flux quantum, the LL degeneracy (per unit area) in Eqn. 2.13 can be rewritten as

nB = B/Φo. For a sample of area A, this gives the total number of states per LL to be

NB = AB/Φo = Φ/Φo (2.16)

where Φ is the total flux penetrating the sample. Rewriting the LL degeneracy in this way

reveals explicitly that there exists one energy state for each quantum of flux that penetrates

the sample.

At exact filling, all lower energy states (LLs) are completely filled while the higher

levels are separated by the energy gap between LLs (i.e. the cyclotron energy gap, ∆ =

~ωc). Since there are no free energy states within the filled LL level there can be no

11
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scattering as there are no available states to scatter into, provided the temperature is low

enough that kBT < ∆. The transport therefore becomes dissipationless and the resistance

falls to zero. Recall from the classical Hall effect (Eqn. 2.9), that the Hall resistance is

RH = B/ne. Substituting into this relation the result from Eqn. 2.14, therefore gives the

value of the Hall resistance at the condition of exact LL filling to be

RH =
1

ν

h

e2
(2.17)

which is exactly the quantized resistance values of the plateaus observed in experiment

(Eqn. 2.10).

It can be useful to consider the transport in terms of conductance rather than resis-

tance. From the semi-classical Drude model, conductivity is given by

σ =
ne2τ

m∗
(2.18)

where the conductivity defines the relation between current density and applied electric

field (J = σ E). In this relation n is the electron density, e is the electron charge, m∗ is the

effective mass, and τ is the transport (or scattering) lifetime. In zero magnetic field the

conductivity is isotropic, and related simply to the resistivity by ρ = 1/σ. The magnetic

field however introduces anisotropy causing the conductivity in the plane perpendicular to

the B field to become defined by a 2D tensor relation

σ =

(

σxx σH

−σH σxx

)

. (2.19)

The corresponding resistivities are then related by the resistivity tensor

ρ =
1

σxx
2 + σH

2

(

σxx σH

−σH σxx

)

. (2.20)

For a square 2D sample the resistance equals the resistivity (ρ = R) so that the QHE

is characterized by

ρxx = 0, ρH =
1

ν

h

e2
. (2.21)

From the relation in Eqn. 2.20 this gives the corresponding conductivities of the QHE

state to be

12
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Figure 2–4: Diagram showing the region of localized states versus delocalized states in the disorder
broadened LLs. Also illustrated is Zeeman splitting of the upper and lower spin branch of adjacent
LLs.

σxx = 0, σH = ν
e2

h
. (2.22)

The vanishing longitudinal resistance seen at the QHE can also be understood from

the point of view of conductivities by noting that at exact filling the Fermi level lies in the

gap between LLs, where the density of states is zero. Since the longitudinal conduction

happens at the Fermi level, when the DOS goes to zero the conductivity also goes to zero.

From the above relations, ρxx ∝ σxx giving ρxx = 0 at exact filling of the LL as above.

The condition of exact LL filling that is used to explain the QHE is met only at very

unique values of the B field. Experimentally however, the plateaus inRH and corresponding

zero resistance in Rxx are observed to extend over a wide range of the magnetic field around

these values. This is attributed to impurities that cause broadening of the LLs due to

scattering. The broadened LLs consist of two types of states, namely extended states that

occupy the middle of the LL and localized states that occupy the tails as shown in Fig.

2–4. The “localized” nature of the states result form impurities in the 2DEG that create

potential variations, which trap electrons in tight circular orbits (Anderson localization).

These localized states cannot contribute to transport since they do not extend over the

whole sample. The QHE can thus be considered as a transition from localized to delocalized

states as the Fermi level moves across the density of states [2, 3].

Finally, the above description of the QHE assumes an ideal 2D sample of infinite extent

in the x and y directions. In a real system, effects of the boundaries and contacts causes

the energy bands to bend up at the edges. This gives rise to the edge state picture which

13
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Figure 2–5: Energy spectrum of a 2DEG in a sample of finite width, w, showing only the three
lowest LLs. Energy states bend upwards at the edges due to the confining potential. All states
below the Fermi level are occupied (solid circles), with the transport edge channels existing only
at the intersection of the LLs with the Fermi level (open circles).

interprets the quantum Hall effect in terms of a sequence of incompressible stripes crossing

the Fermi level at the edge (Fig. 2–5) [4–6].

2.1.3 Fractional Quantum Hall Effect

In 1982, examining 2DEG samples with significantly improved quality than in von

Klitzing’s earlier experiment, and under the application of much higher magnetic fields,

Daniel Tsui and Horst Stormer observed the hallmark characteristics of the quantum Hall

effect (quantized plateau in RH together with vanishing resistance in Rxx), but occurring

at only 1
3 fractional filling of the lowest Landau level [7]. Since in this regime the system

was far away from exact filling, the usual filled LL picture could not apply. Instead,

understanding the existence of fractional states would require the explicit inclusion of

many-body interactions into the theory.

2.1.4 Laughlin States

In the earliest theoretical work following the discovery of a quantum Hall state at

ν = 1
3 , Robert Laughlin proposed a ground state wavefunction to describe the FQHE at

ν = 1/m fractional filling [8, 9]

Ψm(zj , ..., zk) =
N
∏

j<k>

(zj − zk)
m exp

[

− 1

4 l2B

N
∑

j

|zi|2
]

(2.23)

where m is an odd integer, zj = xi + iyj is the location of the jth particle expressed as a

complex number, and lB is the magnetic length. Laughlin constructed this wave function

as a many-body variational ground state for the Hamiltonian

14
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Figure 2–6: Plot from Dan Tsui and Horst Stormer’s discovery of the fractional quantum Hall
effect [7]. Characteristics of the quantum Hall effect (quantized resistance in RH together with
vanishing resistance in Rxx) is observed at ν = 1

3
fractional filling.

H =
N
∑

j

1

2me

[

~

i
~∇j −

e

c
~A(~rj)

]2

+
N
∑

j<k

v(~rj − ~rk) +
N
∑

j

Vion(~rj) (2.24)

where the first term is simply the Hamiltonian for a charged particle moving in a magnetic

field where ~A is the vector potential associated with the magnetic field, ~B = ~∇ × ~A; the

second term is the electron-electron Coulomb interaction, v(r) = e2/r; and the third term,

called the ion potential, is introduced to describe a background charge density that is

necessary to balance out the Coulomb repulsion in order for the system to be stable.

There are several important features of the original Laughlin wavefunction that con-

tinue to form the basis of our understanding of the FQHE states, including:

i. The Laughlin ground state wavefunction is a many-body wavefunction constructed to

satisfy a Hamiltonian that explicitly includes electron-electron interactions

ii. The electron density is restricted to values 1
mnB where m is an odd integer and nB =

1/2πl2B is the LL degeneracy. In other words the wavefunction only applies to odd-

denominator fractional filling of the LL.

iii. The functional form of the wavefunction necessarily gives rise to an energy gap in the

excitation spectrum. The existence of the gap is the basis for the incompressible nature

of the states (zero resistance measured in Rxx), similar to the IQHE.
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iv. Elementary excitations carry a fractional charge of e∗ = 1
me

Importantly, while many of the features of Laughlin’s wavefunction were essentially required

in order to agree with existing experimental observation of the FQH state, the predicted

fractional charge was confirmed by later experiments [10–13].

2.1.5 Hierarchical model

The original Laughlin formalism only described states occurring at ν = 1
m fractional

filling of the lowest LL. After the first discovery of the ν = 1
3 fractional state, however, the

FQHE was observed at many fractional fillings throughout the first and second Landau

levels, occurring in general at ν = p
q where q is an odd integer. Haldane [14] and Halperin

[15] extended the work of Laughlin to explain these other fractional states by introducing

the hierarchical model. In the standard hierarchical model, the Laughlin states (ν = 1
m)

are identified as “primary” fractions. Other fractions are then interpreted as “daughter

states”, resulting from a Laughlin-like condensation of quasi-particles formed from the

parent states of the primary fractions. The process is then repeated to subsequent levels

giving the hierarchical sequence

ν =
1

m+
α1

p1 +
α2

p2 +
α3

p3 +
.. .

= {m,α1p1, α2p2, ...} (2.25)

where m = 1, 3, 5, ..., αi = ±1 and pi = 2, 4, 6.... The hierarchical states are therefore

restricted to rational values of ν with odd denominators where the ν = {m, p1, · · · , pn}
state can exist only if the parent ν = {m, p1, · · · , pn−1} state also exists. An important

consequence of the hierarchical construction was the identification by Halperin [15] that the

quasi-particle excitations in addition to being fractionally charged also exhibit fractional

statistics. This was later confirmed in calculations of the Berry phase by Arovas et al.

[16, 17].

2.1.6 Composite Fermion model

Jain proposed [18,19] an alternate model based on the formation of composite particles

(CP). In the composite particle picture the parameter of interest is the number of flux

quantum present in the sample relative to the number of electrons. For a 2DEG in the

presence of a magnetic field, there exists 1 flux quantum for every available particle state

in the Landau level (Eqn. 2.16). Therefore, at 1
3 fractional filling of the lowest LL, for
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Figure 2–7: (a) Magnetoresistance plotted versus B showing the IQHE for filling fractions greater
than ν = 1. (b) Magnetoresistance trace from the same sample showing FQH states in the region
ν < 1

2
. The curve in (b) is plotted on the same scale as in (a) revealing an exact one-to-one

correlation (indicated by the dashed lines) between the oscillations in the FQH states around
ν = 1

2
and the IQH states around B=0. In the composite Fermion model the FQH states around

ν = 1
2

are interpreted as the IQHE but for composite Fermions. The panels in the figure are
reproduced from Ref. [20].

example, there are 3 times as many flux quanta as electrons. At 1
2 fractional filling there

are twice as many flux quanta as electrons, and so on. By attaching these fluxes to the

electrons (physically this corresponds to minimizing the Coulomb interaction), the strongly

interacting many body electron system can be renormalized as a system of essentially non-

interacting “composite particles” (electrons + flux quantum) in the presence of a zero

effective magnetic field. The quantum statistics of this process are such that an electron

+ an even number of flux yields a composite Fermion, while an electron + an odd number

of flux gives a composite Boson. Jain used this concept to unify the fractional and integer

quantum Hall effects under a single theory by arguing that the FQHE resulting from

complicated many-body interactions in the electron system could be understood simply as

the IQHE but for non-interacting composite Fermions (CF’s).

By way of example consider the FQH states around ν = 1
2 fractional filling in the

lowest Landau level. In the composite particle picture, the system at exactly ν = 1
2 can

be remapped as a system of independent CF’s (each CF comprised of 1 electron + 2 flux),

in a zero effective magnetic field. As the real field is increased away from this value,

the effective field likewise increases away from zero. The complete series of fractional

states observed between ν = 1
2 and ν = 1

3 can then be reinterpreted as the integer QHE
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effect for the electron + 2 flux composite Fermions, with, for example the ν = 1
3 FQH

state for electrons corresponding to the ν = 1 IQH state of CF’s; the ν = 2
5 FQH state

corresponding to the ν = 2 IQH state in the CF series, and so on (Fig. 2–7). Note that

the same result follows from decreasing the B field away from ν = 1
2 state since the ν = 2

3

is the particle-hole conjugate of the ν = 1
3 (i.e. 2

3 = 1 − 1
3) and is expected to obey the

same physics. In the renormalized CF picture, therefore, all quantum hall states around

ν = 1
2 are interpreted as resulting from sequential filling of quantized CF Landau orbits,

with corresponding CF-energy gaps (the CF’s being characterized by their own effective

mass) etc., in direct analogy to the IQHE for real electrons. This model can be generalized

so that all FQHE states are classified according to a composite Fermion series around a

ν = 1
2m even denominator fraction (i.e. ν = 1

2 , 1
4 ,...). This gives a general theory that

restricts the FQHE to odd denominator fractional fillings according to

ν =
p

2mp± 1
(2.26)

where m, p are integer valued.

Several experiments have lent considerable support to the composite Fermion model.

For example the CF effective mass and corresponding CF IQHE energy gaps deduced

from activation studies, and from examination of the Shubnikov de Haas (SdH) oscilla-

tions around ν = 1
2 have shown excellent correspondence to the IQHE B field behaviour of

electrons around B = 0 [21–25]. Similar to the hierarchical construction developed by Hal-

dane [14] and Halperin [15], the CF model likewise predicts excitations to carry fractional

charge and fractional statistics. Furthermore, the CF model gives a complete prediction

of which fractional fillings are even expected to exhibit FQH states, and with the correct

relative strength [18, 19]. A further recent success in the CF model was realized by Pan

et al. in which it was shown that observed FQH states that do not fit the standard series

given by Eqn. 2.26 (i.e. ν = 4
11 and 5

13) actually correspond to a second level hierar-

chy corresponding to a FQHE of composite Fermions, resulting from residual interactions

between the CF’s [26, 27].
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Figure 2–8: (a) Plot from the first discovery of the ν = 5
2

state by Willett et al [28]. (b) Verification
of the FQH effect at 5

2
by Pan et al. [29] showing exact quantization in RH together with zero

resistance measured in Rxx.

2.2 Quantum Hall Effect at ν = 5/2

In 1987 Willett et al. reported the observation of a quantum hall state at ν = 5
2 even

denominator filling fraction [28]. In the more than twenty years since its discovery, the 5
2

FQHE (and equivalently its particle hole pair conjugate at ν = 7
2) remains the only violation

of an otherwise strict adherence to the odd-denominator rule2 . Extensive theoretical work

has indicated the 5
2 state is likely described by the Moore-Read Pfaffian wavefunction,

which describes a Laughlin-like condensation of Bosons resulting from a BCS-like pairing of

composite Fermions. However, unequivocal experimental support for this theory remains

elusive. In this section I give an historical account of the experimental and theoretical

efforts that have been made in an attempt to understand the origin of the enigmatic 5
2

FQHE. I begin with a review of the early work leading up to the proposed Moore-Read

Pfaffian and in this context discuss other candidate wavefunctions. I then review in detail

the Moore-Read wavefunction, and discuss the theoretical and experimental support for

2 There is some experimental evidence [30–32] of a possible even denominator FQH state
at ν = 2 + 3

8 , however, this has not yet been verified by observation of exact quantization
in RH .
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this theory. Finally I conclude with a summary of the current status of the 5
2 and outline

important remaining questions, motivating the work described in the remainder of this

thesis.

2.2.1 Discovery and early work on the 5/2 FQHE

An even-denominator FQH state was unexpected according to existing theories and

so Willett’s surprising discovery of the ν = 5
2 FQHE initiated intense investigation of

this state. To account for a FQH state at even denominator fractional filling, Haldane

and Rezayi [33] proposed a spin-singlet (unpolarized) candidate wavefunction, drawing

inspiration from an electron pairing idea first suggested by Halperin [34]. At the same

time, Eisenstein et al. used a tilted field technique to experimentally measure the spin-

polarization nature of the 5
2 state [35,36]. Eisenstein found that under the application of a

parallel field, the 5
2 was destroyed. This was interpreted as an indication that the 5

2 state is

spin-unpolarized, where the destruction under tilt results from an increasing Zeeman energy

that drives the system from a spin-unpolarized 5
2 state to a spin-polarized compressible

Fermi liquid. A linear fit to the activation energy gave support to this interpretation,

yielding a value for the effective g-factor of 0.56, in reasonable agreement with the value

0.44 for bulk GaAs [36]. Eisenstein’s results therefore seemed to confirm the unpolarized

spin-singlet wavefunction proposed by Haldane and Rezayi (HR). However, the pairing

mechanism in HR’s spin-singlet picture remained unclear. Moore and Read then pointed

out [37] that pairing at even denominator filling (i.e. 1/2, 1/4...) could be interpreted as a

BCS-like pairing [38,39] of composite fermions in zero effective magnetic field. Moore and

Read then proposed an alternate spin-polarized (p-wave) triplet wavefunction to describe

this pairing, which has since become known as the Moore-Read Pfaffian. Following the

work of Moore and Read, Greiter, Wen and Wilczek [40] suggested that the Moore-Read

Pfaffian could be applied to describe the 5
2 state, finding the Moore-Read wavefunction

to be the zero energy ground state for a three-body Hamiltonian, and calculating a gap

energy. This work was supported by Read and Rezayi [41] who later confirmed the Moore-

Read wavefunction to be an exact ground state for a three body interaction Hamiltonian

at ν = 5
2 .

Halperin’s original paired wavefunction, the so called 331 state, also remained as a

candidate wavefunction to explain the 5
2 FQHE. However, this state was viewed as an

unlikely description. Halperin’s Ψmmn wavefunction was originally proposed in an an early

effort to extend the Laughlin formalism to other fractions. In this construction, Halperin

suggested that incompressible states at fractional filling could result from electron pairing,
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where the paired-electrons could, in principle, form a Laughlin state for Bosons [34]. He

further showed that this wavefunction could be extended to even-denominator filling, with

the Ψ331 describing a pairing of opposite spin electrons at half-filling. The 331 state was

later found to be the correct description of the even denominator fractional state observed

in bi-layer systems [42–45]. However, in single layer systems the 331 state is expected to

occur only at very weak magnetic fields where the spin splitting is small [44]. Even more

problematic is that the 331 does not belong to the correct symmetry group [33, 44, 46]

and vanishes when the opposite spin electrons coincide [33]. It should be noted that

Haldane and Rezayi began with the Halperin 331 state when constructing their spin-singlet

wavefunction, but explicitly modified it to correct these issues [33].

Since its introduction, the Moore-Read Pfaffian wavefunction received considerable

interest due to its exotic, fractionally charged excitations (e∗=e/4 at ν = 5
2), predicted to

exhibit non-Abelian fractional statistics. However, for several years it was believed that

the Rezayi-Haldane spin-singlet was the correct description of the 5
2 state rather than the

Moore-Read Pfaffian, largely due to the tilted field results of Eisenstein et al [35, 36]. In

1998 Morf challenged this view when he showed by numerics that a spin polarized ground

state represents the lowest energy state at 5
2 , and simultaneously demonstrated large over-

lap of the spin-polarized Moore-Read Pfaffian with the exact small-system numerical wave-

function, i.e., obtained by numerical exact diagonalization for a few particle system. To

account for the observations of Eisenstein et al. in tilted fields, Morf argued that the

destruction of the 5
2 could be due to magneto-orbital coupling to the parallel field rather

than the result of a “simple” Zeeman interaction. This was considered plausible since it

was already known that the in-plane field can have several effects in addition to merely

increasing the Zeeman energy, such as squeezing the wavefunction in the transverse direc-

tion, increasing the disorder induced level broadening, and introducing subband/Landau

level mixing [4, 35, 36, 47–51]. Finally, Morf identified the appearance of the 5
2 as being

related to an optimal tuning of the effective interaction between carriers, with even a slight

modification away from the optimal value causing a transition to a new state. Rezayi and

Haldane subsequently confirmed Morf’s findings, reporting similar evidence in favour of

the spin-polarized MR Pfaffian being the likely description of the 5
2 state and rejected their

previously proposed unpolarized spin-singlet wavefunction [51].

2.2.2 The Moore-Read Pfaffian

The Moore-Read (MR) Pfaffian wavefunction is given by
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ΨPf (z1, ..., zN ) = Pf

(

1

zi − zj

)

ψ1/q (2.27)

where Pf(M) is the Pfaffian operator. The Pfaffian is “precisely the sum of products of

Fermion pairs, antisymmeterized over all distinct ways of pairing” [52], defined by

Pf(Mij) =
1

2L/2(L/2)!

∑

σ

sgn(σ)

N/2
∏

k=1

Mσ(2k−1),σ(2k) (2.28)

where Mi,j are the elements of an antisymmetric L × L matrix. The Pfaffian formalism

was inspired by the notion that the wavefunction for a spin-polarized p-wave BCS super-

conductor, written in real space for a definite number of Fermions, takes the form of a

Pfaffian [37,40,52].

The second term in Eqn. 2.27 is

ψ1/q =
∏

i<j

(zi − zj)
q exp

[

− 1

4 l2B

N
∑

j

|zi|2
]

(2.29)

which is just the Laughlin wavefunction, given in (2.23), but with q restricted to even

integer values. The Laughlin wavefunction was originally defined for odd-denominator

fractions only (i.e. odd values of q). However, in the composite particle picture the

Laughlin state can be precisely interpreted as a Bose condensation of composite Bosons

(electron plus odd number of flux) [52]. The Laughlin state therefore can equally describe

a condensation of Bosons at even denominator filling, but where the existence of Bosons

results from electron pairing. In essence therefore, the Moore-Read Pfaffian describes a

Laughlin-like condensation of Bosons, where the formation of Bosonic particles results from

a BCS-like pairing of composite Fermions. Importantly, Read pointed out that the Moore-

Read Pfaffian can be equivalently viewed as describing either pairing of spin-polarized

electrons or pairing of composite Fermions [53,54,54]. This is because the essential feature

of the wavefunction is the Pfaffian construction, which results from the p-wave pairing of

polarized Fermions (in a triplet state), independent of whether the Fermions are electrons

or composite Fermions (Fermion plus even number of flux quanta).

While the Moore-Read Pfaffian can be viewed in general terms as a Laughlin-like

condensation of Bosons, this state has charged excitations that are very different from the

Laughlin liquid. In the following the many unique features of the Moore-Read wavefunction

are discussed in further detail.
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2.2.3 e∗ = e/4 fractional charge

Excitations of the Moore-Read ground state at ν = 5
2 carry e/4 fractional charge.

This results from the Laughlin term in the Moore-Read wavefunction which in general (see

section 2.1.4) exhibits excitations at fractional filling, ν, with fractional charge νe. Recall

from Eqn. 2.15 that the filling factor for a system of electrons (Fermions) can be written

as

ν = n
h

eB
(2.30)

where n is the electron density and e is the electron charge. Electron pairing transforms

this into a system of Bosons, thereby giving half as many particles, n → n/2, with each

particle (Boson) carrying twice the charge e → 2e. The filling fraction for this system of

Bosons therefore becomes

νB =

(

n

2

)

h

(2e)B
=

1

4

(

n
h

eB

)

=
1

4
ν. (2.31)

Ignoring the LLL, the filling fraction for Fermions at ν = 1
2 in the SLL (i.e. ν = 5

2 =

2 + 1
2) therefore becomes νB = 1

8 in the system of Bosons. Finally, Laughlin quasi-particle

excitations carry charge νq where q is the particle charge, and so for the system of charge-2

Bosons at νB = 1
8 (i.e. ν = 1

2 for electrons), the Laughlin quasi-particle fractional charge

is

e∗ = (
1

8
)(2e) =

e

4
. (2.32)

Note that in this picture the Hall conductivity remains unchanged. For a system of

Fermions, the quantized Hall conductivity, σH , is

σH = ν
e2

h
(2.33)

In the system of Bosons e → 2e and ν → ν/4, but, substituting these into Eqn. 2.33

just gives back the same result, in agreement with the Hall quantization measured at 5
2 in

experiments [29].

2.2.4 Non-Abelian statistics

The quantum statistics of Fermions or Bosons can be distinguished by the symmetry

that results when adiabatically exchanging a pair of particles. For example, if | ψ1ψ2〉 is a

two-particle wavefunction, then if we interchange the two particles the state becomes
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| ψ2ψ1〉 = ± | ψ1ψ2〉 (2.34)

such that the wavefunction describing the two-particle state is symmetric (antisymmetric)

under exchange for Bosons (Fermions). In 2D spatial dimensions, quantum particles are not

restricted to only Bosonic or Fermionic behaviour but instead can exhibit more generalized

statistics such that interchange results in an arbitrary phase rather than only ±1, i.e.

| ψ2ψ1〉 = eiθ | ψ1ψ2〉 (2.35)

where the statistical phase angle, θ, can take any values between 0 and π. Particles that

exhibit such statistics are termed anyons (“any”-ons) [17]. The Laughlin quasi-particles

are believed to exhibit anyonic fractional statistics [15–17] such that at fractional filling,

ν, the corresponding phase is given by

θ = νπ. (2.36)

In their seminal paper, Moore and Read argued, by making connections to conformal

field theory, that the Moore-Read Pfaffian gives rise to excitations with even more exotic

quantum statistics termed non-Abelian anyonic statistics [37,41]. Particles exhibiting non-

Abelian statistics are not described by a simple phase factor under adiabatic exchange but

rather by a matrix operator, which is not commutable. This is perhaps best summarized

by Read and Rezayi [41];

“...non-Abelian statistics requires that there be degenerate states for well-separated

quasiparticles, and, when the quasiparticles are exchanged adiabatically, the ef-

fect is not merely a Berry phase representing ordinary fractional statistics, but

a matrix acting within the space of degenerate quasiparticle states.”

The possibility that the composite particles comprising the 5
2 state exhibit non-Abelian

statistics, a predicted quantum property that has never been observed experimentally, has

excited intense interest. The recent suggestion that non-Abelian particles could be used to

realize fault-tolerant topological quantum computation [55–57] has even further extended

the urgency to understand the 5
2 state beyond the study of quantum Hall physics.

2.2.5 Short-range interactions

The fractional quantum Hall effect is fundamentally characterized by many-body

electron-electron interactions. Haldane showed that the interaction Hamiltonian in a purely
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2D system, where the interaction is strictly defined by the Coulomb energy, can be param-

eterized by an expansion in “pseudopotential” functions [14], i.e.

Ĥ =
N
∑

i<j

V (rij) =
∞
∑

m

V (n)
m

N
∑

i<j

P̂m(mij) (2.37)

where V (rij) is the Coulomb interaction potential, and P̂ is a momentum operator. The

Haldane pseudopotentials, V
(n)
m , form a complete basis and are defined for electrons with

relative angular momentum, m, confined to a LL with index n. The appearance of the

LL index in the pseudopotential reflects a dependence on which LL’s are occupied. For

example, for the first pseudopotential, V
(0)
1 > V

(1)
1 > V

(2)
1 , whereas for the second pseu-

dopotential V
(0)
2 < V

(1)
2 < V

(2)
2 [58].

The subtle differences in these short range interaction terms are important since they

are responsible for the different behaviours observed throughout the Landau levels. For

example, the vast majority of the FQH states that have been identified are found in the

lowest Landau level (n=0, 0 < ν < 2), with only a handful identified in the second Landau

level (n=1, 2 < ν < 4), and with no states convincingly verified at higher filling fractions

(n > 1, ν > 4) [31, 58, 59]. Morf argued [47] that the 5
2 FQH state forms in the second

Landau level only for a critical range in values of the short range interaction. He further

showed through numerics that weakening the short range interaction away from this critical

value causes a transition from the 5
2 incompressible liquid to a compressible state while in

the other extreme strengthening the interaction results in a transition to a Fermi-sea state.

Rezayi and Haldane subsequently confirmed this result and identified the compressible

state in the weak interaction regime as an anisotropic charge density wave state (“stripe

phase”) [51,60]. From this perspective it is argued that an even denominator FQH state is

only found in the SLL due to a fortuitous modification of the short range interaction in this

Landau level compared to the others. According to Read [61], this picture is supported

phenomenologically by the observation that at half filling in the LLL (strong short range

interaction) the system exists as a Fermi liquid [62], transitioning to an incompressible

state at ν = 5
2 (7

2) in the SLL (moderate short range interaction) [28, 29, 36], and giving

way to a stripe phase in higher LLs (weak short range interaction) [63].

In recent numerical work, Peterson et al. [58, 64] investigated the effect of varying

the 2DEG thickness by examining corresponding variations in the Haldane pseudopoten-

tials. They found that increasing the thickness of the 2DEG actually strengthens the 5
2

state (and likewise the neighbouring 7
3 state). This coincides with a corresponding weak-

ening of the Coulomb interaction, which notably differs from the behaviour seen for the
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odd-denominator FQH effect in the LLL where increasing the 2DEG thickness conversely

destroys the states. Importantly, Peterson et al. showed that this contrasting behaviour

between the Landau levels is revealed only when considering collectively the relative be-

haviour of all the pseudopotentials. At ν = 5
2 , they further showed that the lowest order

pseudopotentials do not dominate the physics as was implicitly assumed in the work of

Morf (who examined the effect of varying V1 only) and Rezayi and Haldane (who exam-

ined variations in V1 and V3).

2.2.6 Pfaffian versus anti-Pfaffian

In the absence of Landau level mixing, the Hamiltonian at ν = 5
2 is symmetric un-

der particle-hole conjugation if one considers only two-body interactions. However, it was

recently pointed out [65, 66] that, as first suggested by Greiter et al. [40] and later con-

firmed by Read and Rezayi [41], the Pfaffian is rather the exact ground state wavefunction

for a three-body Hamiltonian that explicitly breaks this symmetry and so is not particle-

hole symmetric. The Pfaffian (Pf) and its particle-hole conjugate, the “anti-Pfaffian”

(Pf) therefore must represent distinct phases. In the idealized two-body Hamiltonian the

Pfaffian and anti-Pfaffian remain exactly degenerate. However, second-order perturbation

theory from Landau level mixing gives rise to three-body interactions, and so is expected

to break the Pf − Pf symmetry [65, 66]. Levin et al. [65] and Lee et al. [66] recently,

and independently, suggested the Pfaffian is expected in regions of large LLM while at

moderate to low LLM (such as that typically observed in experiment) the anti-Pfaffian

may represent an alternate candidate wavefunction for the observed 5
2 state. This may

play an important role in understanding experimental data. The Pf and Pf share many

similarities including the predicted non-Abelian statistics. However, details in the edge

transport differ including distinct thermal Hall conductance, and tunneling exponents in

the edge state [65,66]. Measuring these properties may allow future experiments to deter-

mine whether a Pfaffian or anti-Pfaffian describes the 5
2 state and, importantly, may also

allow us to determine the specific role played by Landau level mixing in the FQHE, which

so far has remained not well understood.

2.2.7 Strong versus weak pairing

For the 5
2 state to result from a Bose condensation of composite Fermions, an attractive

coupling between the Fermions is necessary. Read [61] broadly categorizes this coupling

into two regimes defined by a weak pairing and strong pairing phase. The weak pairing
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regime (weak attractive coupling) corresponds to the Moore-Read state with e/4 fraction-

ally charged excitations exhibiting non-Abelian statistics. On the other hand the strong

pairing regime corresponds to strong attractive coupling. The strong coupling regime is ex-

pected to be related to the Halperin 331 phase and thus exhibit characteristics of the more

usual Laughlin states, i.e. excitations that carry Abelian statistics. Aside from the corre-

sponding quantum statistics, Read argued that these two regimes could be distinguished

by experiments that examine tunneling into the edge. Read explicitly predicts that the

exponent in the current-voltage relation (i.e. I ∼ V α) should be α = 3 in the weak-pairing

(Moore-Read) phase and α = 8 in the strong-pairing (Halperin 331) phase [61]

2.2.8 Theoretical support for the Moore-Read Pfaffian

Since the seminal work by Morf [47], substantial theoretical work has lent further

support for the Moore-Read description, some of which is highlighted here. Shortly after

Morf, Park et al. showed [67] that the MR Pfaffian is a lower energy ground state than

both a fully-polarized and unpolarized Fermi-sea at ν = 5
2 and found evidence that the

transition to a Pfaffian ground state may be favoured by increasing the thickness of the

2DEG. Using variational Monte Carlo to study paired states, Dimov et al. found [68] that

at ν = 5
2 an incompressible ground state exhibits spontaneous ferromagnetism (i.e. fully

spin polarized even in the absence of Zeeman energy), thereby favouring the MR Pfaffian

(in comparison to Halperin’s unpolarized 331 state). Using newly developed numerical

methods, Feiguin et al. recently confirmed [69, 70] the ferromagnetic ordering at ν = 5
2 .

Peterson et al. found that increasing the 2DEG thickness away from the idealized zero

thickness limit, i.e. mimicking the physical situation found in real samples, stabilizes the
5
2 [58,64]. Importantly, in this work Peterson et al. additionally identified, for the first time,

a topological degeneracy with the correct quantum numbers predicted for the Pfaffian state,

and furthermore found this degeneracy only at finite thicknesses where overlap calculations

with the MR wavefunction are maximum.

2.2.9 Observation of the 5/2 at high magnetic fields

Experimental investigations of the 5
2 have yielded less conclusive results. While much

of the experimental work is found to be consistent with the MR description, unequivocal

experimental proof is still lacking. This is due in part to the stringent experimental re-

quirements necessary to even observe the 5
2 state, which has limited possible experiments.

The 5
2 is relatively fragile, appearing only in the very best samples, and requiring mini-

mally invasive measurement schemes, i.e. ultra-low temperature, low noise etc. The 5
2 was
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first identified at relatively moderate B fields of ∼5 T. Subsequent samples were generally

grown with similar parameters (density, well construction etc.) therefore yielding a 5
2 state

at similar magnetic fields. In 2001, in an attempt to measure the spin polarization without

resorting to tilted fields, Pan et al. studied a gated (variable density) sample that exhibited

a 5
2 state over a wide range of fields, from ∼5 T up to more than 12 T [71]. Observation of

the 5
2 state at such a large B field represents further evidence in favour of a spin polarized

state since if the state were unpolarized, one would expect larger Zeeman energy at these

fields to destroy the state. For the same reasons, this finding also supported Morf’s con-

tention that the tilted field experiment of Eisenstein et al. [35, 36] probably was not due

to a Zeeman interaction, but rather due to orbital coupling to the parallel field. However,

the 5
2 in this sample was not fully formed, i.e., the minimum was not observed to go to

zero in Rxx, and only a “developing plateau” was reported in RH , and did not show true

activated behaviour. Additionally, there appeared a gate induced mobility variation in the

data, that was not fully accounted for in their analysis, making the conclusions of this

experiment somewhat ambiguous.

2.2.10 Appearance of the stripe phase in tilted field experiments

After the initial work of Eisenstein et al. [35,36], other tilted field experiments showed

that the incompressible state at 5
2 is not “simply” destroyed, but gives way to an anisotropic

phase [72,73]. This finding was in agreement with Morf’s prediction [47] that under appli-

cation of a parallel field, a MR Pfaffian ground state should give way to an charge density

wave state (later confirmed by Rezayi and Haldane to be the stripe phase [51]).

In the context of the results from Morf [47] and Rezayi and Haldane [51], the transition

from the 5
2 state to a stripe phase indicates that the parallel magnetic field causes a softening

(decrease) of the short range interactions, as defined by the Haldane pseudopotentials.

This nicely reflects the symmetry discussed previously where in lower LL’s (stronger short

range interaction) the half filled state is a Fermi-sea while in higher LL’s (weaker short

range interaction) the half filled state is a stripe phase. However, a well known effect of

coupling to the parallel field is to squeeze the 2DEG towards the ideal 2D limit. This

should instead cause a hardening (increase) of the short range interactions and therefore

a transition to the Fermi-sea state, rather than a stripe phase. Indeed, Peterson et al.

found [58], as expected, that squeezing the wavefunction causes a universal increase in

all pseudopotentials. However, in the same study, Peterson et al. showed that relative

variations between all pseudopotentials, rather than arbitrary changes in only the first

few, defines the physics. Peterson thus argues that both the work of Morf and Rezayi
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and Read may be an oversimplification since varying only the V1 (Morf) or V1 and V3

(Rezayi and Read) pseudopotentials does not reflect a real physical situation. This leaves

the possibility that the transition to a stripe is not simply due to a variation in the lowest

order pseudopotentials [51] but may result from a more complex interaction. Peterson et

al. only reported on overlap calculations for the Moore-Read Pfaffian as a function of the

2DEG thickness, and did not investigate possible transitions to other states, i.e. whether

it transitions to a stripe phase or a Fermi sea [74]. A full understanding of how the 5
2

transitions to a stripe phase under tilt therefore remains an open question.

In spite of the remaining questions concerning its origin, the very appearance of a stripe

phase is an important experimental result since it further questions the spin-unpolarized

interpretation of Eisenstein’s original tilted field data; i.e. it is unclear how Zeeman effects

alone, if responsible for destroying the 5
2 state, could give rise to the stripe phase.

2.2.11 Measurement of the e/4 fractional charge

Recent measurements of the shot noise [75] at ν = 5
2 and independent measurement

of the tunneling spectra through a quantum point contact in the edge state [76] at ν = 5
2 ,

both confirmed the predicted e/4 fractional charge. This represents a significant step

towards verifying that the 5
2 state results from a pairing of composite Fermions. However,

other paired, Abelian, candidate wavefunctions are expected to also exhibit e/4 charged

excitations, and so these results do not on their own verify the non-Abelian MR Pfaffian

description [58,61,70].

2.3 Current Status of the 5/2

2.3.1 Known discrepancies with the Moore-Read theory

An important discrepancy that has yet to be resolved convincingly is the large dif-

ference between the calculated ground state energy gap based on MR description and the

energy gaps measured experimentally. The 5
2 gap is typically measured to be between

100 and 500 mK, which is up to twenty times smaller than theory predicts (1.5 to 2.5 K)

for the Moore-Read Pfaffian [69, 77, 78]. By comparison, this discrepancy is much greater

than in the well understood 1
3 Laughlin state in the lowest Landau level, where there is

near perfect agreement between theory and experiment [21, 77, 79]. The experimental dis-

agreement with theory at ν = 5
2 needs to be addressed since, as Morf states, “Such large

discrepancies make one wonder whether the 5
2 state has been correctly identified” [78, 80].

This discrepancy is usually assumed to be due to disorder effects. However, so far there is
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no microscopic theory that allows a full understanding of how the 5
2 state is influenced by

disorder.

Another important effect that needs to be more fully understood is Landau Level

mixing (LLM). So far LL mixing has been included as a perturbation effect only. Recent

theoretical work [65,66,80] has suggested LL mixing maybe be fundamentally necessary to

understand the 5
2 state, and may even affect the 5

2 in a unique way, for example possibly

causing a greater reduction in the activation energy gap than at other fractional states [80].

In general, Landau level mixing is expected to be stronger at weak magnetic fields, where

the energy separation between LL’s is smaller. The 5
2 state is typically observed in regime

of “moderate” LLM (i.e. ∼5 T), and so the validity of treating the effect in a perturbative

way is largely unknown. Importantly, as Levin et al. [65] and Lee et al. [66] point out, the

strength of the LLM may determine whether the Pfaffian, or anti-Pfaffian ground state is

selected, with the possibility of a transition between the two as the size of the magnetic

field is varied.

Finally, recent theoretical work has raised further questions regarding the MR de-

scription. In 2006, Toke and Jain [81] proposed that a fully spin-polarized 5
2 state could

be understood within the composite Fermion picture [18,19] without appealing to the MR

Pfaffian. They argue that residual interactions between composite Fermions could open an

energy gap, and therefore yield an incompressible state, in a process that does not require

electron pairing. They further argue that this approach addresses shortcomings of the MR

Pfaffian description. For example, the MR Pfaffian claims to arise from instabilities in the

composite Fermion sea, but the “composite Fermion sea is not a limiting case of the MR

Pfaffian” [81]. However, so far Toke and Jain have not been able to construct a wavefunc-

tion in their theory [82]. Furthermore, recent measurement of the e∗ = e/4 quasiparticle

charge [75, 76] indicates a pairing mechanism is at play, in contrast to the theory of Toke

and Jain in which the quasiparticle excitations are predicted to be unpaired composite

Fermions. Toke and Jain note that the residual interactions in their picture “may possibly

induce pairing between composite Fermions”, admitting however that it is not known how

this would be established within their approach [81]. Much further work will be required

before this approach can be considered a serious challenge to the Moore-Read wavefunction.

2.3.2 Needed experiments

Observation of non-Abelian statistics would, of course, provide strongest support for

the MR Pfaffian. Several interferometry experiments have been proposed (see for example

Refs. [83–85]) to probe the braiding statistics of the 5
2 state. So far these experiments have
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not been possible, owing mostly to the fragile nature of the 5
2 state which tended to be

destroyed by any modifications to the sample such as patterning and gating. An important

step towards this effort however was recently realized by Miller et al. [86] and also by Willett

et al. [87] who achieved patterning of a single quantum point contact while maintaining

a robust 5
2 state. In fact, the techniques developed in these studies directly lead to the

recent measurements of the e/4 fractional charge [75, 76]. Interferometry experiments to

measure the non-Abelian statics, which require a double quantum point contact, have not

yet been forthcoming, but these advancements in sample fabrication represent a significant

first step towards this effort. The existence of non-Abelian statistics so far remains a purely

theoretical prediction, as no system exhibiting these characteristics has ever been observed.

Thus, even if the required samples can be grown that will allow the proposed interferometry

experiments to be carried out, there is no guarantee that the non-Abelian statistics will be

observed even if the 5
2 state truly emanates from a Moore-Read type pairing mechanism!

Aside from the predicted non-Abelian statistics, the single feature that distinguishes

the MR Pfaffian from other candidate wavefunctions remains the spin polarization, with

the MR Pfaffian corresponding to a fully spin polarized state, while all other, Abelian,

wavefunctions describe a spin-unpolarized pairing. Determination of the electron spin

polarization is therefore of fundamental importance in our attempt to understand this

enigmatic state. The only two experiments that have attempted to directly measure the

spin polarization, i.e. the first tilted field experiments by Eisenstein et al. [35,36], and the

gated variable density experiment by Pan et al., yielded results that remain ambiguous.

Measurement of the 5
2 spin state therefore remains a fundamentally important experiment.

Our attempts to carry out this measurement are described in the remainder of this thesis.
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CHAPTER 3

Apparatus and Measurement
Techniques

Investigating the 5
2 FQHE presents an experimental challenge since the state is so fragile;

appearing in only the very best (high mobility) 2DEG samples, and even then only

at very low temperatures (less than ∼ 100 mK). In the following chapter, the methods

and techniques we developed to meet these challenges are described. First I discuss the

2D electron gas samples used in our study. I then present an overview of the dilution

refrigerator technique used to cool our samples, followed by a detailed description of the

modifications made to our system. Finally, I discuss the measurement techniques used

in our study of the 5
2 state, including both a review of conventional methods and novel

approaches developed through our studies.

3.1 Samples

3.1.1 GaAs Heterostructures and Quantum Wells

The materials of choice for investigating the quantum Hall effect in 2DEGs are GaAs/

AlGaAs heterostructures grown by molecular beam epitaxy (MBE), since these materi-

als have exhibited the cleanest 2DEGs (i.e. highest measured mobility) ever observed.

GaAs and AlGaAs are both crystalline semiconductors with nearly identical lattice spac-

ing. Epitaxially growing AlGaAs onto crystalline GaAs therefore creates a nearly perfect

(i.e. strain-free, defect-free) interface. Since GaAs and AlGaAs are both semiconductors,

growing such a wafer alone would not yield a 2DEG as there are no free electrons. To

introduce free electrons, the AlGaAs layer is grown with a layer of Si donors in a process

referred to as modulation doping [1]. GaAs has a slightly larger electron affinity (lower

free electron energy) than AlGaAs (upper panel of Fig. 3–1b) and so any free electrons
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Figure 3–1: (a)Schematic drawing showing a typical GaAs/AlGaAs heterostructure substrate con-
figuration. (b) The free energy of electrons is slightly higher in AlGaAs than GaAs (GaAs therefore
has a larger electron affinity). Modulation doping with Si ions both donates free electrons electrons
to the wafer and shapes the confinement quantum well where the 2DEG resides.

donated by the Si ions that wander to the GaAs/AlGaAs interface will fall over the edge

and become trapped in the GaAs layer. The charged Si donor ions (positively charged

after giving up their outer shell free electron) additionally create an attractive potential

that modifies the energy band at the GaAs/AlGaAs interface resulting in an approximately

triangular well potential (lower panel of 3–1b). At sufficiently low temperatures, the free

electrons become trapped in this well, and since the well is limited in the ẑ direction while

effectively infinite in extent along the x̂ and ŷ directions (limited only by the macroscopic

dimensions of the substrate), electrons in the well form a nearly ideal (i.e. zero thickness)

2DEG. The actual finite thickness of the 2DEG in the ẑ direction is determined by the

electron density and details of the confining potential [2, 3].

Since the GaAs/AlGaAs interface is essentially defect free, electrons in the 2DEG ex-

perience very little impurity scattering in the quantum well. Furthermore, the modulation

doping technique which places the donor ions a relatively large distance away from the

quantum well, allows scattering from the donor impurities to also be minimized. These

two features of the GaAs/AlGaAs heterostructures are what give rise to the extremely high

purity 2DEGs in comparison to other 2DEG samples.
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Figure 3–2: (a)Schematic drawing showing an AlGaAs/GaAs/AlGaAs square quantum well sub-
strate configuration showing the resulting valence and conduction band energy profiles.

To achieve greater control over the shape (i.e. width) of the electron wavefunction, it

has become customary to instead fabricate a square quantum well in GaAs by growing a

symmetrically doped AlGaAs/GaAs/AlGaAs substrate. In this construction, shown in Fig.

3–2, the quantum well width is controlled by varying the layer thicknesses during sample

growth. The shape of the resulting wavefunction, which is symmetric in the ẑ direction, is

calculated by solving the Schroedinger equation for the finite square well potential [2, 4].

In the experiments presented here samples from two very high purity, but different

electron density, GaAs wafers were studied (all samples were provided by Loren Pfeiffer

and Ken West at Bell Laboratories, Alcatel-Lucent Technologies, Inc.). The low density

sample, is a symmetrically doped AlGaAs/GaAs/AlGaAs quantum well, with a specified

well width of 40 nm and donor spacer distance of 160 nm. The high density sample, is a

symmetrically doped AlGaAs/GaAs/AlGaAs quantum well, with a specified well width of

30 nm and donor spacer distance of approximately 100 nm. All samples studied from each

wafer were cleaved to approximately 4 mm square, with 8 diffused Indium contacts around

the perimeter in a van der Pauw geometry (see section 3.1.2). The density of the low

density sample was typically measured to be 1.60± 0.01× 1011 cm−2 after treatment with

a red LED. The mobility was measured to be 16.6±0.8×106 cm2/Vs at base temperature.

For the high density sample, the density was measured to be 3.04 ± 0.08 × 1011 cm−2 and

mobility 27 × 106 cm2/Vs.
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Figure 3–3: Schematic diagram showing a GaAs/AlGaAs substrate in a (a) Hall bar and (b) van
der Pauw sample geometry.

3.1.2 Hall Bar versus van der Pauw

Quantum Hall measurements on GaAs 2DEG samples are traditionally performed

by patterning the GaAs substrate into a Hall bar geometry, shown in the Fig. 3–3a.

This has the advantage of ensuring the voltage is measured parallel (perpendicular) to

the current flow when measuring the longitudinal resistance (Hall resistance). However,

pattering the substrate can be difficult. Furthermore, when studying very high quality

samples, patterning the sample can adversely affect the sample mobility, which could for

example disturb observation of the fragile 5
2 FQH state. An alternate technique therefore

is to employ the so called van der Pauw geometry, where electrical contact is made to the

2DEG by diffusing indium into the GaAs at the edge of the wafer, as shown in Fig. 3–3b.

3.2 Ultra-Low Temperature Cryostat

In order to study the 5
2 and other quantum Hall states it is necessary to be able to

achieve very low temperatures (tens of mK) for lengthy time periods (days to months). All

of our experiments were therefore performed on a continuous flow dilution refrigerator. We

additionally face the difficult task of investigating the extremely fragile ν = 5
2 FQH state

which requires high precision, low noise, and minimally invasive measurement techniques

together with the ultra-cold environment and very large applied magnetic fields. In the

following an overview of the dilution refrigerator technique is presented followed by a

detailed description of our system including the performance of our fridge and the specific

designs and modifications used in our focused effort to study the ν = 5
2 FQHE.
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Figure 3–4: Phase diagram for liquid helium mixtures. Dashed line indicates a cooling curve for a
typical mixture ratio used in a dilution refrigerator (10% 3He).

3.2.1 Dilution Refrigerator

A dilution refrigerator can reach temperatures extending below 10 mK with apprecia-

ble cooling power (typically on the order of tens of hundreds of micro-watts) and, when

operated in continuous mode, can maintain a sample at these temperature indefinitely.

Cooling is achieved by exploiting the entropy of mixing between the two isotopes of helium

(4He and 3He) in the liquid phase. Fig. 3–4 shows a schematic phase diagram of the

liquid helium mixtures. In the figure, the dashed line corresponds to a typical mixture

ratio used in the dilution process (∼10% 3He disolved in 4He). As the temperature of the

mixture is lowered the 4He component first undergoes a transition from a normal fluid to a

superfluid. Further lowering the temperature eventually causes a second transition where

the mixture abruptly phase seperates into a 4He-rich “dilute” phase with lighter 3He-rich

“concentrated” phase floating on top. As the now phase-separated mixture is even fur-

ther cooled towards the zero Kelvin limit, the concentrated phase approaches 100% 3He,

while the dilute phase reaches a steady-state saturated concentration of 6.6% 3He dis-

olved in 4He. Removing 3He from the dilute phase then results in a chemical potential

gradient which draws 3He across the phase boundary from the concentrated phase to the

dilute phase, maintaining the equilibrium 6.6% 3He concentration. In analogy to evapora-

tive cooling where the liquid-to-gas phase transition absorbs energy, when 3He crosses the

phase boundary, from the pure (concentrated) phase to the dilute phase, heat energy is

absorbed. A full description of the thermodynamic process requires inclusion of the quan-

tum properties of both the 3He (fermi-liquid) and 4He (bose-liquid) liquids [5]. Taking into

account these considerations, the cooling power of a dilution fridge is given by
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Figure 3–5: Schematic diagram showing the dilution refrigerator cooling process.

Q̇ = 84ṅT 2 (3.1)

where T is the temperature of the mixture and ṅ is the molar flow rate of 3He across the

phase boundary.

Continuous Mode:

By pumping 3He out of the dilute phase and then recondensing it back into the con-

centrated phase 3He can be continuously drawn across the phase boundary, and therefore

can provide constant cooling for indefinite time periods. Fig. 3–5 shows a schematic dia-

gram of a typical dilution fridge construction. The phase boundary between the 3He rich

concentrated phase, and the 3He + 4He dilute phase is confined to the mixing chamber

(MC). From here a tube draws the dilute phase up to the still where the 3He is pumped

out of the mixture. The still temperature, which is thermally isolated from the MC, will

typically be cooled to ∼300 mK due to evaporative cooling by the mechanical pump. At

these temperatures, the 3He vapour pressure is significantly larger (several orders of mag-

nitude) than 4He ensuring that 3He is preferentially removed from the dilute phase. The
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3He gas pumped from the still is then returned to the concentrated phase in the mixture

chamber. To ensure a continuous cooling cycle the mixture is circulated in a vacuum tight

closed-circuit.

Before returning to the mixing chamber, the 3He gas is first re-condensed via a 1K

pot consisting of a bath of 4He evaporatively cooled by mechanical pumping. To ensure

maximal condensation and cooling at the 1K pot a gas flow impedance, usually just a small

diameter capillary, is placed in the 3He return line between the 1K pot and the still. The

returning (now liquid) 3He is then further pre-cooled using a combination of counter-flow

and pressed powder heat exchangers installed between the still and mixing chamber.

From Eqn. 3.1, the cooling power of the fridge is directly determined by the rate at

which 3He crosses the phase boundary, which is in turn dictated by the rate at which 3He

is pumped out of the dilute phase at the still. Since at typical operating temperatures the
4He component of the dilute phase is superfluid, the 3He can be readily drawn through the
4He background with little resistance. The limiting factor is therefore the pumping power

of the still rotary pump. This can be improved by using a booster pump together with

the rotary pump to achieve increased pumping rates. Additionally, a resistance heater is

used to increase the mixture temperature in the still, raising its vapour pressure. As the

still temperature (vapour pressure) is increased, the 3He circulation rate increases, and

therefore the cooling power increases. There is however a peak circulation rate, beyond

which the rate at which 3He is returned to the fridge is too fast to be sufficiently pre-cooled

before reaching the mixing the chamber. This results in an additional heat-load on the

mixing chamber that effectively decreases its cooling power.

The ultimate base temperature achievable by the fridge is determined by the cooling

power (Eqn. 3.1) minus the thermal loads on the mixing chamber. Care is therefore taken

to thermally isolate the various stages of the dilution fridge from each other and from the

room temperature environment of the laboratory.

Single Shot:

Removing the heat load delivered to the mixing chamber by the returning 3He allows

the system to achieve lower temperatures. Performing a single shot therefore involves

diverting the 3He gas to a dump instead of returning it to the fridge. While this achieves a

lower base temperature, single shot cooling will last only as long as a sufficient amount of
3He remains in the concentrated phase in the mixing chamber (typically tens of minutes).

Fig. 3–6 shows an example of a complete dilution system including the gas handling

circuit. The fridge is operated inside of a vacuum can immersed in a liquid helium dewar.
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Figure 3–6: Example schematic of a complete dilution refrigeration system including a gas handling
system. Arrows indicate gas flow during normal operation.

The dewar includes a vacuum jacket and liquid nitrogen jacket to minimize liquid helium

boil off. The 3He-4He mixture is circulated through the fridge via a rotary pump behind

a mechanical booster pump. During continuous operation the mixture flows through a

liquid nitrogen cold trap before returning to the fridge. The LN2 is used to filter out any

impurities (e.g. air) that could potentially freeze in the return line impedance, and prevent

normal operation. The system is also equipped with a storage dump that is used to safely

store the mixture when disconnecting the fridge from the circulation system.

3.2.2 Janis JDR-100 Dilution Refrigerator Specifications

Our refrigerator is a commercially built 3He-4He dilution refrigerator system pur-

chased from Janis Research Company, Inc. (model JDR-100-DP), with a specified base

temperature of 17 mK, and cooling power of 150 µW at 100 mK. The system includes a

high efficiency cryogenic dewar equipped with a 9 Tesla superconducting magnet (model

90-200D-10P) from Cryogenics Inc. The magnet is designed to achieve high stability near

the field center, which is located 14.17” below the bottom plate of the mixing chamber.
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Figure 3–7: Field profile of the superconducting magnet (data was provided by Janis Research
Company Inc.).

A second, field cancellation magnet coil is included to maintain zero field at the mixing

chamber when the main magnet is turned on. The measured field profile along the center

axis of the magnet, showing both the field center and field canceled region, is plotted in

Fig. 3–7 (data was provided by Janis).

In order to isolate our experiments from unwanted extraneous RF radiation, the cryo-

stat (fridge + dewar) is located inside a shielded room measured to give 100 dB attenuation

at 1 GHz. All pumps are housed in a separate room to provide vibrational and acoustic

noise isolation. Inside the shielded room, the still line is a 6” ID stainless tube, the 1K pot

line is a 1.5” stainless tube and the return line is a 1/4” OD flexible copper tube. Outside

the shielded room these mate to an 8” ID schedule 80 PVC plastic pipe (still line), 3” ID

schedule 80 PVC plastic pipe (1K pot line) and a 1/4” flexible copper pipe (return line).

An additional 1.5” ID schedule 80 PVC plastic pipe serves as a utility roughing line (both

inside and outside the shielded room). Specially designed RF-tight vacuum feedthroughs

connect all pumping lines from inside to outside the shielded room. All vacuum connections

use the standard KF-style clamped o-rings.

All data acquisition and electronics control is performed by a computer located outside

the shielded room via GPIB. To communicate with devices inside the shielded room while

maintaining RF integrity of the room, all signals are transmitted through an optical fibre.

Conversion between between electrical and optical signals is performed with a National

Instruments 140A fibre optic GPIB extender both inside and outside the shielded room.
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3.2.3 Wiring

The fridge is wired in 3 main stages: (i) Top of cryostat to 1K pot, (ii) 1K pot to

mixing chamber, and (iii) Mixing chamber to cold plate. Six individual 32-pin vacuum

tight feedthroughs, labeled A-F, are used to separately wire different devices within the

fridge (i.e. thermometry, sample measurement, etc.). At each stage, the wiring material

was specifically chosen to minimize electrical resistance while providing optimal thermal

isolation. Between the top flange and 1K pot, all wires are insulated maganin wires in

twisted pairs, thermally anchored at the 4K flange and terminating at individual breakout

connectors at the 1K pot (1 32-pin breakout connector for each 32-pin feedthrough at the

top of the cryostat). The only exception to this is feedthrough C, which was wired with

twisted insulated copper pairs, allowing for the option of lower resistance leads (which

could be also used to deliver higher currents). Between the 1K pot and mixing chamber

all connections are made using NbTi superconducting wires (since superconductors exhibit

zero thermal conductivity when in the superconducting state) with a braided stainless

steel shield around each twisted pair. All wires are thermally anchored at the Still and

ICP plates before terminating at the MC. Between the MC and experimental cold plate

all connections are made with annealed silver wire. For detailed wiring schematics of each

each feedthrough see Appendix A.

3.2.4 Experimental Tail

In order to perform experiments in the field center, an experimental tail was attached

to the bottom plate of the mixing chamber. The tail was designed in order to optimize

implementation of an NMR detection scheme. In this regard it was desirable to achieve

maximal cooling of the sample while minimizing any unwanted magnetic sources that might

introduce inhomogeneities to the magnetic field. The tail was therefore machined from a

pure (99.9% purity) 0.5” OD silver rod swaged down to 0.25” OD to increase its mechanical

stiffness, and then machined into a hexagonal profile. Silver was chosen since it offers one

of the best low tempreature thermal conductivities among pure metals [5]. Additionally

silver atoms have a very small magnetic moment (nearly 20 times smaller than copper for

example) and therefore exhibit negligible magnetization even in the very strong applied

fields (∼10 T) and low tempereratures (∼20 mK) typically used in our experiments [6, 7].

At the bottom of the tail the hex rod terminates at the experimental cold plate, a 0.185”

thick round silver plate (1.325” OD) also machined from 99.9% pure silver.

The tail was designed to accommodate four samples simultaneously with two standard

8-pin sample headers mounted on the top side of the cold plate and two specially designed
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Figure 3–8: Drawing of the full experimental tail assembly equipped with the NMR coil. All
measurement components are shown, however, wiring is omitted for clarity.

custom 8 pin headers mounted in an NMR coil assembly on the bottom side of the cold

plate (see Fig. 3–8). The entire assembly was designed to place our samples (a few mm

thick) at the exact field center when mounted inside the NMR coil, ensuring the maximum

possible field homogeneity across the sample. To minimize eddy current heating, slots were

cut through the hex-rod and cold plate where possible (see corresponding design drawings

in Appendix B).

Fig. 3–8 shows a drawing of the full tail assembly (for clarity, the wiring is not shown).

The four sample holders are distinguished by labeling them alpha, beta, gamma, and delta,

with alpha and beta located in the NMR coil, while gamma and delta refer to the two top

side headers. Starting at the mixing chamber the electrical leads for each header begins with

a bundle of 4 twisted pairs (8 total wires) of 0.030” thick annealed silver wire, embedded
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in a pressed silver powder. The pressed powder box acts both as a lossy RF filter [8] while

simultaneously helping to heat sink the leads. The lead wires for headers alpha and beta

additionally pass through an RC filter, designed for a 2 kHz cut-off frequency to further

filter the sample from any unwanted RF radiation travelling down the lead wires. The lead

wires then terminate at a double row strip socket near the cold plate designed to mate to

two removable NMR coil sample headers.

By contrast, the gamma and delta leads terminate at a standard DIP IC socket with

no additional filtering (0.004” thick annealed silver wires are used to connect the socket

pins to the thicker lead wires). Each socket is epoxied to a G-10 mount which is secured

to the cold plate by screws.

In addition to the headers + lead wires, the tail assembly includes two semi-rigid RF

coaxial cables, two red LEDs, a RuO 2 kΩ thermometer and 8 free wires (4 twisted pairs)

terminating near the cold plate. The two coaxial cables are labeled #1 and #2. Coax #1

terminates near the top of the cold plate. Coax #2 mates to a flexible RF coaxial cable via

an mmcx connector, which is soldered at the other end to the NMR coil, and is therefore

dedicated to delivering RF radiation to the NMR coil. To be able to deliver RF radiation

at the mixing chamber (NMR experiments) with minimal attenuation, while additionally

minimizing the heat-load placed on the fridge, a combination of several different semi-rigid

coaxial cables were used. Details of each coax can be found in Appendix A.

3.2.5 Sample Rotation

We were additionally interested in utilizing a titled field geometry in order to probe

the spin state of the electrons at ν = 5
2 (see Chapter 5). We therefore designed a removable

rotator stage to achieve in situ sample rotation, shown in Fig. 3–9.

The stage is designed to mount onto the bottom the experimental cold plate by remov-

ing the NMR coil. Rotation is achieved by a spring-loaded paddle design where rotation

results from pulling a string via a mechanical feedthrough operated at the top of the cryo-

stat. Upon relaxing the string, the sample rotates back in the other direction via a spring

under tension. The rotation stage was designed to accommodate samples mounted on

both styles of custom headers (Fig. 3–10). When attached to the rotator, the sample is

placed at the exact field center, and rotates about an axis along the middle of the sample

surface. Our design allows for approximately 60o full rotation, with the initial offset angle

adjustable to any angle. Typically the range of the rotator is therefore set to between -15o

to +45o, with the negative offset allowing us to rotate through the zero point, in order to

find the true zero in situ. The rotation angle, θ, is defined as the angle between the 2DEG
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Figure 3–9: Schematic drawing of the sample rotator mounted on the experimental cold plate.
Arrows indicate direction of rotation due to “pulling” the string. The direction of the applied
magnetic field, B, is shown by the large white arrow.

normal and the direction of the applied magnetic field. The rotator was machined from

brass, and attached to the cold plate via a screw. The string is a kevlar thread, and the

spring is stainless steel.

3.2.6 Sample Cooling

In order to ensure maximal sample cooling we constructed custom sample headers for

both the top-side and NMR coil headers. For each of the top-side headers (gamma and

delta), the sample holder is a commercially purchased G-10 (garolite) header with 8 gold-

plated pins designed to fit a standard 8-pin DIP socket. On to this we glued a 0.004” thick

annealed silver foil (99.998% pure) attached to a 0.030” OD annealed silver wire (using

a combination of solder for strength and silver paint for thermal conductivity) that can

be thermally anchored to the cold plate (Fig. 3–10a). While the foil is intended to help

heat sink the sample lattice, cooling the electrons of the sample 2DEG is achieved mostly

through the leads [9], which are well thermally anchored to the silver hex rod.

The NMR coil sample holder, shown in (Fig. 3–10b), was designed to allow easy

mounting/demounting of the sample from the NMR coil. Our design accommodates a

permanent rigid coil as opposed to most other experiments performing resistively NMR

in which the coil is formed by wrapping a thin wire around the sample substrate. Our

design therefore allows us to place and remove the sample onto the fridge without solder-

ing/desoldering the NMR coil connections, which helps to minimize variations in the RF

coil characteristics from one run to the next. In order to maintain the highest possible
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Figure 3–10: Schematic drawings of the custom sample holders constructed for both the top-side
headers (a) and NMR coil (b).

field homogeneity at the sample, the NMR sample header consists of a G-10 body with

all metal, including the wires, header pins, and substrate cooling foil (similar to that used

in the top-side header) made from annealed silver. To further ensure optimal cooling of

the sample leads, and therefore the 2DEG electrons, the lead wires in the removable sam-

ple holder were embedded in a pressed silver powder, contained in a silver box thermally

anchored to the hex rod of the cold finger via a screw.

The NMR coil (shown in Fig. 3–8) is an approximately 8-turn coil, with a 0.372”

cross-section radius. The coil is wrapped around a G-10 tube designed to mount to the

bottom side of the experimental cold plate. The coil solders to a flexible coax terminating

in an RF rated mmcx connector that mates with a semi-rigid coax. This allows the entire

NMR coil to be removed from the cold plate in order to accommodate other experiments.

3.2.7 Thermometry

The fridge temperature is monitored with a combination of resistive, magnetization,

and diode thermometers placed at several places on the cryostat. A list of each thermometer

label, type, and location is given in Table 3–1.

All RuO resistors were purchased from Lakeshore Cryogenics. The Matsushita ther-

mometer is a carbon resistor, supplied to us by Janis Research Inc.. The resistive ther-

mometers (R1-R9) are all measured with a Lakeshore 370 AC resistance bridge, controlled

by our data acquisition computer via GPIB. All thermometers are measured using a four-

point probe configuration to eliminate the effect of lead resistance. In order to limit self

heating, resistance is measured using the minimum excitation power that allows reliable
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Table 3–1: List of Thermometers

Label Location Type Room Temp. Val.

R1 1K Pot RuO 1.000 kΩ

R2 Still RuO 1.000 kΩ

R3 Intermediate Cold Plate RuO 1.000 kΩ

R4 Mixing Chamber RuO 1.000 kΩ

R5 Mixing Chamber Matsushita Carbon Resistor 50 Ω

R9 Cold Plate RuO-202A 2.015 kΩ

Diode 1K Pot Si Diode 300 Kelvin

CMN Mixing Chamber CMN magnetization therm. — mH

FPD Mixing Chamber Fixed Point Device — mH

Magnet S.C. magnet Carbon Resistor 394.4 Ω

measurement over the greatest temperature range. Typical excitation voltages are therefore

set between 20 µV and 65 µV. Resistive oxide thermometers are highly sensitive from 4 K

down to 50 mK. Below 50 mK, however, the temperature dependence begins to saturate

making these thermometers less accurate at very low temperatures.

To extend our measurements to lower temperatures we employ a CMN magnetization

thermometer. In this thermometry scheme, the mutual inductance between two small coils

is measured with a paramagnetic salt pill (cerous magnesium nitrate) placed inside one

of the coils. The mutual inductance is linearly dependent on the magnetic susceptibility,

χ, of the salt, which follows the well described 1/T Curie law temperature dependence.

A measure of the mutual inductance versus inverse temperature therefore gives a linear

relationship which can be calibrated to give very accurate temperature readings down

to ∼6 mK. The CMN thermometer was purchased from Janis Research Company Inc.,

and calibrated by a nearby superconducting fixed point device (FPD), also supplied by

Janis. The FPD is constructed similarly to the CMN but incorporates superconducting

(SC) materials with well known transition temperatures. Owing to the Meissner effect,

measurement of the mutual inductance of the coils in the FPD exhibits sharp jumps that

coincide with the superconducting transition points. Since the SC transition temperature

is a fundamental property of the corresponding material, these known values can be used

to calibrate the CMN. Fig. 3–11a shows the measured inductance as a function of tem-

perature for our FPD, with the superconducting transitions labeled in the plot. The CMN
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Figure 3–11: (a) Superconducting transition points in our fixed point device. (b) CMN calibration
against the fixed point device. Open symbols represent calibration points performed by Janis
Research Inc. Solid circles were performed in our lab after installing the fridge. CMN excitation
parameters for each calibration are labeled in the figure.

calibration obtained by carefully measuring the inductance of the CMN at each transition

point observed in the FPD is shown in Fig. 3–11b.

Table 3–2: Thermometer resistance values at cryo-temperatures.

Room LN2 LHe
(300 K) (77 K) (4 K)

RuO 1.000 kΩ 1.033 kΩ 1.38 kΩ

RuO-202A 2.015 kΩ 2.157 kΩ 2.979 kΩ

Matsushita 49.1 Ω 55.2 Ω 82.4 Ω

Magnet Thermometer 394.4 Ω 484.6 Ω 5.71 kΩ

The CMN and FPD are measured with a Hewlett Packard 4263B LCR meter, using

a four point probe technique. Three separate calibration curves are shown in Fig. 3–11b,

corresponding to different excitation parameters. To minimize self heating in the device

we typically operate the CMN using a minimal excitation voltage of 20 mV, and frequency

100 Hz. A fit to the corresponding data in Fig. 3–11b (solid circles) gives the following

temperature calibration

T [mK] =
−4.36894

CMN[mH] + 2.93629
(3.2)
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Figure 3–12: Resistive thermometers plotted against calibrated CMN temperature reading, ac-
quired during continuous cooling from LHe to base temperature.

where the mutual inductance of the CMN is recorded in units miliHenry, and the resulting

temperature is given in miliKelvin.

The CMN and FPD are located in the field-canceled region at the MC, and so are

unaffected by the large magnetic fields applied in a typical experiment. Once calibrated, the

CMN was used to in turn calibrate all other thermometers. Fig. 3–12 shows typical cooling

curves of the RuO and Matsushita carbon thermometers acquired dynamically during a

complete cool-down of the fridge from LHe to base temperature. All of our experiments

are performed in the very low temperature regime, and so a more careful static calibration

is shown in Fig. 3–13, where all thermometers were allowed to equilibrate before recording

the measurement. The data in Fig. 3–13 was acquired with the magnetic field turned on

(∼2.5 T). The RuO and Matsushita resistors are located in the field canceled region and

so the field should have minimal effect. The RuO-202A thermometer however is located

in the field center and so there may be an offset in the calibration curve owing to the

influence of the magnetic field. Importantly, in both the dynamic temperature data (taken

at zero field) and static temperature data, the RuO thermometer clearly saturates below

50 mK as expected. The matsushita and RuO-202A however continue to demonstrate

a strong temperature dependence all the way down to our base temperature, indicating

these resistors can both be used as good thermometers down to our lowest operating

temperatures.
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Figure 3–13: Resistive thermometers plotted against calibrated CMN temperature reading, ac-
quired under equilibrium conditions in the low temperature regime (solid line in (a) is a standard
RuO calibration curve provided by Janis Research Company Inc.).

3.2.8 Cooling Power

Fig. 3–14 shows the cooling characteristics of the dilution fridge. The cooling power

was determined by applying a known power to the mixing chamber heater and then record-

ing the mixing chamber temperature after allowing it to thermally equilibrate. The cooling

power of a dilution refrigerator depends on the 3He circulation rate which in turn can be

varied by applying heat to the still (see section 3.2.1). Fig. 3–14a shows the cooling

power curves for several different values of current applied to the still heater. As expected,

increased cooling power is observed when applying larger currents to the still heater.

The measured cooling power curves obtained when using only a rotary pump to cir-

culate the mixture are indicated by the closed circles. Adding a booster pump to the front

of the rotary pump allows us to further increase the circulation rate and, as shown by the

open circles in Fig. 3–14, significantly improves the cooling power.

We have found the fridge can be safely operated with a current applied to the still

heater between 0-12 mA with the upper value being limited by the rise in pressure observed

at the return line pressure gauge. The fridge is typically operated with 5 mA applied to

the still giving a measured base temperature of ∼16.5 mK as measured by the CMN and,

according to Fig. 3–14, a cooling power of ∼100 µW at 100 mK.

Fig. 3–14 shows the result of operating the fridge in single shot mode with the max-

imum current of 12 mA applied to the still heater. The mixing chamber cooled from

16.4 mK to a minimum value of 8.4 mK in approximately 30 mins, after which it began to

warm back up, suggesting the still had emptied.
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Figure 3–14: (a) Cooling power measured as a function of current applied to Still heater. Closed
circles are data acquired by Janis using only a rotary pump to circulate the mixture. Open circles
are data acquired by us using a booster pump together with the rotary pump. (b) Mixing chamber
temperature versus time during single shot operation (data was acquired with maximal current of
12 mA applied to the still heater).

The cooling power and single shot measurements were performed before installing our

experimental stage, and so any additional heat leaks caused by our added wiring etc. may

reduce the performance of the fridge. However no significant change in the measured base

temperature (∼16-17 mK) was observed, suggesting our modifications have not introduced

any substantial additional heat loads to the mixing chamber.

3.3 Transport Measurements

3.3.1 Two probe and Four probe I-V curves

Transport experiments, in spite of their simplicity, offer the most versatile tool with

which to probe the physics of many systems, and the study of 2DEGs is no exception. In

the most straightforward experiment, the resistance of a sample is determined by sourcing

a voltage across the sample and measuring the resulting current drawn through the circuit

(Fig. 3–15). Ohm’s law relation, V = IR, then gives the resistance value of the sample. By

varying the sample parameters (sample size, density, purity etc.) and environmental fac-

tors (temperature, pressure, etc.) and monitoring corresponding changes in the measured

resistance, an incredible amount of information can be obtained.

The configuration shown in Fig. 3–15 has the limitation that the resistance of the

measurement leads are included in the measurement since the current drawn through the

circuit is determined by the total resistance (sample + leads). In most measurements the
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R
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R
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Figure 3–15: Circuit diagram showing a two-terminal I-V measurement. The total voltage drop
through the circuit is set by the voltage source. The current is measured with an ammeter (A).

lead resistance is sufficiently small to be considered insignificant. However, if the sample

resistance is also small, or if a highly accurate measurement is required, the influence of

the lead resistance can be substantial. In this case it is desirable to use a four-terminal

measurement, shown in Fig. 3–16. In this scheme, the current through the circuit is set

and the resulting voltage drop across the sample is measured by a voltmeter using a second

set of leads. Note that in the example circuit shown the current is determined by the large

current sourcing resistor placed in series with the sample (Rsource ≫ Rsample). An ideal

voltmeter has infinite input impedance (preventing any current through the voltmeter),

and so only the voltage drop (and therefore resistance) across the contacts of the voltmeter

leads is measured.

A

R
lead

R
lead

R
lead

R
source

R
lead

R
sample

V

Figure 3–16: Circuit diagram showing a four-terminal V-I measurement. In this configuration the
effect of the lead resistance is eliminated. The current sourced through the circuit is measured by
an ammeter (A) and the resulting voltage drop across the sample measured by a voltmeter (V).
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Power delivered to the sample is also an important consideration when choosing a

transport measurement scheme. The power dissipation across a resistive sample is

P = I2R =
V 2

R
(3.3)

where I and V are the current and voltage across the sample and R is the resistance of the

sample. If the sample resistance is substantial, it is desirable to limit the voltage in order

to minimize self heating. On the other hand if the sample resistance is small, limiting the

current through the sample is desired.

3.3.2 Derivative dI/dV and dV/dI curves

To increase the measurement sensitivity we employ a standard AC lock-in measure-

ment technique. In this scheme the sourcing voltage (current) is modulated at a known

frequency. The resulting current (voltage) across the sample is then measured using a

lock-in amplifier which filters out unwanted noise by only measuring time varying signals

with the same frequency and phase as the sourcing signal. As with DC measurements,

the AC measurement technique can use either a two-probe or four-probe configuration,

depending on whether one sources the voltage or current. Fig. 3–17 and Fig. 3–18 show

circuit diagrams used to perform a two-terminal dI-dV measurement and a four-terminal

dV-dI measurement respectively.

V
AC

V
DC

R
sample

Lock-in

Amplifier

DVM

Current

Preamp

Summation

Box

Figure 3–17: Circuit diagram showing a two-terminal dI-dV AC lock-in measurement.

The lock-in technique measures the derivative of an V-I (or I-V) curve, and therefore

gives a measure of the change in resistance as a function of DC current (DC voltage).

Performing the measurement at zero offset current (or voltage) with a small amplitude

variation however gives us a direct measurement of the resistance given by

R =
dV

dI

∣

∣

∣

∣

VDC=0, IDC=0

(3.4)
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Figure 3–18: Circuit diagram showing a four-terminal dV-dI AC lock-in measurement.
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Figure 3–19: Schematic drawing showing the four-terminal AC bridge design. The null detector,
D, measures zero voltage difference at the balance condition.

where typically we measure the RMS values of dV and dI.

3.3.3 AC Bridge

In some experiments we are interested in monitoring the change in measured resistance

in a quantum Hall state, while the background resistance value does not yield much useful

information (see for example our discussion of the resistive NMR technique in Chapter

6). In this scenario, a resistance bridge technique can be very useful where we can null

away the background signal allowing us to increase our measurement sensitivity. A 4-

terminal AC resistance bridge was therefore developed for implementation in our dilution

refrigerator. Detailed descriptions of several four-terminal resistance bridges designs can

be found in literature. However, since for our purposes we are interested in measuring

resistance variations with high sensitivity, we present here a modified, and significantly

simplified bridge scheme.

Fig. 3–19 shows a schematic diagram of our four-terminal bridge, based on the “cryo-

genic current comparator” bridge design [10–14]. The bridge works as follows. A known

current, Isample, is sourced through the sample in the usual four point measurement config-

uration. A separate current, Iref , is then sourced through a second, reference, resistor. The

voltage drop across the sample is then compared to the voltage drop across the reference,
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Figure 3–20: Complete circuit diagram for the four-terminal AC bridge (showing a room temper-
ature preamp as the null detector).

and the current amplitude through one (or both) of the two resistors is varied until iden-

tical voltage drops are measured across each, as determined by the “null detector”. Once

balanced, any variation in the sample resistance disturbs this balance condition, which is

measured by a fluctuation away from zero on the null detector.

The sensitivity of the bridge measurement is limited by the sensitivity of the null

detector. For this reason, three different designs for the null detector were considered:

(1) voltage preamp (cold or at room) + lock-in amplifier detector; (2) step-up (cold)

transformer + lock-in detector; (3) SQUID current detector. Each of these designs are

respectively expected to offer improved sensitivity. However, they also correspondingly

provide increased experimental challenges in actual implementation. We therefore took a

successive approach where first the theory of the bridge operation was tested using the

“simplest” design, before working towards maximizing the bridge sensitivity. A discussion

of our progress made in implementing and optimizing the bridge design is given in Chapter

6.

Fig. 3–20 shows the circuit diagram for configuration (1) of the bridge, where a

voltage preamp is used as the null detector. All other configurations use the same sourcing

circuit with the only difference being the null detector. To achieve precision control of the

sourcing currents, a ratio transformer is used to divide AC voltage from a single source to

each branch of the bridge circuit. Using the same signal generator to source both branches

ensures the AC signals in each branch have identical frequencies; necessary when looking

for the “null” measurement. The variable capacitors are used to fine tune the phase of each
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signal in order to correct small phase shifts resulting from coupling to stray capacitance.

In our implementation of the design, we set a fixed current through the sample and vary

only the current through the reference resistor. This allows us to have precise control over

the current through the sample throughout the experiment.

The bridge design is specifically optimized for integration into our dilution refrigerator

in several ways. The reference resistor is thermalized to the LHe bath (∼4 K) in order to

minimize thermal noise contributions while additionally achieving good thermal stability.

For reference resistors, we used metal thin film chip resistors (2 × 1.25 × 0.4 mm), which

exhibit little response to temperature and magnetic field. Additionally, it was necessary

to be able to switch in situ between a conventional 4-terminal measurement of the sample

(for example to characterize the sample magnetoresistance and Hall resistance) and the

AC bridge measurement. We therefore wired a complete set of leads from feedthrough “C”

down to the experimental cold plate, where the termination at the experimental cold plate

allows us to plug in one of the two custom NMR sample headers. A full schematic of the

bridge wiring can be found in Appendix A. An additional bundle of leads is wired to two

fixed value reference resistors (R1=100 Ω and R2=1 kΩ) thermally connected to the 4K

flange. Two reference resistors are included to allow us to use the bridge for a wider range

of sample resistance values, since the bridge is optimized when the reference resistance is

similar to the sample resistance. Finally, we constructed a special breakout box to mount

directly onto the 32 pin connector at the top of the cryostat allowing us to attach the room

temperature preamp directly at the cryostat, minimizing the distance the signal travels

through the room temperature environment before being amplified.

3.3.4 Noise

In any transport measurement there is invariably noise present which limits the mea-

surement sensitivity. Many external noise sources can be controlled by proper grounding

and shielding. In our experimental set-up we therefore took special care to ensure there

were no grounding loops, and to isolate all devices, wires, leads, etc. with grounded shield-

ing where possible. Intrinsic noise however can be more limiting. For example, Johnson

(or Nyquist) voltage noise results from thermal fluctuations of the charge carriers in the

sample under test and therefore is temperature dependent

δVJohnson =
√

4kBTR∆f (3.5)
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where T is the sample temperature, R is the sample resistance, kB is Boltzmann’s constant

and ∆f is the frequency bandwidth of the detector used to measure the voltage across the

resistor. Reducing Johnson noise is achieved by cooling the sample.

“1/f” noise results from resistance fluctuations and is proportional to the current flow

through the device. 1/f noise is dictated by several factors including both the sample

material and construction. The general form of 1/f voltage noise can be written as

δV1/f = ARI
√

∆f/f (3.6)

where A is a dimensionless constant dependent on the sample, R is the sample resistance,

I is the current, ∆f is the frequency bandwidth of the detector, and f is the frequency at

which the measurement is made. 1/f noise is therefore limited both by the sample and the

measurement frequency.

Finally, “shot noise” is a current noise that results from the statistical fluctuations in

the measurement of the charge carriers which are finite in nature. Shot noise is given by

δI =
√

2q/I∆f (3.7)

where q is the electron charge, I is the RMS AC or DC current, and ∆f is the measurement

bandwidth.

3.4 Disorder

3.4.1 Transport lifetime and electron mobility

Understanding the effect of disorder on the observed QHE is of fundamental impor-

tance since impurity scattering can have a significant and drastic effect on correlated elec-

tron behaviour. The disorder affecting a given 2DEG can be measured by two charac-

teristic momentum relaxation lifetimes; i) the transport (or scattering) lifetime, τt and

ii) the quantum (or single-particle) lifetime τq [15–18]. The transport lifetime results from

short-range scattering, i.e. from atomic corrugation roughness in the quantum well, atomic

dislocations, impurities in the 2DEG and phonon scattering, and determines the measured

conductivity according to

σ = n eµ (3.8)

where n is the electron density, e the electronic charge and µ is the mobility, which is

related to the transport lifetime, τt, according to
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Figure 3–21: In the van der Pauw method, the resistivity of a 2D sheet of arbitrary shape can
be measured by using a 4-point probe geometry to measure the resistance along two orthogonal
directions.

µ =
e τt
m⋆

(3.9)

where m⋆ is the electronic effective mass. The quantum lifetime on the other hand, while

also determined by this short range scattering, is additionally sensitive to long range scat-

tering (for example from the positive donor ions outside the 2DEG) and directly determines

the quantum Landau level broadening. The two lifetimes can be very different, owing to the

fact that the transport lifetime is insensitive to small angle (forward) scattering, whereas

the quantum lifetime is determined by scattering in all directions.

The usual measure of disorder quoted in literature is the sample mobility. Mobility

alone however is not a complete measure of the effective disorder since the mobility (trans-

port lifetime) does not account for scattering off the donor ions, which in high mobility

GaAs heterostructures is the dominant scatter mechanism [15,16]. Furthermore, the mod-

ulation doping technique in GaAs/AlGaAs forces much of this scattering to be forward

scattering [15, 16]. Nonetheless, the mobility remains a good measurement of relative dis-

order. For example, it has been found that the ν=1 energy gap systematically scales with

mobility even in the highest mobility samples [19]. The electron mobility therefore offers

a useful benchmark by which to compare separate 2DEG samples.

The mobility is experimentally determined by measuring the zero-field sample resis-

tance. To account for sample geometry, we use the van der Pauw technique for measuring

resistance of a 2D sheet. In this technique a four-probe contact configurations is used

to measure two separate resistance values, RA and RB, obtained by sourcing the current

along two orthogonal directions as shown in Fig. 3–21. In a square sample, the contacts are
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Figure 3–22: Magnetoresistance of our low density sample around zero field. (a) and (b) correspond
to data acquired by sourcing the current along orthogonal directions. In (a) the zero field resistance
was determined by fitting a parabola to the low field data. In (b) the local maximum at zero field
was ignored in the fitting routine (see text). Data was acquired at a slow field sweep rate of 0.010
T/mins, and electron temperature of 17 mK. Despite the slow sweep rate there is a small hysteresis
in the superconducting magnet, evidence by the displacement of the minimum Rxx position away
from B=0.

ideally placed at the corners. Van der Pauw showed [20] that from these two characteristic

resistances, the 2D sheet resistance can be calculated by solving the relation

e

(

−π RA
RS

)

+ e

(

−π RB
RS

)

= 1. (3.10)

Knowing the sheet resistance then allows calculation of the bulk resistivity, ρ=RSt, where t

is the sample thickness. In a square 2D sample however, the sheet resistance and resistivity

are equivalent, and therefore the conductivity can be written as σ = 1/ρ = 1/RS . Finally,

using this result together with Eqn. 3.8 gives the mobility equation

µ =
1

n eR
(3.11)

where R is the sheet resistance determined from the van der Pauw equation. Note that it is

customary to quote the density in units cm−2, which gives the mobility in units cm2/V·s.
Fig. 3–22 shows an example mobility measurement taken from our low density sample.

The field was slowly swept (0.010 T/mins) around the zero field value to find the true zero

point in order to eliminate any magnet hysteresis or residual field in the superconducting

magnet. The zero field resistance was then taken as the resistance value of the minimum,

determined by fitting a parabola as shown in Fig. 3–22a. In the orthogonal contact
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configuration (Fig. 3–22b), a local maximum is observed at zero field. The origin of this

local resistance maximum is not known, but may be due to weak electron localization

effects1 . In this case the zero field resistance value was interpolated by applying the same

parabolic fitting routine as used to find RA (Fig. 3–22a), but fitting only to the decreasing

data on either side of the local maximum (i.e. effectively ignoring the maximum in the

fit routine). The resulting resistance values (RA = 0.61 ± 0.01 Ω and RB = 0.44 ± 0.03Ω)

were then used in Eqns. 3.10 and 3.11 to give a measured mobility for this sample of

16.6 ± 0.8 × 106 cm2/V·s, in excellent agreement with the mobility value specified by the

sample grower (16.7 × 106 cm2/V·s). For comparison, if we instead take the peak value of

the local maximum for RB (in this case RB∼0.86 Ω), we calculate a much lower mobility

of ∼ 11.8 × 106 cm2V·s. This lends support to the accuracy of our fit routine shown in

Fig. 3–22. Furthermore, the substantial difference in the calculated mobility (nearly 30%)

resulting from a very small difference in measured zero-field resistance (∼0.4 Ω) emphasizes

the importance of making very careful measurements when determining the mobility.

3.4.2 Quantum lifetime

As stated in the previous section, the quantum lifetime in GaAs/AlGaAs heterostruc-

tures gives a direct measure of the disorder induced Landau level broadening. This follows

since the quantum lifetime is measured from the envelope shape of the low field Shubnikov

de Haas oscillations which is directly related to the Landau level line width.

At low fields, in the onset region of the magnetoresistance oscillations, the longitu-

dinal resistivity, ρxx, oscillates around the zero-field resistivity, ρo (Shubnikov de Haas

oscillations). Since the magnetoresistance oscillations are periodic in 1/B (Eqn. 2.14),

the variation in the longitudinal resistance, ∆ρ, can be expanded as a Fourier series. In

the zero temperature limit, the amplitude of the fundamental oscillatory term yields the

following expression for ∆ρ/ρo [15, 21]

∆ρ

ρo
= Ae

−π
ωcτq (3.12)

where τq is the quantum lifetime and ωc = eB/m is the cyclotron frequency. From this

equation, plotting ln(∆ρ/ρo) versus 1/B (a so-called Dingle plot) gives a linear relation

1 We note that the same feature was observed in a separate sample cut from the same
wafer, but measured on a different cryostat.
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Figure 3–23: (a)Magnetoresistance in the low field regime of our low density sample plotted versus
1/B. The data was acquired at base temperature (18 mK) and at the lowest possible B field sweep
rate (0.001 T/mins). The plotted data was filtered with a 2Hz wide band pass filter approximately
centered on the SdH oscillation frequency (3.4 Hz). (b) Dingle plot of the envelope amplitude from
(a). From the slope of the fitted line, the quantum lifetime was calculated to be 0.33 ± 0.03 ps,
giving a LL broadening of 0.23 ± 0.03 K (see text).

whose slope can be used to extract the value of τq. From the quantum lifetime, which is

a measure of the collision scattering time, the disorder induced broadening of the Landau

levels, Γ, can then be calculated according to

Γ =
~

2τq
. (3.13)

Eqn. 3.12 results from assuming a Lorentzian shape for the Landau levels, however

using a Gaussian gives a similar result (see Ref. [21]). The prefactor, A, in Eqn. 3.12 is a

constant whose value is determined by the relation between the resistivity and density of

states and is theoretically expected to be either 2 or 4, depending on whether the relation

is linear or quadratic respectively [21]. It is important to note that the usual assumption is

that level broadening determined is field independent, and so while the analysis is carried

out on the low-field SdH oscillations (higher Landau levels), the measured broadening is

expected to be the same for all Landau levels. Furthermore, the analysis outlined here is

only valid in the low-field regime before Zeeman spin splitting is observed, and so attention

must be paid when measuring the envelope amplitude to only include non-spin split Landau

levels in the analysis.
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Fig. 3–23 shows and example quantum life time measurement. The data plotted in

figure Fig. 3–23a was first passed through a 2 Hz wide band pass filter, approximately

centered on the SdH frequency (determined to by ∼3.4 Hz by applying a Fourier transform

to the raw data). The amplitude of the envelope function versus 1/B is shown in the

inset dingle plot (Fig. 3–23b). From the slope of the fitted line, the quantum lifetime

was calculated (Eqn. 3.12) to be τq = 33 ± 3 ps. Using Eqn. 3.13 this gives the (field

independent) disorder induced LL broadening to be 0.23± 0.03 K. We can expect that the

SdH are observable only once the cyclotron energy gap becomes larger than the LL width.

Therefore, from the B field value where the SdH can first be resolved, we can approximately

estimate the width of the LLs. From Fig. 3–23 the SdH oscillations are first observable

at ∼0.007 T which corresponds to a cyclotron gap of ∼0.14 K. This therefore gives a very

rough estimate for the LL broadening of 0.14 K which is similar (same order of magnitude)

to the LL broadening calculated from the Dingle plot (0.23 K).

Using the sample mobility (16.6±0.8×106 cm2/V·s) together with Eqn. 3.9 gives the

transport lifetime for the same sample to be τt = 640 ± 30 ps. The ratio of the transport

lifetime to quantum lifetime is therefore τt/τq ∼ 19, which is much greater than one,

suggesting in our GaAs sample the dominant scatter mechanism is long range scattering

from the remote donor impurities, as expected [15,16].

3.5 Energy Gap Measurement

The appearance of both the integer and fractional quantum Hall states requires an

energy gap in the electron density of states. This activation energy gap is measured ex-

perimentally from the temperature dependence of the magnetoresistance minimum of the

quantum hall state. In the low temperature, zero disorder limit, the quantized Landau

energy levels can be considered delta functions with zero width. Using a classical semi-

conductor model, the conductivity in the transport regime is proportional to the number

of charge carriers, n, populating the excited level, i.e.

σxx ∝ n (3.14)

where n is given by

n =

∫

∞

EF

f(E)D(E) dE (3.15)

where EF is the Fermi energy, D(E) is the density of states, and f(E) is the Fermi-Dirac

distribution given by
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f(E) =
1

1 + e(E−EF )/kBT
(3.16)

where kB is the Boltzmann constant and T is the electron temperature. Consider a two

Landau level system such that at T = 0 the ground state, Eo, is completely filled and the

excited state, E1, is completely unfilled. If we assume the density of states is described by a

δ function, then solving for Eqn. 3.15 gives the temperature dependent (T 6= 0) population

of the excited state to be

n =

∫

∞

EF

f(E) δ(E1) dE =
1

1 + e(E1−EF )/kBT
. (3.17)

Note however that since the Fermi energy is between the LLs, the energy gap, ∆ = E1−Eo,

can be rewritten as (1
2)∆ = E1 − EF , which therefore gives

n =
1

1 + e∆/2kBT
. (3.18)

In the low temperature limit where ∆ ≫ kBT this approximates to

n ∼ e−∆/2kBT . (3.19)

Finally, the longitudinal resistivity is related to the conductivity according to the tensor

relation

σxx =
ρxx

ρ2
xx + ρ2

xy

. (3.20)

In the high B field limit the Hall resistivity, ρxy, will be much larger than the longitudinal

resistivity, ρxx, at the minimum such that we have the simple relation ρxx ∝ σxx. Since in

2D Rxx ∝ ρxx, then using this together with Eqn. 3.19 and 3.14 gives the resistance of the

magnetoresistance minimum in the thermally activated transport regime to be

Rxx ∝ e−∆/2kBT . (3.21)

Plotting Rxx versus inverse temperature (a so-called Arrhenius plot) therefore allows a

determination of the gap from the slope of a straight line fit to the data.
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CHAPTER 4

Intrinsic Gap of the ν = 5/2

Fractional Quantum Hall Effect

We present here a detailed analysis of the ν = 5
2 state for a sample with the low-

est electron density reported to date (by nearly a factor of two). This allows

the study of the fractional quantum hall effect (FQHE) in a regime where the cyclotron

energy is smaller than the Coulomb interaction energy, i.e. in a regime of strong, possi-

bly non-perturbative, Landau level coupling. We compare the measured energy gap with

neighbouring FQH states in the second Landau level (SLL), and discuss these results in the

context of previous studies. Finally, we experimentally determine the intrinsic energy gap

of the 5
2 state using three different methods and compare with theory. Our analysis shows

that large discrepancies remain between theory based on a Moore-Read Pfaffian state and

experiment at ν = 5
2 that cannot be attributed to disorder alone. In contrast, a similar

analysis for the ν = 1
3 Laughlin state shows much better agreement with current models.

4.1 Experimental details

The sample used in this study was our low density GaAs/AlGaAs quantum well sam-

ple, with a measured density of 1.60(1)×1011 cm−2 and mobility of 16.6(8)×106 cm2/V·s.
Treatment with a red LED was used during the cooldown. Transport measurements were

performed using a standard lock-in technique at ∼6.5 Hz and small excitation currents of

2-10 nA. The sample parameters can vary considerably from one cooldown to the next,

and so to be able to make reliable comparisons between different quantum Hall states etc.,

we made all measurements during the same cooldown, except where noted.
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Figure 4–1: The B field position of the quantum Hall states labeled in (a) are used to extract the
electron density from the slope of the fitted linear curve shown in (b).

4.2 Electron density

The electron density of a 2DEG can be determined directly from the quantum Hall

effect since the value in magnetic field where a QHE state is observed, Bν , is determined

only by the density and fundamental constants,

Bν =
1

ν

nh

e
(4.1)

where ν is the filling fraction, h is Planck’s constant (6.6261×10−34 J·s), e is the electronic

charge (1.6011×10−19 C) and n is the electron density. Plotting the filling factor, ν, against

the inverse field value where the corresponding QHE state is observed, 1/Bν , therefore

yields a straight line whose slope can be used to calculate the density according to
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Figure 4–2: (a) Density values obtained from the same sample but during separate cooldowns.
The scatter in the measured values is within the measurement uncertainty.

n = slope · e
h
× 1

1002
. (4.2)

The factor of (1/1002) in Eqn. 4.2 is included to give the density in units cm−2, which is

the notation conventionally reported in literature.

Fig. 4–1 shows an example density measurement obtained from our low-density sam-

ple. The data in the figure was acquired at base temperature (18 mK) while continuously

sweeping the magnetic field from 9.0 to zero Tesla (0.113 T/mins). Using the slope in Fig.

4–1b the density is calculated from Eqn. 4.2 to be 1.60 ± 0.01 × 1011 cm−2.

It is worth noting that the electron density can also be obtained from the slope of the

Hall resistance versus magnetic field since the Hall resistance varies according to

RH =
B

ne
(4.3)

where B is the applied field. The quantized plateaus in RH coinciding with the quantum

Hall effect however can make it difficult to achieve an accurate fit. Often therefore, the

slope of the Hall resistance is measured in the low-field regime, before the onset of quantum

Hall effect is observed. However, for the very high quality samples examined in this study

the Shubnikov de Haas oscillations are resolved at as low as 0.007 T. In all of our studies the

density was therefore determined from the longitudinal resistance oscillations as outlined

above.

The electron density can vary from one cooldown to the next depending on variations in

the LED treatment, cooling conditions etc. While we have indeed observed a slight scatter
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Figure 4–3: (a)Hall resistance and (b) corresponding magnetoresistance in the second Landau level
of our low density, high mobility 2DEG (T=19 mK).

in the measured densities, shown in Fig. 4–2, the scatter is within the measurement error

suggesting good consistency in our cooling procedure.

4.3 ν = 5/2 at very low field

Fig. 4–3 shows the magnetoresistance (Rxx) and corresponding Hall resistance (RH),

taken around ν = 5
2 in the SLL at 19 mK. A vanishingly small magnetoresistance is

observed at ν = 5
2 , together with a wide plateau in the corresponding Hall trace, quantized

to within 0.05% of RH=(2
5)h/e2. The unambiguous 5

2 state observed here occurring at

∼2.63 T represents the lowest magnetic field observation of the 5
2 to date [1–15]. Strong

FQHE minima are also observed at ν=14
5 , 8

3 , 7
3 , and 11

5 , each of which exhibit corresponding

quantized plateaus in RH . The four reentrant phases observed in the Hall trace on either

side of the 5
2 plateau (two peaks tending towards RH=(1

3)h/e2 and two tending towards

RH=(1
2)h/e2) together with the observation of a ν = 16

7 minimum, and the hint of an

emerging minimum at ν = 12
5 , are all signatures of an extremely high quality sample

[7,9,10,14]. The deep Rxx minima appearing in the reentrant insulating phase at ∼2.55 T

(Fig. 4–3b) is similar to that observed elsewhere upon lowering the electronic temperature

to a regime where the reentrant state is fully formed [10,13,15].
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2
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minimum, respectively.

4.4 Activation energy gaps in the SLL

Fig. 4–4 shows the magnetoresistance in the SLL at several different temperatures.

The sample temperature was varied by applying current to a resistive wire heater thermally

contacted to the dilution fridge mixing chamber. The reported temperatures were measured

by a CMN thermometer also mounted on the mixing chamber. As expected, the quantum

hall states all diminish as the temperature is increased. We also note that the anomalous

peaks in RH associated with the reentrance phase are rapidly destroyed with temperature,

in agreement with previously published observations [11,15]1 . Fig. 4–5 shows a plot of the

ν = 3 zero-resistance minimum in Rxx as a function of mixing chamber temperature, which

we used to track our electron temperature. In Fig. 4–5b, the width versus temperature

follows a well behaved linear trend (plotted on a log scale) all the way down to our base

1 In these previous studies, the abrupt low-temperature behaviour was interpreted as
evidence that the reentrance phase is associated with the formation of an exotic electron
solid phase (bubble phase).
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temperature of 19 mK. We take this as evidence that the electrons are well thermalized since

otherwise saturation in the width would be observed at some temperature. We therefore

consider our thermometry to accurately reflect the electron temperature. The “width”

plotted in Fig. 4–5b was measured as the B field separation, ∆B, between the high and

low field flank on either side of the ν = 3 minimum taken at an arbitrary but small Rxx

value, indicated by the dashed arrow in Fig. 4–5a (measuring the width at larger Rxx

values, i.e. higher in the flank, showed the same linear behaviour).

The activation energy gaps of the FQH states in the SLL were measured from the tem-

perature dependence of the corresponding magnetoresistance minimum. In the thermally

activated transport regime, the resistance value of the minimum is given by
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Rxx ∝ e−∆/2kBT . (4.4)

where ∆ is the activation energy gap, kB is the Boltzmann constant and T is the electron

temperature. PlottingRxx versus inverse temperature (a so-called Arrhenius plot) therefore

allows a determination of the gap from the slope of a straight line fit to the data.

We often observe a small zero-offset in the measured magnetoresistance. In Fig. 4–6b,

an enlarged view around zero voltage from a typical magnetoresistance measurement is

shown. Importantly, this measured offset varies linearly with the magnetic field and also

varies with the amplitude of the sourcing current. We therefore believe the offset results

from a mixing of the Hall resistance and magnetoresistance, which is common when using

a van der Pauw measurement configuration where it is difficult to ensure the contacts are

perpendicular. When measuring the activation energy gap it is important to account for

this offset since the corresponding error can influence the gap measurement by a significant

amount (up to nearly 100 mK in cases). To correct for this, we determined the deviation

from “true zero” as a function of B field by fitting a linear curve to the measured zero at

the center of several well defined and clearly formed quantum hall minima (shown inset in

Fig. 4–6).

Fig. 4–7a shows an Arrhenius plot of the 5
2 gap measurement using a 10 nA sourc-

ing current compared with smaller 5, 2, and 1 nA sourcing currents shown in Fig. 4–7b.

Smaller current causes less self heating, but increases uncertainty in the corresponding

voltage measured across the sample. This translates into increased error in the gap mea-

surement. As shown in Fig. 4–7c the error, determined from the goodness of the linear fit,
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is systematically larger when sourcing smaller currents. The gap value between the mea-

surements however is approximately the same. Furthermore, the resistance value measured

in the low temperature tail-off region does not vary significantly (less than ∼ 1 Ω) between

the different source currents (Fig. 4–7d). Together with the data in Fig. 4–5 this indicates

the self heating at 10 nA is less than our fridge temperature (at base). This is consistent

with a systematic study of the current heating at low temperatures by Pan et al. [7] and

also Gammel et al [3] where in both studies it was reported (using a lower temperature

fridge than ours) that using a source current as large as 20 nA at ν = 5
2 raised the electron

temperature to only ∼ 15 mK. We therefore used a 10 nA source current for all of our

activation energy gap measurements.

Fig. 4–8 shows the activation energy gap measured for all of the FQHE states in

the SLL. All data was acquired at fixed magnetic field in order to avoid heating effects

caused by varying fields, and only after allowing the temperature to stabilize. Stable

thermal equilibrium was determined by monitoring all four thermometers mounted on the

mixing chamber (CMN, Matsushita, RuO and RuO-202A), and also by measuring the

magnetoresistance of the quantum Hall state as a function of time. The gap error quoted

on each plot was estimated from the goodness of the linear fit.

A characteristic “s” shape [16] is seen in each of the plots in Fig. 4–8. Since from

the above discussion (Figs. 4–5 and 4–7) we believe the electrons are well thermalized to
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the mixing chamber over the full temperature range, the low temperature tail-off likely

does not reflect a saturation in the electronic temperature. Instead, it may indicate a

transition from activated conduction to hopping conduction [16], and/or could result from

the energy dependent Landau level broadening due to disorder [17]. In the 7
3 , 5

2 , and 8
3 states

(Fig. 4–8a,b,e), there is also a deviation from activated behaviour at high temperature

whose onset temperature scales with the corresponding gap value. Furthermore we note

that around these temperatures a clear minimum in Rxx is no longer observed (see for

example Fig. 4–4d). The high temperature saturation therefore likely results from kBT

approaching the gap value, where the gap is not well formed and Eqn. 4.4 is no longer valid.

Interestingly, the same deviation is not observed in the 11
5 and 14

5 FQH states, which have

lower measured gaps than the 7
3 and 5

2 states. Recent work has suggested the 11
5 and 14

5 to

be Laughlin states, while the 7
3 and 8

3 are proposed to possibly be non-Laughlin [14,18,19],

which may be related to the different behaviours. Another contributing factor may be

competing effects with the insulating regime around the 7
3 , 5

2 , and 8
3 states, which exhibits

complex temperature dependence (such as the reentrance phase) that may affect the FQHE

behaviour when the states are only weakly formed.

The ν = 7
2 state (the electron-hole conjugate of ν = 5

2) appears at magnetic field less

than 2 T (Fig. 4–9), however in the cooldown shown here the 7
2 state was only weakly

formed. Owing to a competition between the weak 7
2 and rapidly emergent neighbouring

reentrant states, the Rxx minimum did not fall significantly with temperature near base
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Figure 4–10: Energy gaps for the FQH states, plotted in Coulomb energy units. Open circles are
our data. Solid squares and circles, respectively, are the “high mobility” and “low mobility” data
in reference [14].

making it difficult to obtain the same thermal gap measurement . A “quasi-gap” measure-

ment was therefore performed by measuring the depth of the 7
2 minima with respect to the

average resistance of the two neighbouring peaks (Rpeak) [2, 3, 8]. The resulting Arrhenius

plot, which indicates activated behaviour (Fig. 4–8d), gives an estimate for the 7
2 gap

value of ∼25 mK. A “true” gap measurement from a better formed 7
2 state (resulting from

a separate cooldown) is given in the next chapter. The value measured there (∼35 mK) is

in good agreement with this quasi-gap measurement.

In Fig. 4–10, the gap values are plotted in Coulomb energy units, e2/ǫlB, where

lB =
√

~/eB is the magnetic length, and ǫ = 12.9 is the dielectric constant for GaAs.

Results from recent gap measurements in the SLL by Choi et al. [14] are also shown for

comparison. The Choi et al “low mobility” sample (filled circles) had a similar mobility

(µB = 10.5 × 106cm2/Vs) to ours , while the Choi et al “high mobility” sample (filled

squares) had nearly twice the mobility (µB = 28.3 × 106cm2/Vs) than ours. The densities

of the two Choi samples were similar to each other, and both roughly twice ours (2.8 ×
1011cm−2, and 3.2 × 1011cm−2 respectively). From the figure it can be seen that the gap

energies follow a nearly identical trend between the three data sets.

The excellent agreement between our data set and that of the Choi et al ‘low mobility’

sample is surprising given the factor of two difference in electron densities between the two

samples. Simple dimensional considerations imply that the interaction energy, and hence

the FQH gap, should scale as
√
B, which would predict a ∼40% enhancement in the gap

between the low density (ours) and the high density (Choi et al.) samples. Our finding

that the gap is almost the same for the two samples with similar mobility (independent of
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Table 4–1: Measured gap energies shown in Fig. 4–8 expressed in both mK and Coulomb energy
units.

fraction (ν)
7/2 14/5 8/3 5/2 7/3 11/5

∆ [mK] 25±6 149±5 64±8 262±10 225±13 183±6

∆ [ e2

ǫlB
] 0.0004 0.0018 0.0008 0.0030 0.0025 0.0020

density), while significantly enhanced in samples with higher mobility (Choi et al. “high

mobility”), suggests that disorder more strongly affects the gap than the applied magnetic

field [20].

4.5 Intrinsic energy gap of the ν = 5/2 state

The 5
2 energy gap measured for our sample (∼260 mK) is similar to other measurements

found in literature, which range from ∼100 mK to ∼500 mK. This value however is in

significant disagreement with the theoretical gap based on a Moore-Read type Pfaffian

wave-function which is predicted to be ∼2 K at 2 T [21,22]. The conventional approach to

account for the large discrepancy between the theoretical and experimental gap measured

at ν = 5
2 is to assume the difference is due to disorder induced broadening of the Landau

levels. Using a simple semiconductor model, the contribution from disorder broadening to

the measured gap is usually described by

∆exp = ∆i − Γ (4.5)

where ∆exp is the experimentally measured activation energy gap, ∆i is the intrinsic energy

gap (i.e. the gap that would be observed in the absence of disorder), and Γ is the disorder

induced LL broadening (assumed to be independent of filling fraction). From the low-field

Shubnikov de Haas (SdH) oscillations we measured the quantum lifetime to be τq = 33±3 ps

in our sample. This gives a direct experimental measure of the LL broadening to be

Γ = 0.23±0.03 K (see section 3.4.2). Using our measured energy gap and level broadening

in Eqn. 4.5 gives an experimental measurement for the intrinsic gap from our sample of

∆i = ∆exp +Γ ∼= 500 mK. Including LL broadening in our gap measurement therefore still

remains well below the theoretical gap (∼2 K) even if theory is corrected for finite width

and LL mixing effects (∼1.5 K) [21–23].

We compared our result against all other 5
2 gap measurements found in the literature.

While in our experiment we measured the LL broadening from the SdH oscillations, most
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Figure 4–11: (a) Comparison of the measured ν = 5
2

gap energy with values found in literature
(open symbols). Solid triangles represent our data (the two data points result from two different
mobilities measured on separate cooldowns). Solid square is the theoretically calculated intrinsic
gap energy [21, 22] and the solid circle includes corrections for Landau level mixing, and finite
width. Solid curve is a guide to the eye. (b) Same plot as in (a), but for ν = 1

3
energy gap values

reported in the literature. The horizontal scales are very different between the two plots reflecting
that the 5

2
gap is very small (∼ hundreds of mK) and so can only be observed in very high mobility

(low disorder) samples. By contrast the 1
3

gap is very strong (∼1.5 mK) and thus observable in
much lower mobility samples.

other studies did not make this measurement but instead indicated the disorder in their

samples by reporting the sample mobility. The mobility does not give a direct measure of

the LL broadening, however this quantity does allow us to make qualitative comparisons

of relative disorder. In Fig. 4–11a, we show a plot of all the 5
2 gap values (in Coulomb

energy units) from literature versus the inverse transport lifetime, τ−1
tr [3, 4, 7–9, 13–15].

The transport lifetime was deduced from the reported mobilities according to Eqn. 3.9

such that in the figure τ−1
tr = 0 corresponds to the infinite mobility (i.e. zero disorder)

limit. In spite of the large spread in the 5
2 data, owing to wide ranging differences in

sample parameters, i.e. dopant, well width, etc., a clearly discernible trend (indicated by

the solid curve as a guide-to-the eye) is observed pointing towards a disorder-free intrinsic

gap value in the range of ∆i
5
2

∼ 0.005-0.010 e2/ǫlB. It is important to note that the

solid line “fit” in the figure is merely meant as a guide-to-the-eye and that the actual

functional form has no obvious physical interpretation other than indicating the measured

gap increases as the disorder is reduced (as expected from (4.5)). The range quoted for the

extrapolated intrinsic gap value comes from attempting to fit several different functions

which all gave values of the same order. The intrinsic gap estimated by our extrapolation

from an ensemble of 5
2 measurements to the zero-disorder limit (0.006-0.010 e2/ǫlB), is

in good agreement with the intrinsic gap deduced for our sample from the measured LL
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Figure 4–12: Intrinsic gap energy at ν = 5
2

from particle-hole paired states [23] (see text). Dashed
line indicates a theoretical gap with no disorder. Open squares and solid circles are the gaps for
the 7

2
and 5

2
FQH states from our sample but measured on two separate cooldowns. Open triangles

are data taken from Ref. [9], for comparison. Solid, dash-dot, and dotted red lines are linear fits
to the data.

broadening (∼0.005 e2/ǫlB in Coulomb energy units). Furthermore, these two results are

also in good agreement with a similar extrapolation (∼0.006 e2/ǫlB) reported very recently

by Pan et al. [15]. However, while the experimentally measured intrinsic gap values at ν = 5
2

obtained by these two methods are in agreement with each other, they remain well below,

by a factor of three to five, the theoretical intrinsic gap (0.016 − 0.025 e2/ǫlB) [21–23].

A similar plot of experimentally measured gap values versus sample mobility is shown

for the well understood ν = 1
3 Laughlin state in Fig. 4–11b [16, 24–28]. Performing the

same extrapolation as above gives the 1
3 energy gap determined with this procedure to be

∆i
1/3 ∼ 0.045 e2/ǫlB, which is in good agreement with theory (∼ 0.055 e2/ǫlB) [21, 27].

We take this as further validation of our extrapolation procedure. Moreover, this excellent

agreement between theory and experiment at 1
3 compared with the large disagreement at

5
2 points toward a discrepancy in our theoretical understanding of the 5

2 FQH state.

Morf et al. proposed [23] that the level broadening, Γ, is filling fraction dependent, so

that the experimentally measured gap is better described by

∆exp(ν) = ∆i(ν) − Γ(ν) (4.6)

where ν is the fractional filling and ∆i(ν) = δ(ν)Ec is the intrinsic gap with δ(ν) termed

the intrinsic gap parameter, and Ec the Coulomb energy. However, according to Morf both

δ(ν) and Γ(ν) are expected to be approximately equal for FQH states corresponding to

particle-hole conjugate pairs. Morf therefore suggested that plotting the experimental gaps
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for conjugate pairs as a function of their corresponding Coulomb energy (Ec = e2/ǫlB),

gives a linear relationship where the slope, δ(ν), provides a direct measure of the intrinsic

gap, and the intercept gives the level broadening. Fig. 4–12 shows the 5
2 and 7

2 gap values

obtained in our low electron density sample (open squares and solid circles) together with

those from Ref. [9] (open triangles) which Morf used to apply his theory. The open squares

are from the data shown in Fig. 4–8 where at ν = 7
2 a ‘quasi-gap’ measurement was

performed. The solid circles were acquired from a separate cooldown where the 5
2 and

7
2 states were slightly better formed allowing a “true” gap measure for both states. The

dashed line shows the predicted trend for a disorder free gap but corrected for finite width

and LL mixing effects. The slope extracted from a linear fit gives the intrinsic gap for

our sample to be ∼0.018 e2/ǫlB and ∼0.021 e2/ǫlB from the two data sets, which is in

reasonable agreement with the data from ref. [9] (∼0.014) and also in agreement with the

theoretical value corrected for finite width and LL mixing (∼0.016) [23]. This however

disagrees with the intrinsic gap determined experimentally both from our sample, and

from the extrapolation towards the infinite mobility limit. Furthermore, the Landau Level

broadening deduced from Fig. 4–12 implies a rather large value for our sample (∼1.25-

1.5 K) that is an order of magnitude larger than determined experimentally from the SdH

oscillations (∼0.23 K). Finally, the model proposed by Morf et al. presumes the 5
2 gap

scales with the Coulomb energy, which we find may not be true.

Deducing the intrinsic gap by comparing the gap energies measured at 5
2 and 7

2 (as

proposed by Morf et al.) gives good agreement with theory, but in our sample significantly

overestimates, by an order of magnitude, the disorder induced LL broadening we actually

measured. On the other hand, using our measured LL broadening and activation energy

gap (in Eqn. 4.5) gives an intrinsic gap value that, while in poor agreement with theory, is

in excellent agreement with the intrinsic gap deduced by extrapolating all measurements

found in literature to the zero disorder limit. As of today, it remains unclear how to

reconcile this discrepancy between experiment and theory.

While there is substantial theoretical evidence in support of a spin-polarized ν = 5
2

state described by the Moore-Read Pfaffian wavefunction, we emphasize that experimental

support for the theory is still lacking. Furthermore, questions remain concerning the finite

width and LL mixing corrections at 5
2 . For example, finite width corrections, assumed

to result from a softening of the Coulomb interaction as the 2DEG width increases away

from zero [21,23], gives very good agreement between theory and experiment for the ν = 1
3

Laughlin state [21,26,27]. Recent theoretical work by Peterson et al [29,30] however showed

that a non-zero thickness of the 2DEG actually stabilizes (i.e. strengthens) the 5
2 state in
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contrast to the 1
3 Laughlin state where increasing the finite thickness destroys the state [21].

Applying finite width corrections to the 5
2 state by using the same approach that has been

successful in studying Laughlin states (ν = 1
3) might therefore need to be reconsidered.

Additionally, LL mixing has so far been treated approximately, as a perturbation to the

main theory. Up to now the 5
2 state has been studied at sufficiently high fields that the

LL mixing has been considered moderate [31, 32], and so treating Landau level mixing

perturbatively may have been justified. By contrast, in our sample we measure the 5
2

gap in a low field region (2.63 T) where the LL mixing is expected to be strong since

the cyclotron energy is smaller than the Coulomb energy at this field by nearly a factor

of 2. Furthermore, recent theoretical work by Wojs and Quinn [33] has suggested LL

mixing more severely affects the 5
2 state than, for example, the Laughlin states in the

lowest LL. They argue that Landau level mixing may have a larger effect on the 5
2 than

previously thought, which might account for the existing discrepancy between theory and

experiment [33]. Again however, attempts to accurately quantify the effect have been

limited. To fully understand the influence of Landau level mixing on the 5
2 state, it may be

necessary to include non-perturbative LL mixing in the theory, which so far has not been

possible.

Including the effects of disorder into theory has also been problematic. In the simplest

approximations, it is usually assumed that disorder affects all integer and fractional quan-

tum hall states equally. However, this may not be true, perhaps especially for the ν = 5
2

state which is particularly unique because it is believed to be a paired state. In addition

to broadening the quantized energy levels, disorder may also adversely affect the pairing

mechanism. Importantly, so far no microscopic theory currently exists that is able to quan-

titatively include the effects to disorder into the theory [23]. Clearly more theoretical work

is necessary to resolve these issues.

4.6 Energetics of our low density 5/2 FQH state

Finally, we summarize the energetics of our low-density 5
2 FQH state. At the observed

field of 2.63 T the cyclotron energy is 52 K, the Coulomb interaction (e2/ǫlB) energy is 81 K,

and the Zeeman energy (assuming the GaAs band g-factor) is 0.75 K. The level broadening

in our sample was measured to be ∼0.23 K and the mobility broadening ∼0.006 K (the large

difference between the mobility and level broadening arises from the modulation doping

which forces much of the scattering to be forward scattering [34, 35]). Also important is

the suppression of the ideal two-dimensional FQH excitation gap due to the finite width

d = 40 nm of our quasi-2D square well sample. For our 5
2 FQH gap, this is only about 15%

82



Intrinsic Gap of the ν = 5/2 FQHE 4.7 Summary

(using our sample parameters in [21]). Taking all of these energies into account we conclude:

i) our measured gap value of 0.262 K is a factor of 3-5 lower than the ideal 2D theoretical 5
2

excitation gap (∼2 K at 2.6 T), even if corrected in the usual way for finite width and level

broadening suppression (∼1.5 K); ii) the cyclotron gap, i.e. the Landau level separation, is

smaller than the interaction energy in our system, suggesting considerable non-perturbative

inter-Landau level coupling, which has not so far been included in the theory and may be

important in understanding the 5
2 FQH state; iii) the Zeeman energy at 2.6 T is extremely

small compared to the Coulomb energy. The observation of such a strong 5
2 gap in this low

field (small Zeeman) regime might suggest that the 5
2 FQHE is spin-unpolarized. However,

in this scenario we would expect the state to be destroyed at larger fields where the Zeeman

interaction becomes much stronger forcing a spin polarized state. By contrast, the 5
2 FQHE

has been observed in magentic fields as large as 12 T [8], where the system would most

likely be spin-polarized, without much affecting the gap. Therefore, unless a quantum

phase transition occurs between a low-field spin-unpolarized state and a high field spin-

polarized state, our low density, low field experiment, when considered in the context of

existing 5
2 measurements rather points towards a spin-polarized state at ν = 5

2 . Our strong

gap measured in the low-field (small Zeeman energy) regime further suggests the 5
2 state

is spin-polarized even in the zero-field limit, consistent with the Moore-Read Pfaffian wave

function.

4.7 Summary

The 5
2 energy gap was measured for a sample with an electron density nearly two times

smaller than previously observed, and was found to be comparable to samples with higher

densities, and similar mobilities (disorder). Extrapolating the experimentally measured

energy gap values at ν = 5
2 to the zero disorder limit yields an estimate for the intrinsic

gap which remains well below the theoretical value. By contrast, a similar extrapolation

for the 1
3 Laughlin state is in much better agreement with theory. Our study suggests

that the large discrepancies observed between theory and experiment at ν = 5
2 cannot

simply be attributed to disorder, but rather may indicate that our knowledge of electron-

electron interactions for the ν = 5
2 FQH state remains incomplete. Based on the fact that

the Coulomb interaction energy scale for our low density 5
2 FQH state is larger than the

cyclotron energy, we speculate that the non-perturbative aspects of Landau level mixing

(as well as disorder), not considered in the theoretical literature, may play an important

role in the understanding of the enigmatic 5
2 FQH state.
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CHAPTER 5

Contrasting Behaviour of the 5/2
and 7/3 Fractional Quantum Hall
Effect in a Tilted Field

Support for the Moore-Read description [1] of the even denominator ν = 5
2 FQHE

continues to be mostly theoretical [2–9] with unequivocal experimental proof still lack-

ing. Very recent observation of the e∗ = e/4 quasi-particle charge [10, 11] is an important

measurement in this regard since it indicates the formation of a paired electron state

and therefore is fully consistent with the Moore-Read Pfaffian pairing wavefunction (or

equivalently its particle-hole conjugate, the so-called antiPfaffian [12,13]). However, these

measurements do not, on their own, validate the Moore-Read theory, in part due to other

possible candidate paired-states, such as the (abelian) Halperin 331 state [14], which could

in principle also be realized at ν = 5
2 .

A key feature of the Moore-Read Pfaffian that distinguishes it from other proposed

wavefunctions is its fully spin-polarized electron polarization [2,5,7], and consequently the

non-zero angular momentum of its px+ıpy pairing, very similar to theA1-phase of superfluid
3He. In the following chapter we therefore investigate the 5

2 spin polarization, by measuring

the activation energy gap of the 5
2 (and particle-hole conjugate 7

2) and neighbouring 7
3 state

in a tilted field geometry where, in addition to the perpendicular field (B⊥), a parallel field

(B//) is applied in the plane of the 2DEG. Two important aspects distinguish our work

from previous tilted field experiments in the second Landau level (SLL) [15–19]. First,

we examine a strong 5
2 -state occurring at lower magnetic field than previously observed,

owing to our low density sample [20]. Secondly, we study the FQH energy gap in a sample

with a relatively wide 2D quantum well so that under tilt the magnetic length associated

with B// becomes of order or smaller than the well width, allowing us to study the effect
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Figure 5–1: Rotating the 2DEG in a fixed field allows us to vary the Zeeman energy (depends
on Btot) while keeping the Coulomb energy (depends on B⊥ only) constant. At sufficiently large
parallel fields, the parallel magnetic length, lB//

, can become smaller than the size of the well

width.

of orbital coupling to the parallel field. Comparing the even-denominator 5
2 with the

odd-denominator 7
3 , we find that the in-plane magnetic field induces dramatically, and

qualitatively, different behaviour in the two activation gaps. This is a particularly surprising

result since current theoretical models that interpret the decreasing 5
2 gap under tilt in the

context of orbital coupling to the parallel field, suggest the same gap suppression should

be seen in the neighbouring 7
3 state [2, 8]. The unexpected experimental finding presented

here, in direct contradiction to theory, implies that our understanding of the FQHE in the

second landau level is incomplete

5.1 Experimental details

The following data was acquired from our low density GaAs/AlGaAs quantum well

sample, with a measured density of 1.60(1)×1011 cm−2 and mobility of 16.6(8)×106 cm2/Vs.

Treatment with a red LED was used during the cooldown. The tilted field geometry was

achieved by rotating the sample in situ in a static field (see sction 3.2.5 for details con-

cerning the sample rotator). All transport measurements were performed using a standard

lock-in technique at ∼6.5 Hz and small excitation current, Iexc = 2 - 10 nA. All data

was taken within the same cooldown, however, we present two data sets corresponding

to slightly different sample conditions resulting from a complete power shut down in the

lab, where the sample was temporarily warmed to ∼4 K. After the power shutdown we ob-

served a slight decrease in the sample density and “quality”, indicated by smaller measured

activation gaps at ν = 5
2 and ν = 7

3 and a less developed minimum in Rxx at ν = 7
2 .
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5.2 Tilted Field Geometry

Rotating the sample in a fixed field causes a change in the electron Zeeman energy,

since the Zeeman energy depends on the total applied field

EZ = µBg
∗B · S (5.1)

where B is the total magnetic field vector, and S is the electron spin. However, the Coulomb

energy remains unchanged (at a specified filling factor) under tilt, since it depends only on

the perpendicular component of the magnetic field

EC =
e2

ǫlB
(5.2)

where lB =
√

~/ǫB⊥ is the magnetic length, B⊥ is the perpendicular magnetic field, and

ǫ is the dielectric constant.

In the simplest approximation, the activation energy gap can be written as [21]

∆ = ∆o − µB |g| Btot∆S (5.3)

where ∆o includes all contributions to the energy gap that depend only on the perpendicular

component of the magnetic field, such as the Coulomb energy, and therefore does not

vary for a given quantum Hall state as the sample is rotated [22]. The second term

in the above equation is the Zeeman energy, written to emphasize that the g-factor in

GaAs is negative (g=-0.44 for bulk GaAs), where µB = 0.67 K/T is the Bohr magneton,

Btot =
√

(B⊥)2 + (B//)2 is the total applied magnetic field and ∆S is the change in spin

resulting from excitation of quasielectron-quasihole pairs. If we assume the only effect of

adding an in-plane magnetic field is to alter the Zeeman energy,1 then measuring the

activation energy gap under rotation (i.e. varying the ratio of Zeeman to Coulomb energy)

can be used to probe the spin nature of a QHE state.

In Fig. 5–2 we consider three scenarios. i) Ground state and excited states are fully

spin polarized : If electrons are excited from a fully spin polarized ground state to a fully

spin-polarized excited state then ∆S = 0 so that as we vary the size of the parallel field

(tilt the sample) we expect to see no change in the Zeeman energy and therefore no change

1 This is only strictly valid for the ideal 2D case where the 2DEG has zero thickness in
the transverse direction.
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∆S = 0

∆S = -1

∆S = +1
or

(a) spin polarized ground state (b) spin unpolarized ground state

Figure 5–2: Spin excitations from a spin polarized (a) and spin unpolarized (b) ground state.

in the activation energy gap. ii) Ground state is spin polarized and excited state is spin

unpolarized : Excitations from a polarized ground state that involve single spin flips yields

a net spin change of ∆S = −1 with each excited electron, and since g < 0 this gives an

increasing Zeeman energy as B// (Btot) is increased, and thus we would expect to measure

an increasing energy gap as we rotate the sample away from zero. iii) Ground state is

spin un-polarized : An unpolarized ground state can be distinguished from the previous

two scenarios if excitations involve a spin reversal giving ∆S = +1. In this case, an

overall negative increase in the Zeeman energy with increasing B// results and therefore

we would expect to measure a decreasing energy gap as the sample is rotated. Note that

in this analysis it is not possible to distinguish between a fully un-polarized and partially

polarized ground state. Importantly however a fully polarized ground state can not yield a

decreasing gap versus tilt, if the only affect of the parallel field is coupling to the electron

spins through the Zeeman energy. Observation of a decreasing gap would therefore suggest

the FQH state is not fully spin polarized.

5.3 Activation gaps under tilted fields

Eisenstein et al. first used the tilted field technique to study the 5
2 FQH state shortly

after its discovery [15, 16]. He found an approximately linear decay of the 5
2 gap with

increasing total B field whose slope gave the electron g-factor to be 0.56, in reasonable

agreement with the excepted value of 0.44 for GaAs [16]. Initially this was interpreted

as evidence that the 5
2 ground state is spin unpolarized in accordance with the Zeeman

interaction picture outlined above [16]. Subsequent theoretical work by Morf [2] however

showed that a fully spin polarized wavefunction at ν = 5
2 has a lower ground state energy,
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calling into question this interpretation. He further argued that the observed gap sup-

pression under tilt [15, 16] could be understood in terms of coupling between the parallel

field and orbital dynamics of the 2DEG in the perpendicular direction (possible due to

its finite thickness), rather than simply resulting from Zeeman coupling to the electronic

spins. Morf additionally predicted that such an interaction would eventually give rise to a

charge density wave state [2, 23] (identified as the stripe phase in further numerical work

by Rezayi and Haldane [4]) as the parallel field is increased, which was later verified in

experiments on higher quality samples and utilizing larger tilt angles. [17, 18].

Morf’s proposed explanation for the 5
2 gap suppression due to magneto-orbital coupling

to the parallel field results from a corresponding modification of the short range many-body

electron interaction potential. In this scenario, he further argued a similar suppression

would be expected for the neighbouring 7
3 state [2]. Rezayi and Haldane subsequently

showed [4] by numerics that a modification of the short range interaction potential could be

driven by a variation of the 2DEG thickness. More recently, Peterson and Das Sarma [8,9]

reported in a detailed numerical study that both the 5
2 and 7

3 states are strengthened by

thickening the 2DEG [8]. In agreement with Morf [2] and Rezayi and Haldane [4], they

therefore concluded that orbital coupling to a parallel field, whose effects include squeezing

the wavefunction towards the ideal 2D limit, is likely responsible for the 5
2 destruction

under tilt, and furthermore is expected to similarly destroy the 7
3 state. In all of these

studies a Pfaffian was used for the 5
2 wavefunction whereas a Laughlin wavefunction was

taken for the 7
3 . The theoretical predictions therefore follow despite the two states being

described by radically different ground states. Taken together, all of this theoretical work

indicates that if indeed magneto-orbital coupling to the parallel field is responsible for the

observed destruction of the 5
2 gap under tilt rather than Zeeman interaction, the same

effect should be manifest in the neighbouring 7
3 state, which is widely expected to also

be spin polarized. Importantly, no systematic experimental study has examined these

predictions [15–19]. Where qualitative observations have been made concerning the 7
3 , they

appear inconsistent with, for example, the state reported to strengthen [15], weaken [2,16],

and/or ‘stay robust’ [19] under tilt.

Fig. 5–3 shows the magnetoresistance in the SLL at various tilt angles, θ, measured on

our low density sample. The behaviour of the 5
2 minima as a function of tilt (i.e. increasing

B//) is dramatically different from the neighbouring, odd-denominator, 7
3 and 8

3 states. As

emphasized in the inset of Fig. 5–3a, the 5
2 minimum clearly diminishes while the 7

3 and 8
3

strengthen under tilt.
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3
, 5
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, and 7

3
FQHE minima versus tilt.

The qualitatively opposite trends between the 5
2 and 7

3 seen here is in stark contra-

diction to theory which predicts the two states should behave the same. We therefore

performed a detailed comparative study of the two states by measuring the corresponding

activation gap energies versus applied parallel field (tilt angle). The aim of this study was

both to attempt to probe the spin nature of the 5
2 FQH state, and also to fully investigate

the mechanism causing destruction of the 5
2 state under tilt.

5.4 Decreasing 5/2 gap under tilt

Fig. 5–4 shows the activation energy gap as a function of tilt angle for both the 5
2

and 7
2 FQH states. The energy gap, ∆, was determined from the temperature dependence

of the FQHE resistance minima in the thermally activated regime where Rxx ∝ e−∆/2kBT .

Example activation curves are shown in the left panel for several tilt angles, with the

corresponding energy gap plotted versus total B field shown in the right panels in Fig.

5–4. Improved sample conditions resulting from thermal cycling allowed us to perform a

standard measurement of the 7
2 gap rather than the quasi-gap reported in the previous
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Figure 5–4: (a)Ahhrenius plot showing activated behaviour at ν = 5
2

for various tilt angles. (b)
Activation gaps measured from (a) plotted versus total magnetic field. (c),(d) same plots as in
(a),(b) but measured at ν = 7

2
. In (b) two data sets are shown corresponding to measurements

performed on the same sample but with the open symbols corresponding to a slightly smaller
density and mobility than the solid symbols resulting from a change in the sample condition (see
text). Dotted lines in (b) and (d) are linear fits used to estimate a value for the g-factor (see text).
Solid curves in (b) are a guide to the eye. Open symbol in (d) was taken from an already destroyed
gap.

chapter. Consistent with the qualitative trend seen in Fig. 5–3, the gap measured at 5
2

and 7
2 both diminish rapidly with tilt (Fig. 5–4b and 5–4d respectively).

Varying the measurement configuration in our sample did not show any evidence of

anisotropy at ν = 5
2 up to the highest tilt angle investigated (θ = 44o). In Fig. 5–5 we show

the magnetoresistance in the SLL around ν = 5
2 taken at a tilt angle of 44o. As seen in

the figure there appears no discernible difference in the 5
2 minimum between measurements

obtained by sourcing the current along three different directions; the small variation in

Rxx at the 5
2 minimum is similar to that measured at zero tilt. This is in contrast to

Refs. [17, 18] where under tilt a large maximum appeared in the magnetoresistance at 5
2

when sourcing current parallel to the direction of the in plane field. The lack of anisotropy
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at this tilt angle.

in our data might simply be due to the limited parallel field imposed in our study owing to

our lower density (smaller perpendicular field) sample. Curiously, however, in Ref [18] the

anisotropy is evident at quite small tilt angles, with a difference in Rxx of a few hundred

Ohms measured at a similar parallel field to that shown in Fig. 5–5 (B//∼2.5 T), where we

observe no anisotropy. Comparisons between different samples should be made cautiously

due to the wide variety of other potentially important sample parameters such as disorder,

well width, crystal defects etc. It thus appears necessary to examine our sample under

much higher tilt, i.e. larger parallel field, in order to explore the possible transition to an

anisotropic stripe phase more fully.

In a perfectly 2D system, i.e. with a vanishing quantum well width, applying an in-

plane field by sample rotation should only couple to the electron spin through the Zeeman

energy. As such, the most obvious interpretation of our observed weakening FQHE with

tilt is that the 5
2 (and 7

2) state is spin-unpolarized. A spin-unpolarized 5
2 state however

would be in conflict with extensive theoretical evidence in favor of a fully spin-polarized

state, most likely described by the Moore-Read Pfaffian wave function [2,5,7]. In a single-

particle Zeeman picture, a reduction of the 5
2 gap induced by spin coupling alone should

furthermore yield a universal slope in a plot of activation gap versus Btot, determined by

the effective g-factor whose commonly accepted value in GaAs is g∗ = −0.44. Extracting

the g-factor from our 5
2 and 7

2 gaps, we obtain differing values of 0.47±0.06 and 0.31±0.03

respectively, compared with the value 0.56 reported in the work of Eisenstein et al. [16].
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for various tilt angles. (b)
Activation gaps measured from (a) plotted versus total magnetic field. A fit to the lowest B-field
data (solid line) is shown for comparison to the theoretical trend (dotted line) expected for a single
particle Zeeman interaction (see text).

Additionally, closer inspection of the 5
2 data (Fig. 5–4b) suggests a linear trend (dotted

line) does not fit the data well over the entire range, but rather the data is non-linear (solid

curve guide to the eye), raising further doubts about the spin-induced gap suppression in

a spin-unpolarized FQHE interpretation. In our view, the non-linear behaviour in Btot,

together with the scattered g-factors, is indicative of a gap suppression not driven by

Zeeman coupling, but rather by another mechanism. In a real 2DEG sample with finite

thickness, orbital coupling between the in-plane field and the transverse electron dynamics

becomes possible when the parallel field magnetic length becomes of order or less than the

quantum well width. In this case, a spin-polarized 5
2 state can also be suppressed with

increasing B// [2,4,8] since the activation gap is no longer determined by Zeeman coupling

alone. At B//=1 T, the parallel magnetic length lB//
=
√

~/eB// is only 26 nm, already

nearly half the width of our quantum well, making it plausible for magneto-orbital effects

to play an important role in our experiment, even under modest tilting.

5.5 Increasing 7/3 gap under tilt

The parallel field magneto-orbital coupling that is believed to destroy the 5
2 state under

tilt is also expected to destabilize the 7
3 state in a similar way [2, 4, 8]. In Fig. 5–6, the

activation energy gap at ν = 7
3 is shown, measured at several different tilt angles. In stark

contrast to the ν = 5
2 and 7

2 states the 7
3 state does not diminish with tilt as expected but

instead shows a remarkable enhancement, producing a gap larger by more than a factor of

two at only θ ∼35◦. If we again consider the only effect of the parallel field to be coupling
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to the electron spins through the Zeeman energy, an increasing gap under tilt suggests the
7
3 ground state is spin polarized.

We note however that the gap increase in Fig. 5–6b is non-linear, with the low-tilt

regime exhibiting a slope (solid line) of nearly ∼2.5 times larger than expected by single-

particle Zeeman coupling alone (dashed line). The growth of the 7
3 gap at a greater rate

than predicted by single-particle Zeeman interaction alone suggests a non-trivial excitation

spectrum, perhaps involving a spin texture similar to the skyrmion excitations observed at

ν = 1
3 in the lowest landau level [24,25]. The formation of skyrmions is characterized by the

interplay between Zeeman and Coulomb energies, with skrymionic spin-reversal excitations

existing only below some critical value of the ratio η = EZ
EC

. In our sample η ∼ 0.01−0.013

at ν = 7
3 , well below the critical value of ηc = 0.022 at ν = 1 [26] and similar to the value

of ηc = 0.01 at nu=1/3 [24]. It is therefore possible that our observed 7
3 behavior arises

from the existence of small skyrmions involving two to three reversed spins.

5.6 Contrasting behaviour

In Fig. 5–7 the gap values from Figs. 5–4 and 5–6 are replotted versus the parallel

field, B//, and normalized to their zero-tilt values (the data is vertically offset for clarity).

Whereas the 5
2 gaps appear to vary non-linearly with changing total field, Btot, (Fig. 5–4),

they follow a remarkably linear trend versus B//. We also note in the 5
2 data (open and

closed squares) a range in low B// distinct from the high B// where the gap is unmodified

for tilt up to ∼ 10◦. Interestingly, a similar trend is also observed when replotting the

data from reference [16] (closed circles). The onset of the gap suppression for the 5
2 state

occurs in all data set at a parallel field strength of B//∼0.5 T, corresponding to a transverse

magnetic length lB//
=36 nm. This is remarkably close to the width of our quantum well

and is therefore consistent with magneto-orbital coupling effects becoming relevant when

the transverse magnetic length approaches the size of the quantum well. Importantly, a

constant gap value is not observed in the 7
3 data at low tilt. We take this as a further

indication that the 5
2 gap suppression and the 7

3 gap enhancement originate from distinct

mechanisms. We show in the inset of Fig. 5–7 our measured 5
2 gap data versus B//

against the theoretical trend expected for a Zeeman energy variation associated with a

total spin change ∆S = −1, 0 (dashed increasing, flat line), and ∆S = +1 (decreasing

dashed line), expected for a spin-polarized and spin-unpolarized ground state, respectively.

While, within the resolution of our experiment, we cannot distinguish whether the low

B// data better fits the trend for a spin-polarized or unpolarized ground state, the gap

suppression of the 5
2 state following a linear behaviour in B//, and departing from the
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∆S = +1 curve at field B// & 1.5T, is further evidence for a gap suppression driven by a

mechanism other than Zeeman coupling.

We note that the actual effect of the in-plane field is quite complex as it not only

reduces the effective well width through orbital dynamics [4, 8, 9], it also anisotropically

enhances the 2D effective mass [9, 27], and increases the level broadening by inducing

intersubband scattering through Landau level-subband coupling [28, 29] as the electron

motion becomes effectively three-dimensional when the magnetic length associated with

the parallel field becomes smaller than the well-width. A full theoretical treatment of the

complex electron dynamics in the presence of a strong in-plane field is well beyond the

scope of our experimental work. However, we note that all of these effects are expected to

affect both the 5
2 and 7

3 in the same way, at least qualitatively, and so on their own cannot

explain the opposite trends under tilt that we observe.

With the 5
2 and 7

3 states appearing so closely together in magnetic field, having nearly

the same energetics and Landau level coupling when B//=0, we speculate that the contrast

in behaviour between the 5
2 and 7

3 states may require some fundamentally new theoret-

ical insight. One possibility is that this difference arises, not from a ground state spin-

polarization difference between these two states, but rather from a difference in the excited

states. If we consider both the 5
2 and 7

3 states to be spin polarized, then the decreasing 5
2

gap compared to the increasing 7
3 gap could be explained by the 7

3 trend resulting from a
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combination of spin-reversed excitation (gap enhancement) and finite width (gap suppres-

sion) whereas the 5
2 state does not experience spin reversal and so is suppressed purely as

a result of magneto-orbital coupling. In this picture, the 7
3 gap would presumably increase

with increasing Btot but with a smaller slope than if spin effects alone were present. The

saturation of the 7
3 gaps at high tilt is evidence for a possible crossover taking place be-

tween a spin-dominated and orbitally-coupled regime. Another possibility is that if the 5
2

FQH state truly emanates from a Moore-Read Pfaffian wavefunction with px + ıpy pairing,

it may experience non-trivial coupling to the in-plane field owing to the intrinsic angular

momentum l = 1 of paired electrons. We view this scenario as plausible in analogy with

that observed in other px + ıpy systems such as the A-phase of superfluid 3He. A word of

caution is, however, in order with the 3He analogy since it is the spin unpolarized (abelian)

(3,3,1) strong-pairing state which is thought to be akin to the A-phase with the Pfaffian

state being analogous to the A1-phase. Considering the paired nature of the Moore-Read

state it may also be possible, for reasons presently unknown, that disorder more strongly

affects the 5
2 than the (non-paired) Laughlin state, by specifically interfering with the

fragile pairing mechanism. Our analysis is admittedly highly speculative, since from our

experiment alone it is difficult to conclude with certainty why the two states behave oppo-

sitely under a titled field, owing in large part to limitations in existing theory that make

it difficult to account for the many complex and interrelated interactions that occur when

the quasi-2D electron gas couples to an in plane field. We therefore conclude that more

experimental work, such as examining the tilted field behaviour in samples with a variety

of well widths and densities, and at higher tilt angles, together with further numerical work

will be required to fully address this behaviour.

We emphasize that the naive direct explanation of our data, namely that the 5
2 (7

3) FQH

state is spin-unpolarized (polarized) although believed to be unlikely for reasons discussed

above, cannot be compellingly ruled out. Most importantly, the principal motivation [2]

for accepting the spin-polarized description of the 5
2 was based on an assumed universal

similarity in the behaviour of the 5
2 and 7

3 states in a tilted field. Our experimental

finding that the two states behave qualitatively differently fundamentally undermines this

assumption and so in our view may necessitate a rethinking of the nature of the 5
2 FQHE. In

this context, it is interesting to mention that several recent theoretical papers [30–32] have

indeed raised questions regarding the nature of the 5
2 state, and if further investigations

proved it to be non spin-polarized, it would unlikely be a Moore-Read non-Abelian Pfaffian

state.
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5.7 Summary

We performed the first ever simultaneous activation gap measurement of both the 5
2

and neighbouring 7
3 FQH states under tilt. We find completely opposite behaviour between

the two states, with the 5
2 found to weaken under tilt while the 7

3 actually strengthened.

This is in startling contradiction to theory, which predicts the two states should behave the

same in the presence of an applied parallel field. Theoretical foundation for this prediction

is based on i) the 5
2 being described by the Moore-Read Pfaffian wavefunction, while the

7
3 is presumed to be Laughlin state, and ii) the widely held belief that the 5

2 destruction

under tilt is due to magneto-orbital coupling to the parallel field and does not result from

Zeeman interaction. Our observed parallel-field induced linear suppression of the 5
2 gap,

as well as its in-plane field threshold supports the existing belief that the 5
2 destruction

under tilt is due to orbital coupling to the parallel field, rather than Zeeman coupling. The

opposite behaviour of the 7
3 state however is contradictory, since magneto-orbital coupling

is expected to destroy the 7
3 state in the same way. On the other hand, the large enhance-

ment of the 7
3 gap shows evidence for the existence of small (2-3 electron spin) reversed-spin

skyrmions, suggesting the different behaviours may be due to differences in the correspond-

ing excitation spectra, rather than in their ground state properties. Our identification of

a non-trivial excitation spectrum in the 7
3 state (possibly involving skyrmions) is the first

such observation in the second Landau level.

Our findings do not allow us to convincingly address the question of the spin nature of

the 5
2 state since our results are both consistent with the view that the 5

2 state is described

by the spin-polarized Moore-Read Pfaffian wavefunction, but also can not rule out that the
5
2 state is rather spin unpolarized. Our data in the low tilt, possibly Zeeman dominated,

regime suggests that studying an even lower density sample, where the low parallel field

effect can be examined in even finer detail, may help answer this question.

The contrasting dichotomy between the two states observed in our study is of consid-

erable importance. This result calls into question the prevailing theoretical belief that they

should behave similarly if both are spin-polarized and therefore challenges the foundational

argument on which initial support for the Moore-Read Pfaffian description at ν = 5
2 was

built. While we interpret the behavior of the 7
3 gap in our experiment to be arising from

the formation of skyrmions, the suppression of the 5
2 state in the presence of even a modest

parallel field remains an open question.
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CHAPTER 6

Resistively Detected NMR

An important question regarding the ν = 5
2 FQH state continues to be its spin-

polarization. The spin nature of the 5
2 remains a distinguishing feature of the proposed

non-Abelian Moore-Read Pfaffian description versus other, Abelian, candidate wavefunc-

tions. However, attempts to experimentally measure the 5/2 spin, which according to the

the Moore-Read theory should be fully spin polarized, have so far yielded inconclusive re-

sults. Resistively detected nuclear magnetic resonance (RDNMR) is a recently developed

technique that allows us to, among other things, probe directly the spin polarization in the

quantum Hall regime. Conventional nuclear magnetic resonance (NMR) is by now a well

understood and widely used standard tool to probe spin systems. However, conventional

NMR is limited in application to “bulk” systems since typical sensitivities require & 1016

nuclear spin particles to obtain measurable signals. It has therefore not been possible to

apply traditional NMR techniques to quantum systems that contain “too few spins”, such

as quantum dot structures (106-1010 spins), carbon nanotubes (. 103 13C atoms per tube),

and GaAs/AlGaAs 2DEGs (. 1015 for a 30 nm quantum well). The RDNMR technique

overcomes this problem by exploiting spin-interactions between transport electrons and the

surrounding nuclei to detect the resonance condition in the electron resistivity, allowing

substantial improvements in measurement sensitivity. We therefore implemented an RD-

NMR measurement scheme in our dilution refrigerator with the ultimate aim of using this

technique to probe the spin state at 5
2 fractional filling. In the following chapter I first give

a review of the RDNMR measurement technique. I then present our investigation of the

RDNMR response signal where we studied in detail the anomalous response signal around

filling fraction ν = 1. Finally, at the end of this chapter I present our recent observation

of an RDNMR response measured near the ν = 5
2 FQH state. I then discuss our efforts to

further optimize the technique in order to fully explore the 5
2 spin state.
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Resistively Detected NMR 6.1 Theory of resistively detected NMR

6.1 Theory of resistively detected NMR

6.1.1 Nuclear Zeeman interaction

When placed in a magnetic field a particle with non-zero spin interacts with the field

according to the Zeeman interaction,

Ĥ = −µ · B (6.1)

where B is the applied field and µ is the magnetic moment, defined by

µ = γ J (6.2)

where J is the total quantum spin number and γ is the gyromagnetic ratio. Classically, the

gyromagnetic ratio is defined for a rotating charge as the ratio of the magnetic dipole to

its angular momentum. The equivalent quantum mechanical definition for a spin particle

is simply the ratio of the magnetic moment to the angular momentum associated with its

spin, as above. For a nuclear spin this can be written as

γN = gN
e

2mp
= gN

µN

~
(6.3)

where e is the electron charge, mp is the proton mass, µN = e~/2mp is the nuclear mag-

neton, and gN is the dimensionless nuclear g-factor. Using these definitions and solving

the Schrodinger equation for the Hamiltonian in Eqn. 6.1 gives the Zeeman energy for a

nuclear spin

EZN
= −γN ~BmJ = −gN µN BmJ (6.4)

where mJ is the magnetic quantum number, restricted to allowed values mJ = J, J −
1, ..,−J + 1,−J . The Zeeman energy is quantized in units ~mJ where mJ represents the

spin-projection along the direction of the applied B field. Fig. 6–1a shows the possible

energy states for a spin-3/2 particle as an example. In this case there are four possible spin

orientations (mJ = 3/2, 1/2,−1/2,−3/2) where each spin state corresponds to a different

Zeeman energy according to Eqn. 6.4. Note that in each case the magnetic moment

precesses about the z-direction at the Larmor frequency. In Fig. 6–1b the energy level

splitting caused by the Zeeman interaction is shown for a spin-3/2 nucleus. The energy

gap, ∆, between each level is calculated simply from Eqn. 6.4
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Figure 6–1: (a) In the presence of a magnetic field, a quantum particle with spin angular momentum
J has only 2J+1 allowed states corresponding to projections along the direction of the applied field
quantized in units ~mJ where mJ = J, J − 1, ...,−J . Shown here is an example for J=3/2. (b)
Energy level diagram showing the corresponding Zeeman splitting (possible allowed energy spin
states) for a spin-3/2 particle.

∆ZN
= γN ~B (6.5)

where we see the gap is identical between each level, depending only on the gyromagnetic

ratio and the size of the B field.

From Eqn. 6.4 the lowest energy state occurs when the maximum nuclear spin projec-

tion (mJ = J) is aligned to the applied B field. This is true at zero temperature, however,

if the nucleus is in contact with a thermal bath at non-zero temperature it can be excited to

one of the higher energy levels. If there are n allowable energy spin states, the probability

of the nuclear spin being in the jth energy state, Ej , when in thermodynamic equilibrium

with a bath at temperature T is given by the Boltzmann distribution

p(Ej) =
e−Ej/kBT

∑n
i e

−Ei/kBT
(6.6)

where kB is the Boltzmann constant. If instead of a single nuclear spin we consider a large

system containing N nuclear spins per unit volume, the Boltzmann probability distribution

directly gives the fraction of spins occupying a particular energy state

p(Ej) ≡
Nj

N
(6.7)

where N is the total number of nuclei and Nj is the number of nuclei in the Ej energy state.

Because the nuclear Zeeman energy is related to the direction of the nuclear spin relative

to the direction of the applied B field, the Boltzmann distribution among the allowable
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energy states defines the overall polarization, i.e. the average net direction of the nuclear

spins. For example, consider for simplicity a system of N spin 1/2 nuclei. There are only

two available states for each spin: aligned to the field with energy E1/2, or anti-aligned

with energy E−1/2. The overall polarization is therefore defined by the number of polarized

(aligned) versus the number of anti-polarized (anti-aligned) spins. From Eqn. 6.6 this can

be described by the ratio

N1/2

N−1/2
= e−(E1/2−E−1/2)/kBT = eγN ~B/kBT (6.8)

The thermal distribution thus varies from fully polarized (all nuclear spins aligned) in the

limit that T → 0, to fully-unpolarized (equal number of up and down spins) in the limit

T → ∞.

In general, for a system of particles with spin J, the average net polarization is calcu-

lated from the expectation value of the Boltzmann distribution. Substituting the Zeeman

energy (Eqn. 6.4) into the Boltzmann distribution (Eqn. 6.6) and calculating the expec-

tation gives the polarization to be

P = BJ(x) =
(2J + 1)

2J
coth

(

x
(2J + 1)

2J

)

− 1

2J
coth

(

x
1

2J

)

(6.9)

where BJ is called the Brillouin function with x = NgNµNJB/kBT and J is the total

nuclear spin. The resulting, measurable, nuclear magnetization is then given by

M = MSP (6.10)

where MS = NgNµNJ is the saturation nuclear magnetization, and P is the nuclear

polarization defined above. The Brillouin function varies between 1 when B/T → ∞, and

0 when B/T → 0. Therefore, at T=0 only the lowest energy state is occupied and all the

spins are aligned giving maximum magnetization (M = MS). On the other hand when T is

large all of the possible energy states become equally populated and the net magnetization

(polarization) goes to zero.

In the high temperature/low B field limit where µB << kB T the Brillouin form of

the magnetization reduces to the experimentally measured Curie Law given by

M =
N µ2

N g2
NJ(J + 1)

3kB

B

T
=
N µ2

3kB

B

T
(6.11)
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Figure 6–2: Percent nuclear magnetization (or equivalently nuclear polarization) as a function of
temperature calculated from the Brillouin function for the 69Ga, 71Ga, and 75As isotopes in GaAs

where B is the applied field and T is the nuclear temperature. Note that in typical experi-

ments the µB << kB T condition is almost always satisfied since the nuclear magneton is

so small. The Curie law is therefore generally a very good approximation [1].

In Fig. 6–2 the percent magnetization, M/MS (or equivalently the percent polariza-

tion, P/PS) is shown as a function of temperature at 10 T for the three nuclear isotopes

(69Ga, 69Ga and 69As) found in GaAs/AlGaAs quantum well structures. As seen in the

figure, the magnetization is rapidly diminished with temperature. For example, at 50 mK

there is only about 10% polarization at 10 T. This makes apparent the need for operat-

ing in the ultra-low temperature limit and at high magnetic fields when maximal nuclear

polarization is desired.

Table 6–1: Properties of the GaAs/AlGaAs nuclear isotopes. All values are taken from Ref. [2]

Isotope I
Abundance∗ Magnetic moment, µ Gyromagnetic ratio, γ/2π

[%] [µN ] [MHz/T]

69Ga 3/2 60.108 2.01659 10.2478
71Ga 3/2 39.892 2.56227 13.0208
75As 3/2 100 1.43947 7.3150
27Al 5/2 100 3.64151 11.1031

6.1.2 Nuclear magnetic resonance

To avoid confusion, the nuclear spin angular momentum is usually labeled I and the

electron spin S. The nuclear Zeeman energy is therefore written as
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EZN
= −γN ~B Iz (6.12)

where Iz = I, I − 1, ..,−I is the spin projection along the quantization axis.

By applying a transverse magnetic field oscillating with frequency1 f , the sample can

be irradiated with photons carrying energy hf . If the frequency of the transverse field

is properly tuned so that the photon energy exactly matches the Zeeman splitting in the

nuclear energy spectrum

hf = γ~B (6.13)

transitions between the energy states can be induced by photon absorption. Rewriting the

above equation for the frequency gives

fL =
γ

2π
B (6.14)

where fL is the Larmor frequency in units Hz. Note that the gyromagnetic ratio has units

rad/s/T . In NMR however it is often more convenient according to Eqn. 6.14 to quote the

entire factor γ/2π in units MHz/T. Values of the gyromagnetic ratio for the GaAs isotopes

are given in Table 6–1 .

The effect of forcing these energy transitions via photon absorption is to disturb the

equilibrium Boltzmann distribution. If sufficient power is delivered by the transverse oscil-

lating field all transitions can be saturated and the net polarization in a sample completely

destroyed. Any polarization between these two extremes (including a complete inversion

of the initial polarization) can be achieved by varying the time over which the transverse

oscillating field is turned on.

If at time t = 0, the transverse oscillating field is turned off, the system will return to

its equilibrium magnetization according to

Mz(t) = Mo − [Mo −Mz(0)] e−t/T1 (6.15)

where Mo is the equilibrium magnetization, and T1 is the characteristic spin-lattice relax-

ation time. The spin-relaxation time is dominated by interactions with the surrounding

1 Throughout the frequency in Hz is labeled f so as to avoid confusion with the filling
factor denoted by ν.
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Figure 6–3: Cartoon picture of NMR. In (a) four spins are shown all aligned to the externally
applied B-field giving net magnetization M = Mz. The total spin vector (black arrow) rotates
about the B-field direction at the Larmor frequency but since the spins are in general out of phase
the net transverse magnetization, M⊥, is zero. (b) A continuous transverse oscillating field, tuned
to the Larmor frequency, is applied. This saturates the aligned/anti-aligned population reducing
the magnetization in the z-direction to zero. However, the transverse radiation initially imparts
a phase coherence between the spins momentarily giving a non-zero transverse magnetization in
the x-y plane that precesses around the z-axis. (c) Dephasing between the spins resulting from
variations in the local environment causes the net transverse magnetization to decay to zero with
characteristic time t = T2 (see text).

lattice that mediate the spin flip process, in this case allowing the nuclei to relax back to

their equilibrium state. However, at very low temperatures where there are no phonons,

the relaxation mechanism relies mostly on spontaneous photon emission giving very long

T1 times, on the order of minutes to hours (or even days) [3, 4].

The nuclei all precess at the same Larmor frequency under application of the B field

(ω = γ B). However, the nuclei are in general out of phase with each other so that averaging

over all nuclei there is no net magnetization in the transverse direction. Application of

the transverse radiation can momentarily impart a phase coherence between the nuclear

spins, causing a component of the net polarization to point in the x-y plane (perpendicular

to the direction the large static B field), but precessing around the z-axis (parallel to the

static B field). However, dephasing between the spins due to decoherence effects causes the

transverse component of the magnetization, M⊥, to quickly decay to zero. This decoherence

time is given by
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M⊥(t) = M⊥(t = 0)e−t/T2 (6.16)

where T2 is the spin-spin relaxation time. The decoherence results from interactions with

other atoms in the local environment of each nuclear spin, but is also due to inhomogeneities

in the applied polarizing B field. The measured spin-spin relaxation time is therefore labeled

T ∗
2 where

1

T ∗
2

=
1

T2
+

1

T inhomo.
2

(6.17)

where T2 is the contribution from pure spin-spin interactions and T inhomo.
2 is the contribu-

tion from inhomogeneities in the applied magnetic field.

Both equations 6.15 and 6.16, describing respectively the T1 and T2 (T ∗
2 ) relaxation

times, are derived from the macroscopic Bloch equations; a set of time dependent differ-

ential equations describing the macroscopic nuclear magnetization averaged over all the

individual nuclei.

6.1.3 Classical view of NMR

It can often be more physically intuitive to consider a classical analogy to the nuclear

magnetic resonance phenomenon. In the classical view each atom is again considered a

magnetic moment, precessing about the applied field at the Larmor frequency. This is

similar to the quantum solution depicted in Fig. 6–1. However, whereas the Schrodinger

equation indicates the projection of the magnetic moment along the B-field direction can

only take on quantized values, in the classical view the moment can be oriented along

any arbitrary direction. From Eqn. 6.1 the classical nuclear Zeeman energy is therefore

EZN
= −µB cos(θ) = −γN~B Iz where now the spin projection along the B field direction

is Iz = I cosθ. If we consider a single spin particle only, the classical view does not agree

with the quantum picture. However, in NMR experiments we are usually concerned with

measuring the magnetization averaged over a large ensemble of spin particles. The ensemble

average over a large number of quantum spin particles versus classical spin particles gives

the same behaviour in the thermodynamic limit and so the classical view in many cases is

valid.

In Fig. 6–4 the effect of shining a transverse radiation in the classical picture is shown.

When tuned exactly to the Larmor frequency, the incident photons can “tip” the spin away

from the equilibrium polarization direction by rotating the magnetic moment through an

angle θ relative to the z-axis (direction of the applied B field). The angle through which
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Figure 6–4: In the classical view the transverse radiation can tip the direction of the magnetic
moment away from its equilibrium position when the frequency of the incident photons exactly
matches the resonant Larmor frequency.

the polarization vector is rotated depends on how long the transverse oscillating field is

applied according to

θ = 2πγN τ B⊥ (6.18)

where τ is the pulse time and B⊥ is the magnitude of the transverse field. If the magneti-

zation vector is initially aligned along the z-axis a π/2-pulse rotates the vector into the x-y

plane whereas a π-pulse rotates the vector by 180o, completely inverting the polarization

along the negative z-direction. After a θ-pulse the characteristic time for the magnetization

to return to the equilibrium value along the z-direction is again given by T1 according to

Eqn. 6.15. Similarly, the characteristic time for the average transverse magnetization to

be destroyed (due to phase decoherence between the individual precessing spins in the x-y

plane) is given by the spin-spin relaxation time, T ∗
2 .

6.1.4 Continuous Wave mode

In continuous wave (CW) mode the transverse radiation is shone continuously such

that τ → ∞. The nuclear polarization therefore rotates continuously through θ = 0 to

2π at a frequency defined by the Rabi-frequency. However, dephasing between the nuclei

quickly leads to a decoherence in the signal and in the long time average CW radiation

destroys the mean nuclear polarization.

6.1.5 Electrons in a magnetic field

The same analysis as above applies equally to electrons interacting with an applied

magnetic field. However, one important difference is that for electrons the direction of
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the spin magnetic moment is opposite to the direction of its spin. This gives the relation

between the g-factor, ge, and gyromagnetic ratio, γe, for electrons to be

γe = −ge
µB

~
(6.19)

where µB = e/2me is the Bohr magneton. From Eqn. 6.4 this therefore gives the Zeeman

energy for electrons in a magnetic field to be

EZ = g∗ µB B Sz (6.20)

where Sz is the projection of the electron spin (=±1/2), and g∗ is the effective g-factor. In

free space the g-factor for electron is g ∼ 2. Because the electron g-factor is positive the

lowest energy state in a magnetic fields is realized when the electron spin is anti-aligned

to the applied field. In a semiconductor the g-factor is modified due to spin-orbit coupling

giving an effective g-factor, g∗, determined both by the size of the semiconductor band gap

and by the spin-orbit coupling in the valence band. In GaAs g∗ is reduced so much that it

is negative, measured to be g∗ = −0.44 in bulk GaAs [5].

6.1.6 Resistively detected NMR

It was first shown by Dobers et al. [6], nearly twenty years ago, that the electron/nuclear

spin interactions in the quantum Hall regime could be observed in the longitudinal magne-

toresistance, Rxx. Their study was performed at ∼4 K and so to achieve sufficient nuclear

polarization they employed a dynamic nuclear polarization technique via electron spin res-

onance. Kronmuller et al. then applied this resistively detected interaction to study the

anomalous huge magnetoresistance peak that appears around filling factor ν = 2
3 in very

thin quantum well samples [7]. By resistively detecting the NMR resonance and measuring

the corresponding relaxation times, they were able to directly probe the electron/nuclear

spin interactions in the FQHE regime. Finally, Desrat et al found [8] that by examining

the QHE at much lower temperatures, where nuclear polarization is significantly enhanced

according to the Boltzmann distribution (see Fig. 6–2), resistively detected NMR could be

performed without having to first dynamically polarize the nuclei. This allows the RDNMR

technique to be applied throughout the integer and fractional quantum Hall regime with

minimal disturbance of the equilibrium QH states, and importantly allows application of

the technique in the ultra-low temperature limit, where FQH states with small excitation

gaps (such as the 5
2) are revealed.
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Electrons in a solid can couple to the nuclear spins of the surrounding atoms via the

contact hyperfine spin interaction. If the solid is placed in a magnetic field the nuclear

spins can exhibit an average net polarization along the field direction as outlined above.

The electronic contact hyperfine interaction energy is then given by

EHF = A 〈Iz〉Sz (6.21)

where Sz is the electron spin along the field direction, 〈Iz〉 is the mean nuclear spin polar-

ization seen by each electron, and A is the hyperfine coupling constant

A =
2µo

3
(geµB)(gNµN ) |ψ(0)|2 (6.22)

where |ψ(0)| is the electron probability density at the nuclear site. In the presence of an

external magnetic field, B, the Zeeman energy in a solid includes both the normal Zeeman

effect and the hyperfine interaction giving the total electronic Zeeman energy

EZ = g∗µBBSz +A 〈Iz〉Sz. (6.23)

We can rewrite this equation as

EZ = g∗µB(B +BN )Sz (6.24)

where BN = A 〈Iz〉 /g∗µB defines an additional effective nuclear magnetic field seen by the

electrons and is termed the Overhauser shift.

In the thermally activated regime, the longitudinal magnetoresistance, Rxx, is given

by

Rxx ∝ e−∆/2kBT (6.25)

where ∆ is the energy gap in the density of states. At odd filling fraction the energy

gap is just the Zeeman gap plus exchange energy due to electron-electron interactions;

∆odd = ∆Z +∆exch.. Similarly, at even filling, the energy gap is ∆even = ~ωc−(∆Z +∆exch.)

where ~ω is the cyclotron energy gap. In general therefore, the energy gap includes a

contribution from the Zeeman gap, ∆Z = g∗µB(B+BN ), so that we can rewrite Eqn. 6.25

as

Rxx ∝ e−g∗µB(B+BN )/2kBT . (6.26)
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Figure 6–5: (a) The effective magnetic field resulting from contact hyperfine interaction, BN

reduces the total Zeeman energy. (b) Destroying the nuclear polarization by shining RF radiation
reduces the effective nuclear field BN therefore increasing the Zeeman energy

In this way we see that the longitudinal resistance is determined, in part, by the hyperfine

interaction coupling, and is therefore sensitive to variations in the nuclear polarization.

Since the effective g-factor in GaAs is negative (g∗ = −0.44), the effective nuclear

field, BN , is opposite to the applied field, B, and therefore reduces the Zeeman energy

(Fig. 6–5). Applying transverse radiation at resonance destroys the nuclear polarization

(i.e. destroying BN ), and therefore increases the effective Zeeman gap. At odd filling factor,

for example, where ∆ varies directly with the Zeeman gap, this results in a corresponding

decrease in the measured Rxx, and thereby give a resistance minimum. This therefore

provides a means to resistively detect the nuclear magnetic resonance condition.

It is important to stress that BN is an effective field arising from the contact hyperfine

interaction. Changing BN by varying the nuclear polarization therefore does not influence

the cyclotron motion (i.e. filling factor) of the electrons, which remains set by the externally

applied magnetic field. Also, there exists an additional exchange energy contribution to the

spin gap arising from electron-electron interactions. In the simplest theoretical approach

this exchange term does not depend on the nuclear polarization and so in principle is not

affected at the resonance condition and therefore does not contribute to measured RDNMR

response.

6.1.7 Knight Shift

In discussing the Overhauser effect we considered the effective nuclear field seen by each

electron resulting from interactions with the surrounding polarized nuclei. If we instead
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consider a single nucleus in a bath of polarized electrons, the electron polarization likewise

gives rise to an effective magnetic field, via the hyperfine interaction, seen by each the

nuclear spin. This analogue of the Overhauser shift, but for nuclei, is termed the Knight

shift. Recall that the nuclear resonant frequency is dependent on the applied magnetic

field according to Eqn. 6.14. Including the hyperfine interaction gives the modified nuclear

resonant frequency in the presence of a sea of polarized electrons to be

f =
γ

2π
(B +Be) (6.27)

where Be = −A 〈Sz〉 /gNµN is the effective electronic magnetic field with 〈Sz〉 the mean

electron polarization seen by each nuclear spin. The resonant frequency Knight shift,

Ks = γBe/2π, varies directly with the electron polarization. Measurement of the Knight

shift in nuclear resonance experiments therefore gives a tool to directly probe the po-

larization state of the surrounding electrons [3]. Several experiments have demonstrated

measurement of the Knight shift in quantum Hall structures using resistively detected

NMR [9, 10] establishing this as an effective method to measure the spin polarization in

FQHE states.

6.1.8 T1 relaxation times

Another important NMR tool in the effort to study electron behaviour in the QHE

regime is measurement of the T1 relaxation times. While Knight shift measurements allow

us to probe the electron spin polarization state, T1 can give insight into the electron exci-

tation spectrum. Once the transverse radiation is turned off the nuclear system relaxes to

the equilibrium polarization state via a nuclear spin flip process. At very low temperatures

however there are few energy exchange mechanisms available. Nuclear spins are coupled to

the electron spins via the hyperfine interactions and so spin-exchange can occur through a

nuclear flip-electron flop process [8]. However, the Zeeman gap for electrons is much larger

than for the nuclei, i.e. γe ∼ 1000γN in GaAs. The probability of a spontaneous flip-flop

exchange is therefore very low. Near filling factor ν = 1 however the ground state exhibits

Skyrmion excitation (a crystalline spin wave texture) with charged spin-reversal excita-

tions [3, 8, 11, 12]. These low-lying energy excitations readily couple of the nuclei greatly

enhancing the relaxation time. Conventional NMR experiments on multi-well structures [3]

and more recently RDNMR experiments on single quantum well samples [8, 13, 14] have

observed a drastic reduction in T1 around ν = 1, lending considerable support to the

proposed formation of Skyrmions at these filling factors.
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6.2 Investigation of the anomalous RDNMR lineshape near ν = 1

The resistively detected NMR technique allows us to probe the many fascinating 2D

electronic phenomena (crystalline spin texture, quantum transport dynamics, composite

boson/fermion particle formation) in a novel way. However, while RDNMR offers the

potential to gain new insight into a wide range of interesting many body electron physics,

several features of the measured signal remain unexplained [8–10, 14–17]. According to

the hyperfine interaction picture, at odd filling fraction the RDNMR signal is predicted

to coincide with a reduction in the magnetoresistance at the resonance condition. While

such a minimum is indeed measured at nearly all integer and fractional filling factors in

GaAs/AlGaAs quantum hall samples [8], in the vicinity of ν = 1 an anomalous “dispersive”

lineshape is observed, where on resonance the usual resistance minimum is followed by a

secondary resistance peak at slightly higher RF frequency [8,14,16]. Several attempts have

been made to understand the origin of the dispersive lineshape. Desrat et al. argued that

the anomalous signal near ν = 1 could be related to the formation of the spin-reversal

Skyrmions [8, 14]. However, a similar dispersive lineshape has since been observed at

higher fields near filling fractions ν = 2
3 and 1

3 [9] and also near ν = 2
9 and 1

5 [15] where

the formation of Skyrmions is unlikely. Combining RDNMR with conventional NMR,

Stern et al. argued that the dispersive signal might be related to the existence of spin

domains in the electron system, however, they could not account for their observation

that around both ν = 2
3 and 1

3 the dispersive shape appeared on the high-filling factor

side of the state only with a minimum-only observed on the low-filling side [9]. More

recently Tracy et al. [16] argued that the dispersive shape could be due to a variation in the

electron temperature around the resonant frequency with the peak (minimum) indicating

a mechanism causing electron heating (cooling). However, the mechanism responsible for

electron cooling/heating remains unclear. With still no consensus as to the origin of the

anomalous signal, we performed a detailed study of the resonance lineshape near ν = 1

under a variety of RF and sample conditions.

6.2.1 Experimental details

We examined two different 2DEG samples using resistively detected NMR. First we

studied the low density sample described in the previous chapters. This sample is a 40 nm

wide modulation-doped GaAs/AlGaAs quantum well structure with a mobility of 16.6(8)×
106 cm2/Vs and electron density of 1.60(1) × 1011 cm−2. The low electron density allows

us to observe the ν = 1 QHE state within the range of our 9 T magnet. The second sample
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Figure 6–6: Longitudinal resistance, Rxx versus applied B field for (a) sample A and (b) sample
B used in the RDNMR experiments. Sample A was used to study the anomalous RDNMR signal
lineshape around ν = 1. Both sample A and B were then used to apply the RDNMR technique to
probe the 5

2
state.

is 30 nm wide GaAs/AlGaAs quantum well. Importantly this sample has both a higher

electron density, ne = 3.04(1) × 1011 cm−2, and higher mobility, µ = 27 × 106 cm2/Vs.

The enhanced mobility is expected to give a better developed, i.e. more robust, ν = 5
2

state. Additionally the increased density causes the 5
2 state to appear at nearly twice the

magnetic field. According to the hyperfine picture the magnitude of the RDNMR response

signal increases with the degree of nuclear polarization, 〈Iz〉, and therefore is expected

to increase with increasing B field. The higher density sample therefore should give an

enhanced RDNMR response around ν = 5
2 . The two samples are distinguished as the “low

density” and “high density” samples in the remainder of this chapter.

Fig. 6–6 shows the magnetoresistance, Rxx, measured from each sample. As can be

seen, both samples are very high quality, with both exhibiting a strong, well developed,

minimum at ν = 5
2 at base temperature. While our primary interest is to study the 5

2 ,
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Figure 6–7: Circuit diagram of the resistively detected NMR measurement scheme. The large grey
arrow indicates the large static B field (typically B ∼ a few Tesla). The small red arrow indicates
transverse RF field (B⊥ ∼ a few µT).

we first devoted our efforts to characterizing the RDNMR signal. Using our low density

sample we studied extensively the anomalous dispersive lineshape reported around ν = 1

[8,10,14,16]. While investigating the effects of varying RF and sample conditions conditions

on the dispersive RDNMR signal around ν = 1 we learned how to better optimize our signal.

We then applied the RDNMR technique to probe the ν = 5
2 state in both the low density

and high density samples

In all studies the sample was cooled in our a dilution refrigerator. Treatment with illu-

mination from a red LED was used during the initial cool down. Resistance measurements

were performed under quasi-dc conditions, f < 15 Hz, using a standard lock-in technique,

with small excitation currents, IAC = 10 − 100 nA. NMR measurements were performed

at fixed field with the RF frequency swept through resonance at constant RF power (CW

mode). RF radiation was applied transverse to the static B field using an 8 turn coil

around the sample (details of the NMR coil and sample headers are given in Chapter 3).

Fig. 6–7 shows a circuit diagram for our RDNMR measurement scheme. RF sweep and

data acquisition was automated and controlled remotely by a computer. Throughout this

chapter RF power amplitude is quoted by a decibel scale where for our setup a 0 dBm

source corresponds to a 440 mVpk−pk sine wave applied to the top of the cryostat. The RF

conditions (sweep rate, amplitude, etc.) and transport measurement parameters (sourcing

current, lock-in time constant, etc.) were adjusted for each experiment as required. As a

benchmark however, in ‘a ‘typical” RDNMR measurement we would shine a -13 dBm RF

signal (which we estimate gives a few µT field radiated at the sample) at an RF sweep

rate of 300 MHz/3 s while monitoring the transport using 10 nA sourcing current and a

1 s measurement time constant on the lock-in.
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Figure 6–8: (a) RDNMR resonance at ν = 3.18, in the flank of the ν = 3 minimum. This represents
an example of the “minimum-only” RDNMR signal measured at most filling factors. (b) Near ν = 1
an anomalous dispersive lineshape is measured with a significantly enhanced response. The signal
shown here was obtained at ν = 1.16. Grey arrows indicate the frequency sweep direction of the
transverse RF field. (c) Determination of the gyromagnetic ratio, γ, from the 75As resonance
frequency measured at various B fields (filling fractions).

6.2.2 Anomalous signal near ν = 1

Fig. 6–8a shows a typical “minimum-only” RDNMR response, measured in the flank of

the ν = 3 QHE minimum. The lineshape closely resembles the RDNMR signal reported in

previous studies [8,14], with the minimum corresponding to the nuclear resonance condition

as predicted by the hyperfine interaction picture. The lineshape shown here is strongly

asymmetric with a sharp minimum first observed, followed by a long tail in the sweep

direction. This lineshape is due to the frequency sweep rate being faster than the T1

relaxation time where the sharp minimum corresponds to the resonance condition and

the tail results from the exponential relaxation to the equilibrium magnetization away

from the resonance condition.2 Using slow sweep rates (not shown), or under similar

RF conditions and sweep rate, but at filling factors where the T1 time is reduced (i.e.

2 By sweeping the RF frequency in the so-called “adiabatic fast passage” [18] regime,
where the frequency sweep is much faster than T1, it is possible to not only destroy the nu-
clear polarization at resonance but to cause a complete inversion of the nuclear polarization
if the duration of the sweep through resonance is appropriately tuned. This is analogous
to the application of a π-pulse in pulsed NMR techniques.
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at ν = 0.84 in Fig. 6–9), a Lorentzian lineshape is observed, similar to that reported in

Ref. [8]. Also consistent with other studies we were able to observe the RDNMR resonance

response throughout the quantum Hall regime, at both integer and fractional quantum Hall

states. In all NMR experiments described in the remainder of this chapter the 75As nuclear

resonance was chosen since this is the most abundant isotope in GaAs and thus gives the

strongest signature [8]. In Fig. 6–8c the measured resonance frequency, fL, is plotted

against the corresponding magnetic field for several different filling factors. According to

Eqn. 6.14, the slope of a fitted line gives the gyromagnetic ratio, which we find to be

γ75As = 7.2653 ± 0.0006 MHz/T. This is slightly smaller than the accepted value found

in literature of 7.3150 MHz/T [2]. Interestingly however our value is in close agreement

with that reported in similar RDNMR experiments by Desrat et al who measured γ75As =

7.259 MHz/T [8]. The discrepancy with the accepted value is small, less than 1%, and

so could simply be due to miscalibration in the superconducting magnet/power supply.

Alternatively, the measured error in γ might be caused by the Knight shift since the

RDNMR technique is only sensitive to atoms in close proximity to electrons in the 2DEG,

i.e., strongly coupled to the 2DEG electrons via the hyperfine interaction [3]. The Knight

shift may explain why in both ours and in the study by Desrat et al the measured γ is

lower than expected since in the QH regime the electrons are expected to be either spin

unpolarized, partially spin polarized or fully spin polarized, and not for example “anti”-spin

polarized.

Near ν = 1 we observed the previously reported “dispersive” lineshape [8–10, 14–16].

An example is shown in Fig. 6–8b where the usual resistance minimum is followed by a

well defined “peak” in Rxx at higher frequency. Additionally, the anomalous lineshape

near ν = 1 is found to be significantly enhanced compared with other filling factors under

similar RF conditions. For example, when we observed a minimum-only, the resistance

deviation at resonance was typically measured to be ∆Rxx/Rxx < 5%, whereas around

ν = 1 the response routinely gives up to 20% or more deviation in Rxx at resonance.

Fig. 6–9 shows the evolution of the dispersive lineshape away from ν = 1. In the

left panel of Fig. 6–9, the filling factors where the RDNMR signals were measured are

indicated by labeled dots on the magnetoresistance trace. It is important to note that

application of the RF radiation induces non-resonant heating that changes the shape of

the magnetoresistance. By comparing the values of Rxx with the RF on but away from

resonance, with values of Rxx measured by heating the sample with the RF off, we can

deduce the amount of non-resonant heating caused by the RF. A full analysis of the RF

non-resonant heating is given in section 6.2.4. According to our calibration in Fig. 6–14,
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Figure 6–9: RDNMR lineshape as a function of filling fraction around ν = 1. The lineshape
continuously evolves from a dispersive shape near ν = 1 to a minimum-only as the filling fraction
is decreased. Left panel indicates (blue dots) where in the magnetoresistance the signals were
measured.

a -13 dB RF signal corresponds to ∼40 mK heating above base, consistent with the data

shown Fig. 6–9a.

In the right panel of Fig. 6–9, the crossover from a dispersive line shape near ν = 1

to a minimum-only response away from ν = 1 is shown. In agreement with a similar study

by Kodera et al. [14] a continuous evolution between the two signal shapes is observed.

However, whereas Kodera et al report a dispersive shape persisting all the way to ν =

0.82 in our sample the signal already shows a Lorentzian shaped pure minimum by ν ∼
0.84. Differences between the two studies might be sample dependent, as our 2DEG has

a significantly higher mobility (16.6 × 106 cm2/Vs) compared with their sample (1.8 ×
106 cm2/Vs). However this is more likely attributable to differences in the experimental

conditions. For example, we found that increasing the RF power can change the resonance

from a minimum to dispersive shape, with the RF amplitude where this transition occurs

dependent on the filling factor. We also found the RDNMR lineshape to vary significantly

with sample temperature. Our investigation of the temperature and RF effects on the

dispersive lineshape is presented in detail in the following.

6.2.3 Temperature dependence

Fig. 6–10 shows the magnetoresistance around ν = 1 as a function of sample tempera-

ture. As the temperature increases the minimum collapses causing the resistance peaks on
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either side of the minimum to converge. In Fig. 6–10b an example is shown of the corre-

sponding change inRxx at a fixed fraction in the flank of the initial minimum. As seen in the

figure the resistance first increases with temperature (dRxx/dT > 0), but then crosses over

to a regime where the resistance decreases with further temperature (dRxx/dT < 0). In

general the behaviour is complex with no specific theory available to predict the functional

dependence on temperature (the solid curve in Fig. 6–10 is a “guide-to-the-eye”) [16].

Fig. 6–11 shows the evolution of the dispersive lineshape with temperature at fixed

filling factor. The data in Fig. 6–11a was acquired at ν = 0.85, and at an applied RF power

-17 dB. Fig. 6–11b shows a second data set acquired on a separate cooldown at ν = 0.86

and at a much lower RF power of -25.5 dB. The temperatures reported are the electron

temperature, corrected for non-resonant electron heating due to the applied RF radiation

(see section 6.2.4 ). Despite the differences in the experimental conditions the two figures

show similar qualitative behaviour. Both the minimum and peak responses diminish with

increasing sample temperature. Interestingly, the anomalous peak seemingly disappears

before the minimum even though the peak response is initially much stronger.

In Fig. 6–12 the percent deviation at resonance is plotted versus temperature. “Dataset

1” corresponds to the data in Fig. 6–11a while “Dataset 2” corresponds to Fig. 6–11b.

Both the normalized minimum (∆Rmin
xx /Rxx) and peak (∆Rpeak

xx /Rxx) responses rapidly

diminish with increased temperature. In the lower panels of Fig. 6–12 the corresponding

variation of the background, off-resonance, resistance is also shown. Tracy et al recently

argued that near ν = 1 [16] the RDNMR response is essentially proportional to dRxx/dT ,

pointing out that signals become very weak in regions where |dRxx/dT | → 0. Therefore,
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while the destruction of the RDNMR response with temperature could be due to a ther-

mal destruction of the nuclear polarization (i.e. Fig. 6–2), it could also be correlated

with dRxx/dT going to zero. The data in Fig. 6–12b was taken over a large temperature

range where dRxx/dT transitions from dRxx/dT > 0 to dRxx/dT = 0 to dRxx/dT < 0.

Importantly, the signal does not recover in the negative dRxx/dT regime, where at base

temperature we are readily able to observe an RDNMR signal (see for example Fig. 6–17).

This might suggest that the destruction of the signal is due to a thermal reduction in the

nuclear polarization (BN ), rather than due to variations in Rxx.

Recall that in the thermally activated regime the longitudinal resistance varies as

Rxx ∝ e−g∗µB(B+BN )/kBT . At resonance the nuclear polarization is destroyed causing BN

to decrease by δBN . The measured decrease in Rxx is therefore given by

∆Rxx = Rxx −R
′

xx (6.28)

∝ eg
∗µB(B+BN )/2kBT − eg

∗µB(B+BN−δBN )/2kBT

= eg
∗µB(B+BN )/2kBT

(

1 − e−g∗µBδBN/2kBT
)

= Rxx

(

1 − e−g∗µBδBN/2kBT
)

.

In the low RF power limit where δBN is small (<< BN ) such that g∗µBδBN << 2kBT

this gives
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Figure 6–12: Normalized RDNMR response amplitude for both the minimum (∆Rmin
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peak (∆Rpeak
xx /Rxx) features in the dispersive lineshape. (a) Dataset 1 corresponds to the data in

Fig. 6–11a. (b) Dataset 2 corresponds to the data in Fig. 6–11b. The lower panel in both(a) and
(b) shows the corresponding variation in the off-resonant background resistance with temperature.
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(b) is a fit of α/T 2 showing good agreement in the high temperature regime, but poor agreement
at low temperatures.

∆Rxx/Rxx ∝ g∗µBδBN

2kBT
. (6.29)

If δBN is a small fraction of BN , then we might expect δBN to remain constant with

temperature. On the other hand, if the RF power is sufficient to completely destroy

the nuclear polarization, the maximum possible variation to the Zeeman energy would

correspond to δBN = BN . In this case δBN = BN ∝ 〈Iz〉 where 〈Iz〉 is the mean nuclear

polarization, which varies with the inverse temperature (from the Curie law, M ∝ 1/T

where M ∝ 〈Iz〉 is the magnetization). To first order therefore, we would expect the

RDNMR response to vary with inverse temperature

∆Rxx/Rxx ∝ 1

T p
(6.30)
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where p is either 1 (low RF power) or 2 (high RF power). However, in Fig. 6–12a and

6–12b both the minimum and peak appear to decay linearly with temperature, consistent

with a similar temperature dependence of the minimum-only signal reported previously by

Zhang et al. [19]. In figure 6–12b we attempted to also fit a α(1/T p) curve to the data.

Allowing both α an p to vary, no good fit could be found over the entire temperature

range. However, setting p = 2 and and allowing only the coefficient, α, to vary gave an

excellent fit to the data in the “high-temperature” range (dashed line in the figure), with the

low-temperature regime deviating from the trend. The temperature dependence therefore

appears to initially exhibit a linear decay with increasing temperature, crossing over to

power-law decay at higher temperatures. The power law regime may reflect sufficient

thermal depolarization of the nuclei at these temperatures such that Eqn. 6.30 is a valid

description. However, it should be stressed that the 1/T dependence predicted in Eqn.

6.30 was derived from Eqn. 6.28, which is only strictly valid in the thermally activated

regime, i.e. in the low Rxx tails of the LL. The data in Fig. 6–12 was acquired high on

the flank of the ν = 1 minimum and at high temperatures where it is not known how

the DOS varies with temperature. The reason for a linear decay with temperature in the

“low-temperature regime” is not known. This might be the result of an interplay involving

both the thermal destruction of the nuclear polarization and the variation in the electron

DOS with increased temperature.

In a recent investigation combining RDNMR with conventional NMR on GaAs single

quantum well samples, Stern et al. reported evidence that the minimum in the dispersive

123



Resistively Detected NMR 6.2 Investigation of the anomalous RDNMR lineshape near ν = 1

lineshape near ν = 1 is Knight shifted due to nuclear interactions with polarized elec-

trons in the 2DEG [9]. The peak however was found to coincide with non-Knight shifted

resonant frequency position, i.e., indicative of nuclear interactions with a fully unpolar-

ized 2DEG. This suggests the two features of the dispersive signal results from distinct

domains in the 2DEG consisting of polarized (RDNMR minimum) and un-polarized (RD-

NMR peak) regions. More recent studies by Kawamura et al. [10] involving dynamically

polarized RDNMR measurements of the Knight shift have found further evidence in favour

of two distinct spin-polarizations in the 2DEG. Prior to the development of the RDNMR

technique, Barrett et al. examined the electron polarization around ν = 1 using optically

pumped NMR on a multiple quantum well GaAs sample [3]. They found a well defined

Knight shift in the conventional NMR spectrum near ν = 1 that decreased with increasing

temperature. In Fig. 6–13 the difference in the frequency position of the peak and minima

from our data in Fig. 6–11b is plotted as function of the corresponding electron tempera-

ture. The data shows a clear trend, indicating a decreasing separation between the features

with increasing temperature. If we assume that the separation corresponds to the Knight

shift, as suggested by Stern et al. [9], then the data in Fig. 6–13 suggests a decreasing

Knight shift with increasing temperature, in qualitative agreement with the findings of

Barrett et al. Furthermore, extrapolating our data to the T = 0 limit suggests a saturated

Knight shift (i.e. saturated electron spin polarization) at ν = 0.86 of 16-17 kHz, which is

similar to the value of ∼12 kHz reported by Barret et al. at this filling fraction in a sample

with similar 2DEG parameters (the Barrett quantum well width was 30 nm with electron

density ne = 1.4×1011 cm2). In this interpretation, our data suggests a strong temperature

dependence for the Knight shift in the low temperature limit. By contrast, Barrett et al.

reported a saturation in the Knight shift at ν = 0.98 for temperatures below ∼2 K. On

the other hand, at lower filling fraction (ν = 0.88) they did not observe saturation in the

Knight shift down to their lowest temperature of 1 K, which may be consistent with our

finding. In a later study, Melinte et al. performed a similar measurement as Barrett, on a

multiple quantum well sample but at lower temperatures where optical pumping enhance-

ment of the nuclear polarization was not required [20]. They found a similar saturation

in the Knight shift with decreasing temperature, with only a small variation (a few kHz)

observed between 0.1 K and 1 K at ν = 1. However, they did not study the temperature

dependence away from ν = 1, where deviation away from full spin polarization (Skyrmions)

is expected. A more thorough examination of the temperature dependence in the peak-

min frequency separation will be necessary to confirm whether this relative shift is indeed

related to the Knight shift.
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Figure 6–14: Determination of the electron temperature due to non-resonant RF heating. (a)
Variation in Rxx caused by varying the RF power (left) compared with similar variation (right)
caused by heating the sample with no RF applied (ν = 0.86). (b) Calibration of the electron
heating above base temperature as a function of applied RF power. Two datasets are shown
acquired on separate cooldowns with solid red circles acquired at ν = 0.86 (corresponding data is
shown in (a)) and solid blue circles acquired at ν = 0.85. Solid lines are linear fits to the data.

6.2.4 RF power dependence

The magnitude of the RDNMR response, ∆Rxx/Rxx, is determined by the variation

in nuclear polarization on resonance (δBN ∝ 〈Iz〉) which in turn is dependent on several

factors including: the nuclear polarization at thermal equilibrium (i.e. away from reso-

nance); the T1, and T2 relaxation times; and the magnitude of the applied transverse RF

radiation. The nuclear polarization and nuclear relaxation times are intrinsic properties

of the sample that in general can not be tuned other than by varying the sample tem-

perature, or employing a dynamic pumping technique. On the other hand increasing the

RF amplitude should more effectively destroy the nuclear polarization on resonance and

therefore yield a larger response. However, shinning RF radiation on the sample can also

cause non-resonant heating and as discussed in the previous section, sample heating can

rapidly destroy the RDNMR signal. In order to maximize the RDNMR response, as well

as to have accurate knowledge of the electron temperature in our RDNMR experiments, is

important to determine the RF induced electron heating.

To measure the non-resonant RF heating we can correlate variations in the off-resonance

magnetoresistance, Rxx, for different applied RF powers, to similar variations in Rxx ob-

served when varying the fridge temperature but with the RF turned off. An example is

shown in Fig. 6–14a, acquired at ν = 0.86. The solid circles (left panel in Fig. 6–14a) shows

the result of varying the RF power while keeping the fridge at base temperature, and the
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ison (ν = 0.85). Black arrow indicates the appearance of a second peak in the spectrum at large
RF powers. (b) Normalized minimum and peak responses plotted versus RF power. The minimum
first grows and then diminishes to zero. By comparison the peak first diminishes to zero and then
grows stronger. Dotted lines are a guide-to-the-eye.

solid circles (right panel in Fig. 6–14a) corresponds to varying the fridge temperature with

the RF turned off. Comparing the two plots gives a calibration for the electron heating. In

Fig. 6–14b the deduced electron heating (relative to base temperature) is plotted versus

applied RF power. The solid circles correspond to the data shown in Fig. 6–14a. The solid

triangles are from a second data set (taken at ν = 0.85), acquired on a separate cooldown

and extending to higher RF powers. Both data sets show a clear linear relation between

the applied RF power and resulting electron heating, with the slope and y-intercept deter-

mined by fitting a straight line (solid curve) similar between the two data sets. Averaging

together the fitted curves in Fig. 6–14 gives an approximate general relation between the

applied RF power and electron heating

∆Te = (2.4 ± 0.2)RFpower + (71 ± 4) (6.31)

where ∆Te is the electron heating above base temperature. This relation was found to hold

true at other filling fractions around ν = 1.

Fig. 6–15 shows the effect of varying the RF power on the dispersive lineshape. In

Fig. 6–15b the normalized minimum and peak responses are plotted versus applied RF

power. Surprisingly the two features behave oppositely. The minimum first increases

with RF power and then decreases as the power is further increased. The most obvious

explanation for this behaviour is that the initial increase in the RF power enhances the

RDNMR response at resonance, i.e., by destroying a larger fraction of the polarized nuclei.

As the RF power is further increased however, non-resonant heating may begin to cause a
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with again a second peak emerging in the spectrum at large RF powers (indicated by the black
arrow).

reduction in the equilibrium nuclear polarization, thus weakening the RDNMR response.

In contrast, the peak response initially diminishes with increasing RF power but then grows

dramatically. The reason for this opposite behaviour of the peak response, compared with

the minimum, is not understood. The enhancement of the peak is especially mysterious

considering the temperature dependence examined in the previous section where both the

peak and minimum were found to rapidly diminish with temperature, and with the peak

seemingly more sensitive (i.e. diminishing rapidly) to temperature effects. It should be

stressed that the peak response cannot be explained by the usual hyperfine interaction

description of the RDNMR signal, which predicts a minimum-only response. The opposite,

and contradictory, behaviour of the peak response versus the minimum with varying RF

power may indicate the two features result from very different mechanisms.

Another intriguing feature in the RF dependence in Fig. 6–15 is the emergence of

second peak in the RDNMR spectrum (indicated in the figure by an arrow) at higher RF

powers. Fig. 6–16 shows a second study of the RF power dependence acquired during a

separate cooldown. Again, the second peak emerges upon increasing the RF power. In both

figures the appearance of the second peak seems to coincide with a very long tail that does

not decay back to the equilibrium Rxx within the scan time (all scans are swept from low

to high frequency), suggesting this secondary peak exhibits a lengthy T1 relaxation time.

The origin of the second peak is unknown. This peak could possibly be a satellite of the

main peak, resulting from the quadrupole splitting. However, the peak-to-peak separation

is ∼10 kHz, which is more than 2 times smaller than the quadrupolar splitting reported

127



Resistively Detected NMR 6.2 Investigation of the anomalous RDNMR lineshape near ν = 1

7.0 7.5 8.0 8.5
0.0

0.5

1.0

1.5

2.0

-0.05 0.00 0.05 0.10

1.12

1.14

1.16

1.18

1.20

(b)

ν=1

0.806

0.811

0.816

0.821

0.825

0.832

R
xx

 [Ω
]

B [T]

(arb. offset)

R
xx

 [k
Ω

]

RF [MHz]

ν=0.806

0.811

0.816

0.821

0.825

0.832

(a)

Figure 6–17: (a) RDNMR signal versus filling fraction in the high field flank of the ν = 1 minimum
showing lineshape inversion. Dashed line separates the “normal” signal (below the line) from the
inverted signal (above the line). For ease of comparison the signals are shifted along the horizontal
and vertical axis. (b) Magnetoresistance trace in the ν = 1 flank. Filled circles label the NMR
signals measured in (a).

previously for As in GaAs quantum well samples [8, 21]. Furthermore, it is unclear why

the quadrupole satellite would coincide with a significantly enhanced T1 relaxation time3 .

6.2.5 Current induced lineshape inversion

In an effort to understand the origin of the peak in the dispersive lineshape, Tracy et

al. argued in a recent study that the lineshape could be understood from the perspective

of electronic temperature [16]. They found that as the filling factor was changed through a

region where dRxx/dT changes sign, the shape of the signal undergoes an inversion. Since

the lineshape inversion closely tracks the change of sign in dRxx/dT , it was argued the

signal results from a cooling of the electron gas on the low frequency side of the resonance,

followed by a heating on the high frequency side. However, the mechanism causing cooling

versus heating around the resonance could not be explained.

In Fig. 6–17 we reproduce the basic results of Tracy et al. where we observe a similar

inversion of the lineshape when varying the filling factor through a region where dRxx/T

changes from positive to negative. Comparing the lineshapes at different filling factors by

3 The apparent increase in T1 together with the emergence of the second peak could
be a coincidence. For example, the increasing T1 time could result from increased nuclear
depolarization at higher RF powers, while the appearance of the second peak is related to
some other, unknown, RF power dependence.
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varying the B field has the disadvantage of altering other important parameters, such as

the coulomb interaction strength, which can confuse the data. We therefore looked for

evidence of the same inversion but at fixed filling factor.

One effect of applying a DC current bias to a quantum hall sample is to heat the

2DEG. Fig. 6–18 shows the magnetoresistance around ν = 1 as a function of applied

DC current. In Fig. 6–18b the magnetoresistance, Rxx, versus the applied DC current is

plotted for ν = 0.86, which shows a nearly identical trend with the temperature dependent

trace taken at the same filling filling factor in Fig. 6–10. By comparing current induced

variations of the magnetoresistance with temperature induced changes in the resistance

(i.e. with no DC current applied), the electron temperature resulting from the applied DC

current can be determined [22–25]. Importantly, this suggests there is a direct relationship

between the sign of the current dependence of the magnetoresistance (dRxx/dIDC) and

sign of the temperature dependence (dRxx/dT ). Applying a DC current therefore gives us

a means to directly vary the electron temperature and thereby tune dRxx/dT at a fixed

filling factor. Since at the ultra-low temperatures of our experiments the electrons are

effectively thermally decoupled from the lattice [9] heating the electron 2DEG directly

should not significantly affect the lattice temperature, and therefore should not disturb the

nuclear polarization. In principle therefore, sweeping the DC current should allow us to

tune dRxx/dT at fixed filling factor with less reduction of the RDNMR signal than would

be caused by heating the entire sample (i.e. by raising the fridge temperature).

Fig. 6–19 shows the RDNMR signal as a function of applied DC current at fixed

filling factor (ν ∼ 0.84). The data was acquired by stepping the IDC in regular intervals

129



Resistively Detected NMR 6.2 Investigation of the anomalous RDNMR lineshape near ν = 1

0 200 400 600 800
0

4

8

12

57.00 57.05 57.10

-4

0

4

8

1

2

3
 min.
 peak

(c)
∆R

xx
/R

xx
 [%

]

DC current (nA)

(a)

 800 nA
 425 nA
 350 nA
 0n A

(b)

∆R
xx

/R
xx

 [%
]

RF [MHz]

57.00 57.05 57.10
0

200

400

600

800

5

(a)

0 10
∆R

xx
/R

xx
 [%]

D
C

 c
ur

re
nt

 [n
A

]

RF [MHz]

-5

ν=0.84

 R
xx

 [k
Ω

]

 Rxx

Figure 6–19: 2D contour map of the RDNMR lineshape versus DC current bias at ν = 0.84 (RF
= -13 dBm, Te ∼ 60 mK at IDC = 0 nA). (b) Selected traces from the contour plot in (a). (c)
Normalized min. (open squares) and peak (open triangles) versus applied Current, plotted along
with the corresponding off-resonant background resistance (open circles). As the DC current is
increased the signal transitions from a minimum-only to peak-only signal.

and sweeping the RF frequency through resonance at each DC current value. All DC

current biased contour maps presented in the remainder of this chapter were acquired in

the same way. In each case the RF frequency scan rate was 300 Hz/3 s with a 10-15 mins

pause between increasing the DC current and beginning the RF sweep to allow the system

to stabilize. The DC current step-size was chosen to give a total scan time of ∼10 hrs.

During the scan the magnet was held in persistent mode with the magnet power supply

turned off. Comparison between RDNMR signals acquired on a similar time scale without

changing any RF or sample parameters allowed us to estimate the NMR frequency shift

due to magnet drift to be less than ∼400 Hz/hr. Importantly this is significantly less than

the width of the RDNMR signal which we typically measured to be ∼10 kHz.

The RDNMR signal at Idc = 0 nA in Fig. 6–19 is the same “minimum-only” signal

shown in Fig. 6–9. As the DC current is increased the initial minimum-only signal tran-

sitions to an inverted dispersive signal before becoming a “peak-only” response at large

current values. In Fig. 6–19b it appears that the position in frequency of the inverted peak

does not coincide with the initial minimum, being shifted downwards by ∼10 kHz. This is

supported by the 2D map in Fig. 6–19a which shows that the down-shifted peak develops
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alongside the minimum, giving a dispersive lineshape over a range of nearly 200 nA DC cur-

rent (centered around ∼400 nA) until at higher current the minimum disappears and only

the peak remains. In Fig. 6–19c the magnitude of the normalized minimum (∆Rxx/Rxx

- open squares) and peak (open triangles) is plotted together with the off-resonant back-

ground resistance (Rxx - open circles). As can be seen, the current induced signal inversion

occurs in a region, near ∼ 400 nA, where dRxx/dIDC (and we assume therefore dRxx/dT )

is always negative. The inversion therefore does not seem to coincide directly with the sign

change in dRxx/dI (dRxx/dT ). Since the data was acquired at constant field (fixed filling

fraction) the resonance condition is expected to remain unchanged. The sizable shift in the

position of the resonance, together with the evolution from a minimum-only, to dispersive,

to peak-only lineshape, suggests that the lineshape inversion is not a direct “flip” of the

initial minimum, but instead the result of a more complex process, possibly involving two

distinct mechanisms.

Despite the significant heating caused by the applied DC current (the electronic tem-

perature at Idc = 800 nA was estimated to be ∼200 mK) the NMR signal remains sur-

prisingly strong, with the ∆Rxx/Rxx measured at IDC = 800 nA nearly 1.5 times larger

than at Idc = 0 nA. This compares with Fig. 6–11 where at similar filling factors and RF

conditions, the RDNMR signal was completely destroyed at these temperatures. This is

possibly consistent with the current-induced heating predominantly affecting the electron

temperature without much changing the nuclear temperature. Alternatively, the observed

enhancement of the down-shifted peak compared with the initial minimum might indicate

that the DC current enhances the nuclear polarization, consistent with recent reports of

DC current-induced dynamic nuclear polarization (DNP) near ν = 1 by Kawamura et

al. [10, 19,26].

Fig. 6–20 shows the result of repeating the same measurement but at ν = 0.896. At

this higher filling fraction (lower field) dRxx/dIDC (dRxx/dT ) is positive over the same

range of DC current values as in Fig. 6–19. Interestingly, the lineshape remains dis-

persive at all DC current values with no inversion. With increasing current the signal

initially diminishes but then reemerges showing a strong minimum even in the flat region

where dRxx/dIDC → 0. This behaviour is again consistent with the DNP interpretation

where initially the signal diminishes (possibly due to dRxx/dI becoming small), but then

strengthens at higher current as the nuclei are dynamically polarized.

We again performed the same DC current bias experiment, but at intermediate fill-

ing fraction, ν = 0.863, where the signal again shows an initially dispersive lineshape.
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Figure 6–20: (a) 2D contour map of the RDNMR lineshape versus DC current bias at ν = 0.896
(RF = -25.5 dBm, Te = 34 mK at IDC = 0 nA). (b) Selected traces from the contour plot in (a).
(c) Normalized min. (open squares) and peak (open triangles) versus DC current bias, plotted
along with the corresponding off-resonant background resistance (open circles). No signal inversion
is observed over the DC current range shown here

However, at this filling fraction and RF parameters and background, off-resonance, resis-

tance was sufficiently high in the flank (with no DC current applied) that collapse of the

ν = 1 minimum by current heating allowed us to probe both the dRxx/dIDC > 0 and

dRxx/dIDC < 0 regimes within the limitations of our IDC scan range. Fig. 6–21a shows

the corresponding 2D contour plot. As with the previous two scans the RDNMR signal

initially disappears with applied current. As IDC is further increased the minimum re-

appears giving a minimum-only lineshape for a several hundred nA range around 400 nA.

Finally, at large current a second peak (labeled “peak 2” and indicated in the figure by a

black arrow) appears but on the low frequency side of the minimum, similar to what was

seen in Fig. 6–19. In short, complete inversion of the lineshape is observed, occurring by

a process where the peak on the high side of the minimum first disappears, and then re-

emerges on the low frequency side. Consistent with the data in Fig. 6–19 this suggests the

lineshape inversion is not a simple “flip” of the minimum and peak; rather the peak shifts

from the high frequency side to the low frequency side. Interestingly, there is no indication

that the peak “crosses” the minimum, i.e. we do not observe a systematic reduction in the

frequency separation of the minimum and peak as the DC current is increased from zero,
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Figure 6–21: (a) 2D contour map of the RDNMR lineshape versus DC current bias at ν = 0.863
(RF = -25.5 dBm, Te ∼ 34 mK at IDC = 0 nA). Dotted line indicates the expected frequency shift
over the time of the scan due to the magnet drift. (b) Selected traces from the contour plot in (a).
(b) Normalized min. (open squares) and peak (open triangles) versus DC current bias, plotted
along with the corresponding off-resonant background resistance (open circles). “Peak2” (closed
triangles) labels the down-shifted peak, indicated in (a) and (b) by a black arrow. As the DC
current increases, the initial peak on the high frequency side of the dispersive lineshape disappears
and then re-emerges on the low frequency side. By contrast the min. initially disappears, and
then re-emerges at the same frequency.

at least within the resolution of our current steps. We also note that in both Fig. 6–19 and

Fig. 6–21 the lineshape inversion appears well into the negative dRxx/dIDC (dRxx/dT )

region and so does not appear to coincide directly with a change in sign of dRxx/dIDC .

Importantly, we never observed signal inversion in a region of positive dRxx/dIDC when

varying the DC current.

Finally, we examined the lineshape evolution under similar parameters as in Fig. 6–21

(ν = 0.863, RF=-25.5 dB) but where we varied the sample temperature by varying the

fridge temperature. A 2D contour map of the resulting data is shown in Fig. 6–22. Like

in the previous IDC experiments the RDNMR signal initially diminishes when heating the

sample. However, unlike in the previous experiments the signal does not recover to its initial

strength with continued heating. This is further evidence that the signal enhancement seen

at large DC current likely results from a DNP mechanism. Closer examination of the high-

temperature curves (Fig. 6–22b) reveals that the signal does persist to high temperature
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Figure 6–22: (a) 2D contour map of the RDNMR lineshape versus sample temperature (IDC = 0)
at ν = 0.863 (RF = -25.5 dBm, Te ∼ 34 mK at base fridge temperature). (b) Selected traces from
the contour plot in (a) (data is vertically offset for clarity).(c) Normalized min. (open squares) and
peak (open triangles) versus DC current bias, plotted along with the corresponding off-resonant
background resistance (open circles). As the temperature increases, an inversion in the lineshape
is observed, similar to that seen in Fig. 6–21.

but is very small, barely perceptible above the background noise. Importantly we can

clearly discern an inverted dispersive lineshape in the high temperature curves (the 93 mK

and 127 mK traces in Fig. 6–22b are multiplied by a factor of ten and offset vertically for

comparison with the initial base-temperature signal). Fig. 6–22c shows the temperature

evolution of the minimum and the two peaks together with the the background resistance.

In contrast to the current induced inversion discussed previously, the purely temperature-

induced inversion begins to appear before dRxx/dT becomes negative, i.e., the down-shifted

peak first emerges in the region where dRxx/dT appears flat and then continues to grow

in the negative dRxx/dT region. It is unclear why the down-shifted peak should appear

sooner when varying the sample temperature compared with DC induced heating. It might

be that the sizable minimum seen in this same region in the DC current bias data (which

we believe results from DNP) simply obscures the initial appearance of a down-shifted

peak. We also note that the minimum in the high temperature traces does not appear at

the same frequency as in the initial dispersive signal. This might result from a decrease in

the Knight shift at elevated temperatures as described in Fig. 6–13. We caution however
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that the temperature dependent data given in Fig. 6–22 was acquired over the course of

several days. On such a long time scale, small variations in the sample features including

apparent shift in the density and changes in the Rxx peak height in the insulating regime

are not uncommon. A more careful study of the temperature induced lineshape inversion is

therefore necessary to investigate the apparent frequency shift in the minimum more fully.

6.2.6 Summary

In summary we have studied the anomalous dispersive lineshape near filling fraction

ν = 1 under a variety of sample and RF conditions. In all cases the peak appears to behave

quite differently than the minimum, which suggests the peak and minimum possibly arise

from distinct mechanisms. For the first time we report observation of a lineshape inversion

resulting from application of a DC current bias. The inversion is not found to be a simple

peak-to-minimum flip and vice versa. Instead the inversion proceeds by the peak first

decaying to zero on the high frequency side of the minimum and then re-emerging on the

low-frequency side, with the minimum frequency position remaining relatively unchanged.

A similar inversion is observed under identical RF conditions but by varying the sample

temperature with no current DC applied. This suggests the inversion is primarily due to

current-induced heating. We observe the inversion to occur in regions where dRxx/dT is

positive and negative. This suggests the ν = 1 anomalous lineshape may not be entirely

determined by the sign of dRxx/dT as previously reported by Tracy et al. [16]. Finally,

application of the DC current appears to enhance the RDNMR minimum signal, possibly

by increasing the nuclear polarization through DNP. It might therefore be possible to

enhance the RDNMR response at other filling factors by a similar application of DC current.

However, the DC current also alters the lineshape and so might actively alter the electronic

state. Further investigation of the DC current biased RDNMR technique is required to

explore this possibility.

From our temperature dependent study we speculate that the peak and minimum

separation corresponds to the Knight shift. This is consistent with previous work where

combining RDNMR in the 2DEG with with conventional NMR on the bulk it was suggested

that the anomalous peak coincides with the non-Knight shifted resonant frequency [9]. Our

data could be taken as further evidence of two distinct spin-polarization domains around

ν = 1 with the minimum response corresponding to nuclear interactions with a fully or

partially polarized electron state, while the peak indicates a fully unpolarized electron spin

domain. However, it should be cautioned that there is no theory at present that indicates

a resistance peak should be observed for a spin unpolarized electron state. Furthermore,
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it is difficult to account for the current-induced signal inversion in this model since it is

unclear how the peak signal, if arising due to an unpolarized regime, could be shifted to the

low frequency side of the minimum. If for example the DC current caused the unpolarized

electron regime to become polarized, this could explain the frequency shift (Knight shift)

but then we would likely expect the signal to become a minimum, much like the initial

(polarized) minimum. If on the other hand the applied current caused a complete inversion

of the spin polarization (becoming anti-polarized) the peak position would rather shift in

the other direction, i.e. towards even higher frequencies. Furthermore, the dispersive

lineshape becomes stronger as the filling fraction is varied towards ν = 1, where the system

is expected to be fully spin polarized.

While our data shows distinct differences between the behaviour of the minimum and

peak features in the dispersive lineshape, the origin of the peak remains unknown. Most

likely the minimum can be understood by the hyperfine interaction picture, whereas the

peak appears to be specific to the sample condition and filling factor. Importantly, several

studies have observed the dispersive lineshape and also a peak-only signal at higher fields

(lower filling fraction) [9,15,17]. Understanding the origin of the “anomalous” peak in the

RDNMR tool therefore remains an important question; one that will likely lead to new

insight into the often subtle details of the quantum Hall effect.
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6.3 Resistively detected NMR at ν = 5/2

6.3.1 Measurement of RDNMR signal near ν = 5/2

In the final section of this chapter I discuss our efforts to apply the RDNMR technique

to probe the 5
2 FQH state. Despite extensive efforts by several researchers, so far no one

has reported measurement of an RDNMR response at ν = 5
2 . There is no reason to believe,

in principle, that quantum hall 2DEG should not yield a response at 5
2 fractional filling,

since the signal has been observed throughout the quantum Hall regime, at both integer

and fractional filling [8], and also at half filling in the LLL [9, 17]. We therefore tried to

measure a 5
2 RDNMR response by examining both of our very high quality 2DEGs, under

a wide variety of RF and sample conditions. Recently we were able to observe a weak, but

clearly discernible signal in the high field flank of the 5
2 minimum in our high density sample

(Fig. 6–23). The two RDNMR scans shown in Fig. 6–23b were acquired at ν = 2.46 using

a fairly moderate RF power of -17 dB, but using a relatively large AC current amplitude of

100 nA. Fig. 6–23 shows the corresponding position in the magnetoresistance trace where

the RDNMR response was obtained (indicated in the figure by a black arrow/dot). The

two RDNMR measurements were taken several hours apart, with the upper scan acquired

at 1/3 the frequency scan speed (100 Hz/3 s) of the lower scan (300 Hz/3 s).

Both scans shown in the figure clearly show a resonance signal variation, however

we note that within our resolution it is difficult to resolve the lineshape. Interestingly, the

137



Resistively Detected NMR 6.3 Resistively detected NMR at ν = 5/2

resonance position is down-shifted from the expected frequency, based on our measurement

of the gyromagnetic ratio (vertical dashed line in the figure). The down-shift in frequency

could indicate a Knight shift in the resonance, which would be consistent with a fully spin-

polarized 5
2 , as predicted by the Moore-Read Pfaffian description. However, we caution that

the dashed line in Fig. 6–23 does not represent a true non-zero Knight shifted frequency

position, since this is calculated from our measurement of the the gyromagnetic ratio in

the same system, which is already biased by spin interactions between the nuclei and the

2DEG. A more complete study of the lineshape around the 5
2 is required to further explore

its interpretation, including an accurate measurement of the true non-shifted resonance

frequency.

6.3.2 Improving the RDNMR signal with a resistance bridge

The signal response at 5
2 in Fig. 6–23 is very small with ∆Rxx/Rxx less than 1%.

Furthermore, this very weak signal was acquired at a relatively large AC current ampli-

tude, which is known to significantly degrade the 5
2 by electron heating. To be able to fully

characterize the RDNMR signal around ν = 5
2 therefore requires that we either develop

methods to enhance the signal response or improve the measurement signal-to-noise. Un-

fortunately, most paramater changes that could increase the RDNMR response, such as

increasing RF power, AC current amplitude, etc. also lead to increased electron heating

which can destroy the fragile 5
2 . We therefore designed a resistance bridge measurement

scheme in an attempt to improve our signal-to-noise measurement sensitivity. Details of

the four-terminal bridge design are given in section 3.3.3.

As a first proof-of-principle test we implemented the bridge scheme on the fridge, but

with the same room-temperature preamp used in our conventional lock-in measurement

scheme. Fig. 6–24 shows an example obtained by measuring the RDNMR resonance in the

flank of the ν = 3 QHE minimum. The conventional lock-in measurement (blue curve) and

the bridge measurement (red curve) show a nearly identical response. The measurement

was taken at a background resistance of Rxx ∼ 130 Ω with the two traces taken within

a few hours of each other. For comparison the signal-to-noise is plotted with the lock-in

response shifted in the vertical direction to coincide with the bridge signal.

The bridge scheme should allow us to introduce low-temperature signal preamplifica-

tion where nulling the signal around zero with the bridge will allow us to optimize the signal

gain without saturating the amplifier. The benefit of a low temperature preamplifier is to

significantly reduce the noise introduced by the amplifier itself. For example, we typically

employ a Stanford Research SR560 low-noise room-temperature preamplifier which has a
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voltage noise of ∼4 nV/
√

Hz at T=290 K. This is at least several hundred times larger

than the thermal Johnson noise from our sample at typical magnetoresistance values. For

example, if we consider a sample resistance of 100 Ω at 50 mK, the Johnson thermal noise

is only δVrms =
√

4kTRB ∼ 17 pV/
√

Hz. As an optimal goal we would like to be able to

resolve an RDNMR response corresponding to a ∼ 1% resistance variation on resonance

near the mininum in a well formed 5
2 state. If we therefore consider a Rxx ∼ 10 Ω resistance

with a low sourcing current of 10 nA, a 1% variation in resistance (0.1 Ω) gives only a 1 nV

voltage response, which is below the noise figure of our preamp. Reducing the preamp

noise by implementing a cold preamp would significantly improve the situation. However,

operating a low-power preamp in a dilution refridgerator is challenging. Furthermore, we

are interested in working at low frequencies, where a JFET preamp is optimal (low 1/f

noise) but JFET’s can not be operated below ∼77 K [27]. An alternative approach is to

use a low temperature step-up transformer. Since the step-up transformer is passive it is

comparatively easy to implement in the dilution fridge. We recently acquired and have

begun testing a low-temperature step-up transformer from Cambridge Magnetic Refrigera-

tion, which is specifically designed for low noise cryomeasurements. While we have not yet

introduced the step-up transformer into our cryostat, performance testing on a test circuit

cooled to LHe temperatures has already allowed observation of a less than a 1 nV variation

on a 100 Ω sample with a 100 nA sourcing current. Implementation of this measurement

scheme into our system, together with other improvements in measurement sensitivity such
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as signal averaging, will no doubt lead to improved measurement of the RDNMR signal

around 5
2 and ultimately a better understanding of its spin state.
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CHAPTER 7

Conclusion And Future Work

7.1 Conclusion

7.1.1 ν = 5
2 FQHE

We have investigated the ν = 5
2 FQHE in very high quality samples and at lower den-

sity (by nearly a factor of two) than previously observed. We measure a similar activation

gap as previous studies on samples with similar mobility, but larger densities. Examining

the role of disorder on the 5
2 state, we find that a large discrepancy, by a factor of 3-5,

remains between theory based on the Moore-Read Pfaffian and experiment for the intrinsic

gap, extrapolated from the infinite mobility limit. This disagreement is viewed as espe-

cially problematic when compared with similar studies of the 1
3 Laughlin state where there

is near perfect agreement between experiment and theory. The origin of the discrepancy

remains unknown, due in part to to limitations in theory that cannot, for example, provide

a microscopic theory of how disorder effects the ν = 5
2 FQHE, or accurately predict the

role played by LL mixing. The large difference in experimental versus theoretical gaps

indicates our theoretical description of the 5
2 state remains incomplete, and could possibly

point towards the Moore-Read Pfaffian not being the correct wavefunction. On the other

hand, our strong 5
2 FQH state in the low field regime exhibits a similar energy gap as

5
2 states measured up to fields as high as 12 T. Taken together, a well formed minimum

over such a large B range points towards a fully spin polarized state, consistent with the

Moore-Read Pfaffian, which so far is the only candidate wavefunction describing a spin

polarized paired state at 5
2 .

Using a titled field geometry we found the 5
2 gap to decay linearly in the presence

of the of an applied in-plane magnetic field. By contrast, the neighbouring 7
3 state shows

a remarkable enhancement. This finding is in startling contradiction to theory, which
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predicts the two states should behave the same in the presence of an in-plane field (under

tilt). Modifications to the 5
2 state resulting from magneto-orbital coupling to the in-plane

field, in addition to variations in the Zeeman energy resulting from the corresponding

change of the total applied field, makes it difficult to interpret our tilted field results in

terms of the spin nature of the 5
2 . However, the observed contrasting behaviour between

the 5
2 and 7

3 states represents an important experimental finding since the early theoretical

foundation in support of the Moore-Read interpretation assumed a universal similarity in

the behaviour of the two states in a tilted field. The opposite behaviour of the two states

may therefore necessitate a fundamental reassessment of the nature of the 5
2 FQHE.

The questions raised by our experimental observations concerning our theoretical un-

derstanding of the 5
2 FQH state, emphasize the urgency to understand, unambiguously, the

origin of the 5
2 FQHE. A remaining question of fundamental importance continues to be the

spin state of the 5
2 FQHE, which, despite nearly twenty years of experimental effort, still

has not been determined convincingly. While it has been hopeful that the newly developed

resistively detected NMR technique would allow a means to directly measure the 5
2 spin,

results have not yet been forthcoming. We have made significant progress towards this

effort by measuring for the first time an RDNMR signal near ν = 5
2 . However, the signal

remains very weak with a less than 1% deviation observed on resonance when sourcing

large currents. To be able to study the 5
2 spin using this technique will require that we

find ways to enhance the signal and/or increase the RDNMR measurement sensitivity. Our

development of a four terminal resistance bridge in combination with the RDNMR scheme

will undoubtedly lead to improvements in this regard.

7.1.2 Anomalous RDNMR lineshape near ν = 1

We studied extensively the anomalous dispersive RDNMR lineshape near ν = 1 filling

fraction. We found that the lineshape depends in an interrelated way on the filling factor,

sample temperature, and on the strength of the applied transverse RF field. We further

show that at fixed filling factor the lineshape can be inverted by applying a large DC cur-

rent bias without loss of signal strength. The signal inversion is also observed by direct

sample heating, but with significant loss in the signal strength. This indicates the current

induced inversion likely results from electron heating, with the strong signal strength pos-

sibly indicating the applied current also acts to enhance the nuclear polarization through

dynamic nuclear pumping

By studying the signal inversion at fixed filling, we find evidence that the inversion is

not a simple flip of the minimum and peak, rather the peak on the high frequency side of
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the minimum is first destroyed and then reemerges on the low frequency side. The origin

of the dispersive lineshape, much less the signal inversion observed here, remains unknown.

However, our results suggest the anomalous shape is likely not determined by the sign of

dRxx/dT alone, as has been suggested previously. Furthermore, the different behaviour

between the peak and minimum under variations in a number of different parameters may

suggest the two features result from distinct mechanisms.

7.2 Future Work

7.2.1 Combining RDNMR with conventional NMR

The primary interest in applying RDNMR to the 5
2 FQHE is to probe its electron spin

polarization state. The most direct way to do this is to measure the corresponding Knight

shift, which is maximum for a fully polarized electron state and zero if the electrons are

fully unpolarized. To measure the Knight shift however requires a precise measurement

of the non-Knight shifted resonance frequency as a reference. The most accurate way

to accomplish this is by combining conventional NMR together with the resistive NMR

scheme. Since the RDNMR measurement relies on interactions between the nuclei and

electrons in the 2DEG, this technique only measures the resonant frequency of atoms in

the 2DEG quantum well. On the other hand conventional NMR measures the nuclear

resonance in the bulk which mostly does not interact with electrons in the 2DEG and so

do not experience a Knight shift. Since we have demonstrated that the RDNMR signal can

be found near 5
2 state, preliminary work on implementing a complimentary conventional

NMR probe into our system has already begun.

7.2.2 RDNMR as a function of ν around the 5/2 state

In the absence of a true non-Knight shifted NMR reference, it may still be possible

to infer the polarization state at 5
2 . Our tilted field experiment indicates the possible

existence of spin-reversed Skyrmion excitations at the neighbouring ν = 7
3 state. If the 5

2

state is truly described by the spin polarized Moore-Read Pfaffian we may be able to find

evidence of a continuous transition from an unpolarized electron state adjacent to the 5
2

to a fully spin polarized state at exactly 5
2 fraction filling. This would be observable by

a continuous increase in the Knight shift as we approach the 5
2 state, similar to what has

been observed by conventional NMR around ν = 1. A simple way to observe this might

be by using the resonance frequency far away from ν = 5
2 as a pseudo-marker to predict

the non-Knight shifted resonant frequency at filling factors very near ν = 5
2 . The ability to

make this measurement is however limited by our ability to resolve the RDNMR response.
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Since at other filling fractions we typically measure a lineshape width of less than ∼10 kHz,

which is at least a factor of two smaller than the Knight shift measured on similar samples

(∼25 kHz) such a measurement is plausible.

7.2.3 Current induced lineshape inversion near ν = 1

The origin of the anomalous dispersive lineshape near ν = 1 remains unknown. Since

this lineshape has now been observed at several other filling factors, including our observa-

tion of a possible inverted dispersive lineshape near ν = 5
2 , the mechanism causing a peak

versus minimum response is an important open question. Our observation and characteri-

zation of the current-induced lineshape inversion offers clues that the minimum and peak

result from distinct mechanisms. However, we still do not have a clear understanding of

these mechanisms. From our temperature dependence studies, we found evidence that the

separation in frequency between the minimum and peak signals (in the ‘normal dispersive’

case) may correspond to the Knight shift. However this experiment was performed only

at a single filling factor. To further explore this possibility the temperature dependence

of the dispersive lineshape should be examined at several filling factors around ν = 1 on

both sides of the ν = 1 minimum, and in both the normal and inverted signal regimes. In

this context it would also be useful to make a detailed measurement of the peak-minimum

frequency separation as a function of filling factor. If the peak/minimum truly emanate

from distinct spin unpolarized/polarized regimes then the frequency separation (Knight

shift) should systematically increase towards exact filling at ν = 1.
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Figure A–3: Feedthrough “E” wiring schematic and pin-out
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APPENDIX A Wiring Schematics
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Figure A–4: Feedthrough “C” wiring schematic and pin-out
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APPENDIX A Wiring Schematics
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Figure A–5: Schematic drawing of the coxiale cables installed on the dilution fridge
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Design Drawings
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APPENDIX B Design Drawings

Figure B–1: Hex Rod for Tail Assembly
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APPENDIX B Design Drawings

Figure B–2: Experimental Cold plate hole and thread pattern
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APPENDIX B Design Drawings

Figure B–3: NMR sample holder
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APPENDIX B Design Drawings

Figure B–4: NMR sample holder; G-10 body dimensions

157



APPENDIX B Design Drawings

Figure B–5: Powder filter for NMR sample holder

158


