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Materia Condensada ??? 

Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical 
properties of matter. In particular it is concerned with the "condensed" phases that appear whenever the number of 
constituents in a system is extremely large and the interactions between the constituents are strong. 

The most familiar examples of condensed phases are solids and liquids, while more exotic condensed phases include 
the superconducting phase exhibited by certain materials at low temperature, the ferromagnetic and antiferromagnetic 
phases of spins on crystal lattices of atoms, and the Bose–Einstein condensate found in ultracold atomic systems.

Condensed matter physicists seek to understand the behavior of these phases by using physical laws. In particular, 
they include the laws of quantum mechanics, electromagnetism and statistical mechanics.

The study of condensed matter physics involves measuring various material properties via experimental probes along 
with using methods of theoretical physics to develop mathematical models that help in understanding physical 
behavior.

The diversity of systems and phenomena available for study makes condensed matter physics the most active field of 
contemporary physics: one third of all American physicists self-identify as condensed matter physicists, and the 
Division of Condensed Matter Physics is the largest division at the American Physical Society. 

The field overlaps with chemistry, materials science, and nanotechnology, and relates closely to atomic physics and 
biophysics.

https://en.wikipedia.org/wiki/Condensed_matter_physics

https://en.wikipedia.org/wiki/Superconductivity
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Ferromagnet
https://en.wikipedia.org/wiki/Antiferromagnet
https://en.wikipedia.org/wiki/Spin_(physics)
https://en.wikipedia.org/wiki/Crystal_lattice
https://en.wikipedia.org/wiki/Bose%E2%80%93Einstein_condensate
https://en.wikipedia.org/wiki/Ultracold_atom
https://en.wikipedia.org/wiki/Physical_law
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Electromagnetism
https://en.wikipedia.org/wiki/Statistical_mechanics
https://en.wikipedia.org/wiki/Theoretical_physics
https://en.wikipedia.org/wiki/People_of_the_United_States
https://en.wikipedia.org/wiki/American_Physical_Society
https://en.wikipedia.org/wiki/Chemistry
https://en.wikipedia.org/wiki/Materials_science
https://en.wikipedia.org/wiki/Nanotechnology
https://en.wikipedia.org/wiki/Atomic_physics
https://en.wikipedia.org/wiki/Biophysics




Timeline of materials technology
• 3rd millennium BC – Copper metallurgy
• 2nd millennium BC – Bronze is used for weapons
• 16th century BC – Iron metallurgy
• 13th century BC – Invention of steel when iron and 

charcoal are combined properly
• 10th century BC – Glass production begins 
• 8th century – Porcelain is invented 

(20th century)
• 1911 – Superconductivity discovered
• 1947 – First germanium point-contact transistor invented
• 1954 – Silicon solar cells with 6% efficiency made
• 1985 - The first fullerene molecule discovered
• 1986 - The first high temperature superconductor 

B. The quantum Hall state

The simplest counterexample is the integer quantum
Hall state !von Klitzing, Dorda, and Pepper, 1980;
Prange and Girvin, 1987 ", which occurs when electrons
confined to two dimensions are placed in a strong mag-
netic field. The quantization of the electrons’ circular
orbits with cyclotron frequency !c leads to quantized
Landau levels with energy "m=#!c!m+1/2". If N Lan-
dau levels are filled and the rest are empty, then an en-
ergy gap separates the occupied and empty states just as
in an insulator. Unlike an insulator, though, an electric
field causes the cyclotron orbits to drift, leading to a Hall
current characterized by the quantized Hall conductivity,

$xy = Ne2/h . !1"

The quantization of $xy has been measured to 1 part in
109 !von Klitzing, 2005 ". This precision is a manifestation
of the topological nature of $xy.

Landau levels can be viewed as a “band structure.”
Since the generators of translations do not commute
with one another in a magnetic field, electronic states
cannot be labeled with momentum. However, if a unit
cell with area 2%#c /eB enclosing a flux quantum is de-
fined, then lattice translations do commute, so Bloch’s
theorem allows states to be labeled by 2D crystal mo-
mentum k. In the absence of a periodic potential, the
energy levels are simply the k independent Landau lev-
els Em!k"="m. In the presence of a periodic potential
with the same lattice periodicity, the energy levels will
disperse with k. This leads to a band structure that looks
identical to that of an ordinary insulator.

1. The TKNN invariant

What is the difference between a quantum Hall state
characterized by Eq. !1" and an ordinary insulator? The
answer, explained by Thouless, Kohmoto, Nightingale,
and den Nijs !1982" !TKNN", is a matter of topology. A
2D band structure consists of a mapping from the crystal
momentum k !defined on a torus" to the Bloch Hamil-
tonian H!k". Gapped band structures can be classified
topologically by considering the equivalence classes of
H!k" that can be continuously deformed into one an-
other without closing the energy gap. These classes are
distinguished by a topological invariant n!Z !Z denotes
the integers" called the Chern invariant.

The Chern invariant is rooted in the mathematical
theory of fiber bundles !Nakahara, 1990", but it can be
understood physically in terms of the Berry phase
!Berry, 1984 " associated with the Bloch wave functions
#um!k"$ . Provided there are no accidental degeneracies
when k is transported around a closed loop, #um!k"$ ac-
quires a well defined Berry phase given by the line inte-
gral of Am= i% um#!k#um$ . This may be expressed as a sur-
face integral of the Berry flux Fm=!& Am. The Chern
invariant is the total Berry flux in the Brillouin zone,

nm =
1

2%
& d2k Fm. !2"

nm is integer quantized for reasons analogous to the
quantization of the Dirac magnetic monopole. The total
Chern number, summed over all occupied bands, n
='m=1

N nm is invariant even if there are degeneracies be-
tween occupied bands, provided the gap separating oc-
cupied and empty bands remains finite. TKNN showed
that $xy, computed using the Kubo formula, has the
same form, so that N in Eq. !1" is identical to n. The
Chern number n is a topological invariant in the sense
that it cannot change when the Hamiltonian varies
smoothly. This helps to explain the robust quantization
of $xy.

The meaning of Eq. !2" can be clarified by a simple
analogy. Rather than maps from the Brillouin zone to a
Hilbert space, consider simpler maps from two to three
dimensions, which describe surfaces. 2D surfaces can be
topologically classified by their genus g, which counts
the number of holes. For instance, a sphere (Fig. 1!c")
has g=0, while a donut (Fig. 1!f")has g=1. A theorem in
mathematics due to Gauss and Bonnet !Nakahara, 1990"
states that the integral of the Gaussian curvature over a
closed surface is a quantized topological invariant, and
its value is related to g. The Chern number is an integral
of a related curvature.

2. Graphene, Dirac electrons, and Haldane model

A simple example of the quantum Hall effect in a
band theory is provided by a model of graphene in a
periodic magnetic field introduced by Haldane !1988".
We briefly digress here to introduce graphene because it
will provide insight into the conception of the 2D quan-
tum spin Hall insulator and because the physics of Dirac
electrons present in graphene has important parallels at
the surface of a 3D topological insulator.
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FIG. 1. !Color online" States of matter. !a"– !c" The insulating
state. !a" An atomic insulator. !b" A simple model insulating
band structure. !d"– !f" The quantum Hall state. !d" The cyclo-
tron motion of electrons. !e" The Landau levels, which may be
viewed as a band structure. !c" and !f" Two surfaces which
differ in their genus, g. !c" g=0 for the sphere and !f" g=1 for
the donut. The Chern number n that distinguishes the two
states is a topological invariant similar to the genus.

3047M. Z. Hasan and C. L. Kane: Colloquium: Topological insulators
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editorial

Measured in terms of publication output, 
condensed-matter physics is the largest 
field in physics1. Its size is a consequence 
of its breadth: the study of systems in 
their ‘condensed’ phases can be applied 
to an almost limitless range of problems 
such as magnetism, superconductivity 
and superfluidity, to name three examples 
out of many. A cornerstone of this 
approach is the concept of symmetry 
breaking, the idea that a condensed 
phase has a lower symmetry than its 
uncondensed counterpart (for instance, 
a solid has a lower symmetry than a gas). 
The framework through which these 
phenomena were first understood is 
the Landau–Ginzburg theory of phase 
transitions: by identifying a suitable order 
parameter that reflects the underlying 
symmetry of the system (such as a 
material’s density, to continue with our 
solid-state example), it is possible to 
pinpoint the conditions that are required 
for that symmetry to become manifest.

The overarching theme for condensed-
matter physics in the 1960s and 1970s 
was therefore a continual search for 
order. Armed with beautiful ideas rooted 
in symmetry — concepts that pervade 
physics well beyond condensed matter, in 
fact — physicists focused on identifying 
the relevant and, crucially, measurable 
order parameters that pertained to their 
system of choice. Inevitably, work tended 
to concentrate on the hardest problems to 
crack — typically those in which there was 
no discernible order parameter or, if there 
was, that were characterized by an unusual 
degree of complexity.

As these problems persisted into the 
1980s, two crucial developments occurred. 
Firstly, the realization that there were 
exceptions to the Landau–Ginzburg 
paradigm, such as the topological order 
that underlies the fractional quantum Hall 
effect. Secondly, the discovery of high-
temperature superconductivity brought 
about a surge of interest in so-called 
strongly correlated electron systems. Of 
course, the many-body problem had been 
known since the days of Nevill Mott, but 
a plethora of problems linked more or 
less directly to superconductivity, such as 
heavy fermions, quantum criticality and 

the physics of the pseudogap, combined 
with the rapid growth of the computational 
power scientists had access to, brought 
about a fresh urgency to attack the 
issue head-on.

Although the mechanism of 
superconductivity continues to be elusive, 
the era of strongly correlated electron 
systems has brought about a number of 
significant developments. Perhaps the 
most important of these isn’t strictly a 
scientific discovery, however. Rather, it has 
been a change in perspective. The study of 
non-trivial or ‘exotic’ electronic properties 
of materials has fostered an appreciation 
for a variety of emergent phenomena 
resulting from strong correlation 
effects — cooperative behaviours that 
cannot be predicted from the properties 
of individual electrons. These include 
emergent excitations such as monopoles2 
and skyrmions3, the description of which 
is, in many ways, simpler than the original 
‘vacuum’ of excitations from which 
they arise.

This taste for emergent properties 
coincided with the experimental discovery 
of topological insulators, which was made 
on the back of large strides forward in 
the understanding of electronic states 
in terms of topological invariants — 
essentially a geometric property of the 
electron wavefunction4. Although part of 
a wider surge in interest in topologically 
protected states of matter, the excitement 
surrounding topological insulators was 
principally due to the robust nature of the 
metallic surface states that characterized 
them, and the relatively loose requirements 
for their realization: neither strong 
electron–electron interactions nor low-
dimensionality are required. Moreover, as 
if to make the point even stronger, these 
discoveries came almost simultaneously 
with a flurry of spectacular observations in 
graphene, including the observation of the 
fractional quantum Hall effect5,6. This is a 
system made up of sp2 electrons — hardly 
the definition of a strongly correlated 
material — and yet it displays the 
hallmarks of topological order, which 
include dissipationless transport and 
emergent particles with fractional charge 
and statistics.

As it has become clear that the study of 
emergent properties is no longer restricted 
to strongly correlated electron systems, 
a new, broader description has become 
necessary. And the term that seems to be 
gaining currency on departmental websites 
and research programmes is quantum 
materials. Indeed, conferences on the topic 
have started to spring up — for example, 
the Big Ideas in Quantum Materials 
workshop held in La Jolla, California, 
last December.

Of course, on a trivial level all materials 
exist thanks to the laws of quantum 
mechanics, and there are cynics who will 
privately wonder if the description isn’t too 
broad and, well, catchy for its own good. 
But given the history of condensed-matter 
physics that we have just outlined, there 
are good reasons to embrace quantum 
materials. In essence, they provide 
a common thread linking disparate 
communities of researchers working on 
a variety of problems at the frontiers of 
physics, materials science and engineering.

At face value, these problems are quite 
distinct: think of the recent success of 
groups hunting for emergent particles 
in solids (last year’s flurry of results on 
Weyl fermions7 are a case in point), and 
the challenges faced by others looking 
to harness the promising optoelectronic 
properties of van der Waals materials for 
devices and applications. A little further 
afield, consider the strides forward 
being made in developing platforms for 
achieving quantum computers and, by 
dropping the semantic distinction between 
material and matter, the control afforded 
by designer quantum matter platforms 
synthesized from cold atoms, ions, defects 
in solids, circuit-QED architectures, and 
solid-state heterostructures. All these 
communities face formidable challenges 
and opportunities. And they all just know 
they are working on quantum materials. ❐
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Although the properties of all materials are fundamentally 
explained by quantum mechanics, the classification ‘quan-
tum materials’ refers specifically to materials whose defining 

behaviour is rooted in the quantum world, with no classical ana-
logue. A recent US Department of Energy workshop1 resulted in 
a consensus definition of quantum materials as being “solids with 
exotic physical properties, arising from the quantum mechanical 
properties of their constituent electrons.” Despite the contemporary 
sheen suggested by the name itself and this definition, the properties 
of quantum materials have of course been known to mankind for 
a long time: the quintessential manifestations are ferromagnetism, 
reputedly discovered in lodestone by the Greeks around 2,500 years 
ago, and superconductivity, first discovered by Heike Onnes a little 
over a century ago. However, it is only during the materials revolu-
tion of the ‘age of silicon’ that physicists have developed a sophisti-
cated-enough understanding of the properties of quantum materials 
to explore them through systematic synthesis. The science and art 
of crystal growth have played a seminal role in leading us through 
this voyage of discovery, revealing a vast panorama populated by 
materials whose quantum properties stem from a complex interplay 
between factors such as reduced dimensionality, quantum confine-
ment, quantum coherence, quantum fluctuations, topology of wave-
functions, electron–electron interactions, relativistic spin–orbit 
interactions and fundamental symmetries. Examples of these exotic 
quantum properties include the integer and fractional quantum Hall 
effects in two-dimensional electron gases (2DEGs)2,3, high-temper-
ature superconductivity in the cuprates4, triplet superconductivity 
in the ruthenates5, the quantum spin Hall and quantum anomalous 
Hall effects in topological insulators6,7, emergent electronic behav-
iour, superconductivity, magnetism at complex heterointerfaces8–14, 
metal–insulator transitions15 and quantum spin liquids16.

Discovering new quantum behaviour has commonly been the 
outcome of a well-established tradition in condensed matter phys-
ics: experimentalists often venture into uncharted territory by 
synthesizing a new crystal, guided by some combination of (often 
incorrect) received wisdom and (sometimes correct) intuition about 
the characteristics needed to unearth unprecedented quantum 
properties. Examples of this approach are abundant, but probably 
best exemplified by two of the major discoveries in contemporary 
physics: high-temperature superconductivity in the cuprates and 
the fractional quantum Hall effect. The former discovery occurred 

Quantum materials discovery from a 
synthesis perspective
Nitin Samarth

The synthesis of bulk crystals, thin films and nanostructures plays a seminal role in expanding the frontiers of quantum materi-
als. Crystal growers accomplish this by creating materials aimed at harnessing the complex interplay between quantum wave-
functions and various factors such as dimensionality, topology, Coulomb interactions and symmetry. This Review provides a 
synthesis perspective on how this discovery of quantum materials takes place. After introducing the general paradigms that 
arise in this context, we provide a few examples to illustrate how thin-film growers in particular exploit quantum confinement, 
topology, disorder and interfacial heterogeneity to realize new quantum materials. 

by hunting for materials in which Jahn–Teller polarons might lead 
to a strong electron–phonon coupling17, whereas the latter was 
the result of an elegantly simple scheme (‘modulation doping’) for 
reducing scattering from donor impurities in a 2DEG18. In both 
cases, the actual discoveries are best categorized as the outcome 
of ingenious serendipity: the genius lies in deciding where to look 
even with incomplete knowledge and then capitalizing on the unex-
pected surprise. But there is another highly effective paradigm that 
has emerged in recent years for the discovery of quantum materials. 
This relies on advances in contemporary condensed matter theory 
that allow quantum materials to be conceived on a theorist’s sketch-
pad, brought to life by the crystal grower, then exhibited on the stage 
of physics and technology by sophisticated experimental measure-
ments. This paradigm began in the 1980s with the design of quan-
tum semiconductor structures (quantum wells, quantum wires, 
quantum dots, heterostructures and superlattices) that allowed the 
precise definition of envelope wavefunctions for electrons in modu-
lated crystals19. Over the past decade, this approach has advanced 
well beyond the mere design of wavefunction amplitudes towards 
the tailoring of wavefunction topology20,21. This has led to the syn-
thesis of topological insulators and topological semimetals in which 
the ordinary electron can mimic the behaviour of exotic particles 
hitherto imagined to be relevant only for particle physics. Examples 
include massless helical Dirac fermions, Weyl fermions, axions and 
Majorana fermions. Topological quantum materials now serve as 
platforms for staging fundamentally new physical phenomena, such 
as the quantum spin Hall effect, the quantum anomalous Hall effect, 
the chiral anomaly, and the topological magneto-electric effect, 
wherein these quasiparticles play key roles.

A number of existing articles have addressed quantum materials 
from the viewpoint of theory and measurements22–26. This Review, 
in contrast, discusses the discovery of quantum materials from 
the perspective of a crystal grower. We try to address the follow-
ing questions: how do crystal growers contribute to the process of 
discovering a quantum material? When do we take a path of emer-
gent discovery? And when do we “listen to theorists,” ignoring the 
infamous admonition by Bernd  T.  Matthias to do otherwise? Is 
crystalline perfection a necessity? Or can the messy reality of actual 
crystals, with all their blemishes, actually contribute to interest-
ing physics? What are the future opportunities and strategies for 
making the next big discovery in quantum materials? These are 

Department of Physics and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, USA. 
e-mail: nsamarth@psu.edu
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The physics of quantummaterials
B. Keimer1* and J. E. Moore2,3*

The physical description of all materials is rooted in quantum mechanics, which describes how atoms bond and electrons
interact at a fundamental level. Although these quantum e�ects can in many cases be approximated by a classical
description at the macroscopic level, in recent years there has been growing interest in material systems where quantum
e�ects remain manifest over a wider range of energy and length scales. Such quantum materials include superconductors,
graphene, topological insulators, Weyl semimetals, quantum spin liquids, and spin ices. Many of them derive their properties
from reduced dimensionality, in particular from confinement of electrons to two-dimensional sheets. Moreover, they tend
to be materials in which electrons cannot be considered as independent particles but interact strongly and give rise
to collective excitations known as quasiparticles. In all cases, however, quantum-mechanical e�ects fundamentally alter
properties of the material. This Review surveys the electronic properties of quantum materials through the prism of the
electron wavefunction, and examines how its entanglement and topology give rise to a rich variety of quantum states and
phases; these are less classically describable than conventional ordered states also driven by quantum mechanics, such
as ferromagnetism.

The way we think about manifestations of quantum physics
in materials has recently undergone a profound change of
perspective. Although materials scientists and engineers have

long exploited quantum e�ects in a range of electronic devices—
well-known examples are the quantized electronic energy levels
and optical selection rules at the heart of optoelectronics, and
the tunnel e�ect that underlies the upcoming generation of hard-
disk drives1,2—the past decade has seen a dramatic increase in
our understanding of how subtle quantum e�ects control the
macroscopic behaviour of a whole range of di�erent materials.

Two strange and beautiful aspects of quantum mechanics have
come to the fore. One is the topological nature of quantum wave-
functions. A familiar example is the existence of quantized vortices
in superconductors. These vortices exist because of the requirement
that the superconducting condensate have a well-defined phase, and
gauge invariance fixes how this phase couples to magnetic flux. The
phase can wind only by an integer multiple of 2⇡ around a vortex,
and this integer winding number is a simple example of a topological
invariant: a quantity that remains fixed under smooth changes of
a system. Similar topological quantities turn out to govern many
other kinds of materials, not just superconductors, and these sup-
port phenomena ranging from dissipationless transport to novel
quasiparticle excitations.

Another deep feature of quantum mechanics is the non-local
entanglement of some quantum states that is spectacularly high-
lighted in teleportation experiments with two photons separated
over macroscopic distances3. Even the wavefunction of two spins
in a singlet is entangled, in that the wavefunction of either spin
by itself is not well defined. In the words of Schrödinger4, who
coined this term: ‘‘Another way of expressing the peculiar situation
is: the best possible knowledge of a whole does not necessarily
include the best possible knowledge of all its parts.’’ Thinking about
entanglement in a solid is mind-boggling even in seemingly simple
materials: the states of all⇠1023 electrons in a typical chunk ofmetal
are superposed in such a way that the many-body wavefunction

covering the entire solid changes sign whenever two electrons are
interchanged, as required by their fundamental nature as fermions.

The Fermi statistics forcing this specific, antisymmetric entangle-
ment also implies that only electronswith energies close to the Fermi
level contribute significantly to the transport and thermodynamic
properties of metals. However, this still leaves a massive number
of such ‘conduction electrons’ whose wavefunctions are intricately
entangled. Quantum materials can be defined as those with novel
entanglement or topological properties—that is, materials with
entanglement beyond the requirement of Fermi statistics and with
topological responses such as the vortex formation described above.
For example, the entanglement between spins in complex magnets,
or electrons in a Cooper pair, is an important part of how these fail
to be captured by conventional pictures (we prefer this definition to
simply invoking strong correlations or strong interactions, because,
for example, a Fermi liquid renormalized by strong interactionsmay
have very di�erent correlations from a conventional metal but is
ultimately in the same phase—they are, so to speak, ‘adiabatically
connected’). Topology and entanglement lead to new kinds of quan-
tum order that are sharply distinguished from conventional states
by the existence of phase transitions. Today’s materials science has
barely scratched the surface of these remarkably complex quantum
states of matter.

While Fermi statistics is a basic and immutable property of
electronic wavefunctions, a feature of many classes of quan-
tum materials is the emergence of new kinds of particles—
quasiparticles—whose propertiesmay be rather di�erent from those
of the underlying electrons. Again superconductors provide a ready
example: the Bogoliubov quasiparticles of a superconductor are
complex superpositions of electron and hole without a well-defined
electric charge. These quasiparticles are still fermions, but topo-
logical quantum materials support other kinds of emergent quasi-
particles with new kinds of exchange statistics. Similarly, there is
increasing experimental evidence that in some bulk magnets the
conventional spin-wave excitation, known as a magnon, breaks up
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Emergent functions of quantum materials
Yoshinori Tokura1,2*, Masashi Kawasaki1,2 and Naoto Nagaosa1,2

Materials can harbour quantum many-body systems, most typically in the form of strongly correlated electrons in solids,
that lead to novel and remarkable functions thanks to emergence—collective behaviours that arise from strong interactions
among the elements. These include the Mott transition, high-temperature superconductivity, topological superconductivity,
colossal magnetoresistance, giant magnetoelectric e�ect, and topological insulators. These phenomena will probably be
crucial for developing the next-generation quantum technologies that will meet the urgent technological demands for achieving
a sustainable and safe society. Dissipationless electronics using topological currents and quantum spins, energy harvesting
such as photovoltaics and thermoelectrics, and secure quantum computing and communication are the three major fields of
applications working towards this goal. Here, we review the basic principles and the current status of the emergent phenomena
and functions in materials from the viewpoint of strong correlation and topology.

Emergence is a concept developed for many-body systems,
indicating the properties, phenomena, and functions that never
appear in the individual elements but are realized only when a

huge number of elements get together1. Inside materials, emergent
phenomena are often seen due to the interaction of electronic states;
with recent developments on electronic states in solids schematically
summarized in Fig. 1a. Electrons in solids have several degrees
of freedom: charge, spin and orbital, and are characterized by the
topological nature determined by the atomic potential on the crystal
lattice structure, as schematically shown in Fig. 1b. These five
attributes are coupled together and determine the overall responses
to stimuli, which appear as materials’ electrical, magnetic, optical,
thermal, and mechanical properties.

These collective electrons demonstrate various macroscopic
quantum phenomena, the representative example of which is
superconductivity. One of the big challenges in condensed matter
physics is to increase the temperature (Tc) at which superconduc-
tivity can be observed to above room temperature. However, there
are many other macroscopic quantum phenomena that are already
observable above room temperature. One is magnetism (by the
Bohr–van Leeuwen theorem), and the other is ferroelectricity2,3.
Remarkably, there are common features of these three macroscopic
quantum phenomena: the order parameter, which is of quantum
origin, behaves as a classical quantity, and the quantum topology
plays a crucial role.

The topological nature of the electronic states is the key
concept in themost recent developments in understanding quantum
materials. The quantum Hall e�ect, topological insulators, and
topological superconductors are all characterized by nontrivial
topologies in Hilbert space. The Berry phase, which describes the
connection and curvature of the subspace of Hilbert space, plays
the central role in the unified principle to describe this topological
nature4. Relativistic e�ects and consequent spin–orbit interactions
are deeply connected to the Berry phase. They are also key to
spintronics applications, where the electrical manipulation of spins
is being pursued.

Topology, along with strong correlations—which are due to
the strong Coulomb repulsion among electrons—are two major
streams of condensed matter physics, and they are now merging,

creating new concepts, phenomena, and also functions. So how
will these astonishing properties of quantum materials be utilized
in applications? The desired functions for quantum materials are:
ultralow energy consumption to cope with the impending energy
crisis; high speed and huge capacity to cope with an advanced
information society; high security; and environmentally benign
properties. The basic idea to realize and meet these requirements
is quantum emergence. Here, we discuss the dissipationless
topological currents, including displacement current, spin current,
and edge/surface currents in quantum materials, that may enable a
novel state variable for future memory and logic technologies with
minimal energy dissipation.

Mottronics
The metal–insulator transition (MIT) in solids is one of the most
important features in quantum materials. Origins of the MIT are
versatile, including simple bandgap closing, Anderson localization,
and polaron self-trapping driven by electron–lattice interactions,
but many are related to electron–electron interaction beyond
the one-particle picture—generally called the Mott transition5,6.
At a finite temperature, preferably around and beyond room
temperature, the MIT can provide useful functions, enabling
gigantic, ultrafast switching of versatile physical properties, not only
electrical conductivity but also other transport,magnetic and optical
properties. The terminology ‘Mottronics’ was coined to represent
the concept of electron technology exploiting the Mott transition.

In general, the Mott transition can be classified into two
types6; bandwidth control of the MIT, which changes the e�ective
electron correlation strength represented by the ratio of the electron
correlation energy U to the one-electron bandwidthW ; and band-
filling control, which changes the integer (or rational) electron
number n per atom site (for example, half-filling state; n= 1) by
chemical or electrostatic doping. Bandwidth-control and filling-
control MITs are typically observed in a family of perovskites
(AMO3) and pyrochlores (A2M2O7) (M = transition metal), in
which the A-site ionic size can control W via the change of the
O–M–O bond angle, and the mixed ionic valences in the A site
can change the band filling5. The bandwidth-control MIT on these
correlated electron systems often spans a wide temperature range

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Figure 1 | Concepts in quantum materials. a, Brief history of the research on
physics of quantum materials and functions. b, The bottom pentagon
shows various degrees of freedom of strongly correlated electrons in solids,
which respond to external stimuli. These strong couplings lead to the
emergent functions with the cross correlations among di�erent physical
observables and to developments towards the applications of emergent
functions such as Mottronics, magnetoelectrics, topological electronics,
and quantum computing, each of which is discussed in this article.

from zero to above room temperature, reflecting the large energy
scale of the competingW and U .

Among them, the simple but most conspicuous example for
the band-filling-control MIT is the case of copper-oxide supercon-
ductors, where a quasi-two-dimensional electronic structure with
half filling (one hole per Cu) forms the parent correlated insulator
composed of CuO2 square-lattice sheets and sandwiching ionic
block layers as the charge reservoir6. Hole or electron doping—
the procedures used to represent the reduction or increment of
electron band filling—is possible via the partial substation of the
block layers with di�erent-valence cations or a change of the oxygen
content, which drives the system to a metallic or high-temperature
superconducting state, viewed as a ‘doped Mott insulator’7.

Needless to say, the exploration of higher- or room-temperature
(RT) superconductors is of tremendous importance for practical
applications, from lossless power cables to electrical apparatus such
as superconducting magnets, motors, and information appliances
such asmicrowave filters. The current state of the art for the highest-
temperature zero-resistance superconducting state is around 153K
for Hg-based cuprate superconductors under high pressures above
10GPa (refs 8,9), and around 190K for H3S under a very high

pressure of 200GPa (ref. 10). As for the present status of applications
of high-temperature superconductors, benchmark examination
towards large-scale application are in progress. For dissipationless
energy transfer, long cables such as Bi-based cuprates sheathed in
Ag and Y–Ba–Cu–O coated conductors are being examined for
power transfer11,12. As for electronics, highly sensitivemagnetic-field
sensors employing SQUID (superconducting quantum interference
device) are actually already used for the non-destructive inspection
of infrastructure and searching for underground minerals13.

An electron in a correlated system has three attributes: charge,
spin and orbital (Fig. 1b). The spin, charge, and orbital degrees
of freedom and their coupled dynamics can produce versatile
electronic phases as well as possible electronic phase separation
and pattern formation; all of these features play important roles in
the MIT, particularly for d-electron compounds. Not only the half
band filling but also the fractional case lead to an insulating ground
state accompanying the regular ordering of localized charge, termed
charge ordering; the state frequently accompanies the ordering also
in spin and orbital sectors14 as in the undoped system.Upon external
stimulation, such as by chemical doping, electrostatic doping,
pressure application or photo-excitation, the MIT can be exploited
as a function, exemplifying the cross-correlation among the electric,
magnetic,mechanical, and photonic inputs and outputs, as shown in
Fig. 1b. Figure 2 shows some examples of the controlled MIT.

The colossal magnetoresistance (CMR) manganites15 provide a
good arena to test exotic phase-control functions; Fig. 2a shows typ-
ical CMR phenomena, viewed as a magnetic-field-induced MIT16.
The external magnetic field works on the spin sector so as to align
the spin moment (towards the ferromagnetic state), and eventu-
ally this strongly spin–charge–orbital coupled system undergoes
a collective transition to a ferromagnetic metallic state, accom-
panying the melting of charge/orbital order or their short-range
order. Likewise, photo-excitationworks on the charge/orbital sector,
enabling photo-melting of the spin–charge–orbital coupled order
and induces a ferromagnetic metallic state17, as shown in Fig. 2c.

Among the possible MIT functions, electrical control is the
most useful for Mottronics. Figure 2b exemplifies the electric-
double-layer transistor (EDLT) gate control of the MIT in VO2
films18; a clear MIT is observed upon gating, ascribed to the filling-
control Mott transition, although its doping mechanism is still
controversial18,19. As shown in the upper panel of Fig. 2b, this gating-
induced MIT accompanies a large change of the infrared spectra,
again demonstrating the potential application to radiation devices,
like a dimming window20.

The application of such MIT in integrated circuits is very attrac-
tive for non-volatile memories called Resistance Random Access
Memory (ReRAM), where information is memorized as metallic
or insulating states of a device cell in a non-volatile and rewritable
manner. Expected advantages of ReRAMcomparedwith flashmem-
ory include higher-density integration, higher speed, and lower
energy consumption21,22. The MIT actually taking place in such
memory devices may be di�erent from what is observed for bulk
materials. Tiny changes in the electronic structure or band filling at
electrode/oxide interfaces can change the total resistance ofmemory
cells by decades23. The process of electrical injection/rejection of
oxygen ions, which should induce a change in the band filling, is
considered to be one of the plausible origins of the gigantic electrical
resistance switching widely observed for transition-metal oxides,
including the example of the CMR manganite, which is still at the
early stages of research24. The ReRAM has been industrialized as a
storage-class memory that is between high-speed and low-density
DRAM (Dynamic RAM) and low-speed and high-density storage
such as hard disc drives or solid-state drives based on flashmemory.

In addition to these quasi-steady state functions, non-
equilibrium Mott physics, which is experimentally explored by a
pump-and-probe technique, provides one other research direction
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The Nobel Prize in Physics 2016
The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics 2016 with one half to 

This year’s Laureates opened the door on an 
unknown world where matter can assume strange 
states. They have used advanced mathematical 
methods to study unusual phases, or states, of 
matter, such as superconductors, superfluids or 
thin magnetic films. Thanks to their pioneering 
work, the hunt is now on for new and exotic phases 
of matter. Many people are hopeful of future appli-
cations in both materials science and electronics.

The three Laureates’ use of topological concepts in 
physics was decisive for their discoveries. Topology is a 
branch of mathematics that describes properties that only 
change step-wise. Using topology as a tool, they were 
able to astound the experts. In the early 1970s, Michael 
Kosterlitz and David Thouless overturned the then cur-
rent theory that superconductivity or suprafluidity could 
not occur in thin layers. They demonstrated that super-
conductivity could occur at low temperatures and also 
explained the mechanism, phase transition, that makes 
superconductivity disappear at higher temperatures. 

In the 1980s, Thouless was able to explain a previous 
experiment with very thin electrically conducting layers 
in which conductance was precisely measured as integer 
steps. He showed that these integers were topological in 
their nature. At around the same time, Duncan  
Haldane discovered how topological concepts can be used 

to understand the properties of chains of small magnets 
found in some materials. 

We now know of many topological phases, not only 
in thin layers and threads, but also in ordinary three-
dimensional materials. Over the last decade, this area has 
boosted frontline research in condensed matter physics, 
not least because of the hope that topological materials 
could be used in new generations of electronics and super-
conductors, or in future quantum computers. Current 
research is revealing the secrets of matter in the exotic 
worlds discovered by this year’s Nobel Laureates. 

David J. Thouless, born 1934 in Bearsden, UK. Ph.D. 1958 from Cornell 
University, Ithaca, NY, USA. Emeritus Professor at the University of Wash-
ington, Seattle, WA, USA.   

https://sharepoint.washington.edu/phys/people/Pages/view-person.
aspx?pid=85

F. Duncan M. Haldane, born 1951 in London, UK. Ph.D. 1978 from Cam-
bridge University, UK. Eugene Higgins Professor of Physics at Princeton 
University, NJ, USA.   

www.princeton.edu/physics/people/display_person.xml?netid=haldane
&display=faculty

J. Michael Kosterlitz, born 1942 in Aberdeen, UK. Ph.D. 1969 from Ox-
ford University, UK. Harrison E. Farnsworth Professor of Physics at Brown 
University, Providence, RI, USA. 

https://vivo.brown.edu/display/jkosterl

Prize amount: 8 million Swedish krona, with one half to David Thouless and the other half to be shared between Duncan Haldane and Michael 
Kosterlitz. 
Further information: http://kva.se and http://nobelprize.org
Press contact: Jessica Balksjö Nannini, Press Officer, phone +46 8 673 95 44, +46 70 673 96 50, jessica.balksjo@kva.se
Experts: Thors Hans Hansson, phone +46 8 553 787 37, hansson@fysik.su.se, and David Haviland, haviland@kth.se, members of the Nobel 
Committee for Physics.

The Royal Swedish Academy of Sciences, founded in 1739, is an independent organisation whose overall objective is to promote the sciences and 
strengthen their influence in society. The Academy takes special responsibility for the natural sciences and mathematics, but endeavours to promote 
the exchange of ideas between various disciplines.
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In the quantum Hall effect, electrons move relatively freely in the layer between the semi-conduc-
tors and form something called a topological quantum fluid. In the same way as new properties 
often appear when many particles come together, electrons in the topological quantum fluid also 
display surprising characteristics. Just as it can’t be ascertained whether there is a hole in a coffee cup 
by only looking at a small part of it, it is impossible to determine whether electrons have formed a 
topological quantum fluid if you only observe what is happening to some of them. However, con-
ductance describes the electrons’ collective motion and, because of topology, it varies in steps; it is 
quantised. Another characteristic of the topological quantum fluid is that its borders have unusual 
properties. These were predicted by the theory and were later confirmed experimentally. 

Another milestone occurred in 1988, when Duncan Haldane discovered that topological quantum 
fluids, like the one in the quantum Hall effect, can form in thin semiconductor layers even when 
there is no magnetic field. He said he’d never dreamed of his theoretical model being realised experi-
mentally but, as recently as 2014, this model was validated in an experiment using atoms that were 
cooled to almost absolute zero. 

New topological materials in the pipeline
In much earlier work, from 1982, Duncan Haldane made a prediction that amazed even the experts in 
the field. In theoretical studies of chains of magnetic atoms that occur in some materials, he discove-
red that the chains had fundamentally different properties depending on the character of the atomic 
magnets. In quantum physics there are two types of atomic magnets, odd and even. Haldane demon-
strated that a chain formed of even magnets is topological, while a chain of odd magnets is not. Like 
the topological quantum fluid, it is not possible to determine whether an atomic chain is topological 
or not by simply investigating a small part of it. And, just as in the case of the quantum fluid, the 
topological properties reveal themselves at the edges. Here, this is at the ends of the chain, because 
the quantum property known as spin halves at the ends of a topological chain. 

Initially, no one believed Haldane’s reasoning about atomic chains; researchers were convinced that 
they already completely understood them. But it turned out that Haldane had discovered the first 
example of a new type of topological material, which is now a lively field of research in condensed 
matter physics.
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Fig 3. Topology. This branch of mathematics is interested in properties that change step-wise, like the number of holes in the above 
objects. Topology was the key to the Nobel Laureates’ discoveries, and it explains why electrical conductivity inside thin layers chan-
ges in integer steps. 
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Figure 5 | Examples of massless fermions in quantummaterials. A measure of the rapid progress in correlated and topological materials is the
understanding of di�erent mechanisms that generate massless fermionic excitations. In a–d, black lines indicate momentum-space directions, energy is
vertical. a, The Bogoliubov quasiparticles of a d-wave superconductor are superpositions of electron and hole that can be created with arbitrarily low
energies above the ground state (Fig. 1g) at certain momenta. b, The band structure of graphene contains massless Dirac electrons at two points in the
Brillouin zone. c, Topological insulators are three-dimensional materials that intrinsically support massless electrons at their surfaces. The spin direction of
a surface electron (marked in red) is determined by (‘locked to’) its momentum. d, 3D Dirac (left) and Weyl (right) semimetals are both generalizations of
the Dirac cones in graphene; the di�erence is that in the Weyl case, the breaking of either inversion or time-reversal symmetry allows four-fold degenerate
Dirac cones to split into two-fold degenerate Weyl cones, each of which has a topological integer ‘charge’ (marked in red and blue). Surface electrons in
Weyl semimetals exhibit a line of zero-energy states (‘Fermi arc’) in momentum space. e, A long-sought state of frustrated magnets that may already have
been discovered has gapless fermionic excitations above the ground state. These are di�erent from the bosonic magnons (quanta of spin waves) that exist
in more conventional magnets. One model supporting such excitations is the spin-anisotropic Kitaev honeycomb lattice Hamiltonian (left), where only one
spin component is active on each set of bonds (x, y, z). Its phase diagram with gapped (white) and gapless (blue) excitations is shown on the right.

still being sought in experiments90–92. These phenomena in many
cases are related to the ‘chiral anomaly’ beloved of particle physicists.
A single Weyl fermion is anomalous in that its quantum theory,
when coupled to electromagnetism, does not conserve charge; there
are subtle implications of this in solids, where there are always
multiple Weyl points (so that the total charge cancels) but they may
occur at di�erent energies.

There are several theoretically possible phenomena, such as
quantized nonlinear optical properties, that will become observable
if new materials can be found: the most studied Weyl semimetals
belong to the TaAs family93–95 and have many Weyl points plus
additional symmetries that forbid some of the most exciting
predicted e�ects. Similarly, better materials would enable improved
observation of the Fermi arc surface states by means other than
photoemission. Finally, Dirac and Weyl semimetals, just like
topological insulators, may serve as independent-electron starting
points for correlated phenomena such as superconductivity96 and
fractionalization, and to these we now turn. It should be noted
that even states that do not intrinsically require electron–electron
interactions might be helped to form by such interactions, as in
the possible topological Kondo insulator97 SmB6. Also, considerable
recent progress has happened at the intersection of crystalline
symmetry with topology—for example, in the discovery of surface
states in the topological crystalline insulator SnTe98.

Interplay of many-body physics and topology
Only a few years after the experimental discovery of the integer
quantum Hall e�ect, an even more unusual state of electrons
was discovered that also exists in two-dimensional electron gases
in a strong magnetic field99. The fractional quantum Hall e�ect
(FQHE), unlike the IQHE, cannot be understood in terms of nearly
independent electrons. Instead, strong Coulomb repulsion creates

an incompressible quantum liquid with remarkable properties. Its
fundamental excitations have fractional charge: for example, an
electron added to the FQHE state at 1/3 filling (that is, when only
1/3 of the empty orbitals in the lowest Landau level are occupied)
breaks up into three quasiparticles, each of charge e/3 (ref. 100).

Another unexpected feature of quasiparticles in this complex liq-
uid is fractional statistics: they have statistics that is neither bosonic
nor fermionic. Quantummechanics textbooks explain the two types
of statistics of point particles in three spatial dimensions as being
classified by even (bosonic) or odd (fermionic) representations of
the permutation group. Prescient theoretical work pointed out in
1976 that strictly two-dimensional particles could have many other
types of statistics101. Statistics can be observed by exchanging the
locations of particles, but in two dimensions the path by which that
exchange happened (the ‘braiding’) becomes relevant, and statistics
are classified by representations of the braid group rather than of the
permutation group.

We will say a bit more about exotic statistics because they have
become a major driver of research into the FQHE and, in recent
years, the topological superconductors mentioned below. The braid
group is a much more complicated beast than the permutation
group. FQHE states have been found that are believed to realize
both ‘Abelian’ and ‘non-Abelian’ statistics. The term Abelian just
means commutative, and in a state with Abelian statistics, such as
the FQHE state at filling 1/3mentioned above, each braiding process
of the quasiparticles gives a phase factor, not necessarily ±1, that
acts on the (non-degenerate) state.

That might well seem complicated enough, but in FQHE samples
of very high quality, new plateaus emerged that could not be
understood with any known Abelian state102. Theorists had written
down wavefunctions that supported non-Abelian statistics103: there
is a degenerate subspace of states when the system has many
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Dirac materials
Dirac materials 

 Material with Dirac-like dispersion.  

 Example: graphene (relativistic particles with zero rest mass and an effective “speed 

of light”) 

 Example: topological insulators, Weyl semimetal (topological and/or exotic surface 

state)


Topological insulators 
̣ Topology: organizing principle of a material’s emergent properties

̣ Insulating interior, robust surface state with a Dirac dispersion
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hole pairs are therefore exponentially suppressed at low temperatures. For many met-
als, as well as doped semiconductors, the concept of nearly free quasiparticles obeying
the Schrödinger equation with the Hamiltonian HS = p2/2m⇤, where m⇤ is the e↵ec-
tive mass, provides an extremely successful description of the low-energy excitations.
These excitations are often simply referred to as “Schrödinger fermions”. In contrast,
in Dirac materials the low-energy fermionic excitations or quasiparticles do not obey
the Schrödinger Hamiltonian HS but rather a Dirac Hamiltonian [1] with the e↵ective
“speed of light” c being given by the Fermi velocity vF. In two spatial dimensions, this
Hamiltonian has the form

HD = c� · p + mc2�z, (1)

where � = (�x, �y) and �z are the usual Pauli matrices. Quasiparticles described by the
Hamiltonian HD are frequently called ”Dirac fermions”.

In the limit of vanishing Dirac mass m ! 0, there is no gap in the spectrum of HD and
the quasiparticle dispersion is linear, which is qualitatively di↵erent from the parabolic
dispersion of conventional metals or semiconductors. Moreover, even for non-zero mass,
positive and negative energy eigenstates of the Dirac Hamiltonian are made from the same
space of spinor wave functions. Thus, particles and holes are interconnected and have
the same e↵ective mass m, which is directly related to the spectral gap � = 2mc2 [10].
This is very di↵erent from systems like conventional metals and semiconductors, where
electrons and holes obey separate Schrdinger equations with di↵erent e↵ective masses
and no unique relation between gap and mass. Therefore, Dirac fermions with non-zero
mass still are qualitatively di↵erent from Schrödinger fermions, as soon as experimentally
probed energies are on the order of mc2 or higher. It is thus natural to include both
systems with massless and massive Dirac fermion excitations in the unifying framework
of Dirac materials.

A variety of Dirac materials has been discovered to date ranging from “normal state”
crystalline materials to exotic quantum fluids (c.f. Table 1). In the superfluid 3He-A
phase [2, 3], for example, the low-energy fermionic excitations near the north and south
pole of the Fermi surface form two nodal points where the Bogoliubov quasiparticles
are described by a Dirac Hamiltonian (1). A related example is the case of the cuprate
superconductors, a class of superconductors with an order parameter with d-wave sym-
metry, �k = �0(cos kxa�cos kya), and low-energy fermionic excitations being described
by the Dirac Hamiltonian (1) [2, 4, 11–13]. The rise of graphene [14–16] — a layer of
carbon atoms arranged in a honeycomb lattice — draws attention to the fact that the
same Dirac-like spectrum, Eq. (1), as in the superconducting or superfluid materials can
be an inherent property of the band structure of a material, ultimately stemming from
the crystalline order [5, 6, 17, 18]. The same crystalline order produces Dirac fermions
also in silicene and germanene [19], the Si and Ge equivalents of graphene, as well as in
“artificial” graphene [20, 21]. In a more recent development, a new kind of insulators has
been discovered [7, 22–27], the so-called topological insulators, which have a fully gapped
energy spectrum in the bulk but Dirac fermions on the surface. Furthermore, ultra-cold
atoms in optical lattices provide another realizations of Dirac fermions in condensed
matter systems [28, 29].

The possibility of finding materials with three-dimensional Dirac-like spectrum has
recently also gained a lot of attention. In three dimensions, all three Pauli matrices are
used in the momentum dependent term: HD = c� · p, and a mass term is thus per
definition absent. This Hamiltonian enters the Weyl equation in particle physics, and
materials with this low-energy spectrum have subsequently been coined Weyl semimetals
[30]. If there is a band degeneracy present at the Dirac nodal point (but not causing a
finite gap) these materials are instead called three-dimensional Dirac semimetals [31].
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To explain the half-integer QHE qualitatively, we invoke
the formal expression2,14–17 for the energy of massless relativistic
fermions in quantized fields, EN ¼ [2e!hc*

2B(N þ 1/2 ^ 1/2)]1/2.
In quantum electrodynamics, the sign^ describes two spins, whereas
in graphene it refers to ‘pseudospins’. The latter have nothing to do
with the real spin but are ‘built in’ to the Dirac-like spectrum of
graphene; their origin can be traced to the presence of two carbon
sublattices. The above formula shows that the lowest LL (N ¼ 0)
appears at E ¼ 0 (in agreement with the index theorem) and
accommodates fermions with only one (minus) projection of the
pseudospin. All other levels N $ 1 are occupied by fermions with
both (^) pseudospins. This implies that for N ¼ 0 the degeneracy is
half of that for any otherN. Alternatively, one can say that all LLs have
the same ‘compound’ degeneracy but the zero-energy LL is shared
equally by electrons and holes. As a result the first Hall plateau occurs
at half the normal filling and, oddly, both n ¼ 21/2 and þ1/2
correspond to the same LL (N ¼ 0). All other levels have normal
degeneracy 4B/f0 and therefore remain shifted by the same 1/2 from
the standard sequence. This explains the QHE at n ¼ N þ 1/2 and, at
the same time, the ‘odd’ phase of SdHO (minima in rxx correspond to
plateaux in rxy and therefore occur at half-integer n; see Figs 2 and 4),
in agreement with theory14–17. Note, however, that from another
perspective the phase shift can be viewed as the direct manifestation
of Berry’s phase acquired by Dirac fermions moving in magnetic
field20,21.
Finally, we return to zero-field behaviour and discuss another

feature related to graphene’s relativistic-like spectrum. The spectrum
implies vanishing concentrations of both carriers near the Dirac
point E ¼ 0 (Fig. 3e), which suggests that low-T resistivity of the

zero-gap semiconductor should diverge at Vg < 0. However, neither
of our devices showed such behaviour. On the contrary, in the
transition region between holes and electrons graphene’s conduc-
tivity never falls below a well-defined value, practically independent
of Tbetween 4K and 100 K. Figure 1c plots values of the maximum
resistivity rmax found in 15 different devices at zero B, which
within an experimental error of ,15% all exhibit rmax < 6.5 kQ
independently of their mobility, which varies by a factor of 10. Given
the quadruple degeneracy f, it is obvious to associate rmax with
h/fe2 ¼ 6.45 kQ, where h/e2 is the resistance quantum.We emphasize
that it is the resistivity (or conductivity) rather than the resistance (or
conductance) that is quantized in graphene (that is, resistance R
measured experimentally scaled in the usual manner as R¼ rL/w
with changing length L andwidthw of our devices). Thus, the effect is
completely different from the conductance quantization observed
previously in quantum transport experiments.
However surprising it may be, the minimum conductivity is an

intrinsic property of electronic systems described by the Dirac
equation22–25. It is due to the fact that, in the presence of disorder,
localization effects in such systems are strongly suppressed and
emerge only at exponentially large length scales. Assuming the
absence of localization, the observed minimum conductivity can be
explained qualitatively by invoking Mott’s argument26 that the mean
free path l of charge carriers in ametal can never be shorter than their
wavelength lF. Then, j ¼ nem can be rewritten as j ¼ (e2/h)kFl, so j
cannot be smaller than,e2/h for each type of carrier. This argument
is known to have failed for 2D systems with a parabolic spectrum in
which disorder leads to localization and eventually to insulating
behaviour22,23. For 2DDirac fermions, no localization is expected22–25

and, accordingly, Mott’s argument can be used. Although there is a
broad theoretical consensus15,16,23–28 that a 2D gas of Dirac fermions
should exhibit a minimum conductivity of about e2/h, this quantiza-
tion was not expected to be accurate and most theories suggest a
value of ,e2/p h, in disagreement with the experiment.
Thus, graphene exhibits electronic properties that are distinctive

for a 2D gas of particles described by the Dirac equation rather than
the Schrödinger equation. The work shows a possibility of studying

Figure 4 | QHE for massless Dirac fermions. Hall conductivity jxy and
longitudinal resistivity rxx of graphene as a function of their concentration
at B ¼ 14 T and T¼ 4K. jxy ; (4e2/h)n is calculated from the measured
dependences of rxy(Vg) and rxx(Vg) as jxy ¼ rxy/(rxy

2 þ rxx
2 ). The

behaviour of 1/rxy is similar but exhibits a discontinuity at Vg < 0, which is
avoided by plotting jxy. Inset: jxy in ‘two-layer graphene’ where the
quantization sequence is normal and occurs at integer n. The latter shows
that the half-integer QHE is exclusive to ‘ideal’ graphene.

Figure 3 | Dirac fermions of graphene. a, Dependence of BF on carrier
concentration n (positive n corresponds to electrons; negative to holes).
b, Examples of fan diagrams used in our analysis7 to findBF.N is the number
associated with different minima of oscillations. The lower and upper curves
are for graphene (sample of Fig. 2a) and a 5-nm-thick film of graphite with a
similar value of BF, respectively. Note that the curves extrapolate to different
origins, namely to N ¼ 1/2 and N ¼ 0. In graphene, curves for all n
extrapolate toN ¼ 1/2 (compare ref. 7). This indicates a phase shift of p with
respect to the conventional Landau quantization in metals. The shift is due
to Berry’s phase14,20. c, Examples of the behaviour of SdHO amplitude Dj
(symbols) as a function of T for m c < 0.069 and 0.023m0 (see the
dependences showing the rapid and slower decay with increasing T,
respectively); solid curves are best fits.d, Cyclotronmassm c of electrons and
holes as a function of their concentration. Symbols are experimental data,
solid curves the best fit to theory. e, Electronic spectrum of graphene, as
inferred experimentally and in agreement with theory. This is the spectrum
of a zero-gap 2D semiconductor that describes massless Dirac fermions with
c* 1/300 the speed of light.
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source of nitrogen, a critical nutrient, in hydro-
thermal communities. Substantial nitrogen fix-
ation would further increase the nutritional
independence of these exotic ecosystems from
from the surfaceof the ocean,where light drives
the photosynthesis-based primary production-
that feeds the major marine food webs. The bio-
geochemical importance of nitrogen fixation in
hot-vent communities must therefore be evalu-
ated directly. The identification of novel sites of
marine nitrogen fixation (such as hot vents,
which are broadly distributed throughout the
deep sea) may also help to determine the mag-
nitude of oceanic nitrogen fixation, which is
currently poorly constrained (4, 5).

A large proportion of the microbial popu-
lations of the sea are archaea (largely of the
Crenarchaeota lineage) (6, 7). However, the
physiological and ecological role of these
organisms has remained elusive. Recent find-
ings have shown that many marine Cren-
archaeota have the ammonium monooxyge-
nase gene and may in fact dominate marine
nitrification, the biological oxidation of am-
monium using oxygen as the electron accep-
tor (8). Nitrogen fixation in archaea was first
reported in 1984 (9), and in 2003, Mehta et al.
(10) retrieved the f irst marine archaeal
nifH sequences from deep-sea environments,
including a hot-vent system (nifH is a gene
from the nitrogenase operon that codes for one
of the enzymes of the nitrogenase complex,
dinitrogenase reductase). The current report
thus confirms a second role for archaea in the
nitrogen cycle of the sea.

FS406-22 has an optimal growth tempera-
ture of 90°C and fixes dinitrogen at tempera-
tures of up to 92°C, smashing the previous
record of 64°C held by Methanothermo-

coccus thermolithotrophicus (11) by a com-
fortable 28°C margin. Enzymes with high
thermal stabilities have found broad use in
molecular biology and biotechnology. Given
the importance of nitrogen fixation in global
agriculture and the creative exploitation of
novel organisms by the biotechnology indus-
try, a heat-stable nitrogenase system is likely
to find a useful industrial application. 

Recent analyses have suggested that nitro-
genase may have first arisen either before the
divergence of the three main branches of life
(12) or, alternatively, more recently in a
thermophilic archaeon (13). On the basis of
genetic analysis of several of the structural
and regulatory genes of the nif operon, as well
as several related genes, Mehta and Baross
argue that their archaeal nitrogen-fixing iso-
late may be representative of some of the ear-
liest lineages of nitrogen fixation, thus lend-
ing support to the second scenario.

For a number of well-characterized enzyme

systems of Archaea and Bacteria living at
mesophilic temperatures (10° to 30°C), which
use molybdenum at the active site, the analog
enzyme in hyperthermophiles has replaced
molybdenum with tungsten (14). Will FS406-
22 reveal the first tungsten-based nitrogenase?
And, for that matter, if the earliest precursors of
life were hyperthermophiles, did tungsten
enzyme catalysis predate catalysis based on
molybdenum? A few more questions to ponder. 
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E
lectrical insulators are usually appreci-
ated for their ability to do nothing.
Such materials either trap or restrict the

motion of free charges in matter. This is useful
in all kinds of applications, ranging from the
wiring in your home to directing the flow of
electrons in the tiny circuits of your iPod.
Now, on page 1757 of this issue, Bernevig
et al. have proposed a new kind of two-dimen-
sional insulator, which permits the flow of
charge only at its edges (1). This may lead to
the development of a new kind of solid-state
electronic device.

An insulator has an energy gap separating
filled and empty bands of electronic states, and
thus is electrically inert because a finite energy
is required to dislodge an electron. In the 1960s,
Kohn characterized the insulating state in terms
of the sensitivity of electrons inside the material
to effects on the sample boundary (2). His
insight was that the electrons of an insulator can
be regarded as occupying localized orbitals
(see the figure), so that they are insensitive to
perturbations on the boundary.

The presence of a bulk energy gap does
not guarantee that electrons have this “near-
sighted” property. A counter example is pro-
vided by the quantum Hall state of a two-
dimensional electron gas in a perpendicular
magnetic field. In the quantum Hall effect,
an energy gap results from the quantization

of the closed circular orbits that electrons
follow in a magnetic field. The inside of a
quantum Hall system is thus inert like an
insulator. However, at the boundary of the
material a different type of motion occurs,
which allows charge to flow in one-dimen-
sional edge states. These edge states are
unique in that they allow for charge to flow in
one direction only. This makes them insensi-
tive to scattering from impurities and
explains the observed precise quantization of
the Hall resistance.

Because both have a bulk energy gap, the
insulating state and the quantum Hall state
appear similar. The difference was explained
by Thouless et al. (3), who generalized Kohn’s
notion of boundary sensitivity to show that an
occupied band is characterized by an integer
topological index. This index, n, distinguishes
the insulating state (n = 0) from the quantum
Hall state (n π 0) in a manner similar to the
way that the mathematical “genus” of a solid
body—which counts the number of holes—
distinguishes a marble from a donut or a cof-
fee cup. For quantum Hall states, the conduct-
ing edge states are a consequence of this topo-
logical structure.

Recently a new class of topological insula-
tors has been predicted to be possible at zero
magnetic field. This occurs because electrons
have a quantum property called spin, which
can have two possible polarizations, “up” and
“down.” In 2005, we showed theoretically that
a single two-dimensional sheet of graphite,
called graphene, has a small energy gap that

Theory suggests a practical method for producing a novel insulating state of matter.
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Two-dimensional gas of massless Dirac fermions in
graphene
K. S. Novoselov1, A. K. Geim1, S. V. Morozov2, D. Jiang1, M. I. Katsnelson3, I. V. Grigorieva1, S. V. Dubonos2

& A. A. Firsov2

Quantum electrodynamics (resulting from themerger of quantum
mechanics and relativity theory) has provided a clear understand-
ing of phenomena ranging from particle physics to cosmology and
from astrophysics to quantum chemistry1–3. The ideas underlying
quantum electrodynamics also influence the theory of condensed
matter4,5, but quantum relativistic effects are usually minute in
the known experimental systems that can be described accurately
by the non-relativistic Schrödinger equation. Here we report an
experimental study of a condensed-matter system (graphene, a
single atomic layer of carbon6,7) in which electron transport is
essentially governed by Dirac’s (relativistic) equation. The charge
carriers in graphene mimic relativistic particles with zero rest
mass and have an effective ‘speed of light’ c * < 106m s21. Our
study reveals a variety of unusual phenomena that are character-
istic of two-dimensional Dirac fermions. In particular we have
observed the following: first, graphene’s conductivity never falls
below a minimum value corresponding to the quantum unit of
conductance, even when concentrations of charge carriers tend to
zero; second, the integer quantum Hall effect in graphene is
anomalous in that it occurs at half-integer filling factors; and
third, the cyclotron mass m c of massless carriers in graphene is
described by E 5 m cc *

2. This two-dimensional system is not only
interesting in itself but also allows access to the subtle and rich
physics of quantum electrodynamics in a bench-top experiment.
Graphene is a monolayer of carbon atoms packed into a dense

honeycomb crystal structure that can be viewed as an individual
atomic plane extracted from graphite, as unrolled single-wall carbon
nanotubes or as a giant flat fullerene molecule. This material has not
been studied experimentally before and, until recently6,7, was pre-
sumed not to exist in the free state. To obtain graphene samples we
used the original procedures described in ref. 6, which involve the
micromechanical cleavage of graphite followed by the identification
and selection of monolayers by using a combination of optical
microscopy, scanning electron microscopy and atomic-force
microscopy. The selected graphene films were further processed
into multi-terminal devices such as that shown in Fig. 1, by following
standard microfabrication procedures7. Despite being only one atom
thick and unprotected from the environment, our graphene devices
remain stable under ambient conditions and exhibit high mobility of
charge carriers. Below we focus on the physics of ‘ideal’ (single-layer)
grapheme, which has a different electronic structure and exhibits
properties qualitatively different from those characteristic of either
ultrathin graphite films (which are semimetals whose material
properties were studied recently7–10) or even of other devices con-
sisting of just two layers of graphene (see below).
Figure 1 shows the electric field effect7–9 in graphene. Its conduc-

tivity j increases linearly with increasing gate voltage Vg for both
polarities, and the Hall effect changes its sign at V g < 0. This

behaviour shows that substantial concentrations of electrons
(holes) are induced by positive (negative) gate voltages. Away from
the transition region Vg < 0, Hall coefficient RH ¼ 1/ne varies as
1/Vg, where n is the concentration of electrons or holes and e is the
electron charge. The linear dependence 1/RH / Vg yields n ¼ aVg

with a < 7.3 £ 1010 cm22 V21, in agreement with the theoretical
estimate n/Vg < 7.2 £ 1010 cm22 V21 for the surface charge density
induced by the field effect (see the caption to Fig. 1). The agreement
indicates that all the induced carriers are mobile and that there are no
trapped charges in graphene. From the linear dependence j(Vg) we
found carriermobilities m ¼ j/ne, which reached 15,000 cm2V21 s21

for both electrons and holes, were independent of temperature T
between 10 and 100K and were probably still limited by defects in
parent graphite.
To characterize graphene further, we studied Shubnikov-de Haas

oscillations (SdHOs). Figure 2 shows examples of these oscillations
for differentmagnetic fields B, gate voltages and temperatures. Unlike
ultrathin graphite7, graphene exhibits only one set of SdHO for both
electrons and holes. By using standard fan diagrams7,8 we have
determined the fundamental SdHO frequency BF for various Vg.
The resulting dependence of BF on n is plotted in Fig. 3a. Both
carriers exhibit the same linear dependence B F ¼ bn, with
b < 1.04 £ 10215 Tm2 (^2%). Theoretically, for any two-
dimensional (2D) system b is defined only by its degeneracy f so
that BF ¼ f 0n/f, where f 0 ¼ 4.14 £ 10215 Tm2 is the flux quantum.
Comparison with the experiment yields f ¼ 4, in agreement with the
double-spin and double-valley degeneracy expected for graphene11,12

(see caption to Fig. 2). Note, however, an anomalous feature of SdHO
in graphene, which is their phase. In contrast to conventional metals,
graphene’s longitudinal resistance rxx(B) exhibits maxima rather
than minima at integer values of the Landau filling factor n (Fig. 2a).
Figure 3b emphasizes this fact by comparing the phase of SdHO in
graphene with that in a thin graphite film7. The origin of the ‘odd’
phase is explained below.
Another unusual feature of 2D transport in graphene clearly

reveals itself in the dependence of SdHO on T (Fig. 2b). Indeed,
with increasing T the oscillations at high Vg (high n) decay more
rapidly. One can see that the last oscillation (Vg < 100V) becomes
practically invisible at 80 K, whereas the first one (Vg , 10V) clearly
survives at 140K and remains notable even at room temperature. To
quantify this behaviour we measured the T-dependence of SdHO’s
amplitude at various gate voltages and magnetic fields. The results
could be fitted accurately (Fig. 3c) by the standard expression
T/sinh(2p 2kBTm c/!heB), which yielded m c varying between ,0.02
and 0.07m0 (m0 is the free electron mass). Changes in m c are well
described by a square-root dependence m c / n1/2 (Fig. 3d).
To explain the observed behaviour of m c, we refer to the semi-

classical expressions BF ¼ (!h/2p e)S(E) and m c ¼ (!h2/2p )›S(E)/›E,
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experimental study of a condensed-matter system (graphene, a
single atomic layer of carbon6,7) in which electron transport is
essentially governed by Dirac’s (relativistic) equation. The charge
carriers in graphene mimic relativistic particles with zero rest
mass and have an effective ‘speed of light’ c * < 106m s21. Our
study reveals a variety of unusual phenomena that are character-
istic of two-dimensional Dirac fermions. In particular we have
observed the following: first, graphene’s conductivity never falls
below a minimum value corresponding to the quantum unit of
conductance, even when concentrations of charge carriers tend to
zero; second, the integer quantum Hall effect in graphene is
anomalous in that it occurs at half-integer filling factors; and
third, the cyclotron mass m c of massless carriers in graphene is
described by E 5 m cc *

2. This two-dimensional system is not only
interesting in itself but also allows access to the subtle and rich
physics of quantum electrodynamics in a bench-top experiment.
Graphene is a monolayer of carbon atoms packed into a dense

honeycomb crystal structure that can be viewed as an individual
atomic plane extracted from graphite, as unrolled single-wall carbon
nanotubes or as a giant flat fullerene molecule. This material has not
been studied experimentally before and, until recently6,7, was pre-
sumed not to exist in the free state. To obtain graphene samples we
used the original procedures described in ref. 6, which involve the
micromechanical cleavage of graphite followed by the identification
and selection of monolayers by using a combination of optical
microscopy, scanning electron microscopy and atomic-force
microscopy. The selected graphene films were further processed
into multi-terminal devices such as that shown in Fig. 1, by following
standard microfabrication procedures7. Despite being only one atom
thick and unprotected from the environment, our graphene devices
remain stable under ambient conditions and exhibit high mobility of
charge carriers. Below we focus on the physics of ‘ideal’ (single-layer)
grapheme, which has a different electronic structure and exhibits
properties qualitatively different from those characteristic of either
ultrathin graphite films (which are semimetals whose material
properties were studied recently7–10) or even of other devices con-
sisting of just two layers of graphene (see below).
Figure 1 shows the electric field effect7–9 in graphene. Its conduc-

tivity j increases linearly with increasing gate voltage Vg for both
polarities, and the Hall effect changes its sign at V g < 0. This

behaviour shows that substantial concentrations of electrons
(holes) are induced by positive (negative) gate voltages. Away from
the transition region Vg < 0, Hall coefficient RH ¼ 1/ne varies as
1/Vg, where n is the concentration of electrons or holes and e is the
electron charge. The linear dependence 1/RH / Vg yields n ¼ aVg

with a < 7.3 £ 1010 cm22 V21, in agreement with the theoretical
estimate n/Vg < 7.2 £ 1010 cm22 V21 for the surface charge density
induced by the field effect (see the caption to Fig. 1). The agreement
indicates that all the induced carriers are mobile and that there are no
trapped charges in graphene. From the linear dependence j(Vg) we
found carriermobilities m ¼ j/ne, which reached 15,000 cm2V21 s21

for both electrons and holes, were independent of temperature T
between 10 and 100K and were probably still limited by defects in
parent graphite.
To characterize graphene further, we studied Shubnikov-de Haas

oscillations (SdHOs). Figure 2 shows examples of these oscillations
for differentmagnetic fields B, gate voltages and temperatures. Unlike
ultrathin graphite7, graphene exhibits only one set of SdHO for both
electrons and holes. By using standard fan diagrams7,8 we have
determined the fundamental SdHO frequency BF for various Vg.
The resulting dependence of BF on n is plotted in Fig. 3a. Both
carriers exhibit the same linear dependence B F ¼ bn, with
b < 1.04 £ 10215 Tm2 (^2%). Theoretically, for any two-
dimensional (2D) system b is defined only by its degeneracy f so
that BF ¼ f 0n/f, where f 0 ¼ 4.14 £ 10215 Tm2 is the flux quantum.
Comparison with the experiment yields f ¼ 4, in agreement with the
double-spin and double-valley degeneracy expected for graphene11,12

(see caption to Fig. 2). Note, however, an anomalous feature of SdHO
in graphene, which is their phase. In contrast to conventional metals,
graphene’s longitudinal resistance rxx(B) exhibits maxima rather
than minima at integer values of the Landau filling factor n (Fig. 2a).
Figure 3b emphasizes this fact by comparing the phase of SdHO in
graphene with that in a thin graphite film7. The origin of the ‘odd’
phase is explained below.
Another unusual feature of 2D transport in graphene clearly

reveals itself in the dependence of SdHO on T (Fig. 2b). Indeed,
with increasing T the oscillations at high Vg (high n) decay more
rapidly. One can see that the last oscillation (Vg < 100V) becomes
practically invisible at 80 K, whereas the first one (Vg , 10V) clearly
survives at 140K and remains notable even at room temperature. To
quantify this behaviour we measured the T-dependence of SdHO’s
amplitude at various gate voltages and magnetic fields. The results
could be fitted accurately (Fig. 3c) by the standard expression
T/sinh(2p 2kBTm c/!heB), which yielded m c varying between ,0.02
and 0.07m0 (m0 is the free electron mass). Changes in m c are well
described by a square-root dependence m c / n1/2 (Fig. 3d).
To explain the observed behaviour of m c, we refer to the semi-

classical expressions BF ¼ (!h/2p e)S(E) and m c ¼ (!h2/2p )›S(E)/›E,
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source of nitrogen, a critical nutrient, in hydro-
thermal communities. Substantial nitrogen fix-
ation would further increase the nutritional
independence of these exotic ecosystems from
from the surfaceof the ocean,where light drives
the photosynthesis-based primary production-
that feeds the major marine food webs. The bio-
geochemical importance of nitrogen fixation in
hot-vent communities must therefore be evalu-
ated directly. The identification of novel sites of
marine nitrogen fixation (such as hot vents,
which are broadly distributed throughout the
deep sea) may also help to determine the mag-
nitude of oceanic nitrogen fixation, which is
currently poorly constrained (4, 5).

A large proportion of the microbial popu-
lations of the sea are archaea (largely of the
Crenarchaeota lineage) (6, 7). However, the
physiological and ecological role of these
organisms has remained elusive. Recent find-
ings have shown that many marine Cren-
archaeota have the ammonium monooxyge-
nase gene and may in fact dominate marine
nitrification, the biological oxidation of am-
monium using oxygen as the electron accep-
tor (8). Nitrogen fixation in archaea was first
reported in 1984 (9), and in 2003, Mehta et al.
(10) retrieved the f irst marine archaeal
nifH sequences from deep-sea environments,
including a hot-vent system (nifH is a gene
from the nitrogenase operon that codes for one
of the enzymes of the nitrogenase complex,
dinitrogenase reductase). The current report
thus confirms a second role for archaea in the
nitrogen cycle of the sea.

FS406-22 has an optimal growth tempera-
ture of 90°C and fixes dinitrogen at tempera-
tures of up to 92°C, smashing the previous
record of 64°C held by Methanothermo-

coccus thermolithotrophicus (11) by a com-
fortable 28°C margin. Enzymes with high
thermal stabilities have found broad use in
molecular biology and biotechnology. Given
the importance of nitrogen fixation in global
agriculture and the creative exploitation of
novel organisms by the biotechnology indus-
try, a heat-stable nitrogenase system is likely
to find a useful industrial application. 

Recent analyses have suggested that nitro-
genase may have first arisen either before the
divergence of the three main branches of life
(12) or, alternatively, more recently in a
thermophilic archaeon (13). On the basis of
genetic analysis of several of the structural
and regulatory genes of the nif operon, as well
as several related genes, Mehta and Baross
argue that their archaeal nitrogen-fixing iso-
late may be representative of some of the ear-
liest lineages of nitrogen fixation, thus lend-
ing support to the second scenario.

For a number of well-characterized enzyme

systems of Archaea and Bacteria living at
mesophilic temperatures (10° to 30°C), which
use molybdenum at the active site, the analog
enzyme in hyperthermophiles has replaced
molybdenum with tungsten (14). Will FS406-
22 reveal the first tungsten-based nitrogenase?
And, for that matter, if the earliest precursors of
life were hyperthermophiles, did tungsten
enzyme catalysis predate catalysis based on
molybdenum? A few more questions to ponder. 
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E
lectrical insulators are usually appreci-
ated for their ability to do nothing.
Such materials either trap or restrict the

motion of free charges in matter. This is useful
in all kinds of applications, ranging from the
wiring in your home to directing the flow of
electrons in the tiny circuits of your iPod.
Now, on page 1757 of this issue, Bernevig
et al. have proposed a new kind of two-dimen-
sional insulator, which permits the flow of
charge only at its edges (1). This may lead to
the development of a new kind of solid-state
electronic device.

An insulator has an energy gap separating
filled and empty bands of electronic states, and
thus is electrically inert because a finite energy
is required to dislodge an electron. In the 1960s,
Kohn characterized the insulating state in terms
of the sensitivity of electrons inside the material
to effects on the sample boundary (2). His
insight was that the electrons of an insulator can
be regarded as occupying localized orbitals
(see the figure), so that they are insensitive to
perturbations on the boundary.

The presence of a bulk energy gap does
not guarantee that electrons have this “near-
sighted” property. A counter example is pro-
vided by the quantum Hall state of a two-
dimensional electron gas in a perpendicular
magnetic field. In the quantum Hall effect,
an energy gap results from the quantization

of the closed circular orbits that electrons
follow in a magnetic field. The inside of a
quantum Hall system is thus inert like an
insulator. However, at the boundary of the
material a different type of motion occurs,
which allows charge to flow in one-dimen-
sional edge states. These edge states are
unique in that they allow for charge to flow in
one direction only. This makes them insensi-
tive to scattering from impurities and
explains the observed precise quantization of
the Hall resistance.

Because both have a bulk energy gap, the
insulating state and the quantum Hall state
appear similar. The difference was explained
by Thouless et al. (3), who generalized Kohn’s
notion of boundary sensitivity to show that an
occupied band is characterized by an integer
topological index. This index, n, distinguishes
the insulating state (n = 0) from the quantum
Hall state (n π 0) in a manner similar to the
way that the mathematical “genus” of a solid
body—which counts the number of holes—
distinguishes a marble from a donut or a cof-
fee cup. For quantum Hall states, the conduct-
ing edge states are a consequence of this topo-
logical structure.

Recently a new class of topological insula-
tors has been predicted to be possible at zero
magnetic field. This occurs because electrons
have a quantum property called spin, which
can have two possible polarizations, “up” and
“down.” In 2005, we showed theoretically that
a single two-dimensional sheet of graphite,
called graphene, has a small energy gap that

Theory suggests a practical method for producing a novel insulating state of matter.
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wells from an n-type conductor to a p-type conductor via a
QSHI state. It has been shown [12,13] that the 4-probe
resistance in an HgTe=CdTe micrometer-sized ballistic
Hall bar demonstrated a quantized plateaux R14;23 ’
h=2e2. It is expected that the stability of the helical edge
states in the topological insulator is unaffected by the
presence of a weak disorder [8–10]. Note, however, that
quantized ballistic transport has been observed only in
micrometer-sized samples, and the plateaux R14;23 ’
h=2e2 is destroyed if the sample is above a certain critical
size of about a few microns [12,17]. The understanding of
the stability of the plateaux in macroscopic samples
requires further investigation. The Hall effect reverses its
sign and Rxy ! 0 when Rxx approaches its maximum value
[Fig. 2(b)], which can be identified as the charge neutrality
point (CNP). These behaviors resemble the ambipolar field
effect observed in graphene [18]. Application of the per-
pendicular magnetic field leads to suppression of the peak
in both structures, although the behavior of the resistance
in the electron and hole parts of the spectrum is quite
different. One can see that the resistance in a local gate
device shows the plateaus R14;23 ! 2 h

e2
in the n-p-n region

and R14;23 ! 1
2

h
e2
in the n-n0-n region, while the device with

a global gate demonstrates conventional quantum Hall
behaviour. Note also that R14;23 ¼ 0 near Vg # VCNP !
2V in both structures. Figure 3 shows the resistance of
the local gate device in the voltage-magnetic field plane.
One can see the evolution of the longitudinal resistance

with the magnetic field and density in the n-p-n, n-n0-n
and n-TI-n regions. The resistance peak drops dramatically
in a magnetic field above 3 T and shows plateauxlike
behaviour R14;23 ! 2 h

e2
in the B# Vg plane in the n-p-n

region. Such resistance decrease demonstrates the transi-
tion to the edge state transport regime. This behavior can
be understood from quasi classical picture: Lorentz force
push one of the electron trajectory forward to the edge,
while other one, which is propagating in opposite direc-
tion, is declined from the edge. Since the distance between
trajectories increases, it may lead to the suppression of the
scattering between channels. For positive gate voltage
(Vg # VCNP > 3:5 V), when n-n0-n junctions are expected
to be formed, one can see a series of the fully developed
plateaux with magnetic field. As B increases, the final
plateaux R14;23 ! 1

2
h
e2

emerges. Similar behaviour is

observed around CNP, when the QSHI phase is formed
under local gate, the plateaux R14;23 ! 1:3 h

e2
develops in a

wide range of the magnetic field [see inset to Fig. 2(a)] and
narrow range of density. Slightly above CNP, in the elec-
tronic part of the peak, the resistance value is shifted up and
approaches the value R14;23 ! 1:43 h

e2
. In the region

between this plateaux and R14;23 ! 1
2

h
e2
, the resistance

vanishes and shows pronounced minima. In the rest of
the Letter, we will focus on the explanation of the resist-
ance quantization in HgTe quantum wells in the bipolar
regime in a strong magnetic field.
QHE edge state transport in the Hall bar geometry with a

gate finger across the device has been extensively explored
in the past in the monopolar regime [19]. The 4-probe
resistance is expected to be quantized at values R14;23 ¼
h
e2
ð1! # 1

!g
Þ, where !g is the Landau level filling factor in

the gate region, and ! is the filling factor in the region
outside of the gate. Indeed, this formula perfectly describes
the resistance behavior at Vg # VCNP > 0 in a magnetic
field above 3 T, notably. R14;23 ¼ h

e2
ð11 # 1

1Þ ¼ 0 and

R14;23 ¼ h
e2
ð11 # 1

2Þ ¼ 1
2

h
e2
.

In the bipolar regime, an unusual fractional resistance
plateaux arises from the equilibration between countercir-
culating edge states in thep andn regions [see Fig. 1(c)] [4].
In the 2-probe configuration, the net resistance is
described by three quantum resistors in series: R2T ¼
h
e2
ð1! þ 1

!g
þ 1

!Þ ¼ h
e2

2!þ !g
!g!

, which indeed has been observed

in graphene n-p-n junctions [3]. The quantization of the
4-probe resistance is given by a slightly different equation,
R4T ¼ R14;23 ¼ h

e2
ð1! þ 1

!g
Þ. This formula agrees with our

observation of plateaux R14;23 ¼ h
e2
ð11 þ 1

1Þ ¼ 2 h
e2

in the

n-p-n regime [Figs. 2(a) and 3]. It is worth noting that in
graphene it is difficult to obtain the plateau at this value,
since the valley and spin splitting is small and ! ¼ !g ¼
' 2; ' 6 . . . . The advantage of the graphene structure is the
sharper (but not abrupt) potential step on the scale of the
magnetic length [3].

2h/e2

2h/2e
B(T)

0

7

-2.5

4.5

V-V  (V)CNP

g

R14,23(kOhm)

150

0 CNP

FIG. 3 (color online). The longitudinal resistance R14;23 as a
function of the gate voltage and magnetic field, T ¼ 1:4 K. Two
plateaux R14;23 ! 2 h

e2
and R14;23 ! 1

2
h
e2

are indicated by blue

arrows. CNP is indicated by the orange arrow.
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We have studied quantized transport in HgTe wells with inverted band structure corresponding to the

two-dimensional topological insulator phase (2D TI) with locally controlled density allowing n-p-n and

n-2D TI-n junctions. The resistance reveals the fractional plateau 2h=e2 in the n-p-n regime in the

presence of the strong perpendicular magnetic field. We found that in the n-2D TI-n regime the plateaux in

resistance in not universal and results from the edge state equilibration at the interface between chiral and

helical edge modes. We provided the simple model describing the resistance quantization in n-2D TI-n
regime.
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Recently, interest in edge state transport in the integer
quantum Hall effect (QHE) has been renewed due to
observation of the conductance quantization in the locally
gated graphene layers in the bipolar regime [1–3]. It has
been demonstrated that the density variation across the
charge neutrality point results in a p-n junction with
interesting transport properties that are absent in the
QHE regime in the unipolar case. In particular, the two-
terminal resistance reveals fractional quantization in the
graphene p-n [1] or n-p-n [2,3] junctions, which has been
attributed to chiral edge states equilibration at the p-n
interfaces [4]. In general, the character of the QHE trans-
port in unipolar and bipolar regimes is quite different. In
the unipolar regime the edge states propagate in the same
direction [Fig. 1(a)], while in the bipolar regime the edge
states countercirculate in the p and n regions, propagating
parallel to each other along the interface [Fig. 1(c)]. The
intermode scattering across the interface in the presence of
the disorder leads to interference between channels, and
conductance should exhibit fractional quantization super-
imposed by universal conductance fluctuations (UCF) [4].

Note, however, that UCF in the bipolar regime have not
been observed, which has been attributed to several extrin-
sic and intrinsic mechanisms [4]. Further study demon-
strated that UCF in a sufficiently small (mesoscopic)
system are robust to sample disorder [5], but could be
suppressed in the absence of the intervalley scattering
[6]. In the latter case, the plateaux value is expected to
be shifted up or down from the quantized value, which
disagrees with experiments. Therefore, the microscopic
mechanism providing plateaux quantization in graphene
p-n and p-n-p structures still remains unclear. The semi-
classical approach [7] confirms this conclusion.

Another interesting system, which provides for
realization of the p-n junction and study of the QHE in
the bipolar regime, is the HgTe-based quantum well. The
transport properties of such a system depends on the well
width d. In particular, when d exceeds the ‘‘critical’’ width

approximately equal to 6.3 nm, the energy spectrum
becomes inverted and one changes to a two-dimensional
topological insulator (2D TI), or quantum spin Hall insu-
lator phase (QSHI) characterized by an insulating gapped

npn

nTopological
insulatorn

nn/

(c)

(b)

(a)

n

FIG. 1 (color online). Schematics of edge state propagation for
different charge densities in the central local gate region (red
rectangular) and in the regions outside the local gate in the strong
magnetic field: (a) n-n0-n junction, n0 > n, (b) n-2DTI-n junc-
tion, (c) n-p-n junction n ¼ p, where n (p) refers to negative
(positive) charge density. Insets—the energy spectrum for differ-
ent Fermi energy positions in the region under local gate at
B ¼ 0.
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which the edge states are populated according to the
chemical potential of the lead that they emanate from.
This leads to a quantized conductance e2 /h associated
with each set of edge states. Figure 6!d" shows the resis-
tance measurements for a series of samples as a function
of a gate voltage which tunes the Fermi energy through
the bulk energy gap. Sample I is a narrow quantum well
that has a large resistance in the gap. Samples II–IV are
wider wells in the inverted regime. Samples III and IV
exhibit a conductance 2e2 /h associated with the top and
bottom edges. Samples III and IV have the same length
L=1 !m but different widths w=0.5 and 1 !m, indicat-
ing that transport is at the edge. Sample II !L=20 !m"
showed finite temperature scattering effects. These ex-
periments convincingly demonstrate the existence of the
edge states of the quantum spin Hall insulator. Subse-
quent experiments have established the inherently non-
local electronic transport in the edge states !Roth et al.,
2009".

IV. 3D TOPOLOGICAL INSULATORS

In the summer of 2006 three theoretical groups inde-
pendently discovered that the topological characteriza-
tion of the quantum spin Hall insulator state has a natu-
ral generalization in three dimensions !Fu, Kane, and
Mele, 2007; Moore and Balents, 2007; Roy, 2009b".
Moore and Balents !2007" coined the term “topological
insulator” to describe this electronic phase. Fu, Kane,
and Mele !2007" established the connection between the
bulk topological order and the presence of unique con-

ducting surface states. Soon after, this phase was pre-
dicted in several real materials !Fu and Kane, 2007", in-
cluding Bi1−xSbx as well as strained HgTe and "-Sn. In
2008, Hsieh et al. !2008" reported the experimental dis-
covery of the first 3D topological insulator in Bi1−xSbx.
In 2009 second-generation topological insulators, includ-
ing Bi2Se3, which has numerous desirable properties,
were identified experimentally !Xia, Qian, Hsieh, Wray,
et al., 2009" and theoretically !Xia, Qian, Hsieh, Wray, et
al., 2009; Zhang, Liu, et al., 2009". In this section we
review these developments.

A. Strong and weak topological insulators

A 3D topological insulator is characterized by four Z2
topological invariants !#0 ;#1#2#3" !Fu, Kane, and Mele,
2007; Moore and Balents, 2007; Roy, 2009b". They can
be most easily understood by appealing to the bulk-
boundary correspondence, discussed in Sec. II.C. The
surface states of a 3D crystal can be labeled with a 2D
crystal momentum. There are four T invariant points
$1,2,3,4 in the surface Brillouin zone, where surface
states, if present, must be Kramers degenerate #Figs. 7!a"
and 7!b"$. Away from these special points, the spin-orbit
interaction will lift the degeneracy. These Kramers de-
generate points therefore form 2D Dirac points in the
surface band structure #Fig. 7!c"$. The interesting ques-
tion is how the Dirac points at the different T invariant
points connect to each other. Between any pair $a and
$b, the surface-state structure will resemble either Fig.
3!a" or 3!b". This determines whether the surface Fermi
surface intersects a line joining $a to $b an even or an
odd number of times. If it is odd, then the surface states
are topologically protected. Which of these two alterna-
tives occurred is determined by the four bulk Z2 invari-
ants.

The simplest nontrivial 3D topological insulators may
be constructed by stacking layers of the 2D quantum
spin Hall insulator. This is analogous to a similar con-
struction for 3D integer quantum Hall states !Kohmoto,
Halperin, and Wu, 1992". The helical edge states of the
layers then become anisotropic surface states. A pos-
sible surface Fermi surface for weakly coupled layers
stacked along the y direction is shown in Fig. 7!a". In this
figure a single surface band intersects the Fermi energy
between $1 and $2 and between $3 and $4, leading to the
nontrivial connectivity in Fig. 3!b". This layered state is
referred to as a weak topological insulator and has #0

G = .3 e2/h

G = 2 e2/h
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FIG. 6. !Color online" Experiments on HgTe/CdTe quantum
wells. !a" Quantum well structure. !b" As a function of layer
thickness d the 2D quantum well states cross at a band inver-
sion transition. The inverted state is the QSHI, which has he-
lical edge states !c" that have a nonequilibrium population de-
termined by the leads. !d" Experimental two terminal
conductance as a function of a gate voltage that tunes EF
through the bulk gap. Sample I, with d% dc, shows insulating
behavior, while samples III and IV show quantized transport
associated with edge states. Adapted from König et al., 2007.
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FIG. 7. !Color online" Fermi circles in the surface Brillouin
zone for !a" a weak topological insulator and !b" a strong to-
pological insulator. !c" In the simplest strong topological insu-
lator the Fermi circle encloses a single Dirac point.
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Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but
have protected conducting states on their edge or surface. These states are possible due to the
combination of spin-orbit interactions and time-reversal symmetry. The two-dimensional !2D"
topological insulator is a quantum spin Hall insulator, which is a close cousin of the integer quantum
Hall state. A three-dimensional !3D" topological insulator supports novel spin-polarized 2D Dirac
fermions on its surface. In this Colloquium the theoretical foundation for topological insulators and
superconductors is reviewed and recent experiments are described in which the signatures of
topological insulators have been observed. Transport experiments on HgTe/CdTe quantum wells are
described that demonstrate the existence of the edge states predicted for the quantum spin Hall
insulator. Experiments on Bi1−xSbx, Bi2Se3, Bi2Te3, and Sb2Te3 are then discussed that establish these
materials as 3D topological insulators and directly probe the topology of their surface states. Exotic
states are described that can occur at the surface of a 3D topological insulator due to an induced
energy gap. A magnetic gap leads to a novel quantum Hall state that gives rise to a topological
magnetoelectric effect. A superconducting energy gap leads to a state that supports Majorana
fermions and may provide a new venue for realizing proposals for topological quantum computation.
Prospects for observing these exotic states are also discussed, as well as other potential device
applications of topological insulators.
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I. INTRODUCTION

A recurring theme in condensed-matter physics has
been the discovery and classification of distinctive
phases of matter. Often, phases can be understood using
Landau’s approach, which characterizes states in terms
of underlying symmetries that are spontaneously bro-
ken. Over the past 30 years, the study of the quantum
Hall effect has led to a different classification paradigm
based on the notion of topological order !Thouless et al.,
1982; Wen, 1995". The state responsible for the quantum
Hall effect does not break any symmetries, but it defines
a topological phase in the sense that certain fundamen-
tal properties !such as the quantized value of the Hall
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a new wave: 
viscosity

✤ hydrodynamic phenomena similar to classical liquids

✤ electrons collide with each other so frequently they 

start to flow collectively like a viscous fluid

✤ observation of ‘superballistic’ electrons

✤ The viscosity of graphene’s electron liquid ~0.1 m2/s, 

an order of magnitude higher than that of honey

Science  351, 1055 (2016)

N
ature Physics 12, 672 (2016)

See also: Phys. Rev. B 97, 245308 (2018)



Apparatus and Measurement Techniques 3.2 Ultra-Low Temperature Cryostat

VH

VH

Vxx

Vxx

I I

substrate
2DEGGAs

AlGAs
diffused 
Indium

 Hall Bar Geometry van der Pauw Geometry

(a) (b) 

Figure 3–3: Schematic diagram showing a GaAs/AlGaAs substrate in a (a) Hall bar and (b) van
der Pauw sample geometry.

3.1.2 Hall Bar versus van der Pauw

Quantum Hall measurements on GaAs 2DEG samples are traditionally performed

by patterning the GaAs substrate into a Hall bar geometry, shown in the Fig. 3–3a.

This has the advantage of ensuring the voltage is measured parallel (perpendicular) to

the current flow when measuring the longitudinal resistance (Hall resistance). However,

pattering the substrate can be difficult. Furthermore, when studying very high quality

samples, patterning the sample can adversely affect the sample mobility, which could for

example disturb observation of the fragile 5
2 FQH state. An alternate technique therefore

is to employ the so called van der Pauw geometry, where electrical contact is made to the

2DEG by diffusing indium into the GaAs at the edge of the wafer, as shown in Fig. 3–3b.

3.2 Ultra-Low Temperature Cryostat

In order to study the 5
2 and other quantum Hall states it is necessary to be able to

achieve very low temperatures (tens of mK) for lengthy time periods (days to months). All

of our experiments were therefore performed on a continuous flow dilution refrigerator. We

additionally face the difficult task of investigating the extremely fragile ν = 5
2 FQH state

which requires high precision, low noise, and minimally invasive measurement techniques

together with the ultra-cold environment and very large applied magnetic fields. In the

following an overview of the dilution refrigerator technique is presented followed by a

detailed description of our system including the performance of our fridge and the specific

designs and modifications used in our focused effort to study the ν = 5
2 FQHE.
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Theory and Historical Context 2.1 Quantum Hall Effect

where N is the electron density, vd is the electron drift velocity, and A is the cross sectional

area through which the current flows, i.e. A = w d where d is the sample thickness. Rear-

ranging Eqn. 2.5 for the velocity and substituting into Eqn. 2.4 gives the full relationship

between the hall voltage and the current and magnetic field to be

VH =
IB

Ned
(2.6)

where d is the thickness of the sample, and N is the electron density per unit volume. If we

consider a thin sample, the electron density is mostly defined by the planar density, and so

it is useful to instead consider the 2D electron density per unit area, n = Nd, which gives

the Hall voltage to be

VH =
IB

ne
. (2.7)

Transport in the longitudinal direction (i.e. in the direction of the applied current) is

unaffected by the B field and so the longitudinal resistance, Rxx, is given simply by Ohms

law relation

Rxx =
Vxx

I
(2.8)

where Vxx is the voltage drop across the sample in the longitudinal direction and I is the

current flow. While in the transverse direction there is no actual current flow since the

system reaches equilibrium (for a given current and magnetic field), it is conventional to

define a similar resistance relation, determined by dividing the transverse Hall voltage by

the longitudinal current. From Eqn. 2.7 this gives the Hall resistance, RH = VH/I, to be

RH =
B

ne
. (2.9)

Importantly, the Hall resistance depends only on the size of the magnetic field and the

electron density, i.e. no other physical parameters such as sample size, geometry, etc.

play a role. The Hall resistance (voltage) is often denoted by Rxy (Vxy) reflecting that it

is measured in the transverse direction. Throughout this thesis, however, I will use the

convention that denotes the Hall direction by a subscript H .

2.1.2 Integer Quantum Hall Effect

In 1980, performing a similar experiment to Edwin Hall’s but in the quantum regime

(very low temperature, and in the 2D limit), Klaus von Klitzing discovered the quantum

Hall effect [1]. In von Klitzing’s experiment, shown in Fig. 2–2, the basic Hall effect was

8
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Figure 2–1: Schematic cartoon of the Hall effect. Application of a magnetic field causes a build
up of charge on one side of the sample (due to the Lorentz force interaction) resulting in a voltage
difference along the transverse (Hall) direction. The charge imbalance however gives rise to an
electric field, yielding an electrostatic force that opposes the Lorentz force. The size of the Hall
voltage is determined by the equilibrium condition between these forces.(see text).

where FB is the Lorentz force, e is the charge of the electron, v is the electron velocity (in

this case the drift velocity defined by the current flow) and B is the magnetic field vector.

The Lorentz force causes electrons to drift in the transverse direction resulting in charge

accumulation on one side of the sample. This charge imbalance in turn creates an electric

field, giving rise to an electrostatic force, given by

Fe =
eVH

w
(2.3)

where e is the electron charge, w is the width of the sample and VH is the voltage difference

across the sample, i.e. the Hall voltage.

The electrostatic force opposes the Lorentz force, so that as the Hall voltage increases

equilibrium is quickly established (Fig. 2–1). Equating the two forces (Eqns. 2.2 and 2.3)

gives

eVH

w
= evdB. (2.4)

Now, the current flow through the sample is defined by

I = NevdA (2.5)

7
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Theory and Historical Context 2.1 Quantum Hall Effect

B

2DEG
Landau Levels

kz

ky

kx

B=0 Large B

E
F

En
er

g
y

Density of States

hω
hω

(a)
(b)

Figure 2–3: (a) Application of a magnetic field causes the electron energy states to collapse onto
concentric circular orbits (in k-space), separated by a well defined gap. (b) Increasing the magnetic
field increases the size of the LLs so that fewer and fewer LLs are occupied if the electron density
remains fixed. At special values of the B field (far right panel) an integer number of LLs are
exactly filled, and the Fermi level lies in the gap between adjacent LLs. The LLs are shown as
disorder broadened, rather than as ideal (unrealistic) δ-functions in the DOS.

upper spin branch in the lowest LL is filled, while at ν = 2 both spin branches of the LL

level are exactly filled, and so on.

It is useful to note that there are several equivalent definitions of the filling fraction

ν =
n

nB
= n

h

eB
= n

Φo

B
= n 2πl2B (2.15)

which can all be derived from the above equations, where Φo = h/e is the definition of the

flux quantum, and 2πl2B is simply the area of a Landau level whose radius is the magnetic

length, lB =
√

!/eB. In particular, it can be illuminating to note that from the definition

of the flux quantum, the LL degeneracy (per unit area) in Eqn. 2.13 can be rewritten as

nB = B/Φo. For a sample of area A, this gives the total number of states per LL to be

NB = AB/Φo = Φ/Φo (2.16)

where Φ is the total flux penetrating the sample. Rewriting the LL degeneracy in this way

reveals explicitly that there exists one energy state for each quantum of flux that penetrates

the sample.

At exact filling, all lower energy states (LLs) are completely filled while the higher

levels are separated by the energy gap between LLs (i.e. the cyclotron energy gap, ∆ =

!ωc). Since there are no free energy states within the filled LL level there can be no
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(Note that the Ryy trace has been multiplied by 0.6.)  At high temperatures the two traces
are very similar but below about 150mK a clear difference develops around half-filling.
A maximum develops in Rxx while a minimum forms in Ryy.  Note that the peak in Rxx
does not narrow as the temperature is reduced.  By T=25mK the difference between the
two measurements has become enormous (about 100x) and dwarfs the factor of 0.6
originally applied to facilitate the comparison.  The development of this giant anisotropy
in the resistance is perhaps the most striking aspect of transport in high Landau levels in
clean 2D electron systems. Figure 4 shows the rapid way in which the anisotropy at
!=9/2 develops as the temperature is reduced below 100mK.  Notice that below about 40-
50mK both Rxx and Ryy have apparently saturated at finite values.  This saturation seems
to be genuine and not simply a heating effect.

Figure 5 shows an overview of the resistances Rxx and Ryy at T=25mK. The insets
clarify the two measurement configurations.  It is clear that the anisotropy seen around
!=9/2 is also present at !=11/2, 13/2, 15/2, and with decreasing strength at still higher
half-odd integer fillings.  Most importantly, however, the anisotropy is absent at !=7/2
and 5/2 in the N=1 LL and (though not
shown) in the N=0 lowest LL.  This
simple observation is perhaps the clearest
indication that correlation phenomena in
the N"2 levels are quite different from
those in the lower two Landau levels.
III. Re-entrant Integers

Away from half-filling of the N"2
levels, the resistance again becomes
essentially isotropic.  Figure 6 shows data
from a sample having low temperature
mobility of µ=15.6x106cm2/Vs.  For this
sample, the observed resistances Rxx and
Ryy differ by about a factor or 3500 at

Fig. 3. Temperature development of resistance Fig. 4. Resistances at exactly !=9/2.
features around !=9/2.

Fig. 5. Overview of transport anisotropy in high
Landau levels.
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Anisotropy and new fractions in the FQHE

New Physics in High Landau Levels

J.P. Eisenstein1, M.P. Lilly1, K.B. Cooper1, L.N. Pfeiffer2 and K.W. West2

1California Institute of Technology, Pasadena, CA 91125
2Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974

Abstract

Recent magneto-transport experiments on ultra-high mobility 2D electron
systems in GaAs/AlGaAs heterostructures have revealed the existence of
whole new classes of correlated many-electron states in highly excited
Landau levels.  These new states, which appear only at extremely low
temperatures, are distinctly different from the familiar fractional quantum
Hall liquids of the lowest Landau level.  Prominent among the recent
findings are the discoveries of giant anisotropies in the resistivity near half
filling of the third and higher Landau levels and the observation of re-
entrant integer quantum Hall states in the flanks of these same levels.  This
contribution will survey the present status of this emerging field.

PACS numbers: 73.20Dx, 73.40Kp, 73.50.Jt

Introduction
The discovery and study of the fractional quantum Hall effect (FQHE) has

dominated the discussion of strong correlation physics in two-dimensional electron
systems for over 15 years[1].   The existence of a diverse family of incompressible
quantum liquids as well as novel “composite fermion” compressible states makes the
early predictions[2] of charge density
wave ground states a striking example of
the failure of Hartree-Fock theory.  On
the other hand, essentially all of this
physics concerns the behavior of many-
electron systems in the lowest (N=0)
Landau level.  Until recently, remarkably
little research has been done on the
problem of electron-electron correlations
in the excited Landau levels.

That the situation in these higher
levels is not merely a replica of lowest
Landau level  physics has actually been
evident for quite some time. In 1987 the
first FQHE state having an even-
denominator was discovered[3] at filling
factor !=5/2 in the N=1 second Landau

Fig. 1. Resistivity data from the N=1 Landau level
taken at T=15mK.   The 5/2, 7/3, and 8/3 FQHE states
are indicated.
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