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A Simple Way to Deal With Missing
Observations From Designed Experiments

George Box

A common difficulty in using designed experiments is that for one reason or
another certain observations may be missing. This article discusses a simple way
due to Draper and Stoneman to deal with this problem for two level factorials and
fractional factorials. Some broader philosophical issues concerning missing

observations are also discussed.

I'm often asked by engineers and other experimenters
what to do if one or more of the observations from a
factorial, fractional factorial, or other orthogonal
array is missing. For example, Table 1 shows the
plus and minus signs for the analysis of a 2* design
from the BHZ book (Box, Hunter & Hunter, 1978, p.
325).

factors - +
A catalystcharge (Ib) 10 15
B temperanwe Cy 220 240
C pressure (psi) 50 80

D concentration (%) 10 12

The runs were actually made in random order
but, for convenience, they are listed here in regular

standard order. The columns A, B, C, D, display the
various factor combinations run in the experiment
and the last column shows the response “% conver-
sion”. The other columns cart be used to calculate the
fifteen effects of the various factors and their interac-
tions AB, AC, ... , ABCD. These are shown in Table 2
in the column marked “full design”. They are ob-
tained from the columns of signs in the usual way by
adding the results corresponding to the plus signs and
subtracting the resulis corresponding to the minus
signs and then dividing by eight.

But if an observation is missing from such an
experiment what are we to do? One technique is to fit
in an appropriate model to the data by least squares
(regression). A simpler procedure due to Yates
(1933) which gives the same estimated effects is to

Table 1

The plus and minus signs used to calculate the effects from a 24 factorial design.

un A B € D AB AC AD BC BD €D  ABC  ABD ACD  BCD ABCD  conversion (%)
1 - - - -1+ + + + + + - - - - + i)
2 + - - =] = - - + + + + + - - 61
3 - + - -] - + + - - + + + - + - 90
4 + + - -1 + - - - - + - - + + + 82
5 - - + -] + - + - + - + - + + - 68
6 + - + | - + - - + - - + - + + 61
7 -+ + - - - + - - - + + - + 87 (w)
8 + + + - | + + + - - + - - - - 80
9 - - - +| + + - + - - - + + + - 61
10 + - - +] - - + + - - + - - + + 50
11 - + - 4+ - + - - + - + - + - + 89
12 + + - +| + - + - + - - + - - - 83
13 - = + +| + - - - - + + + - - + 59 (x)
14 + - + +| - + + - - + - - + - - 51
15 - + + +} - - - + + + - - + - 85
16 + + + + | + + + + + + + + + + 78
§ 8 8 8 8 8 8 8 8 8 8 8§ 8 8 8 « divisor
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plug in a “fitted value™ for the missing observation
and carry out the analysis as before. An casy way (o
do this for factorial-type designs is described in detait
by Draper and Stoneman (1964). It goes like this.

Consider a sixteen run experiment like that in
Table 1, but suppose there is a missing observation.
Since we now do not have a complete set of data we
can no longer estimate all fifteen effects. So if we
were using the least squares method we might take
some effect which we believed would be negligible
and omit it from the model. This tums out to be
equivalent to substituting a fitted value obtained by
setting the supposedly negligible effect equal to zero.
It sounds more complicated than it is, so let’s try it.

Suppose in Table 1 that observation number
thirteen is missing. Now in fact the response actuatly
observed for this run was fifty-nine, but let’s assume
we don’t know this, Call the response from this run
“¢”the unknown quantity. In the absence of any
evidence to the contrary, we might expect the highest
order interaction ABCD is the effect most likely to be
negligible. On this assumption we can estimate the
missing value x by setting this ABCD effect equal o
zero. Using the ABCD column of signs in Table 1
and writing x for the unknown value of the thir-
teenth observation we get

71 — 61 - 90 + 82 -~ 68 + 61 + 87 — 80 ~ 61

+50+89-83+x-51-895+78=0.
So that —61+x=0and x=61 .

An analysis with this “fitted” value substituted
for observation thirteen is shown in Table 2. For this
set of data, where the ABCD interaction estimated for
the complete data was small to begin with, this has
little effect on the estimates.

The same idea can be applied with two observa-
tions missing. For illusiration suppose that in addi-
tion to the observation missing from run thirteen,
which we called x, the observation from run seven is
also missing. Let’s call this one w. It will be pos-
sible to obtain fitted values for both these missing ob-
servations if we can assume that two suitably chosen
effects are negligible.

What 1 mean by “suitably chosen™ is best ex-
plained by an example. Suppose, as before, we select
ABCD as our first “null” column. If you look at the
plus and minus signs for this column you will notice
that in rows seven and thirteen, where there are miss-
ing data, the same sign (+) occurs. Therefore we
must arrange that, for our second null column, the
signs in rows seven and thirteen are different. Thus
we could choose ABC or ACD but not ABD or BCD
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: Table 2
Estimates of effects for the 2* factorial designs.
(a) with observation thirteen omitted and ABCD
assumed to be zero and (b) with observations thirteen
and seven omitted and both ABCD and ABC assumed

to be zero.
full design {a) (b)
average 72.25 72.375 72.375
A -8.00 —8.25 -8.25
B 24.00 2375 23.25
C -2.25 -2.00 -2.00
D -5.50 -5.25 -4.75
AB 1.00 1.25 1.75
AC 0.75 0.50 050
AD 0.00 -0.25 -0.75
BC -1.25 -1.50 =2.00
BD 4.50 425 425
cD -0.25 0.00 0.50 -
ABC .75 -0.50 assumed zero
ABD 0.50 0.75 0.75
ACD -0.25 -0.50 -1.00
BCD 075 -1.00 -1.00
ABCD -0.25 assumed zero assumed zero

as the second null column, For illustration lets
choose ABC. Then

ABCD =0 gives w+x= 148
ABC =0 gives w—x= 22 .

You can see now why we need the signs to
switch for the missing rows in the two “null”
columns. This is to ensure that the two equations we
end up with will have a solution. In this example
solving the equations by first adding them together
and then subtracting one from the other we get

w=285 x=63 .

The result of plugging in these fitied values in
Table 1 is shown in the last column of Table 2.

The various effects do not differ materially from
those calculated originally. Again, this is because,
from the full set of data, both the ABCD and the ABC
interactions have small effects.

This simple computational device can also be
used for the analysis of fractional factorials and other
orthogonal arrays when observations are missing.
The method will give the same estimates as a least
squares analysis in which the effects we have put
equal to zero are omitted from the model. It has the
advantage that it is usually a lot easier to do. Notice
that the result of this procedure depends somewhat on
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which columns we choose to set equal to zero. This
is because the least squares solution depends on
which effects we choose to drop out of the model.

. Usnally the best way to analyze designs of this
kind, whether you have missing observations or not,
is to make a Daniel plot using normal probability
paper. In such a plot, points falling off the straight
line are likely to represent real effects not easily ex-
plained as merely due to noise (experimental error).
But remember that, for example, if you have two
missing observations from a sixteen-run design you
have only really estimated thirteen effects (you set
the other two equal to zere). These zero values
should not be plotted therefore. The remainder may
be arranged in order of size and plotted in the usual
way at % probability values given by P; = 100¢G —
14)/m with m =13 (BH2 p. 330). This will provide
an adequate approximate analysis so long as only a
few observations are missing. In particular if you do
this for the data in Table 1 you will find that the same
effects A, B, D and BD, indicated in Table 2 by
arrows, show up as distinguishable from noise with or
without missing observations.

Remember, as for any other technique, that the
results are only as good as the assumptions. Thus, the
“null columns™ ought to be chosen, not only so as to
make the equations solvable but, so that the effects
(or with fractional designs the strings of aliased
effects) correspond to quantities that you really think
are likely 1o be small. Remember also that what we
have here is simply a convenient computational de-
vice. It does not of course recover the information
that has been lost. For example, in my earlier column
in CQPI Report No. 46 I referred to an eight run ex-
periment on ball bearings by Hellstrand. The discov-
ery that the life of the bearings could be increased
five-fold rested entirely on the experiment results in
which two factors—heat treatment, and outer ring
osculation—were increased together. 1f these partic-
ular results had been missing, no statistical analysis
of any kind could have recovered this vital informa-
tion. So don’t rely on your results if you have too
many missing observations. Usually, I would start to
feel uncomfortable with the analysis when there was
more than one missing observation in an eight run
experiment, or more than two observations missing
from a sixteen run experiment.

So much for the technique. Now let’s talk about
some, perhaps more important, philosophical issues
concerning missing observations. When we have
missing observations it is always best if possible to
get them repeated (usually with some other runs
repeated for comparison, in case something has
slipped). But often the most important question about

a missing observation is “Why is it missing?”
Because questions such as this about the conduct of
the experiment almost always come up, it is very im-
portant to keep a notebook with a detailed record of
what happened in each run. Perhaps the missing
value has occurred simply because of a failure to
tecord, or, of much more concern, because the
machine or process could not be run at these particu-
lar set of conditions. In either case it is important to
follow up on such possibilities immediately. The fact
that the process cannot be run at particular conditions
is, in itself, important information. Suppose, for ex-
ample, that the other runs suggest that the conditions
that “cannot be run” might be especially favorable.
In that case we ought to ask whether the problem of
making these runs is an insuperabie one, or whether
by some not too difficult modification these condi-
tions could in fact be tried.

Sometimes an observation is not actually miss-
ing, but is, for some reason or another, suspect. In
that case you may want to use this technique to dis-
cover what the effect of dropping that particular ob-
servation might be. But if a large discrepancy is
found between the observed and the fitted value you
should net just automatically substitute the fitted
value in the analysis. The difference you find may
contain important information. The first thing to do
is to look at the notes made at the time of performing
the suspect run to see if there were unusual circum-
stances that might explain the result. If so it may be
worthwhile to run a repeat which replicates the
recorded peculiarities of the original run to see if the
result can be duplicated. For, suppose the problem
was to define conditions that gave a #igh value for the
response. If the discrepancy indicated an exception-
ally high value, this could be telling us that something
we accidentally did differently was especially
desirable. On the other hand if the discrepancy indi-
cated an unusually low value, this could be telling us
these are conditions were to be especially avoided.
Although most of the time it is the main effects and
two-factor interactions that are important in a facto-
rial design, there is no law that says that every phen-
omenon fits into that pattern. Occasionally a particu-
lar combination of factor levels may give an unusu-
ally good or bad result which is not explicable in
terms of main effects and low order interactions. For
example the exceptional hardness of certain steel al-
loys and the necessary conditions for an atomic ex-
plosion depend on the unique coming together of
certain specific levels of a large number of factors.
We must therefore always be ready to learn from
repeatable occurrences however odd they may look at
first sight.
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Finding Bad Values in Factorial Designs

George Box

Sometimes the results from a designed experiment contain “bad or suspect”
values. This article discusses a simple way due to Cuthbert Daniel of detecting a
bad value. It also describes how you might re-estimate its value. More general
issues are considered surrounding observations that appear discrepant.

Look at the data in Table 1. It shows a 24 factorial
experiment from Box and Meyer (1987). Shown in
Figure 1 are the effects plotted on normal probability
paper.

As you may know, this plot (which I prefer to
call a Daniel plot in honor of its originator) is a
simple, but most valuable, tool for discriminating
between effects likely to be due to noise and those
effects which are almost certainly real. The former
will plot as points on a straight line, the latter will fall
off the line. At first sight it looks as if you might
draw a rough straight line through all the points, indi-
cating that there were no effects detectable different
from noise. But you can see that a better fit might be

obtained by drawing two straight lines. Cuthbert
Daniel {(1976) pointed out that such a plot provides a
strong clue that you have a discrepant data value.
You can see why this would be by imagining
what would happen with a good set of data if you
miswrote one of the data values. For illustration let’s
say for observation number three you had written
down 53.13 when it should have been 43.13, thus
making that value ten units too high. Now remember
you calculate these effects column by column by
adding together all the data values opposite plus signs
and subtracting these opposite minus signs. The
resulting contrasts are divided by eight to give the
effects A, B, C, D, AB, AC ... etc. Now if observation

Table 1
Results from a 2% factorial design with calculated effects before and after adjustment.
Effects —0.80 422 371 101 091 -249 058 080 -1.18 149 120 072 040 -1.58 152
Adisied 060 347 291 021 041 -169 022 000 038 069 040 008 120 -078 072
Run A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD
1 - - - - + + + + + + - - - - + 4746
2 + - - - - - - + + + + + + - - 49.62
3 - + - - - + + - - + + + - + - 4313
4 + + - - + - - - - + - + + + 4631
5 - - + - + - + - + - + - + + - 5147
6 + - + - - + - - + - - + - + + 4849
7 - + + - - - + + - - - + + - + 4934
8 + + + - + + - + - - + - - - - 46.10
9 - - - + + + - + - - - + + + - 46.76
10 + - - + - - + + - - + - - + + 4856
11 - + - + - + - - + - + - - + 4483
12 + + - + + - + - + - - + - - - 4445
13 - _ + + + - - - - + + + - - + 59.15
(57.75)
14 + - + + - + + - - + - - + - - 5133
15 - + + + - - - + + + - - - + - 47.02
16 + + + + + + + + + + + + + + 4790
Signsof - + + - - - - + + + + - +

likely “emror” effects
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Figure 1 Daniel plot of estimated effects
from 2% design.

number three is too high by ten units, you can see that
the effect contrast for the main effect A will be ten
units too low because the column for A has a minus
sign in row three. Similarly the main effect contrast
for B will be ten units too high because the column
for B has a plus sign in row three, and so on. So
after you've divided by eight the A effect will be
discrepant by % = ~1.25 (1.25 units too Iow) and
the B effect by % = +1.25 (1.25 units too high). If
you look at the table of plus and minus signs opposite
row three you can see that the effect of the discrepant
value would be to make eight of the fifteen effects too
low by —1.25 units and the remaining seven too high
by +1.25 units.

Now think about the effects which are just due to
noise {experimental error). If there were no bad val-
ues, these “error” effects ought to plot as a straight
line cutting the 50% probability line close 1o zero on
the horizontal axis. But because of the discrepant
value, some of these error effects will be biased up-
wards and the others downwards so you could expect
the data in the middle of the plot to appear not as one,
but as two, straight lines.

Now think of the problem the other way around.
You’ve made the plot and it looks like two straight
lines rather than one, just as in Figure 1. What you
want to find out is which data value is responsible for
the discrepancy. I have indicated by plus signs below
Table 1 all the positive effects that plot as the upper
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straight line in Figure 1 and by minus signs all the
negative effects that plot as the lower straight line.
Now cast your eyes over the rows of signs corre-
sponding to the various observations and see if you
can see a row of pluses and minuses that nearly
matches this (or one that matches it if all the signs are
reversed, because the discrepancy could be either
way). You will see that in row thirteen all the signs
except one match, so that the discrepant observation
appears to be number thirteen. A more precise way
to check the matching is to calculate the cross prod-
ucts of the signs in the rows of the table with the sup-
posed error effects. The one that matches the best
will give the largest cross product.

Let us now take this a stage further. Assuming
that there is a discrepancy in observation number
thirteen, what is its estimated magnitude? A rough
way to make an estimate is as follows: Look at
Figure 1. The plotted effects on the two lines which
are closest to zero are most likely the result of the
positive and negative biases (% d say) plus error. So
let us say that the true effects for A, D, AB, BC, AD,
BD, ABD, and ACD are probably in reality small or
nonexistent.

Then we have eight estimates for d obtained
from

-A=0.80,+D=1.01, +AB = 0.91,
-BC =0.80,-AD =0.58, -BD = 1.18,
+ABD =072, +ACD = 0.40 .

On the assumption that the true values for these
effects is zero the least squares estimate for d is ob-
tained by averaging them to give 4 = 0.80. Cor-
respondingly observation thirteen is estimated to be
0.80 x 8 = 6.40 units too high.

We cheat a bit in getting these estimates, because
we look at the data first to decide which effects to call
error. A more precise method is given in the Box and
Meyer paper but the resuits aren’t very different,
Using the adjusted value 59.15 - 6.40 = 52.75 for
observation thirteen we obtain the “adjusted effects”
shown above Table 1 and a Daniel plot of these are
shown in Figure 2. We see afier making the adjust-
ment that the main effects for factors B and C and
the interaction AC are probably real,

In all of this remember what I said in my last
column. A discrepant value should not just be
thrown away—it might be trying to tell us something!
An awful wamning is supplied by the “hole” in the
ozone layer over the Antarctic discovered by British
scientists. After the existence of the hole was
confirmed the question was asked “how come the
NASA satellite, that had been continually circling the
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Figure 2. Daniel plot of adjusted effects
from 2% design.

earth for the past several years, didn’t find it?” The
answer is that these data were automatically checked
for outliers by a computer program and the hole in
the ozone layer was screened out!

Let that be a lesson to us all,
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