Navegar usando este índice

Especial | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Todos

Página: (Anterior)   1  2
  Todos

E

Cd

Equilíbrio de Hardy‑Weinberg

por Caroline de Oliveira Monteiro - quarta-feira, 22 mai. 2024, 16:41
 

É uma equação matemática para calcular as frequências genotípicas a partir das frequências alélicas, onde se as frequências alélicas não mudam de geração em geração, a proporção de genótipos não mudará também.


A lei de Hardy‑Weinberg baseia‑se nesses pressupostos:

- população em estudo é grande

- casamentos são aleatórios 

- não há nenhuma taxa de mutação nova

- não há seleção contra qualquer genótipo específico

- não há imigração significativa 


Fórmulas: 

p + q = 1 e p² + 2pq + q² = 1


Seja: 

p + q = 1

p = Alelo dominante (A)

q = Alelo recessivo (a)


Assim: 

p² + 2pq + q² = 1

p² = Homozigoto dominante (AA)

q² = Homozigoto recessivo (aa)

2pq = Heterozigoto (Aa)


Referências: Genética Médica. Thompson & Thompson. 8ª Edição. Editora Elsevier.



 

É

EJ

Éxons

por Eduarda Jonas Machado - terça-feira, 21 mai. 2024, 14:40
 

Éxon é uma região de um gene que codifica a sequência de aminoácidos de uma proteína. Durante a transcrição do DNA para RNA mensageiro (mRNA), os éxons são transcritos e, em seguida, unidos para formar o mRNA maduro. Este mRNA é então traduzido em proteína durante o processo de síntese proteica. Os éxons são importantes porque contêm informações genéticas que determinam a sequência de aminoácidos na proteína final, assim, a função dos éxons é crucial para a expressão adequada dos genes e para a manutenção da saúde e funcionamento adequado de um organismo.

Referências bibliográficas:

Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., & Walter, P. Biologia Molecular da Célula. Artmed Editora. 2017. 6° Edição

Imagens:

Intron Exon RNA splicing Messenger RNA Transcrição primária, outros,  ângulo, texto, outros png | PNGWing

 




 

E

EJ

Expressividade

por Eduarda Jonas Machado - terça-feira, 21 mai. 2024, 14:54
 

Expressividade genética refere-se à variação na manifestação fenotípica de um determinado gene em diferentes indivíduos ou em diferentes contextos ambientais. Em outras palavras, expressividade genética descreve a extensão em que um gene específico se expressa como um traço fenotípico observável em um organismo.

Existem várias razões pelas quais a expressividade genética pode variar:

  1. Variação genética: Diferenças nas sequências de DNA, como mutações ou variações alélicas, podem influenciar a expressão de um gene. Por exemplo, uma mutação pode resultar em uma expressão aumentada ou diminuída do gene.

  2. Interferência de outros genes: A expressão de um gene pode ser afetada pela presença ou ausência de outros genes, em um fenômeno conhecido como interação gênica.

  3. Ambiente: Fatores ambientais, como dieta, exposição a substâncias químicas ou estresse, podem influenciar a expressão genética. Por exemplo, uma dieta rica em determinados nutrientes pode aumentar a expressão de genes relacionados ao metabolismo desses nutrientes.

  4. Regulação epigenética: Alterações na estrutura do DNA ou na modificação das histonas, conhecidas como epigenética, podem influenciar a expressão gênica sem alterar a sequência de DNA. Essas alterações epigenéticas podem ser herdadas ou serem influenciadas pelo ambiente.


Referências bibliográficas:

UFRPE. Genética Geral. [Recurso eletrônico]. Disponível em: https://repository.ufrpe.br/bitstream/123456789/2355/1/livro_geneticageralweb.pdf.

Imagens:
I4ZgGfV0Zti91QdJw8IWHjSo-YdFqDYRYmSPjNGcLaWcZB9IiuvkVaZHlG1NBFjNowkAVCDrM_wg01KUjbyasU5apG-VGlwuDhEjVrrDBQugfYtZwryI_xfIUyqbvOnxJX1hQP8sUicUbBPMAQtl1r8

 

EJ

Expressões gênicas

por Eduarda Jonas Machado - terça-feira, 21 mai. 2024, 14:50
 

Expressão gênica refere-se ao processo pelo qual as informações contidas em um gene são utilizadas para sintetizar um produto funcional, geralmente uma proteína. Este processo envolve várias etapas, começando com a transcrição do DNA para RNA mensageiro (mRNA) e terminando com a tradução do mRNA em uma sequência específica de aminoácidos que compõem uma proteína.

A expressão gênica é altamente regulada e pode variar em resposta a diferentes estímulos ambientais ou internos. A regulação da expressão gênica permite que os organismos controlem quais genes são ativados e quando, permitindo adaptações a mudanças nas condições ambientais, desenvolvimento embrionário, diferenciação celular e manutenção da homeostase.

Além disso, a expressão gênica não se limita apenas à produção de proteínas. Alguns genes produzem moléculas de RNA que têm funções específicas sem serem traduzidos em proteínas, como os RNA mensageiros não codificantes (ncRNAs), que podem regular a expressão de outros genes ou estar envolvidos em processos como a regulação epigenética.

Referências bibliográficas:

Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., & Walter, P. Biologia Molecular da Célula. Artmed Editora. 2017. 6° Edição

Imagens:
Imagem exemplar sobre expressão gênica

 

EJ

Extremidade 3'

por Eduarda Jonas Machado - terça-feira, 21 mai. 2024, 14:57
 

A extremidade 3' de uma molécula de ácido nucleico, como o DNA ou o RNA, refere-se à ponta final onde o grupo hidroxila (-OH) está localizado no carbono 3' do açúcar na cadeia de nucleotídeos. Essa designação é importante na genética, especialmente na transcrição e na síntese de proteínas.

Durante a transcrição do DNA para RNA, a síntese do RNA ocorre na direção 5' para 3'. Isso significa que a extremidade 3' do RNA recém-sintetizado é adicionada primeiro. Da mesma forma, na síntese de uma nova cadeia de DNA durante a replicação, a nova fita de DNA é alongada na direção 5' para 3', com nucleotídeos sendo adicionados à extremidade 3' da fita existente.

Além disso, na tradução do RNA mensageiro (mRNA) em proteínas, a sequência de nucleotídeos na extremidade 3' do mRNA determina o códon de parada que sinaliza o fim da síntese da proteína.

Assim, a extremidade 3' é uma referência importante na genética, pois influencia a direção da síntese e a interpretação do código genético durante processos fundamentais como transcrição, replicação e tradução.

Referências bibliográficas:

  • Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., & Walter, P. Biologia Molecular da Célula. Artmed Editora. 2017. 6° Edição

Imagens:

PNxqWZrHiE-DUZKFHh6vCN5UFD9xXJKIR2vshW9tXF_ViHSGtuVuZOcxYdc7KbFtd_Mznn9VdAJXxwuUhoOSWydSDB2O2LljF9UNKsSSWr3JZFOSdm5XBw7BukcM1jHvtS65FFQRxemgCUsqExtcF5g   

motRsb-DqMfWQUxXgCQgehQapM6alMja8WEo0vovn2eiqOM8Tk4HGlegv_Y9G4GVqSO97WJFFPGslWYSZ8MN48gvv48UOVv7a2bdgJJ563Uwsi3aCT1q0DfV41wu_nQ99YDGVuypYqKRspyh5AZEepo



 

EM

Extremidade 5 linha

por Eduarda Menegari - quinta-feira, 23 mai. 2024, 13:26
 

A extremidade 5' refere-se à extremidade de uma molécula de ácido nucleico onde o quinto átomo de carbono do açúcar pentose (ribose no RNA e desoxirribose no DNA) está livre e possui um grupo fosfato ligado a ele, sendo oposta à extremidade 3' (três linha). Serve como ponto de início para a síntese de ácidos nucleicos, como a replicação do DNA e a transcrição em RNA, além de ser o local onde a enzima polimerase (DNA polimerase na replicação e RNA polimerase na transcrição) começa a adicionar nucleotídeos para construir a nova molécula.
DNA5'


REFERÊNCIAS:

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2020). Cooper, G. M. (2000).
The Cell: A Molecular Approach (2nd ed.). Sinauer Associates.
https://static.todamateria.com.br/upload/re/pr/representacaodaestruturadodna-cke.jpg?auto_optimize=low
https://s3.static.brasilescola.uol.com.br/img/2019/03/estrutura-do-dna.jpg



 


Página: (Anterior)   1  2
  Todos