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Chapter 1

Finite difference approximations

Our goal is to approximate solutions to differential equations, i.e., to find a function (or some discrete
approximation to this function) which satisfies a given relationship between various of its derivatives on
some given region of space and/or time, along with some boundary conditions along the edges of this
domain. In general this is a difficult problem and only rarely can an analytic formula be found for the
solution. A finite difference method proceeds by replacing the derivatives in the differential equations
by fimite difference approximations. This gives a large algebraic system of equations to be solved in
place of the differential equation, something that is easily solved on a computer.
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Before tackling this problem, we first consider the more basic question of how we can approximate
the derivatives of a known function by finite difference formulas based only on values of the funetion
itself at discrete points. Besides providing a basis for the later development of finite difference methods
for solving differential equations, this allows us to investigate several key concepts such as the order of
accuracy of an approximation in the simplest possible setting.

y=f(x)
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Let u(z) represent a function of one variable that, unless otherwise stated, will always be assumed
to be smooth, meaning that we can differentiate the function several times and each derivative is a
well-defined bounded function over an interval containing a particular point of interest Z.

Suppose we want to approximate u'(Z) by a finite difference approximation based only on values of
u at a finite number of points near . One obvious choice would be to use

u(Z +h) —u(z)
h
for some small value of h. This is motivated by the standard definition of the derivative as the limiting

value of this expression as h — 0. Note that D, u(Z) is the slope of the line interpolating u at the
points  and T + h (see Figure 1.1).

D, u(z) =

(1.1)

u(x — h) u(x) u(x + h)

x—h X X+ h
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The expression (1.1) is a one-sided approximation to u’ since u is evaluated only at values of = > Z.
Another one-sided approximation would be

w(Z) —u(x —h) |

D_u(z) -

(1.2)

Each of these formulas gives a first order accurate approximation to u'(Z), meaning that the size of the
error is roughly proportional to h itself.
Another possibility is to use the centered approrimation
wz+h)—uz—-n) 1

Dou(z) = = = >(Dsu(#) + D_u(x)). (1.3)

This is the slope of the line interpolating w at  — h and Z + I, and is simply the average of the two
one-sided approximations defined above.

u(x — h) u(x) u(x + h)

x—h X X+ h
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slope D, u(T)
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Figure 1.1: Various approximations to u'(Z) interpreted as the slope of secant lines.
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From Figure 1.1 it should be clear that we would expect
Dyu(Z) to give a better approximation than either of the one-sided approximations. In fact this gives a

second order accurate approximation — the error is proportional to h? and hence is much smaller than
the error in a first order approximation when h is small.

Other approximations are also possible, for example

Dzu(z) = %[Qu{f + h) + 3u(z) — 6u(z — h) +u(F — 2h)]. (1.4)

It may not be clear where this came from or why it should approximate «’ at all, but in fact it turns
out to be a third order accurate approximation — the error is proportional to h* when h is small.

Our first goal is to develop systematic ways to derive such formulas and to analyze their aceuracy
and relative worth. First we will look at a typical example of how the errors in these formulas compare.
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Example 1.1. Let u(z) = sin(z) and £ = 1, so we are trying to approximate u'(1) = cos(1) =
0.5403023. Table 1.1 shows the error Du(z) — u'(z) for various values of I for each of the formulas
above.

Table 1.1: Errors in various finite difference approximations to u'(T).

h D+ D- DO D3
1.0000e-01 -4.2939e-02 4.1138e-02 -9.0005e-04 6.8207e-05
5.0000e-02 -2.1257e-02  2.0807e-02 -2.2510e-04 8.6491e-06
1.0000e-02 -4.2163e-03 4.1983e-03 -9.0050e-06 6.9941e-08
5.0000e-03 -2.1059e-03 2.1014e-03 -2.2513e-06 8.7540e-09
1.0000e-03 -4.2083e-04  4.2065e-04 -9.0050e-08 6.9979e-11

We see that D, u and D_u behave similarly though one exhibits an error that is roughly the negative
of the other. This is reasonable from Figure 1.1 and explains why Dgu, the average of the two, has an
error that is much smaller than either.
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Figure 1.2: The errors in Du(Z) from Table 1.1 plotted against h on a log-log scale.
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We see that
Diw(z)—u'(z) = -0.42h

Dou(z) —u'(z) = —0.09h*
Dyu(z) —u'(z) = 0.007h°

Figure 1.2 shows these errors plotted against h on a log-log scale. This is a good way to plot errors
when we expect them to behave like some power of h, since if the error E(h) behaves like

E(h) = Ch?

then
log |E(h)| = log |C| + plog h.

S0 on a log-log scale the error behaves linearly with a slope that is equal to p, the order of aceuracy.
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1.1 Truncation errors

The standard approach to analyzing the error in a finite difference approximation is to expand each of
the function values of u in a Taylor series about the point z, e.g.,

wrZ+h) = u(z)+hu'(z)+ %hzu”(:?} + %hau’”(iﬂ) + O(h*) (1.5a)
w—h) = u(T)-hu'(T)+ %hzu”{fj — %hau’"(fj + O(h") (1.5b)

These expansions are valid provided that u is sufficiently smooth. Readers unfamiliar with the “big-oh”
notation O(h*) are advised to read Section A1.2 of Appendix Al at this point since this notation will
be heavily used and a proper understanding of its use is critical.
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w(T+h) = u(z)+hd(x)+ %hzu”(:ﬁ} + %hau’”(i‘] + O(h) (1.5a)

Using (1.5a) allows us to compute that

w(T + h) — u(z)

D.u(z) = -

=u'(T) + %hu”{:ﬁ] + éhzu”’{:ﬁ) + O(h?).

Recall that 7 is a fixed point so that u”(z), w"'(Z), ete., are fixed constants independent of h. They
depend on u of course, but the function is also fixed as we vary h.

For h sufficiently small, the error will be dominated by the first term %hu”{i‘) and all the other

terms will be negligible compared to this term, so we expect the error to behave roughly like a constant

times h, where the constant has the value %u”(:ﬁ].

Note that in Example 1.1, where u(z) = sin z, we have su”(1) = —0.4207355 which agrees with the
behavior seen in Table 1.1.

Dou(z)—u'(z) = -042h
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wT+h) = u(z)+hu'(z)+ %hzu”(i‘} + %hau’”(f) + O(h*) (1.5a)

wz@—h) = u(x)—hu (:L}—I—;h2 M(T) — ;ha "(z) + O(h") (1.5b)

Similarly, from (1.5b) we can compute that the error in D_u(Z) is

D_u(z) —u' (%) = —%hu"(:r‘:} - %hzu’”(:ﬁj + O(h%)
which also agrees with our expectations.

Combiniﬁg (1.5a) and {1.5‘1':] shows that

w(T+h) —u(® —h) =2hu'(z) + %hzu”’{::r_:) + O(h®)
so that
Dou(z) —u'(z) = h2 u”(z) + O(h"). (1.6)

This confirms the second order accuracy of this appmx]matmn and again agrees with what is seen in
Table 1.1, since in the context of Example 1.1 we have

1 1

Eu”’{f} =5 cos(1) = —0.09005038,

Dgutfj—ia’{fj ~ —0.09h*
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Note that all of the odd order terms drop out of the Taylor series expansion (1.6) for Dyu(z). This is
typical with centered approximations and typically leads to a higher order approximation.
In order to analyze Dzu we need to also expand u(T — 2h) as

w(T — 2h) = u(z) — 2hu'(Z) + %(Ehjgu”(:ﬁ) — %(thau”’{:f) + O(h). (1.7)
Combining this with (1.5a) and (1.5b) shows that

Dsu(z) = u'(Z) + %hau””(i?) + O(hY). (1.8)

u (x)=sin(x)

SN _ .07

Erro tipografico

Dyu(z) —u'(Z) =~ 0.007h°



w®—h) = u(z)—h(z)+ %hzu”(f} — %hau’”(i‘) + O(h*) (1.5b)  MAP2320

w(T — 2h) = u(T) — 2hu'(Z) + %(thgu”(:?) - é(?h)au”’{:f) + O(h). (1.7)

1.2 Deriving finite difference approximations

Suppose we want to derive a finite difference approximation to u'(Z) based on some given set of points,
We can use Taylor series to derive an appropriate formula, using the method of undetermined coefficients.

Example 1.2. Suppose we want a one-sided approximation to u'(Z) based on u(z), u(z — h) and
u(T — 2h), of the form
Dou(Z) = au(Z) + bu(x — h) + cu(T — 2h). (1.9)

We can determine the coefficients a, b, and ¢ to give the best possible accuracy by expanding in Taylor
series and collecting terms. Using (1.5b) and (1.7) in (1.9) gives

Dyu(z) = (a+b+c)u(z)— (b+2e)hu'(z) + %{b + 4e)h*u" (z)
— %(b+ ge)hu" (F) +--- .

If this is going to agree with w'(Z) to high order then we need

a+b+e = 0
b+2c = -=1/h (1.10)
b+4e = 0
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We might like to require that higher order coefficients be zero as well, but since there are only three
unknowns a, b, and ¢ we cannot in general hope to satisfy more than three such conditions. Solving
the linear system (1.10) gives

a=3/2h b=-2/h c=1/2h

so that the formula is .
Dou(z) = E[SH{TJ‘ —4u(T — h) + u(z — 2h)]. (1.11)

The error in this approximation is clearly
1
Dyu(z) —u'(Z) = —E(b + 8e)hPu" (%) + - - -

lﬁm_ 3
U (@) + O(h).
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1.3 Polynomial interpolation

There are other ways to derive the same finite difference approximations. One way is to approximate
the function u(x) by some polynomial p(x) and then use p'(Z) as an approximation to u'(z). If we
determine the polynomial by interpolating u at an appropriate set of points, then we obtain the same
finite difference methods as above.

Example 1.3. To derive the method of Example 1.2 in this way, let p(z) be the quadratic polynomial
that interpolates w at , ¥ — h and ¥ — 2h and then compute p’(Z). The result is exactly (1.11).
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1.4 Second order derivatives

Approximations to the second derivative u”(x) can be obtained in an analogous manner. The standard
second order centered approximation is given by

D*u(z) = %[u(i —h) —2u(Z) + w(Z + h)]
= u'(Z)+ %hzu””[i'} + O(h*).

Again, since this is a symmetric centered approximation all of the odd order terms drop out. This
approximation can also be obtained by the method of undetermined coefficients, or alternatively by
computing the second derivative of the quadratic polynomial interpolating u(xz) at £ — h, T and = + h.
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wT®+h) = u(T)+ hu'(z)+ %hzu”(fj + %h3-u"’{fj + O(h*) (1.5a)

w®—h) = u(x)-hu'(z)+ %hz-u.”(:?) — %h3-u”’{fj + O(ht) (1.5b)

U(X +h) +u(X —h) = 2u(X) + h2u"(X) + O(h*)
U(X +h) = 2u(X) + u(X — h)
h2

—U"(X) +O(h?)
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Another way to derive approximations to higher order derivatives is by repeatedly applying first
order differences. Just as the second derivative is the derivative of u’, we can view D?u(z) as being a
difference of first differences. In fact,

Dzu{i‘] =D, D_u(z)
since

D.(D_u(z)) = %[D_H(T—l—h)—ﬂ_u{:f)]

_ %[(u{f—l—hé—u{f}) B (u(i‘} —E(T—h})]
= D%u(z).
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1.5 Higher order derivatives

Finite difference approximations to higher order derivatives can also be obtained using any of the

approaches outlined above. Repeatedly differencing approximations to lower order derivatives is a

particularly simple way.
Example 1.4. As an example, here are two different approximations to «"’(z). The first one is

uncentered and first order accurate:
D, D*u(z) = %(u(i‘ +2h) — 3u(Z + h) + 3u(F) — u(Z — h))
u"'(x) + %hu””(i‘] + O(h*).
The next approximation is centered and second order accurate:
DoyD D _u(z) = %(u(i‘ +2h) —2u(Z+h) +2u(T — h) — u(Z — 2h))
= u"(%)+ ihiu”m(f) + O(h*).

Finite difference approximations of the sort derived above are the basic building blocks of finite
difference methods for solving differential equations.



Forward Finite-Difference

First Derivative Error
fx) = f (1.'+l)h—f (x) o(h)
f’(x,') - —f(xi+~?) + 4-f2'ixi+l) = 3f(xl) O(hz)
Second Derivative

f”(x,') — f(xuﬂ = 2fl;(2x'*l) +f(x,) O(h)
f(x) = —f(xiy3) + 4f (xi.-z)hz‘ Sf(xi) + 2f(x) o)
Third Derivative

f”’(x.-) = f(xii3) — 3f (x.'+2)h'3|‘ 3f (xiy) — f(x) O(h)
fm(xi) — _3f(xj+4) + ]Af(xHJ) = Q;i(xi+2) + ]8f(x,'.+.]) = Sf(x,) O(hZ)

h

Fourth Derivative
f””(x,') — f(xi+4) s 4f(xij~3) + bf}.;xi-»?) = 4f(xi+l) + f(xi)
F7(0) = —2f(xs) + 11 f(xin0) — 24 F(x,3) + 26f (x;.0) — 14f(x;..,) + 3f(x)

4/21/201C W

O(h)

O(h%)



Backward Finite-Divided Difference Formulas



Centered finite difference formulas

First Derivative

f "Ix] =

2h
~f{xi42) + 8fx;41) — Bfxi-1) + fxi—9)
12h

Second Derivative

fix) =

Pix) =

fixie1) = 2fx) + Fflxi-1)
h2
—flxi2) + 16f(xi41) = 30fx) + 16fxi-1) = Aixi-2)
12h°

Third Derivative

f"(x) =

f"'(x,—) —

f(XHAQ) == 2[()(,'-.—]) 15 2”":’—‘] = f(xi—Q)
2k
—f(x,-..g) + 8“X¢‘+2] - ‘3f(x,:+1] o ]3[(X,’— ]) o 8[(X;_2) + f(X,'—3)
8h*

Fourth Derivative

f mr( X,‘) —

fx) =

fxis2) = 4fxi1) + OF(x) — 4fixi—1) + fixi-2)
¥
—flx;43) + 12fx:40) + 39fx;41) + S6f(x) = 39x;-1) + 12fx;_o) + fix;_3)
6h

Error
Ok
Oh)

Qlh?)

Oh)

Olb¥)

Olh)

o)

Ofh)



Problema Homogéneo
C.C. de Dirichlet

homogéneas
du 2 % u
ot a2

uix,0)=f(x),0<x<L
u(0,t) =0, u(L,t)=0

Problema Homogéneo

C.C. de Mistas
W _ P
a0 a2

u(x,0)=f(x), 0<x=<1L

d

M,
0,t) =0, —(L,t) =0
u(0,4) =0, = (L)

Problema Homogéneo
C.C. de Dirichlet
nao-homogéneas

du L d%u
a
u(x,0)=f(x), 0 <x<1L
u(0,t) =Ty, u(L,t) =T;

MAP2320

Problema Homogéneo
C.C. de Neumann

homogéneas

du  ,0%u

ot o2
u(x,0)=f(x), 0<x <L
o _ du .
E{El,t_l =0, E””H =0

Problema Nao-Homogéneo

u(x,0)=f(x), 0 <x=<1L
u(0,t) =Ty, u(L,t) =T;
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