5.2 Nonlinear Programming

The aim of this section is to give an elementary discussiop o
ming problems, i.e., finite dimensional optimization problems with 2 i p Btan,
of equality and inequality constraints. Nite Ny,
The other chapters already contain a large number of results dealing y;
ear programs, which were obtained as particular cases of results for mollh Ron]j,
optimization problems. We show in this section how some of these res:]e Benery
obtained by using only standard differential calculus in IR" o 18 can be
dimensional linear programs. The section is mostly self contained; we ’li:fﬁnile
small number of results of other chapters whose proofs are based op elenl01115;;l
tools. Unless stated otherwise we assume that x - y = 2:_;1 %i¥; deng tzn
standard scalar product of two vectors x, y € IR", and that )l = (x )l /3 the
notes the Euclidean norm of a vector x € IR". Specific resuits d de-

ealing witp,
stability of strong regularity were obtained in section 5.1.6, Strong

f nOnlinear

5.2.1 Finite Dimensional Linear Programs

In this section we discuss finite dimensional linear programmin
optimization problems in finite dimensional spaces involving a
function and finitely many linear constraints. In the theory of line
the following result is known as Farkas lemma.

g problems, ie,
linear objectiye
ar' programming

Lemma 5.43 (Farkas lemma) For any vectors a; € R",i = 0,..., p, the fol-
lowing two conditions are equivalent: (i) for every h € IR" such thata; -h =(,
i =1,...,q,anda; -h <0,i = q + 1,..., p, the inequality ay - h > 0
holds, (ii) there exists A € IRP, such that ag + Zf=1 Aia; = 0and A; > 0forall
i=q+1,...,p.

Proof. Rewriting an equality a; - h = 0 as two inequalities a; - & < 0and —q;-h <
0, we can replace all equalitis in the above lemma by the corresponding linea
inequalities. Therefore, we can assume without loss of generality that only the
inequalities are present.

The implication (ii) => (i) is immediate. Indeed, if 4 is such thata; - b <0

i=1"°'. then 3 've’ao.h=_2f=lliai.h20.
we * P

» 3 £ : —_ t}‘l m
1S clos need to prove that —ag € Suppose that this 1S nqt truc. {:;ion"
the me onal) projection of —a, .., h is the optimal S0



e opﬁmization problem

%gl llap + k2.

i blem has a unique optimal i e F
Note that this pro a5 ¢ Optimal solution, since E is nonem
nd closed: and the oblecnye function is continuous and strongly cons:;yx’ ?1(:3':;:.
133). Let b := ao + h. Since —ay ¢ E, we have that b # 0. Also, since E i:
convex, we have foranye € E and t € [0, 1] that +t(e — k) € E and hence

.__- =1 i -1 h h A
b-le—h) = zlim (llao+h+t(e--h)||2—|lao+h||2)20.

Takinge::Oweobtainmatb.i,So,andhenceb.ao=b. b
other hand, taking e := t~1a; for some i € {1, ... , p}, we geg Fioea

0<li o, —h).b=
_tlﬁllt(t ai—h)-b=b.a,.

By taking & := —b in the condition (i), we obtain a contradiction. This completes
the proof. m|

Consider the follo».vin g linear programming problem:
. (LP) e
3 subjectto a;-x=b;, i =1,...,q, (5.91)
aix<b,i=q+1,...,p.

The dual of this problem can be written as follows:
Max)ecrr —b-A
- (LD) - p
| subjectto c+ ) i_, Aiai =0, (5.92)
2>0,i=qg+1,...,p.

Note that the primal problem (L P) can be written as the min-max problem

_,Min{s%: L( _}.-_‘)lli.ZQ,i—'-‘-q-i-L---,P}, (5.93)

angian dual of (LP).

s written in the format of the primal
one obtains the primal problem
between the primal and its
somewhat arbitrary.

jons of (L P) and
ing complementarity
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condition holds:
Ai(ai-x—b)=0, i=qg+1,...,p. (
- 5'9
(ii) Pmbl.ems ([: P) and (L D) have the same optimal value, unless (L P) K
are both inconsistent, If their (common) optimal value is finite, then bmhand (LD)
have nonempty sets of optimal solutions. Problem;

Proof. Letx and A be feasible points of the problems (L P) and (L D), respect;
Since A is a feasible point of (L D), the difference between the respective Ively,
of the objective functions can be written as Values

p P
c-x+b-k=—(Z)\.,'a;) x+b-A=~) Ai@-x—b). (595
e i=1

Since x is feasible, and hence satisfies the constraints of (L P), and by the nq
negativity of the last components of A, we obtain that the expression in the ri ﬁt
hand side of (5.95) is nonnegative, and hence is equal to zero iff the complemsn-
tarity condition holds. We see that for any feasible points x and A of the respective
problems, the corresponding value ¢ - x of the primal problem is greater than or
equal to the value —b - A of the dual problem, and that equality holds iff the com-
plementarity condition is satisfied. It follows that val (LP) = val (L D), and if x
and ) are feasible and the complementarity condition is satisfied, then x and A are
optimal.

Now, if both (L P) and (L D) are inconsistent, then the above assertions clearly
hold. Therefore, we can assume that one of these problems, say, (LP), is con-
sistent and hence val (LP) < +o0. Since val (LP) > val (L D), we have that if
val (LP) = —o0, then val (LD) = —o9, and hence in that case the assertions
hold. Therefore, we can assume that (L P) has a finite optimal value. We have then
by theorem 2.198 that (L P) has at least one optimal solution X. Denote by

Ix):={i:a-x=bi, i=q+1,...,p}

the set of inequality constraints active at x. If 2 € IR" satisfies
ai-h=0,i=1,...,9; a -h <0, i€lx),

then for ¢ > 0 small enough, we have that X + th is feasible for (L P). Since X is
an optimal solution of (L P), it follows that ¢ .¥ < ¢+ (X+th),and hencec-h 2 0.
Then by the Farkas lemma (lemma 5.43), there exists A € IR? suchthat

i=l v
It follows that A is a feasible point of (L D) and that the compls
hold. By (5.95) we obtain that A is an optimal solution of (LB)
val (L D). Since there is no duality gap between the prob
it also follows from (5.95) that if x and A are optimal,
condition holds. This completes the proof. ‘




