
Chapter 5

Variational Problems: Globalization
of Convergence

Newtonian methods for variational problems discussed in Chap. 3 have
attractive local convergence and rate of convergence properties, but they
are local by nature: for guaranteed convergence, they all require a starting
point close enough to a solution. Therefore, to arrive to practical algorithms
based on these methods, the process of computing and automatically accept-
ing an appropriate “starting point” must be incorporated into the overall
iterative scheme. Such extensions of locally convergent methods are referred
to as globalization of convergence. This chapter discusses some strategies for
globalization of convergence of Newtonian methods for variational problems.

5.1 Linesearch Methods

As seen in Sect. 2.2, descent methods for unconstrained optimization possess
natural global convergence properties. Moreover, linesearch quasi-Newton
methods combine global convergence of descent methods with high conver-
gence rate of the Newton method. It is then natural to extend this idea to
other problem settings. This requires relating the problem in question to
unconstrained optimization, in some meaningful way. This task is usually
approached by constructing a function measuring the quality of approxima-
tions to a solution of the original problem, called a merit function. Then,
given a direction produced by a Newtonian method, we can perform line-
search in this direction, evaluating the candidate points using the chosen
merit function. In the case of unconstrained optimization, the natural merit
function is the objective function of the problem. For constrained optimiza-
tion and variational problems, the choice of a merit function is not evident
and is certainly not unique. Some possibilities will be discussed in this and
the next chapters.

Essentially, the idea of linesearch globalization is to reduce the size of the
Newtonian step when the full step does not provide a sufficient decrease for
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306 5 Variational Problems: Globalization of Convergence

values of the chosen merit function. If the resulting algorithm turns out to
be a descent method for the merit function, one can expect global conver-
gence (in some sense). If, in addition, the stepsize is reduced only far from
solutions (solutions satisfying certain properties, of course), this would imply
that the algorithm asymptotically turns into the full-step Newtonian method
possessing high convergence rate. For linesearch quasi-Newton methods for
unconstrained optimization, this ideal combination of convergence properties
is achieved in Theorems 2.24–2.26. However, as naturally expected and seen
below, for more general and different problem settings the situation is more
complex.

5.1.1 Globalized Newton Method for Equations

We start with considering linesearch methods for the usual equation

Φ(x) = 0, (5.1)

where Φ : Rn → Rn is a smooth mapping. As discussed in Sect. 2.2.3, the
natural choice of a merit function ϕ : Rn → R for (5.1) is the squared
Euclidean residual

ϕ(x) =
1

2
‖Φ(x)‖2. (5.2)

Moreover, for any x ∈ Rn which is not a solution of (5.1), if Φ′(x) is a
nonsingular matrix, then the well-defined Newtonian direction

p = −(Φ′(x))−1Φ(x) (5.3)

is a direction of descent for this merit function at x, i.e., p ∈ Dϕ(x). In
Sect. 2.2.3 also some perturbed counterparts of the Newtonian direction p
are discussed, which are relevant in the context of linesearch methods.

Here we only consider the basic choice (5.3). One special feature of this
direction is that its quality as a descent direction can be readily estimated
via the residual of (5.1):

〈ϕ′(x), p〉 = 〈(Φ′(x))TΦ(x), p〉 = 〈Φ(x), Φ′(x)p〉 = −‖Φ(x)‖2. (5.4)

In particular, 〈ϕ′(x), p〉 may become close to zero (so that p is not a “good”
descent direction) only when Φ(x) is close to zero. One possible way to deal
with the latter situation is to employ the Levenberg–Marquardt regular-
ization, blending the Newton direction with the steepest descent direction.
However, the drawback of using the Levenberg–Marquardt directions in
linesearch methods is the difficulty in choosing the regularization parame-
ters; see Sect. 2.2.3.
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Alternatively, the following algorithm implementing the Newton method
equipped with the Armijo linesearch rule has the option of resorting directly
to the steepest descent step as a safeguard, but only in those cases when the
Newtonian direction does not exist or is too large.

Algorithm 5.1 Choose parameters C > 0, τ > 0, σ ∈ (0, 1) and θ ∈ (0, 1).
Choose x0 ∈ Rn and set k = 0.

1. If Φ(xk) = 0, stop.
2. Compute pk ∈ Rn as a solution of the linear equation

Φ(xk) + Φ′(xk)p = 0. (5.5)

If such pk exists and

‖pk‖ ≤ max{C, 1/‖Φ(xk)‖τ}, (5.6)

go to step 4.
3. Set pk = −ϕ′(xk) = −(Φ′(xk))TΦ(xk), with ϕ : Rn → R defined by (5.2).

If pk = 0, stop.
4. Set α = 1. If the inequality

ϕ(xk + αpk) ≤ ϕ(xk) + σα〈ϕ′(xk), pk〉 (5.7)

is satisfied, set αk = α. Otherwise, replace α by θα, check the inequality
(5.7) again, etc., until (5.7) becomes valid.

5. Set xk+1 = xk + αkpk.
6. Increase k by 1 and go to step 1.

Remark 5.2. According to (5.2) and (5.4), the condition (5.7) can be written
as follows:

1

2
‖Φ(xk + αpk)‖2 ≤ 1

2
‖Φ(xk)‖2 − σα‖Φ(xk)‖2 =

1− 2σα

2
‖Φ(xk)‖2,

or equivalently,

‖Φ(xk + αpk)‖ ≤
√
1− 2σα‖Φ(xk)‖ = (1− σα+ o(α))‖Φ(xk)‖

as α → 0. Therefore, in Algorithm 5.1, the condition (5.7) can be replaced by

‖Φ(xk + αpk)‖ ≤ (1 − σα)‖Φ(xk)‖. (5.8)

Observe that, by the differentiability of Φ at xk, and by (5.3),

Φ(xk + αpk) = Φ(xk) + αΦ′(xk)pk + o(α) = (1− α)Φ(xk) + o(α)

as α → 0, and hence, (5.8) is satisfied for all α > 0 small enough.

Our global convergence result for Algorithm 5.1 is along the lines of
Theorem 2.25.
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Theorem 5.3. Let Φ : Rn → Rn be continuously differentiable on Rn.
Then for any starting point x0 ∈ Rn Algorithm 5.1 generates the iterative

sequence {xk} such that each of its accumulation points x̄ ∈ Rn satisfies

(Φ′(x̄))TΦ(x̄) = 0. (5.9)

Proof. The fact that Algorithm 5.1 is well defined follows from Lemma 2.19.
Indeed, for each k the corresponding direction pk either satisfies (5.4) or
equals −ϕ′(xk). Therefore, if ϕ′(xk) = (Φ′(xk))TΦ(xk) )= 0, then in either
case

〈ϕ′(xk), pk〉 < 0. (5.10)

Moreover, assuming that ϕ′(xk) )= 0 for all k, the sequence {ϕ(xk)} is mono-
tonically decreasing. Since this sequence is bounded below (by zero), it con-
verges, and hence, (5.7) implies the equality

lim
k→∞

αk〈ϕ′(xk), pk〉 = 0. (5.11)

Let x̄ be an accumulation point of the sequence {xk}, and let {xkj} be a
subsequence convergent to x̄ as j → ∞. Consider the two possible cases:

lim sup
j→∞

αkj > 0 or lim
j→∞

αkj = 0. (5.12)

In the first case, passing onto a further subsequence if necessary, we can
assume that the entire {αkj} is separated away from zero:

lim inf
j→∞

αkj > 0.

Then (5.11) implies that

lim
j→∞

〈ϕ′(xkj ), pkj 〉 = 0. (5.13)

If pkj is defined by the Newton iteration system (5.5) for infinitely many
indices j, by (5.4) we have that

〈ϕ′(xkj ), pkj 〉 = −‖Φ(xkj )‖2

for these j, and then (5.13) implies that Φ(x̄) = 0, which certainly implies
(5.9). On the other hand, if Newton directions are used only for finitely many
indices j, then

〈ϕ′(xkj ), pkj 〉 = −〈ϕ′(xkj ), ϕ′(xkj )〉 = −‖ϕ′(xkj )‖2

for all j large enough. Hence, by (5.13), (Φ′(x̄))TΦ(x̄) = ϕ′(x̄) = 0, i.e., (5.9)
holds in this case as well.
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It remains to consider the second case in (5.12). Suppose first that the
sequence {pkj} is unbounded. Note that this can only happen when the
Newton directions are used infinitely often, because otherwise pkj = −ϕ′(xkj )
for all j large enough, and hence, {pkj} converges to −ϕ′(x̄). But then the
condition (5.6) implies that

lim inf
j→∞

‖Φ(xkj )‖ = 0,

so that Φ(x̄) = 0, and hence, (5.9) is again valid.
Let finally {pkj} be bounded. Taking a further subsequence, if necessary,

assume that {pkj} converges to some p̃. Since in the second case in (5.12) for
each j large enough the initial stepsize value had been reduced at least once,
the value αkj/θ > αkj does not satisfy (5.7), i.e.,

ϕ(xkj + αkjp
kj/θ)− ϕ(xkj )

αkj/θ
> σ〈ϕ′(xkj ), pkj 〉.

Employing the mean-value theorem (Theorem A.10, (a)) and the fact that
αkj → 0 as j → ∞, and passing onto the limit as j → ∞, we obtain that

〈ϕ′(x̄), p̃〉 ≥ σ〈ϕ′(x̄), p̃〉,

which may only hold when 〈ϕ′(x̄), p̃〉 ≥ 0. Combining this with (5.10), we
obtain that

〈ϕ′(x̄), p̃〉 = 0.

Considering, as above, the two cases when the number of times the Newton
direction had been used is infinite or finite, the latter relation implies that
(5.9) holds. ,-

According to the proof of Theorem 5.3, if along a subsequence convergent
to x̄ the Newton direction had been used infinitely many times, then x̄ is
a solution of (5.1). Convergence to a point x̄ satisfying (5.9) which is not a
solution of (5.1) can only happen when the Newton directions are not used
along the corresponding subsequence from some point on at all, and when in
addition the Jacobian Φ′(x̄) is singular.

Another important issue is the existence of accumulation points of iterative
sequences generated by Algorithm 5.1. This is guaranteed when the residual
‖Φ(·)‖ is coercive.

Finally, we show that Algorithm 5.1 preserves fast local convergence of the
basic Newton method under natural assumptions.

Theorem 5.4. Let Φ : Rn → Rn be continuously differentiable on Rn. Let
a sequence {xk} ⊂ Rn be generated by Algorithm 5.1 with σ ∈ (0, 1/2), and
assume that this sequence has an accumulation point x̄ such that Φ′(x̄) is
nonsingular.
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Then the entire sequence {xk} converges to x̄, and the rate of convergence
is superlinear. Moreover, the rate of convergence is quadratic provided the
derivative of Φ is locally Lipschitz-continuous with respect to x̄.

Proof. If xk ∈ Rn is close enough to x̄, then, according to Theorem 2.2, there
exists the unique pk ∈ Rn satisfying (5.5), and

xk + pk − x̄ = o(‖xk − x̄‖) (5.14)

as xk → x̄. As a consequence, pk would be accepted by the test (5.6).
Furthermore, Proposition 1.32 implies the estimate

xk − x̄ = O(‖Φ(xk)‖)

as xk → x̄. Employing this estimate and (5.2), (5.14), and also taking into
account the local Lipschitz-continuity of Φ with respect to x̄ (following from
the differentiability of Φ at x̄), we obtain that

ϕ(xk + pk) =
1

2
‖Φ(xk + pk)− Φ(x̄)‖2

= O(‖xk + pk − x̄‖2)
= o(‖xk − x̄‖2)
= o(‖Φ(xk)‖2)

as xk → x̄. The above relation implies that if xk is close enough to x̄, then

ϕ(xk + pk) ≤ 1− 2σ

2
‖Φ(xk)‖2

= ϕ(xk)− σ‖Φ(xk)‖2

= ϕ(xk) + σ〈ϕ′(xk), pk〉,

where the last equality is by (5.4) (recall also that σ ∈ (0, 1/2)). Therefore,
αk = 1 is accepted by step 4 of the algorithm: inequality (5.7) holds with
α = 1. This shows that the iteration of Algorithm 5.1 reduces to that of
Algorithm 2.1. The assertions now follow from Theorem 2.2. ,-

5.1.2 Globalized Semismooth Newton Methods
for Complementarity Problems

Consider now the nonlinear complementarity problem (NCP)

x ≥ 0, Φ(x) ≥ 0, 〈x, Φ(x)〉 = 0, (5.15)

where Φ : Rn → Rn is a smooth mapping.


