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Entropy production and heat capacity of systems under time-dependent oscillating temperature

Carlos E. Fiore and Mário J. de Oliveira

Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, 05508-090 São Paulo, São Paulo, Brazil

(Received 20 March 2019; revised manuscript received 19 April 2019; published 28 May 2019)

Using stochastic thermodynamics, we determine the entropy production and the dynamic heat capacity of

systems subject to a sinusoidally time-dependent temperature, in which case the systems are permanently out of

thermodynamic equilibrium, inducing a continuous generation of entropy. The systems evolve in time according

to a Fokker-Planck or a Fokker-Planck-Kramers equation. Solutions of these equations, for the case of harmonic

forces, are found exactly, from which the heat ux, the production of entropy, and the dynamic heat capacity are

obtained as functions of the frequency of the temperature modulation. These last two quantities are shown to be

related to the real and imaginary parts of the complex heat capacity.
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I. INTRODUCTION

The investigation of systems under time-dependent elds

of various types is very common in experimental physics. Less

common is the investigation of systems under time-dependent

temperature. Nevertheless, temperature oscillations are the

basis of modulation calorimetry [1–18], which allows the

experimental determination of the heat capacity. The method

consists in heating a sample by a periodic heating power with

an angular frequency ω and measuring the temperature oscil-

lations. This procedure induces a ow of heat from which the

dynamic heat capacityC can be obtained as the ratio between

the heat ux q and the time variation of the temperature

C =
−q

dT/dt
. (1)

The heat ux and the heat capacity oscillate in time with

the same frequency ω of the temperature oscillations, but with

a phase shift. During a cycle the net heat ux vanishes, but not

the dynamic heat capacity. Denoting by a bar the time average

of a quantity, which is its integral over a cycle divided by the

period of the cycle, thenq = 0 andC is nonzero and shows a

dispersion, that is, a dependence on ω. The conventional heat

capacity C0, or static heat capacity, is obtained in the limiting

value of C when ω → 0.

Under a time-oscillating temperature, the system is perma-

nently out of equilibrium, causing a continuous production of

entropy as well as a continuous ux of entropy. The entropy

S of the system also varies in time, the time variation being

equal to the rate of entropy production  minus the entropy

ux ,

dS

dt
= −. (2)

According to the second law of thermodynamics, the rate of

entropy production is never negative  > 0, but the ux of

entropy , given by

 =
q

T
, (3)

may have either sign. Althoughq = 0, this is not the case of

. In fact, considering that the entropy S is periodic, the left-

hand side of (2) vanishes in a cycle and the net ux becomes

equal to the entropy produced during a cycle, that is,  =

 > 0.

Our main purpose here is the calculation of the entropy

production and the dynamic heat capacity for systems subject

to a temperature modulation of the type

T = T0 + T1 cosωt, (4)

where T1 is the amplitude of modulation and T0 is the mean

temperature. Our calculation is based on stochastic thermody-

namics of systems with continuous space of states [19–29].

We restrict ourselves to the case of systems of particles

interacting through harmonic forces, in which case the evo-

lution equation can be solved exactly. From its solution we

determine the rate of entropy production and dynamic heat

capacity as a function of the frequency ω. We also show that

the dynamic heat capacity and the entropy production are

related to the real and imaginary parts of the complex heat

capacity, respectively.

II. FOKKER-PLANCK EQUATION

A. General formulation

We consider a system of interacting particles that is de-

scribed by a probability distribution P(x, t ) of state x at time

t , where x denotes the collection of particle positions xi. We

assume that the time evolution of the probability distribution

is governed by the Fokker-Planck (FP) equation [19,29]

∂P

∂t
= −



i

∂Ji

∂xi
, (5)

where

Ji =
1

α



fiP − kBT
∂P

∂xi



, (6)

with fi = −∂V/∂xi the force acting on particle i, V being the

potential energy, α a constant, and kB the Boltzmann constant.
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The FP equation describes the contact of the system with

a heat reservoir at temperature T and corresponds to a de-

scription in the overdamped limit [19,30]. Indeed, it is easily

shown by replacement into the FP equation that the Gibbs

distribution

P0 =
1

Z
e−V/kBT (7)

is the stationary solution when T is kept constant and in fact

the equilibrium solution.

The time variation of the energy U = V  of the system

can be obtained from the FP equation and is

dU

dt
= −q, (8)

where q is the heat ux from the system to outside and is

expressed by [19]

q =
1

α



i



f 2i


+ kBT  fii


, (9)

where fii = ∂ fi/∂xi. Once the heat ux is known, the dynamic

heat capacity is determined by (1), if T is time dependent.

From the FP equation we can also determine the time variation

of the entropy

S = −kB



P lnP dx, (10)

which can be split in two terms, as shown by Eq. (2), where

, the rate of entropy production, has the form [19]

 =
α

T



i



J2i

P
dx, (11)

and , the entropy ux from the system to the environment,

is given by (3).

B. Harmonic forces

When the forces are harmonic it is possible to exactly

solve the FP equation even for the case of a time-dependent

temperature. Here we consider a collection of independent

harmonic oscillators in which case it sufces to treat just one

oscillator. The potential energy of the oscillator isV = kx2/2,

which yields a force f = −kx and the FP equations to be

solved is

∂P

∂t
= −

∂J

∂x
, (12)

where

J = −
k

α
xP −

kBT

α

∂P

∂x
. (13)

The solution of the FP equation for a time-dependent

temperature is a Gaussian distribution

P =
1

ζ
exp



−
1

2
bx2



, (14)

where the coefcients b is time dependent. That P is a solution

can be checked by replacing it into the FP equation (12).

Instead of seeking the coefcients b, we choose to nd the av-

erages B = x2. Once B is found we may get b, if necessary,

from the relation b = 1/B.

From the FP equation, we nd the equation for B,

α
d

dt
B = −2kB+ 2kBT . (15)

For T depending on time like (4), the solution of Eq. (15) is

found to be

B =
kBT0

k
+ 2kBT1

2k cosωt + αω sinωt

α2ω2 + 4k2
. (16)

C. Entropy production and heat capacity

From Eq. (9) it follows that the heat ux is determined by

q =
k

α
(kB− kBT ), (17)

or in an explicit form as

q = kBT1ωk
2k sinωt − αω cosωt

α2ω2 + 4k2
. (18)

The entropy ux  and the dynamic heat capacity C are

determined from q by the use of Eqs. (3) and (1).

We proceed now to determine the time averages of  and

C. The time average of the heat ux vanishes q = 0 as

expected, but not  and C. Carrying out the integration of

 and C over a cycle, and considering that  = , we nd

 = kBλ
αω2k

α2ω2 + 4k2
, (19)

where

λ =
T0



T 2
0 − T 2

1

− 1, (20)

and the dynamic heat capacity is found to be

C = kB
2k2

α2ω2 + 4k2
. (21)

D. Harmonic oscillator

The approach we have used above, by employing the FP

equation (5) or (12), is appropriate to describe overdamped

systems. In this approach the positions were taken into ac-

count but not the velocities. However, the oscillations of tem-

perature affect not only the positions, but also the velocities

of particles. The treatment of the response of the system

concerning the velocities is carried out by setting up the FP

equation that gives the evolution of the probability distribution

of velocities,

∂P

∂t
= −

∂J

∂v
, (22)

where

J = −γ vP −
γ kBT

m

∂P

∂v
, (23)

which describes a free particle in contact with a reservoir at a

temperature T .

Equation (22) is formally identical to Eq. (12) and we may

proceed in a similar way to determine the entropy production

and the heat capacities. The result for the heat ux is

q = kBT1ωγ
2γ sinωt − ω cosωt

ω2 + 4γ 2
(24)
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FIG. 1. (a) Real and (b) imaginary parts of the complex heat capacity (32) for the overdamped case as a function of frequency for the

following values of κ/γ 2: 0 (dotted line), 0.1, 0.2, 0.5, 1, and 2 (from left to right).

and the time average of the rate of entropy is

 = kBλ
γω2

ω2 + 4γ 2
, (25)

where λ is given by (20), and the dynamic heat capacity is

C = kB
2γ 2

ω2 + 4γ 2
. (26)

To nd the entropy production of a harmonic oscillator we

should add the entropy production concerning the positions,

given by (19), with the entropy production concerning the

velocities, given by (25). The result is

 = kBλ
γω2κ

γ 2ω2 + 4κ2
+ kBλ

γω2

ω2 + 4γ 2
. (27)

Similarly, the dynamic heat capacity is the sum of

(21) and (26),

C = kB
2κ2

γ 2ω2 + 4κ2
+ kB

2γ 2

ω2 + 4γ 2
. (28)

The quantities α and γ are related to α = mγ , and k is related

to κ by k = mκ .

E. Complex heat capacity

The dispersion of the dynamic heat capacity on frequen-

cies, induced by a time-varying temperature, is analogous

to the dispersion of susceptibility on frequencies induced

by a time-varying eld. In the latter case, the response to

the eld oscillation is described by a complex susceptibility.

Analogously, it is also possible to dene a complex heat

capacity to conveniently describe the response to temperature

oscillations. In fact, the complex heat capacity has been the

subject of investigation in relation to temperature modulation

[5–18]

Suppose that we replace T in Eq. (15) by the complex time-

dependent temperature

Tc = T0 + T1e
−iωt . (29)

Then, instead of Eqs. (18) and (24), we would get the expres-

sion for the heat ux of the harmonic oscillator

c
q = kBT1



iκω

2κ − iωγ
+

iγω

2γ − iω



e−iωt . (30)

By analogy with (1), a complex heat capacity Cc can be

dened by

Cc =
−c

q

dTc/dt
, (31)

from which we nd

Cc = kB



κ

2κ − iωγ
+

γ

2γ − iω



, (32)

which is time independent. Comparing with expressions (27)

and (28), we see that

C = Re(Cc),  = λωIm(Cc). (33)

These results show that the real part of the complex heat

capacity is identied with the dynamic heat capacity and

the imaginary part is proportional to the rate of entropy

production.

The real and imaginary parts of the complex heat capacity

Cc are shown in Fig. 1 as functions of the frequency ω for

several values of κ . The real part, which is the dynamic heat

capacity C, becomes the static heat capacity when ω → 0,

which is C0 = kB/2 if κ = 0 and C0 = kB if κ = 0. In the

opposite limit ω → ∞, it vanishes as 1/ω2. The imaginary

part vanishes when ω → 0 and so does the rate of entropy

production . In the limit ω → ∞, the imaginary part van-

ishes as 1/ω but the rate of entropy production reaches a

nite value, which is  = kBλ(γ + κ/γ ). In Fig. 2 we have

plotted Im(Cc) versus Re(Cc) and we see that the curves are

symmetric.

It is worth determining the real and imaginary part of the

complex capacity when the constant κ is small. In this case

it is possible to write explicitly an expression that relates

these two quantities. Let us dene the quantities X and Y by

Re(Cc) = kBX and Im(Cc) = kBY . For small values of κ one
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FIG. 2. Imaginary versus real part of the complex heat capacity

(32) for the overdamped case for κ → 0 (dotted line) and the follow-

ing values of κ/γ 2: 0.02, 0.05, 0.1, 0.2, 0.5, and 1 (from bottom to

top). The thermodynamic equilibrium ω = 0 is indicated by a closed

circle.

nds

Y =

⎧

⎨

⎩



(1− X )


X − 1
2



, X > 1
2



X


1
2
− X



, X < 1
2
,

(34)

which are the semicircles shown in Fig. 2.

III. FOKKER-PLANCK-KRAMERS EQUATION

A. General formulation

We consider again a system consisting of several interact-

ing particles in contact with a temperature reservoir at tem-

perature T , with which it exchanges heat. The time evolution

of the probability distribution P(x, v, t ), where x denotes the

collection of the positions xi and v the collection of velocities

vi of the particle, is governed by the Fokker-Planck-Kramers

(FPK) equation [20,28,29]

∂P

∂t
= −



i



vi

∂P

∂xi
+

1

m
fi
∂P

∂vi
+

∂Ji

∂vi



, (35)

where

Ji = −γ viP −
γ kBT

m

∂P

∂vi
. (36)

Here m is the mass of each particle, γ is the dissipation

constant, and fi is the force acting on the particle i, given by

fi = −∂V/∂xi.

If the temperature T is kept constant, then for large times

the probability distribution approaches the Gibbs equilibrium

distribution

Pe(x, v) =
1

Z
e−E/kBT , (37)

where E = mv2/2+V is the energy of the system. This result

shows that the FPK equation (35) indeed describes the contact

of a system with a heat reservoir at a temperature T .

The time variation of the energyU = E is obtained from

the FPK equation and is

dU

dt
= −q, (38)

where the heat uxq from the system to outside is expressed

as [20,28]

q =



i



γm


v
2
i



− γ kBT


, (39)

where the rst and second terms are understood as the heating

power and the power of heat losses, respectively, with γ kB
being the heat transfer coefcient [2]. The entropy S of the

system is determined from the Gibbs expression

S = −kB



P lnP dx dv. (40)

Using the FPK equation, one nds that its time derivative can

again be split into two terms, as shown by Eq. (2), where the

rate of entropy production  can be written as [20,28]

 =
m

γT



i



J2i

P
dx dv (41)

and the ux of entropy can be written in the form (3), where

q is the heat ux given by (39). If T is time dependent then

the dynamic heat capacity is obtained from (1).

B. Harmonic oscillator

We consider here the case of just one harmonic oscillator.

When the temperature or the external force is time dependent,

the probability distribution (37) is no longer the solution of the

Fokker-Planck equation for long times and we should seek a

solution. When the force is harmonic, which we write as f =

−mκx, the FPK equation can be solved exactly. The solution

is a Gaussian distribution in x and v of the type

P(x, v) =
1

ζ
exp



−
1

2
(av2 + bx2 + 2cxv)



, (42)

where the parameters a, b, and c depend on time. That

this Gaussian distribution is a solution can be checked by

substituting it into the FPK equation. The solution is reduced

to the determination of the time dependence of the parameters.

From the Gaussian distribution (42) we see that the param-

eters a, b, and c are related to the averages A = v2, B = x2,

andC = xv as

a =
B

AB−C2
, b =

A

AB−C2
, c =

C

AB−C2
. (43)

The method we use here rests on setting up equations for A, B,

andC, from whose solutions we can nd the coefcients a, b,

and c of the Gaussian distribution as functions of temperature,

if needed.

From the FPK equations the following set of equations is

found for A, B, andC:

dA

dt
= −2κC − 2γA+

2γ kBT

m
, (44)

dB

dt
= 2C, (45)

dC

dt
= A− κB− γC. (46)
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FIG. 3. (a) Real and (b) imaginary parts of the complex heat capacity (57) as a function of frequency for the following values of κ/γ 2: 0

(dotted line), 0.1, 0.2, 0.5, 1, 2, and 5 (from left to right).

Equations (44)–(46) are coupled linear differential equations

whose solution can also be found for a temperature modu-

lation of the type (4). The solution of the set of equations

(44)–(46) gives the result for A,

A =
kBT0

m
+

kBT1

m
(A1 cosωt + A2 sinωt ), (47)

where

A1 =
4γ 2(ω4 − 3κω2

+ 4κ2
+ γ 2ω2)

(ω2 + γ 2)[(ω2 − 4κ )2 + 4γ 2ω2]
, (48)

A2 =
2γω(ω4 − 6κω2

+ 8κ2
+ γ 2ω2)

(ω2 + γ 2)[(ω2 − 4κ )2 + 4γ 2ω2]
. (49)

C. Entropy production and heat capacity

Using the result (47) for A, we can write the heat ux

q = γ (mA− kBT ) (50)

in the explicit form

q = kBT1γ [(A1 − 1) cosωt + A2 sinωt]. (51)

The entropy ux  and the dynamic heat capacity C are

obtained from this expression forq and by the use of Eqs. (3)

and (1). To get the time averages of  and C we should

integrate them over one cycle. Carrying out the integration and

taking into account that  = , we nd

 = kBλγ (1− A1), (52)

or in a explicit form

 = kBλ
γω2(ω4 − 8κω2

+ 16κ2
+ 4κγ 2

+ γ 2ω2)

(ω2 + γ 2)[(ω2 − 4κ )2 + 4γ 2ω2]
, (53)

where λ is given by Eq. (20), and

C = kB
γ

ω
A2, (54)

or in a explicit form

C = kB
2γ 2(ω4 − 6κω2

+ 8κ2
+ γ 2ω2)

(ω2 + γ 2)[(ω2 − 4κ )2 + 4γ 2ω2]
. (55)

The results above were obtained for the case of a harmonic

oscillator. It is possible to nd the results for a free particle by

formally setting κ = 0. Using this procedure, we recover the

results (25) and (26) for a free particle.

D. Complex heat capacity

Again we may set up a complex heat capacity. If Eqs. (44)–

(46) are solved by replacing the temperature T by the complex

temperature (29), then instead of expression (51) we would get

c
q = kBT1γ (A1 − 1+ iA2)e

−iωt (56)

and the complex heat capacity

Cc = kB
γ

iω
(A1 − 1+ iA2), (57)

which is time independent. The real and imaginary parts ofCc

are

Re(Cc) = kB
γ

ω
A2, Im(Cc) = kB

γ

ω
(1− A1), (58)

and using relations (52) and (54) we nd

Re(Cc) = C, Im(Cc) = /λω. (59)

Again, these results show that the real part of the complex heat

capacity is the dynamic heat capacity and the imaginary part

is proportional to the rate of entropy production.

The real and imaginary parts of the complex heat capacity

Cc are shown in Fig. 3 as functions of the frequency ω for

several values of κ . The real part, which is the dynamic heat

capacity C, becomes the static heat capacity when ω → 0,

which is C0 = kB/2 if κ = 0 and C0 = kB if κ = 0. In the

opposite limit ω → ∞, it vanishes as 1/ω2. The imaginary

part vanishes when ω → 0 and so does the rate of entropy

production . In the limit ω → ∞, the imaginary part van-

ishes as 1/ω but the rate of entropy production reaches a nite

value, which is  = kBλγ . In Fig. 4 we have plotted Im(Cc)

versus Re(Cc).

When the constant κ is small, the plot of the imaginary

versus the real part of the complex heat capacity approaches

the function given by (34) and thus coincides with the result

for the overdamped case, as shown by the two semicircles in
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FIG. 4. Imaginary versus real part of the complex heat capacity

(57) for κ → 0 (dotted line) and the following values of κ/γ 2: 0.02,

0.05, 0.1, 0.2, 0.5, 1, 2, and 5 (from right to left). The thermodynamic

equilibrium ω = 0 is indicated by a closed circle.

Fig. 4. The semicircle behavior of the imaginary and real parts

of the complex heat capacity is found in many experimental

results of temperature-modulated systems [31,32].

IV. COMPLEX HEAT CAPACITY

During a small interval of time t , the heat introduced

equals −qt , which divided by the increment T in tem-

perature gives qt/T . The heat capacity is obtained by

taking the limit t → 0,

C =
−q

dT/dt
, (60)

which is the expression of the dynamic heat capacity that we

have used. Other denitions of nonequilibrium heat capacity

have been advanced [33,34], but (60) seems to be a natural

extension of the equilibrium heat capacity if we consider the

signicance of this quantity as being the ratio of the heat

introduced and the variation in temperature. In the absence

of external work, which is the case of the present analysis,

−q = dU/dt and the heat capacity is related to the energy

by C = (dU/dt )/(dT/dt ). Notice that the expression (60) is

not T (dS/dt )/(dT/dt ) because TdS/dt is not equal toq on

account of the production of entropy.

The dynamic heat capacity does not share with the static

heat capacity C0 the property C0 > 0. Generically, the heat

ux is not in phase with the variation of temperature. A ux

of heat to the outside could happen while the temperature is

increasing, or a ux toward the system could happen while

the temperature is decreasing. In both cases the dynamic heat

capacity has a negative sign. This peculiar but not illegitimate

behavior is shown in Fig. 3(a) for a small interval of frequen-

cies for one of the curves and is shown by other denitions of

nonequilibrium heat capacity [33]. Notice, on the other hand,

that the rate of entropy production is always non-negative, as

illustrated in Fig. 3(b).

Let us assume that in general the heat ux q behaves as

q = 1 cosωt +2 sinωt . (61)

As we have seen above, this is correct for harmonic forces

as shown by Eqs. (18), (24), and (51). For any type of force

this is also expected if T1/T0 is small, a condition that we

assume here. In fact, this condition is fullled in experiments

on temperature modulation. Replacingq in the denition (1)

of the dynamic heat capacity and calculatingC, we nd

C =
2

T1ω
. (62)

Analogously, replacing q in the denition (3) of the entropy

ux  = q/T and calculating  which equals , we nd

 = −
1λ

T1
, (63)

where λ is given by (20).

The complex heat capacityCc is dened by (31), where

c
q = (1 + i2)e

−iωt (64)

is the complex heat ux, and Tc is given by (29), from which

we get

Cc =
1

iT1ω
(1 + i2). (65)

Comparing this expression with Eqs. (62) and (63), we nd

the results

Re(Cc) = C, (66)

Im(Cc) =
1

λω
 (67)

and may conclude that the imaginary part of the complex heat

capacity is proportional to the rate of entropy production.

When ω → 0, the denominator of (62) vanishes and at

rst sight C seems to become singular. However, in this

limit q also vanishes because in the absence of temperature

modulation there is no heat ux. Considering that in this limit

the dynamic heat capacity should approach the static heat

capacityC0, it follows, in view of (62), that 2 should behave

as 2 = ωT1C0. Indeed, this is conrmed by the results of C

for the harmonic oscillator, if we recall that C0 = kB.

The dynamic heat capacityC dened above by Eq. (60) can

be understood, within the linear response theory [9,12,16,35],

as a response function. Dening h = −dT/dt , we write

Eq. (60) as q = Ch and it becomes clear that h plays the

role of the input and q of the output and C is the response

function to the time-varying temperature. Considering that

h = ωT1 sinωt , it follows that the Fourier transforms ̂q and

Ĉ are related by

̂q = iωT1Ĉ. (68)

Comparing this relation with (65), we may conclude that the

complex heat capacity Cc is in fact the Fourier transform

Ĉ of the dynamic heat capacity C. In addition, the Fourier

transform of the heat ux is ̂q = 1 + i2. The connection

of the present problem with the linear response theory makes

the results obtained here easier to understand and may give

insights into a possible extension to nonlinear models.

052131-6



ENTROPY PRODUCTION AND HEAT CAPACITY OF … PHYSICAL REVIEW E 99, 052131 (2019)

V. CONCLUSION

We have determined the entropy production and the dy-

namic heat capacity of systems under time-varying temper-

ature by the use of stochastic thermodynamics. The systems

that we have analyzed evolve in time according to the Fokker-

Planck equation, for the overdamped case, or to the Fokker-

Planck-Kramers equation. Exact solutions were possible to

nd for the cases of harmonic forces and temperature mod-

ulation of the sinusoidal type. The heat ux also varies sinu-

soidally, but with a phase shift with respect to temperature.

From the heat ux, the rate of entropy production  and the

dynamic heat capacity C could be determined as functions

of the frequency ω of the temperature modulation. In the

limit of small frequencies, C approaches the equilibrium heat

capacity, which is non-negative, and vanishes for large fre-

quencies. The dynamic heat capacity may not be a monotonic

decreasing function of ω and might even be negative. The rate

of entropy production is always non-negative, vanishing for

zero frequency, when the system is in equilibrium. For large

values of ω it approaches a nonzero value. Finally, C and 

were shown to be related to the real an imaginary parts of the

complex heat capacity.
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