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We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete

(master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The rst

is the denition of entropy itself and the second the denition of entropy production rate, which is non-negative

and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with

many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are

derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the

equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear

form of the entropy production rate; the Onsager coefcients and reciprocal relations; and the nonequilibrium

steady states of chemical reactions.
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I. INTRODUCTION

The kinetic theory, introduced and developed in the second

half of the 19th century by Clausius [1], Maxwell [2], and

Boltzmann [3,4], aimed to derive the macroscopic properties

of matter, which include the laws of thermodynamics, from the

underlying microscopic movement, governed by the laws of

mechanics. In principle, this task can be achieved if we assume

that the macroscopic laws are connected to the microscopic

laws. We cannot know a priori whether the connection exists

or not. But, considering that it is an experimental fact that

the laws of mechanics, classical or quantum, are obeyed at

the microscopic level by the same particles that constitute

a macroscopic body, which obeys macroscopic laws, it is

reasonable to assume that the connection exists. Once we

assume this connection, the next task is to perform the actual

derivation of macroscopic laws from the microscopic laws of

mechanics. This task was in fact undertaken by the founders

of the kinetic theory and many macroscopic laws were in fact

derived. This includes the theorem of equipartition of energy,

the Maxwell distribution of velocities [2], the Boltzmann

H-theorem [3], and the Gibbs probability distribution [5].

However, many results cannot be said to have been derived

from pure mechanics alone [6,7]. A new ingredient was

introduced in the course of derivation, namely the stochastic

behavior, in most cases in an implicit form.

The derivation from pure mechanics of the results just

mentioned would be accomplished if we could show that the

new ingredient, the stochastic behavior, is a consequence of

the microscopic mechanical motion, which is deterministic.

At rst sight the random behavior seems to be in contradiction

with a deterministic motion. However, the results coming

from the theory of deterministic chaos [8] has proven that a

deterministic motion can behave stochastically. In fact, the

possibility of mapping chaotic dynamics into a stochastic

process has already been addressed [9]. The Gibbs probability

distribution, for instance, is believed to come from the

underlying mechanics through a stochastic behavior, although

there is no known general derivation from pure mechanics.

In some cases, the derivation is known [10]. In other cases,

such as a system of hard spheres, numerical simulations of

the equations of motion may, for instance, show the validity

of the equipartition of energy or may provide the macroscopic

properties directly [11].

The reasoning and examples given above lead us to presume

that the macroscopic properties are obtained frommicroscopic

mechanics in twomajor steps: (1) from the underlyingmechan-

ics to a probabilistic or stochastic approach and (2) from this

approach to the macroscopic properties. This is particularly

clear in the case of equilibrium thermodynamic properties,

which are derived from the Gibbs probability distribution,

which in turn comes from the underlying mechanics, a step

not yet fully demonstrated and known as ergodic hypothesis.

The rst step will not concern us here. The second step,

which is the purpose of the present paper, aims to derive

the macroscopic properties, which include equilibrium and

nonequilibrium thermodynamic properties, from a stochastic

approach.

The stochastic approach to equilibrium and nonequilibrium

thermodynamics or, in short, stochastic thermodynamics,

which is the second step of our scheme and the subject of

the present paper, has been adopted by several authors and

become a consistent theory of nonequilibrium thermodynam-

ics [12–49]. An important step in this direction occurred

when Schnakenberg [17] introduced the stochastic denition

of entropy production rate which has a fundamental role in

our approach in addition to the probabilistic denition of

entropy itself, introduced by Boltzmann [4] and generalized

by Gibbs [5].

Our approach here is based on the adoption of a Markovian

stochastic evolution on a discrete or on a continuous space

and on two assumptions concerning entropy. The rst is the

denition of entropy itself and the second the denition of

entropy production rate. Based on these assumptions we will

consider systems in equilibrium and out of thermodynamic

equilibrium and how the macroscopic nonequilibrium laws

can be derived from the stochastic dynamics, which is the

second step mentioned above. We will treat some fundamental

issues that have barely been considered or that have not

been addressed in the context of stochastic thermodynamics.

This includes several thermodynamic results of systems in

equilibrium [50,51] and out of equilibrium [52–58] such as the

quasiequilibrium processes; the convexity of the equilibrium
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surface in thermodynamic space; the monotonic time behavior

of thermodynamic potentials, including entropy; the bilinear

form of the entropy production rate; the Onsager coefcients

and reciprocal relations; and the nonequilibrium steady states

of chemical reactions.

The stochastic approach in continuous state space was used

by Einstein [59], Smoluchowski [60], and Langevin [61] to

explain Brownian motion. It was generalized to the case of

Brownian particles subject to an external force by Fokker [62],

Smoluchowski [63], Planck [64], and Ornstein [65], and

the equation governing the time evolution of the probability

distribution became known as the Fokker-Planck equation.

Kramers [66] extended the Fokker-Planck equation to the case

of a massive particle and studied the escape of a Brownian

particle over a potential barrier arriving at the Arrhenius

factor.

Markovian stochastic dynamics [67–70] has been used in

various problems in physics, chemistry, and biology, either

in continuous or discrete state space. In the former case,

the evolution of the probability distribution is governed by a

Fokker-Planck equation and in the later by a master equation.

We mention the study of chemical reactions [16,19,20,30,46],

population dynamics and epidemiology [71–73], and bio-

logical systems in general [15,28,43,45,74–78]. We wish to

mention particularly the stochastic models with many degrees

of freedom such as the so-called stochastic lattice models

usually used to describe phase transitions and criticality in

physics, chemistry, and biology [26,79–86].

II. MASTER EQUATION

A. Entropy and entropy production

We assume that the system follows amicroscopic stochastic

dynamics. More precisely, we assume that the system is

described by a continuous-time Markovian stochastic process.

Considering a discrete space of states, this assumption posits

that the time evolution equation is set up once the transition

rates are given. The transition rates play thus a fundamental

role in the present approach and we may say that a system

is considered to be theoretically dened when this quantity

is given a priori. Given the transition rates, the probability

Pi(t) of state i at time t is obtained by solving the evolution

equation, in this case a master equation,

d

dt
Pi(t) =



j

{WijPj (t)−WjiPi(t)}, (1)

where Wij denotes the transition rate from state j to state i.

In this section and the next we will consider transitions with

the following property: If the rate Wij of the transition j → i

is nonzero, then the rateWji of the reverse transition i → j is

also nonzero. Later, in the study of the Fokker-Planck equation,

we will have the opportunity to treat the case in which the

reverse transition rate may vanish.

As mentioned above, the derivation of the macroscopic

properties, including the laws of thermodynamics, is carried

out by the introduction of two assumptions concerning entropy.

The rst is the denition of entropy itself. The entropy S of a

system in equilibrium or out of equilibrium is taken to be the

following expression:

S(t) = −kB


i

Pi(t) lnPi(t), (2)

which is the extension of the equilibriumBoltzmann-Gibbs en-

tropy to nonequilibrium situations, where kB is the Boltzmann

constant.

The second assumption concerns the denition of the pro-

duction of entropy. This quantity shouldmeet two fundamental

properties. It must be non-negative and vanish identically in

thermodynamic equilibrium. Following Schnakenberg [17],

we assume the following expression for the entropy production

rate:

(t) =
kB

2



ij

{WijPj (t)−WjiPi(t)} ln
WijPj (t)

WjiPi(t)
, (3)

which is clearly non-negative because each term is of the

form (x − y) ln(x/y). This form of entropy production rate has

been used by several authors [18,19,26–30,32,37,38,40,42,70]

within stochastic dynamics and applications.

B. Entropy ux

Let us consider the time variation of the average of a state

function, such as energy, given by

U (t) =


i

EiPi(t). (4)

Using the master equation (1) it follows that

dU

dt
= u, (5)

where

u(t) =


ij

(Ei − Ej )WijPj (t) (6)

is the total ux of energy from outside to the system.

Equation (5) represents the conservation of energy.

Equation of the type (5) is valid for any conserved

quantity and this is not the case of entropy. For instance,

in a nonequilibrium stationary state the total ux of energy

vanishes but not the total ux of entropy, which is nonzero

because entropy is continuously being produced. The equation

for the time variation of entropy S should be written as [55]

dS

dt
= −, (7)

where  is the ux of entropy from the system to the outside

and is the entropy production per unit time, given by Eq. (3).

It is common to write diS/dt and deS/dt for the entropy

production rate and entropy ux, respectively, but we avoid

this terminology because these quantities are not in fact time

derivatives of any quantity.

Taking the time derivative of Eq. (2) and using the master

equation (1), we may write the time derivative of entropy as

dS

dt
= kB



ij

{WijPj (t)−WjiPi(t)} lnPi(t), (8)
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or, in an equivalent form,

dS

dt
= kB



ij

WijPj (t) ln
Pi(t)

Pj (t)
. (9)

Comparing with (7) we see that the right-hand side of this

equation should equal−. Using the denition of, given

by (3), which we write in the form

(t) = kB


ij

WijPj (t) ln
WijPj (t)

WjiPi(t)
, (10)

and, comparing with Eq. (9), we get the ux of entropy from

the system to outside,

(t) = kB


ij

WijPj (t) ln
Wij

Wji

, (11)

which is equivalent to

(t) =
kB

2



ij

{WijPj (t)−WjiPi(t)} ln
Wij

Wji

. (12)

The integration of (7) in a time interval will lead us to the

Clausius inequality. Indeed, from Eq. (7) we may write

S =


dt −


dt. (13)

If we identify the entropy ux  as the ratio between the heat

ux dQ/dt and the temperature T of the environment, then∫
dt = −

∫
(dQ/T ). But the rst integral is non-negative

because  > 0 so

S >


dQ

T
, (14)

which is the Clausius inequality [87]. In equilibrium, S =∫
dQ/T , equality that was used by Clausius to dene entropy.

The difference between S and the integral
∫
dQ/T , which

is the production of entropy, represents, according to Clausius,

the “uncompensated transformation” [87].

In the recent literature it is common to use another

nomenclature for the entropy production , the entropy ux

, and the time derivative of entropy dS/dt . The quantities

that correspond to the time integral of these three quantities are

called, respectively, the total entropy change, the environment

entropy change, and internal entropy change [44,48].

C. Thermodynamic equilibrium

The microscopic denition of thermodynamic equilibrium,

from the static point of view, is usually characterized in terms

of the Gibbs probability distribution. From the dynamic point

of view, the description of equilibrium by the Gibbs distribu-

tion is necessary but not sufcient. There are examples [88–90]

of spin models that are described by the Gibbs distribution but

are not in thermodynamic equilibrium in the sense that entropy

is continuously being generated. From a dynamic point of

view, the thermodynamic equilibrium is characterized by the

vanishing of the entropy production rate and, of course, by a

time-independent probability distribution. The vanishing of (3)

gives

WijPj = WjiPi, (15)

which is the detailed balance condition that characterizes

the thermodynamic equilibrium [14] and is equivalent to

microscopic reversibility.

In the stationary state, that is, when the probability Pi is

independent of time, the right-hand side of (1) vanishes, that

is,


j

{WijPj −WjiPi} = 0, (16)

which we may call the global balance. The reversibility

condition (15) thus can be understood as detailed balance

condition because each term of the global balance equation

vanishes. Although the global balance is a necessary condition

for reversibility, it is not a sufcient condition.

Considering that the equilibrium distribution P e
i is known,

the solution of (15) for the transition rate is

Wij = Kij


P e
i

P e
j

1/2

, (17)

where Kij is symmetric, that is, Kij = Kji . The transition

rates for the various situation in which the system is found in

equilibrium in the stationary state can now be constructed. For

an isolated system (microcanonical ensemble) the equilibrium

probability distribution Pi is a constant whenever the energy

function Ei equals a given energy, say, U , and vanishes

otherwise. Therefore, in this case Wij = Kij when Ei = Ej

and vanishes otherwise. In short,Wij = Wji .

For a system in contact with a heat reservoir (canonical

ensemble) at temperature T , the equilibrium probability

distribution is given by

P e
i =

1

Z
e−βEi , (18)

where β = 1/kBT , so in this case the transition rate fullls

the relation

Wij

Wji

= e−β(Ei−Ej ) (19)

and is given by

Wij = Kij e
−β(Ei−Ej )/2. (20)

If, in addition, to be in contact with a heat reservoir, the

system is in contact with a reservoir of particles, then

P e
i =

1


e−βEi+βμni , (21)

where μ is the chemical potential and ni is the number of

particles. In this case the transition rate fullls the relation

Wij

Wji

= e−β(Ei−Ej )+βμ(ni−nj ) (22)

and is given by

Wij = Kije
−β(Ei−Ej )/2+βμ(ni−nj )/2, (23)

where, again, Kij = Kji .

D. The approach to equilibrium

Let us consider the transient regime of a system that

approaches equilibrium. The time-dependent probability
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distribution is the solution of the master equation (1) with tran-

sition rates that satisfy the detailed balance and is appropriate

for each type of contact of the system with the environment.

We treat rst the case of microcanonical distribution, which

describes an isolated system. In this case, as we have seen,

Wij = Wji so the entropy ux (11) vanishes identically,  =

0. Therefore,

dS

dt
= , (24)

so

dS

dt
> 0. (25)

That is, the entropy of an isolated system is a monotonically

increasing function of time.

Nextwe consider the canonical distributionwhich describes

the contact of a system with a heat reservoir. The transition

rate is given by (20), which, replaced in the entropy ux (11),

gives

 = −kBβ


ij

{WijPj (t)−WjiPi(t)}Ei. (26)

Using the master equation (1), the ux of entropy can be

written in the form

 = −
1

T

dU

dt
, (27)

where U is the average of energy, given by (4). Equation (27)

shows that the quantity  is proportional to dU/dt . Notice

that (27) implies that  vanishes in the equilibrium regime

(t → ∞) as it should.

Equation (7) gives

dU

dt
− T

dS

dt
= −T. (28)

If we dene the free energy by F = U − T S and take into

account that T is constant, that is, it does not depend on time,

we get

dF

dt
= −T, (29)

so

dF

dt
6 0. (30)

That is, the free energy of a system in contact with a heat

reservoir is a monotonically decreasing function of time. In

other terms, the free energy decreases monotonically to its

equilibrium value.

Equation (30) is also the expression of the Boltzmann H-

theorem [3]. Indeed, the Boltzmann H function is dened by

H (t) =


i

Pi(t) ln
Pi(t)

P e
i

, (31)

where P e
i is the equilibrium canonical distribution given by

Eq. (18). It is straightforward to show that F = F0 +H/β,

where F0 does not depend on time. Therefore, the inequal-

ity (30) is equivalent to dH/dt 6 0, which is the Boltzmann

H-theorem.

The grand-canonical distribution describes the contact

of the system with a particle reservoir and with a heat

reservoir. The transition rate for this case is given by (23),

which, replaced in the expression (11) and using the master

equation (1), allows us to reach the following expression for

the entropy ux:

 = −
1

T

dU

dt
+

μ

T

dN

dt
, (32)

where U is the average energy, given by (4), and N is the

average number of particles,

N (t) =


i

niPi(t). (33)

Taking into account that dS/dt = −, we get

dU

dt
− T

dS

dt
− μ

dN

dt
= −T, (34)

which can be written as

dφ

dt
= −T, (35)

where φ = U − T S − μN is the grand thermodynamic poten-

tial and we have taken into account that T and μ are constant.

Since  > 0 it follows that dφ/dt 6 0.

Let us integrate equation (34) from an initial time t = t0 to

innity,

(U − U0)− T (S − S0)− μ(N −N0) = −T

 ∞

t0

dt,

(36)

from which follows the inequality

(U − U0)− T (S − S0)− μ(N −N0) 6 0, (37)

because  > 0. Taking into account that, for large-enough

times, the system reaches equilibrium at a temperature T

and imposing that at t = t0 the system was in equilibrium,

at a different temperature, say, T0, we may conclude from the

inequality (37) that U , S, and N make up a convex surface, in

accordance with equilibrium thermodynamics.

E. Quasiequilibrium

It is common to state the laws of equilibrium thermody-

namics in terms of thermodynamic processes. This seems at

rst sight contradictory because a process implies a change

in the thermodynamic state and thus a displacement from

equilibrium. To overcome this problem, one introduces the

quasistatic process, a process which is so slow that the system

may be considered to be in equilibrium. We will show below

that the production of entropy in this process is negligible so

in fact the system may be considered to be in equilibrium. In

which sense the production is negligible will be shown below.

Let us consider a system in contact with a heat bath

and a particle reservoir whose temperature and chemical

potential, understood as control parameters, are slowly varying

in time. To describe this situation we assume a time-dependent

transition rate Wij (t) of the form (23), where Kij (t) may

depend on time, that is,

Wij (t) = Kij (t)e
−β(Ei−Ej )/2+βμ(ni−nj )/2, (38)
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where Kij (t) = Kji(t), so

Wij (t)

Wji(t)
=

e−β(Ei−μni )

e−β(Ej−μnj )
, (39)

where β = 1/kBT and T (t) depends on time and the chemical

potential μ(t) also depends on time. We assume, moreover,

that dβ/dt = α and dμ/dt = γ are small and are both of the

same order of magnitude.

Replacing Eq. (39) in expression (11) for the entropy ux

and after some straightforward algebraic manipulation we

reach again the result

 = −
1

T

dU

dt
+

μ

T

dN

dt
. (40)

Now dS/dt = − so

dU

dt
= T

dS

dt
+ μ

dN

dt
− T. (41)

Let us now nd the solution of the master equation. To this

end, we write the solution as

Pi(t) = P ∗
i (t)+ Ai(t), (42)

where

P ∗
i (t) =

1

(β,μ)
exp{−β(Ei − μni)}, (43)

and (β,μ) is a time-dependent quantity such that P ∗
i (t) is

normalized at any time and Ai is small when compared to P ∗
i .

It is important to bear in mind that although P ∗
i (t) obeys the

relation

Wij (t)P
∗
j (t) = Wji(t)P

∗
i (t), (44)

and can be interpreted as a probability distribution, it is not the

solution of the master equation, given by (1). The substitution

of P ∗
i on the master equation (1) makes the right-hand side

equal to zero but not the left-hand side. Replacing Eq. (42) into

the master equation, we get, up to rst order in the perturbation

Ai ,

d

dt
P ∗
i (t) =



j

{Wij (t)Aj (t)−Wji(t)Ai(t)}. (45)

Now

dP ∗
i

dt
=

∂P ∗
i

∂β
α +

∂P ∗
i

∂μ
γ , (46)

which, in view of Eq. (45), implies that the perturbation Aj (t)

is of the order of α and γ . From the expression (40) for the

entropy ux , it follows that  is also of the order α and

γ . On the other hand, if we consider the expression (3) for

the entropy production , it follows that  is of of second

order in α and γ . Therefore, in the quasiequilibrium regime,

in which we consider only terms up to rst order in α and γ ,

the relation dS/dt = − becomes dS/dt = −, that is,

the production of entropy vanishes when compared with the

ux of entropy. Using this result it follows from (41) that the

following thermodynamic relation holds:

dU

dt
= T

dS

dt
+ μ

dN

dt
. (47)

T

µ

S

U

N

FIG. 1. A path in the T ,μ space and the corresponding trajectory

in the thermodynamic space S,U,N . If the variations in T and μ are

very slow, then the trajectory in the thermodynamic space approaches

and remains on a certain surface which has the property of convexity

and is identied as the thermodynamic equilibrium surface. The

portions of the trajectory outside and on the surface are represented

by dashed and solid lines, respectively.

Let us take a look at the thermodynamic space spanned by

the variables S, U , and N . From the solution of the master

equation, we may determine these quantities as a function of

time by using the denitions (2), (4), and (33). The evolution

of the system may be represented by a trajectory of a point in

this space, as shown in Fig. 1. The representative point will

describe a generic trajectory in this space. But if T and μ start

to vary very slowly, the trajectory, according to the result (47),

will approach and remain on a certain surface of this space, as

seen in Fig. 1. According to (47), the surface is represented by

the equation

dU = T dS + μdN, (48)

so the temperature T of the thermal reservoir becomes

identied as the tangent to the surface U (S,N ) along the S

direction, T = ∂U/∂S, and thus can be interpreted as the

temperature of the system. Similarly, the chemical potential

of the particle reservoir becomes identied as the tangent to

the surface U (S,N) along the N direction, μ = ∂U/∂N , and

thus can be interpreted as the chemical potential of the system.

Notice that, according to the inequality (37), this surface has

the property of convexity.

We should remark that, far from equilibrium, the tempera-

ture of the system cannot be dened because S, U , and N are

not connected by relation (48). The same can be said about the

free energy of systems far from equilibrium. Notice, however,

that the quantity F = U − T S, dened previously and called

free energy, is not properly a property of the system because

T is the temperature of the reservoir and not the temperature

of the system, since it cannot be dened. In equilibrium or

quasiequilibrium, however, it becomes a well-dened quantity

as much as the temperature. It is worth mentioning in addition

that according to the approach just presented, the control

parameters should be the thermodynamic variables known as

thermodynamic eld variables [51].

F. Fluxes and forces

We consider here the contact of a system with two distinct

reservoirs. To treat this situation properly, we assume that each

pair of states (i,j ) is either associated to the rst reservoir or to

the second reservoir or to neither of them. In other words, the

set of pairs (i,j ) is partitioned into three subsets, associated to

the rst reservoir, to the second reservoir and neither of them,
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which we denote by A, B, and C, respectively. The transition

rates associated to the reservoirs 1 and 2 are denoted by W 1
ij

andW 2
ij , respectively, and are assumed to be of the same form

of (23), that is,

Wr
ij = Kr

ij e
−βr (Ei−Ej )/2+βrμr (ni−nj )/2, (49)

for r = 1,2, whereKr
ij is symmetric as before. In addition,K1

ij

depends on T1 and μ1 and is nonzero only if (i,j ) ∈ A, and

K2
ij depends on T2 andμ2 and is nonzero only if (i,j ) ∈ B. We

are denoting by T1 and μ1 and T2 and μ2 the temperatures and

chemical potentials of the two reservoirs and βr = 1/kBTr .

The full transition rate is given by

Wij = W 0
ij +W 1

ij +W 2
ij , (50)

where W 0
ij may be nonzero only if (i,j ) ∈ C. In this case it is

nonzero if Ei = Ej and Ni = Nj , in which case W 0
ij = W 0

ji .

In the following, we consider the stationary regime for

which the stationary probability distribution Pi fullls the

global balance (16) but not the detailed balance. In the present

case  =  and using the expression (11) we may write

 = kB


r=1,2



ij

Wr
ijPj ln

Wr
ij

Wr
ji

, (51)

where the rst summation runs only over r = 1,2. The terms

corresponding to r = 0 vanish because W 0
ij = 0 or because

W 0
ij = W 0

ji . Replacing expression (49) in this equation, the

entropy production can be written as

 = kB


r=1,2



ij

Wr
ijPjβr [(Ej − Ei)− μr (nj − ni)]. (52)

Now the ux of energy Ju and the ux of particles Jn from

reservoir 1 into the system are given by

Ju =


ij

W 1
ijPj (Ei − Ej ), (53)

Jn =


ij

W 1
ijPj (ni − nj ). (54)

The substitution of (53) and (54) into (52) and the use of the

global balance condition (16) allow us to write the entropy

production rate in the bilinear form [52,53,55]

 = XuJu +XnJn, (55)

where Xu and Xn are the thermodynamic forces

Xu =
1

T2
−

1

T1
, Xn =

μ1

T1
−

μ2

T2
, (56)

conjugated to the ux of energy and particles, respectively.

G. Onsager coefcients

When T2 = T1 and μ2 = μ1, that is, when Xu = 0 and

Xn = 0, the uxes Ju and Jn vanish. Therefore, up to linear

terms in Xu and Xn we expect the following linear behavior

of the uxes:

Ju = LuuXu + LunXn, (57)

Jn = LnuXu + LnnXn. (58)

The coefcients Luu, Lun, Lnu, and Lnn are the Onsager

coefcients. According to Onsager, the cross coefcients are

equal, Lun = Lnu, which is the Onsager reciprocal relation. In

the following we will derive expressions for these coefcients

and prove the reciprocal relation.

We will suppose that T1 and μ1 are xed and let T2 →

T1 and μ2 → μ1. Let P e
i be the probability distribution

corresponding to the equilibrium case, given by

P e
i =

1


e−β1(Ei−μ1ni ). (59)

The transition rate We
ij obeys the detailed balance

We
ijP

e
j = We

jiP
e
i (60)

and is given by

We
ij = Ke

ij e
−β1(Ei−Ej )/2+β1μ1(ni−nj )/2, (61)

whereKe
ij = K1

ij +K∗
ij +K0

ij andK
∗
ij equalsK

2
ij when T2 →

T1 and μ2 → μ1 and K
0
ij = W 0

ij .

The stationary solution Pi of the master equation (16) is

written as

Pi = P e
i (1+ aiXu + biXn), (62)

up to linear term in Xu and Xn. Replacing into the expres-

sions (53) and (54) we get the Onsager coefcients in the

form

Luu =
1

2



ij

W 1
ijP

e
j (aj − ai)(Ei − Ej ), (63)

Lun =
1

2



ij

W 1
ijP

e
j (bj − bi)(Ei − Ej ), (64)

Lnu =
1

2



ij

W 1
ijP

e
j (aj − ai)(ni − nj ), (65)

Lnn =
1

2



ij

W 1
ijP

e
j (bj − bi)(ni − nj ), (66)

where we have used the detailed balance condition (60). In

the form given by Eqs. (64) and (65) we cannot tell whether

the coefcients Lnu and Lun are equal. Next we perform a

transformation to nd expressions that will show that these

coefcients are indeed equal to each other.

Replacing (62) into (16), and expanding the result up to

linear terms in Xu and Xn, we end up with the following

equations for ai and bi :



j

We
ijP

e
j (aj − ai)+

1

kB



j

W ∗
ijP

e
j (Ej − Ei) = 0, (67)



j

We
ijP

e
j (bj − bi)+

1

kB



j

W ∗
ijP

e
j (nj − ni) = 0, (68)
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where W ∗
ij equals W 2

ij when T2 → T1 and μ2 → μ1 and is

given by

W ∗
ij = K∗

ij e
−β1(Ei−Ej )/2+β1μ1(ni−nj )/2. (69)

Multiplying (67) by Ei and by ai and summing in i we are

led to two equations from which we may obtain the following

expression for Luu:

Luu =
1

2kB



ij

W ∗
ijP

e
j (Ej − Ei)

2 −
kB

2



ij

We
ijP

e
j (aj − ai)

2.

(70)

Multiplying (68) by ni and by bi and summing in i we are lead

to two equations from which we may obtain the following

expression for Lnn:

Lnn =
1

2kB



ij

W ∗
ijP

e
j (nj − ni)

2 −
kB

2



ij

We
ijP

e
j (bj − bi)

2.

(71)

Multiplying (67) by ni and (68) by ai and summing in i, we

get two equations from which we reach an expression for Lnu.

Similarly, multiplying (67) by bi and (68) by Ei and summing

in i, we get an expression for Lun which is equal to Lnu,

proving the reciprocal relation. The expression for these two

quantities is given by

Lun = Lnu =
1

2kB



ij

W ∗
ijP

e
j (Ej − Ei)(nj − ni)

−
kB

2



ij

We
ijP

e
j (bj − bi)(aj − ai). (72)

It is worth mentioning that in the course of derivation of

these expressions, we have made use of the detailed balance

condition, which is thus a necessary condition to prove the

reciprocal relation. However, the expressions for the Onsager

coefcients do not dependon the equilibriumdistribution alone

but depend also on the deviations ai and bi .

H. Several species of particles

We will now treat the case of a system composed by

several types of particles in contactwith twoparticle reservoirs,

denoted by 1 and 2. In the steady state, uxes of particles of the

various types will be established between the two reservoirs.

Each reservoir is in fact a set of reservoirs, one for each type

of particles. As before, denoting by Ei the energy of state i

and by nki the number of particles of species k in state i, the

rate of the transition j → i associated to the reservoir r and

species k is given by

Wrk
ij = Krk

ij e
−β[(Ei−Ej )−μr

k(n
k
i−nkj )]/2, (73)

where μr
k is the chemical potential of species k associated

to reservoir r and Krk
ij is symmetric. The reservoirs are also

thermal reservoirs with a common temperature T and β =

1/kBT . A transition rate that is not associated to any reservoir

is denoted byW 0
ij and is assumed to be of the form

W 0
ij = K0

ij e
−β(Ei−Ej )/2, (74)

which describes the contactwith a heat reservoir at temperature

T , where K0
ij is symmetric.

At the stationary state, the entropy production rate equals

the ux of entropy and is given by

 = kB


r=0,1,2



k



ij

Wrk
ij Pj ln

Wrk
ij

Wrk
ji

, (75)

which follows from the general expression (11). The substitu-

tion of (73) and (74) into this expression gives

 =
1

T



r=1,2



k



ij

Wrk
ij Pjμ

r
k


nki − nkj


, (76)

where the terms involving the energy vanish. Taking into

account that theuxJk of particles of type k, from the reservoir

1 to the system, is given by

Jk =


ij

W 1k
ij Pj


nki − nkj


, (77)

and using the total balance equation (16), we may write again

the entropy production rate in the bilinear form

 =


k

XkJk, (78)

where

Xk =
1

T


μ1
k − μ2

k


(79)

is the thermodynamic force associated to species k.

For the case of two types of particles, it follows from

expression (78) that X1J1 +X2J2 > 0 because  > 0. If

X1 < 0, it is possible to have J1 > 0, as long as X2J2 >

|X1|J1, so the ux of particles of type 1 will occur against the

chemical potential gradient. This is, for instance, a mechanism

for the active transport across a cell membrane. A simple

model [74] of this type of transport is examined next.

A cell membrane is assumed to have a certain number of

channels through which two types of molecules may cross the

membrane from the exterior to the interior of the cell. The

channels function independent of each other so it sufces

to consider just one of them. A channel may be open to

the exterior, understood as reservoir 1, or to the interior,

understood as reservoir 2, and can be either empty or hold

a molecule A or two molecules, one A and another B. The

possible states and transitions are shown in Fig. 2.

1 3 5

2 4 6

EAE EAB

I IA IAB

FIG. 2. Transition diagram for a model for active transport across

a cell membrane. The circles represent the possible states of a channel

and the bonds represent the possible transitions. The possible states of

the channel are (a) open to exterior and empty (E), holding amolecule

(EA), or holding twomolecules (EAB); (b) open to interior and empty

(I), holding a molecule (IA), or holding two molecules (IAB).

042140-7
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Denoting by wij the rate of the transition j → i, then w31,

w13, w53, and w35 are associated to the reservoir 1, whereas

w42,w24,w64, andw46, associated to reservoir 2. In this simple

model, the energies of the state are assumed to be the same so,

according to (73), they hold the following relations:

w31

w13

= eβμ
1
A,

w53

w35

= eβμ
1
B , (80)

w42

w24

= eβμ
2
A,

w64

w46

= eβμ
2
B , (81)

where μk
A and μk

B are the chemical potentials of molecules A

and B associated to reservoir k. The other rates are not related

to the reservoirs and are symmetric, w21 = w12, w43 = w34,

and w65 = w56. Assuming that chemical potentials are given,

the model has seven independent transition rates.

At the stationary state, the probability distribution Pi obeys

the global balance equation



j

(wijPj − wjiPi) = 0, (82)

but do not obey the detailed balance condition, which means

that wijPj − wjiPi = 0 in general. The uxes JA and JB

of molecules A and B, respectively, from the exterior to the

interior, are given by

JA = w13P3 − w31P1, (83)

JB = w35P5 − w53P3, (84)

and are nonzero because detailed balance does not hold. The

entropy production rate is = XAJA +XBJB , where XA =

(μ1
A − μ2

A)/T and XB = (μ1
B − μ2

B)/T . By an appropriate

choice of the transition rates, it is thus possible to have a ux

of particles B against its chemical potential gradient [74], that

is, it is possible to have JB > 0 and XB < 0, as long as the

ux of particles A agrees with the gradient of its chemical

potential, that is, XAJA > 0.

III. CHEMICAL REACTIONS

A. Equilibrium

We will be concerned in this section with a system com-

posed by q species of particles that react among themselves

according to r reactions. The system is in contact with a heat

reservoir and may be closed to particles or may be open and

exchange particles with the environment. This last situation is

carried out by placing the system with particle reservoirs. We

will treat in the following the more general open case. The

results for the closed case will readily be obtained from the

results of the open case by formally imposing the vanishing of

the particle ux.

The system is placed in contact with q particle reservoirs,

one for each type of particle. Each particle reservoir is also

a thermal reservoir. The k-th reservoir exchanges heat, at

temperature T , and only particles of type k at a chemical

potential μk . Notice that all reservoirs are at the same

temperature T . The number of particle of species k in state

i is denoted by nki . If the k-th reservoir causes a change from

state j to state i, then

nki = nkj and nk


i = nk


j , k = k, (85)

becausewe are assuming that the k-th reservoir causes a change

in the number of particles of type k but causes no changes in

the number of particles of the other types.

When the system is in thermodynamic equilibrium with the

reservoirs, the probability distribution describing the system

is the Gibbs distribution

P e
i =

1


e−βEi+β

∑
k μkn

k
i , (86)

where β = 1/kBT .

To set up the transition rate Ŵ k
ij describing the contact of

the system with the k reservoir we use the detailed balance

condition with respect to the probability distribution (86),

Ŵ k
ij

Ŵ k
ji

=
P e
i

P e
j

, (87)

where i and j are states such that condition (85) is fullled, so

Ŵ k
ij

Ŵ k
ji

= e−β(Ei−Ej )+βμk (n
k
i−nkj ), (88)

which leads us to the following form:

Ŵ k
ij = K̂k

ij e
−β(Ei−Ej )/2+βμk (n

k
i−nkj )/2, (89)

where K̂k
ij is symmetric, that is, K̂k

ij = K̂k
ji , and is positive or

vanishes according to whether the condition (85) is fullled.

The total transition rate Ŵij , due to the contact with all

reservoirs, is written as the sum

Ŵij =

q

k=1

Ŵ k
ij . (90)

Notice that at most one of the q terms on the right-hand side

can be nonzero.

Let us consider now the occurrence of chemical reactions.

The number of particles of each species will vary not only

because of the contact with the reservoirs but also because

of the reactions. We consider the occurrence of r reactions

described by the chemical equations

q

k=1

νkBk = 0,  = 1,2, . . . ,r, (91)

where Bk denotes the chemical formula of species k and νk
are the stoichiometric coefcients, which are negative for the

reactants and positive for the products of the reaction. If the

-th reaction causes a change from state j to state i, then

nki − nkj = νk or nki − nkj = −νk. (92)

To set up the transition rate W̃ 
ij describing the change

caused by the -th reaction we assumed that it obeys the

Arrhenius equation [91,92]

W̃ 
ij

W̃ 
ji

= e−β(Ei−Ej ). (93)

The most general form of the transition rate is

W̃ 
ij = K̃

ij e
−β(Ei−Ej )/2, (94)
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where the prefactor is symmetric, that is, K̃
ij = K̃

ji , and is

positive if condition (92) is fullled and vanishes otherwise.

The transition rate W̃ij due to all reactions is written as the

sum

W̃ij =

r

=1

W̃ 
ij . (95)

Notice that at most one of the r terms on the right-hand side

can be nonzero.

The full transition rate Wij describing the r reactions as

well as the contact with the q reservoirs is given by

Wij = W̃ij + Ŵij . (96)

Again, just one of the two terms on the right-hand side can be

nonzero.

In equilibrium, detailed balance should be obeyed for each

one of the transition rates on the right-hand side of (96). We

have seen that this is the case of the transition rates Ŵ k
ij ,

related to the contact with each reservoir, when the probability

distribution is that given by (86). It sufces, therefore, to

impose detailed balance to the transition rate associated to

each chemical reaction. To this end we compare the ratio (93)

with the ratio

P e
i

P e
j

= e−β(Ei−Ej )+β
∑

k νkμk , (97)

obtained from (86) and valid when the rst of the two

conditions in (92) is fullled. The condition of detailed balance

is obeyed when the two ratios are equal to each other, that is,

when



k

νkμk = 0, (98)

for each reaction . The same conclusion is obtained if we

use the second of the two conditions in (92). Equation (98) is

the well-known equilibrium condition that should be fullled

when chemical reactions take place in a system [50,51].

In the presence of chemical reactions and in equilibrium,

the chemical potentials of the chemical species cannot be

independent but are related by (98). In other words, the

equilibrium occurs only when the chemical potentials μk of

the particle reservoirs are tuned so (98) is fullled. Otherwise,

the system will be out of equilibrium, as we shall see next.

B. Nonequilibrium regime

Let us now suppose that the condition (98) is not obeyed.

In this case the detailed balance condition is not fullled

and the system cannot be in equilibrium. Each reaction is

shifted either to the products or to the reactants. That is, for

a given reaction, either the products are being created and the

reactants being annihilated (forward reaction) or the reactants

are being created and the products being annihilated (backward

reaction). In this nonequilibrium regime the time variation in

the number of particles has two parts: one due to the ux of

particles from the reservoirs and the other due the creation and

annihilation caused by the reactions.

Using the master equation (1), we see that the average

number of particles Nk of type k,

Nk(t) =


i

nki Pi(t), (99)

evolves as

dNk

dt
=



ij

WijPj


nki − nkj


. (100)

According to (96), the transition rate Wij has two parts, one

related to the reservoirs, which is Ŵij , and the other related to

the chemical reactions, which is W̃ij , so (100) can be written

in the form

dNk

dt
=



ij

W̃ijPj


nki − nkj


+k, (101)

where k is given by

k =


ij

ŴijPj


nki − nkj


(102)

and describes the ux of particle from the k-th reservoir to

the system. The contact of the system with the k-th reservoir,

described by the transformation (85), causes no changes in nk


i ,

k = k. As a consequence,

Ŵ k
ij (n

k

i − nk


j ) = 0, k = k. (103)

Using (90) and the result (103), the ux of particle (102) is

written as

k =


ij

Ŵ k
ijPj


nki − nkj


. (104)

The summation in the right-hand side of (101) describes the

change in the number of particle due to the chemical reactions.

To describe properly this part, which corresponds to the

creation and annihilation of particles caused by the reactions,

it is convenient to use a new set of variables in the place of

the set of variables nki , k = 1,2, . . . ,q. The new variables are

denoted by σ 
i ,  = 1,2, . . . ,r and xi ,  = r + 1,r + 2, . . . ,q

and dened by the linear transformation

nki = xki +

r

=1

νkσ

i , k = 1,2, . . . ,q, (105)

where the quantities xki , k = 1,2 . . . ,r are not variables but

arbitrary constants chosen to be the same for all i. If a

transformation nki → nkj is performed according to the -th

chemical reaction (91), described by the transformation (92),

the variables xki remains unchanged, that is, xkj = xki . As a

consequence of this invariance,

W̃ 
ij


xki − xkj


= 0. (106)

In addition, according to the transformation (92), the vari-

ables σm
i , m = , associated to the other reactions remain

unchanged, σm
j = σm

i , and, as a consequence,

W̃m
ij


σ 
i − σ 

j


= 0, m = . (107)

Using (105) and the results (106) and (107), we obtain


ij

W̃ijPj


nki − nkj


=





νkχ, (108)
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where the quantity χ is

χ =


ij

W̃ 
ijPj


σ 
i − σ 

j


. (109)

The variation in the number of particles then can be written as

dNk

dt
=





νkχ +k. (110)

When χ > 0, the -th chemical reaction is shifted to the

right, in the direction of the products. When χ < 0, it is

shifted to the left, in the direction of the reactants. The extent

of reaction ξ is dened as the average of σ 
i ,

ξ =


i

σ 
i Pi . (111)

From the master equation and using the properties (103)

and (107), we get

dξ

dt
= χ, (112)

and we may conclude that the quantity χ is the rate of the

extent of the -th reaction.

The time variation of the internal energy is written as

dU

dt
=



ij

WijPj (Ei − Ej ). (113)

Let us now consider the time variation of entropy

dS

dt
= −, (114)

where the ux is given by (3), which, by the use of (96), (95),

and (90), is given by

 = kB


ij



k

Ŵ k
ijPj ln

Ŵ k
ij

Ŵ k
ji

+ kB


ij





W̃ 
ijPj ln

W̃ 
ij

W̃ 
ji

. (115)

Substituting the rates (88) and (93) into this equation we

get

 = kB


ij

WijPj (−β)(Ei − Ej )

+ kB


ij



k

Ŵ k
ijPjβμk


nki − nkj


. (116)

Using Eqs. (113) and (104) we may write the ux of entropy

as

 = −
1

T

dU

dt
+

1

T



k

μkk. (117)

Substituting into (114) and taking into account Eqs. (113), we

get

dS

dt
= +

1

T

dU

dt
−

1

T



k

μkk. (118)

Using (110), we reach the result

dS

dt
= +

1

T

dU

dt
−





A

T
χ −

1

T



k

μk

dNk

dt
, (119)

where A is the De Donder afnity [52],

A = −


k

νkμk, (120)

associated to the -th chemical reaction.

In the stationary state dS/dt = 0, dU/dt = 0, and

dNk/dt = 0, and we reach the following expression for the

production of entropy in the stationary state [52,55,57,58]:

 =




A

T
χ, (121)

or, in the equivalent form,

 =




A

T

dξ

dt
, (122)

equation originally introduced by De Donder [52]. In equilib-

rium there is no production of entropy and the afnities vanish,

A = 0, in accordance with (98), and the rate in which the -th

reaction proceeds vanish as well, χ = dξ/dt = 0.

In a nonequilibrium stationary state, a ux of particles

is continuously taking place, which sustains the chemical

reactions. The quantities k and χ are nonzero, in general.

At the same time there is a ux of heat toward the system,

characterizing an endothermic reaction, or from the system,

characterizing an exothermic reaction. To understand this

situation we write down the variation in the energy, given

by Eq. (113) in the form

dU

dt
=





R +u, (123)

where R is the energy delivered by the -th reaction per unit

time, given by

R =


ij

W̃ 
ijPj (Ei − Ej ), (124)

and u is the heat ux to the system, given by

u =


ij



k

Ŵ k
ijPj (Ei − Ej ). (125)

In the stationary state dU/dt = 0 and u = −
∑

 R. If

u < 0, the reactions are exothermic. If u > 0, they are

endothermic. Notice that there is no contribution to the entropy

production rate coming from the ux of heat because the

temperatures of the reservoirs are the same.

Although we have considered a system in contact with one

reservoir for each type of particle, the formulas can easily be

adapted to the case in which the system is closed to some

types of particles. If the system is closed to particles of type k,

then it sufces to formally set μk = 0 and Ŵ k
ij = 0 sok = 0

for this species. It is worth mentioning that in the case of

a closed system, when there is no ux of particles from the

environment,k = 0 for all species, and using equation (118),

we see that dF/dt = −T, where F = U − T S is the free

energy, so dF/dt 6 0. Therefore, the chemical reactions occur
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in a direction such that the variations in the number of particles

will decrease the free energy [93].

As an example of the approach just developed we analyze a

system with four species of particles and two reactions, which

are

B1 + B2 = B3, B3 = B2 + B4, (126)

and represent the Michaelis-Menten mechanism in which a

the substrate B1 is converted, in two steps, into the product B4

by the action of an enzyme. The substrate B1 reacts with the

enzymeB2 giving rise to a complexB3 which in turn breaks up

into the product B4 and the enzyme B2. It is assumed that both

reactions have reverses. The system is assumed to be closed

to the particles B2 and B3 and is in contact with reservoirs of

particles of type B1 and B4.

Using formula (120), and bearing in mind that we should

set μ2 = 0 and μ3 = 0 in this formula, the afnities A1 and

A2 associated to the two reactions are given by

A1 = μ1, A2 = −μ4. (127)

The variations in the number of particles of each species are

dN1

dt
= −χ1 +1,

dN2

dt
= −χ1 + χ2, (128)

dN3

dt
= χ1 − χ2,

dN4

dt
= χ2 +4. (129)

In the stationary state, χ1 = χ2 = 1 = −4, so, us-

ing (121), the entropy production rate is found to be

 =
χ1

T
(μ1 − μ4). (130)

We may now draw the following conclusion for the case of

a nonequilibrium steady-state situation, for which  > 0. If

μ1 > μ4, thenχ1 > 0 andχ4 > 0 so the two reaction equations

are shifted to the right, establishing a continuous annihilation

of particles of type B1, which come from reservoir B1 because

1 > 0, and production of particles of type B4, which go to

reservoir B4 because 4 < 0.

C. Onsager coefcients

In the nonequilibrium stationary state but close to equilib-

rium we may expand the rates of the extents of reaction χ in

terms of the afnities A to get

χ =


m

LmAm, (131)

where Lm are the Onsager coefcients. They obey the

reciprocal relations, which we demonstrate next.

We start by expanding the stationary probability distribution

Pi , that satises the global balance equation (16), around the

equilibrium distribution P e
i given by

P e
i =

1

Z
e−βEi+β

∑
k μ

∗
kn

k
i , (132)

where the chemical potentials μ∗
k obey the equilibrium

condition


k

νkμ
∗
k = 0. (133)

We assume an expansion of the form

Pi = P e
i


1+

r

=1

RiA +

q

k=r+1

aikμk


, (134)

where μk = μk − μ∗
k .

We also expand Ŵ k
ij , given by (89), around its value at

equilibrium,

Ŵ ∗k
ij = K̂k

ij e
−β(Ei−Ej )/2+βμ∗

k (n
k
i−nkj )/2, (135)

to get

Ŵ k
ij = Ŵ ∗k

ij

{
1+ βμk


nki − nkj


/2
}
. (136)

The transition rate W̃ 
ij needs no expansion because this

quantity is also its value at equilibrium since it does not depend

on the chemical potentials.

Replacing the expansions (134) and (136) into the global

balance equation (16), we get



j

W ∗
ijP

e
j

r

=1

A(Rj − Ri)

+


j

W ∗
ijP

e
j

q

k=r+1

(ajk − aik)μk

+


j



k

Ŵ ∗
ijP

e
j βμk


nki − nkj


= 0, (137)

where

Ŵ ∗
ij =



k

Ŵ ∗k
ij , and W ∗

ij = Ŵ ∗
ij + W̃ij . (138)

Using (105) and taking into account relation (133), we see that



k

μk


nki − nkj


=

q

k=r+1

μk


xki − xkj



−

r

=1

A


σ 
i − σ 

j


, (139)

which is replaced in (137) to get an expression linear inA and

μk . Since the coefcients of A and μk in this expression

should vanish, we obtain


j

W ∗
ijP

e
j (ajk − aik)+



j

Ŵ ∗
ijP

e
j


xki − xkj


= 0, (140)

valid for r + 1 6 k 6 q, and



j

W ∗
ijP

e
j (Rj − Ri)− β



j

Ŵ ∗
ijP

e
j


σ 
i − σ 

j


= 0,

(141)

valid for 1 6  6 r . These last two equations determine aik
and Ri.

Let us consider now the expansion of the rate of the extent

of reaction χ, given by (109). Replacing the expansion (134)

into (109), we get an expression linear in Am and μk . The

coefcient of Am is the Onsager coefcient Lm which is
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given by

Lm =


ij

W̃ijP
e
j (Rjm − Rim)


σ 
i − σ 

j


. (142)

Next we use equation (141) to write the Onsager coefcient

in a more appropriate form. To this end we proceed as follows.

We multiply (141) by σm
i and sum in i to get a rst equation.

Next we multiply (141) by Rm
i and sum in i to get a second

equation. From these two equations we get an equation for the

right-hand side of (142) from which we reach the following

expression:

Lm =
β

2



ij

Ŵ ∗
ijP

e
j


σm
i − σm

j


σ 
i − σ 

j



−
1

2β



ij

W ∗
ijP

e
j (Ri − Rj)(Rim − Rjm). (143)

From this expression it follows that

Lm = Lm, (144)

which is the Onsager reciprocal relation [53].

IV. FOKKER-PLANCK EQUATION

A. Langevin equations

In this section we are concerned with systems that follow

a continuous time Markovian process in the continuous state

space, the phase space. We consider a system of particles that

follows a dynamics described by the following set of Langevin

equations, interpreted according to Itô,

m
dvi

dt
= Fi(x)− αivi + Fi(t), (145)

where m is the mass of each particle, vi = dxi/dt and xi is

the position of the i-th particle, and x denotes the vector x =

(x1, . . . ,xn). We will also use the notation v = (v1, . . . ,vn).

The quantity Fi(x) is the force acting on the i-th particle, and

Fi(t) is a stochastic variable with the properties

Fi(t) = 0, (146)

Fi(t)Fj (t
) = 2Bijδ(t − t ), (147)

where Bij may depend on x and v.

Notice that we are considering the so-called underdamped

systems, for which the state of a particle is dened by its

position and velocity [38], in opposition to the overdamped

case, for which the state of a particle is dened only by its

position [29].

The quantities Fi(t) are random forces acting on the

particles including the ones that describe the contact of the

system with the environment. We will treat two cases: one

in which the system is isolated (microcanonical ensemble)

and the other in which the system is in contact with a heat

reservoir (canonical ensemble). In the rst case the forces Fi

are conservative and the stochastic forces are set up in such a

way that the energy is conserved in any stochastic trajectory.

In thermodynamic equilibrium they will lead to the Gibbs

microcanonical probability distribution. In the second case the

forces Fi are also conservative and the random forces are set

up in such a way that in thermodynamic equilibrium they will

lead to the Gibbs canonical distribution.

Using the Itô interpretation, we can show that the Langevin

equations (145) are associated to the following Fokker-Planck

equation:

∂P

∂t
= −



i

∂

∂xi
(viP )−

1

m



i

∂

∂vi
(FiP )

+


i

αi

m

∂

∂vi
(viP )+

1

m2



ij

∂2

∂vi∂vj
(BijP ), (148)

equation that gives the time evolution of the probability

distribution P (x,v,t) of x and v at time t . It is convenient

to write down the Fokker-Planck equation in the following

form:

∂P

∂t
= −



i

(
Ki +

∂Ji

∂vi

)
, (149)

where Ki and Ji are given by

Ki = vi
∂P

∂xi
+

Fi

m

∂P

∂vi
(150)

and

Ji = −
αi

m
viP −

1

m2



j

∂

∂vj
(BijP ). (151)

Let us consider now the time variation of entropy S, given

by

S(t) = −kB


P (x,v,t) lnP (x,v,t)dxdv. (152)

The derivative of S gives

dS

dt
= −kB

 (
∂P

∂t

)
lnPdxdv. (153)

After replacing (149) into this equation and performing

appropriate integrations by parts we reach the following

expression:

dS

dt
= −kB



i


Ji

P

(
∂P

∂vi

)
dxdv. (154)

The terms corresponding to Ki vanish, that is,

−kB


i


Ki lnPdxdv = 0. (155)

We are assuming that P and its derivatives vanish at the

boundary of integration.

B. Microcanonical ensemble

Here we treat the case of an isolated system, with no contact

with the environment so the energy is strictly conserved.

We thus assume that the force Fi are conservative so Fi =

−∂V/∂xi , which allows us to dene the energy function

E(v,x) as

E(x,v) =


i

m

2
v2i + V (x). (156)
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The strict conservation of energy means to say that E(x,v)

should be a constant along any stochastic trajectory in phase

space. This condition is fullled by the following set of

Langevin equations, understood according the Stratonovich

interpretation:

m
dvi

dt
= Fi(x)+



j (=i)

ξij vj , (157)

where ξij are stochastic variables with the antisymmetric

property ξji = −ξij . The multiplicative noise at the right-hand

side changes the velocities of the particles while keeping the

kinetic energy invariant and can be interpreted as random

elastic collisions of the particles with themselves or with

immobile scatters. A similar noise has been used do describe

a particle that moves at constant speed but changes direction

at random times [94,95].

Multiplying (157) by vi and summing in i wemay conclude,

after using the antisymmetric relation ξji = −ξij , that E(v,x)

is strictly conserved along any stochastic path x(t), v(t).

Therefore, the equation of motion (157) describes a system

of particles evolving in time in such a way that the energy

is strictly constant. In analogy with equilibrium statistical

mechanics, this denes a microcanonical ensemble.

The stochastic variables ξij (t) are dened by the relations

ξij (t) = 0 (158)

and

ξij (t)ξij (t
) = 2λijδ(t − t ), (159)

where λij > 0 is a parameter that gives the strength of the

stochastic noise. Using the Stratonovich interpretation, and

taking into account the antisymmetric property ξji = −ξij of

the noise, we may write down the associate Fokker-Planck

equation, given by

∂P

∂t
= −



i

∂

∂xi
(viP )−

1

m



i

∂

∂vi
(FiP )

+
1

m2



ij

λij

(
vj

∂

∂vi
vj

∂P

∂vi
− vj

∂

∂vi
vi
∂P

∂vj

)
,

(160)

an equation that gives the time evolution of the probability

distribution P (x,v,t) of x and v at time t . The last summation

extends over i = j and we recall that λji = λij > 0.

It is worth mentioning that Eq. (157), understood in the

Stratonovich sense, is equivalent to the following equation,

interpreted according to Itô:

m
dvi

dt
= Fi(x)− αivi +



j (=i)

ξij vj , (161)

where

αi =


j (=i)

λij . (162)

Of course, this equation leads to the same Fokker-Planck

equation (160).

It is convenient to write down the Fokker-Planck equation

in the form given by (149) where Ki is given by (150) and Ji

is given by

Ji =


j (=i)

Jij vj , (163)

Jij =
1

m2
λij

(
vi
∂P

∂vj
− vj

∂P

∂vi

)
, (164)

Let us determine now the time derivative of entropy, which

is given by Eq. (154). After replacing (163) into Eq. (154)

and performing appropriate integration by parts we reach the

following expression:

dS

dt
=

kB

m2



i<j

λij


1

P

(
vj

∂P

∂vi
− vi

∂P

∂vj

)2

dxdv. (165)

We are assuming that P and its derivatives vanish at the

boundary of integration. The right-hand side of this equation is

clearly non-negative and is therefore identied as the entropy

production rate,

 =
kB

m2



i<j

λij


1

P

(
vj

∂P

∂vi
− vi

∂P

∂vj

)2

dxdv, (166)

which can also be written in the form

 = kB


i<j

m2

λij


J 2
ij

P
dxdv, (167)

where the summation is over ij such that λij = 0, so

dS

dt
= . (168)

In the present case there is no entropy ux,

 = 0, (169)

which is consistent with our interpretation that Eqs. (157)

describe an isolated system. Taking into account that > 0 it

follows at once that dS/dt > 0 for an isolated system.

In the stationary state, which is a thermodynamic equi-

librium, the probability distribution P e(x,v) depends on x

and v only through E(x,v), that is, P e(x,v) is a function

of E(x,v). This statement can be checked by substitution

on the right-hand side of the Fokker-Planck equation (160).

Since E(x,y) is invariant along any path in phase space and

supposing that initially its value is U , it follows that

P e(x,v) =
1


δ[U − E(x,v)], (170)

where  is a normalization constant that depends on U .

We remark that in this case , given by (166), vanishes, as

expected.

C. Canonical ensemble

Now we consider the case of a system in contact with

a heat reservoir. In fact, we will consider the more general

case in which each particle i is in contact with a reservoir at

temperature Ti . The appropriate set of Langevin equations that

describes this situation is given by

m
dvi

dt
= Fi(x)− αivi + ζi(t), (171)
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where ζi(t) is a stochastic variable with the properties

ζi(t) = 0, (172)

ζi(t)ζj (t
) = 2αikBTi δijδ(t − t ), (173)

where Ti and αi are parameters. The two last terms in Eq. (171)

are interpreted as describing the contact of the i-th particlewith

the heat bath at a temperature Ti and αi is the strength of the

interaction with the heat reservoir.

To the set of Langevin equations (171) is associated the

Fokker-Planck equation

∂P

∂t
= −



i

∂

∂xi
(viP )−

1

m



i

∂

∂vi
(FiP )

+
1

m



i

αi

∂

∂vi
(viP )+

kB

m2



i

αiTi
∂2P

∂v2i
, (174)

an equation that gives the time evolution of the probability

distribution P (x,v,t) of x and v at time t .

The Fokker-Planck equation again can be written in the

form given by (149) whereKi is given by (150) and Ji is given

by

Ji = −
αivi

m
P −

αikBTi

m2

∂P

∂vi
. (175)

Again the derivative of entropy is given by (154). Replac-

ing (175) into (154) we get the following expression [38]:

dS

dt
=



i

 (
m2

αiTi

J 2
i

P
+

m

Ti
viJi

)
dxdv. (176)

The summation in (176) extends only to the terms for which

αi = 0 and Ti = 0.

The rst term on the right-hand side of equation (176)

is non-negative and is identied as the entropy production

rate [38],

 =


i

m2

αiTi


J 2
i

P
dxdv. (177)

Although this identication may seem to be arbitrary, as has

been argued [41], we will see in the next section that in fact

it is in accordance with the expression (3). It vanishes only

when Ji = 0, which is the equilibrium condition. The second

summation is thus the entropy ux

 = −


i

m

Ti


viJidxdv, (178)

which can also be written as

 =


i

1

Ti

(
αi

〈
v2i
〉
−

αiTi

m

)
. (179)

After replacing Ji , given by (175), into (178) and performing

an integration by parts, the variation of the entropy of the

system becomes

dS

dt
= −. (180)

Let us assume that the forces are conservative, Fi =

−∂V/∂xi . In this case, we dene the energy of the system

as

E(x,v) =
m

2



i

v2i + V (x). (181)

Using the Fokker-Planck equation in the form (149) we get

the following expression for the time derivative of the average

energy U = E(x,v):

dU

dt
= −u, (182)

where

u = −


i

m


viJidxdv (183)

is the ux of energy from the system to outside. To reach this

expression we have performed appropriate integration by parts

and assumed thatP and its derivatives vanish at the boundaries

of integration. Using the denition of Ji , given by (175), we

may write the energy ux as

u =


i

αi

(〈
v2i
〉
−

kBTi

m

)
. (184)

When all temperatures are the same Ti = T we have  =

u/T so

dS

dt
−

1

T

dU

dt
= , (185)

from which it follows that the time variation of F = U − T S

is given by dF/dt = −T so dF/dt 6 0.

Thermodynamic equilibrium occurs when all temperatures

are the same, Ti = T , and the forces are conservative, Fi =

−∂V/∂xi . In this case, Ki = 0 and Ji = 0, which leads to the

following result for the equilibrium probability distribution:

P e(x,v) =
1

Z
e−E(x,v)/kBT , (186)

where Z is a normalization constant.

If we integrate Eq. (185) in time, from an initial time t0
until innity, when the system is in equilibrium, we get

S − S0 −
1

T
(U − U0) > 0. (187)

Let us suppose that the system is in contact with just

one heat reservoir at temperature T and that is temperature

is varying slowly so dT /dt = α is small. This is again the

quasistatic process that we have already discussed. In this

case, the quantity Ji will be of the order α so  will be of

the order α2. On the other hand,  remains at the linear order

in α and we may write from (185) dS/dt = (1/T )dU/dt .

It follows that the entropy and energy cannot be arbitrary

but are connected by the relation T dS = dU so a system

performing a quasistatic process may be considered to be in

equilibrium. From the result (187) we see that the curve that

connectU and S has the property of convexity. To perceive this

it sufces to imagine that at the initial time t0 the energy U0

and entropy S0 correspond to values of equilibrium at a certain

temperature T0.
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D. Nonequilibrium stationary state

Let us take a look at the the energy variation per unit time,

or power, Pi , associated to the i-th particle, given by

Pi = viFi+
m

2

d

dt

〈
v2i
〉
, (188)

where the rst term is associated to the dissipation due to the

forceFi acting on the particle and the second the time variation

of its kinetic energy. Using the Fokker-Planck equation it is

straightforward to show that

Pi = αi

〈
v2i
〉
−

αiTi

m
. (189)

Therefore,

u =


i

Pi (190)

and

 =


i

Pi

Ti
, (191)

and we recall that the summation is over i such that αi = 0

and Ti = 0.

Let us consider the contact of the systemwith two reservoirs

A and B at temperatures T1 and T2, respectively. The heat ux

from reservoir A to the system is given by

J =


i∈A

Pi , (192)

where the summation is over the particles that are in contact

with reservoir A. A similar expression holds,

J
 =



i∈B

Pi , (193)

for the heat ux J  from reservoir B to the system. In

the stationary state,  = , and taking into account the

expression (191) for , we get

 =
J

T1
+

J 

T2
. (194)

But in the stationary state u = J + J  = 0 so

 = XJ , (195)

where

X =
1

T1
−

1

T2
. (196)

Let us assume that X is small so T = T2 − T1 is small.

In this case J = LT , where L is the thermal coefcient.

Writing the probability distribution as P (x,v) = P e(x,v)[1−

T a(x,v)], where P e(x,v) is the equilibrium distribution

when the temperatures of the reservoir is T1, we may calculate

J to get

L =


i∈A

αi


v2i a(x,v)P

e(x,v)dxdv, (197)

which may be understood as an average over the equilibrium

distribution.

V. MASTER EQUATION REPRESENTATION OF THE

FOKKER-PLANCK EQUATION

A. Microcanonical ensemble

It is possible to represent the Fokker-Planck in terms of a

master equation. This can be done by a discretization of the

phase space in a such a way that the continuum limit will

reduce the master equation to the Fokker-Planck equation.

From the representation we can easily identify the transition

probabilities from which we can obtain, for instance, the

entropy production rate.

To set up the discrete stochastic dynamics we imagine a

representative point in the phase space following a stochastic

trajectory. We consider two types of transitions from a given

point in the phase space. The rst type is dened by the

transitions determined by the Hamiltonian ow. This type of

transition is dened by

(x,v) → (H+
i x,H+

i v), (198)

where H+
i x and H+

i v are vectors with the same components

of the vectors x and v except the i-th components xi and vi
which are transformed to x i and v


i , where x


i is given by

x i = xi + bvi, (199)

and vi is determined in such away that the energy is conserved,

that is,

E(H+
i x,H+

i v) = E(x,v), (200)

where b > 0 is a parameter. Each transition occurs with rate

1/b. If b is sufcient small, vi is given by

vi = vi + b
Fi

m
. (201)

Notice that the Hamiltonian transition dened above has no

reverse in the sense that from a point (H+
i x,H+

i v) we cannot

reach the point (x,v) with this type of transition.

The transitions of the second type changes only the

velocities and preserves the kinetic energy. This type is dened

by

(x,v) → (x,Mijv), (202)

whereMijv is a vector with the same components of the vector

v except the components i and j which are vi and v

j given by

vi = vi cos θ − vj sin θ, vj = vi sin θ + vj cos θ, (203)

where θ > 0, so (vi)
2 + (vj )

2 = v2i + v2j and the kinetic energy

is preserved. Another possible transition is dened by

(x,v) → (x,Mjiv). (204)

Each of these transition occurs with rate equal to λij /m
2θ2.

Notice that this second type of transition has a reverse since

from the point (x,Mijv) it is possible to reach the point (x,v).

It is sufcient to observe that Mji(Mijv) = v.
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The transitions above lead us to the following master

equation:

∂

∂t
P (x,v) =



i

1

b
{P (H−

i x,H−
i v)− P (x,v)}

+


ij

λij

2ε2
{P (x,Mijv)+P (x,Mjiv)−2P (x,v)},

(205)

whereH−
i is dened in away similar toH+

i except that the sign

in front of b in Eq. (199) is negative. It is straightforward to

show that expression (205) reduces to the Fokker-Planck (160)

in the limit ε → 0 and b → 0.

Taking into account that all transitions preserve the energy

E(x,v), we see that in equilibrium the probability distribution

P e(x,v) depends on (x,v) throughE(x,v). If at initial time the

energy is equal toU , thenP e(x,v) vanishes ifE(x,v) = U and

is a constant ifE(x,v) = U , which is theGibbsmicrocanonical

distribution.

B. Canonical ensemble

Next we set up a discrete stochastic dynamics, described by

a master equation, whose continuous limit gives the Fokker-

Planck equation (174). The representative point in phase space

(x,v) performs a stochastic trajectory. We consider again two

types of transitions from a given point in the phase space.

The rst type is the transition dened by the Hamiltonian ow

given by Eq. (198). The transition of the second type changes

only the velocities but in general it does not preserve the kinetic

energy. This type of transition is dened by

(x,v) → (x,C±
i v), (206)

whereC±
i v is a vector with the same components of the vector

v except the i-th component vi which is given by

vi = vi ± a, (207)

where a > 0 is a parameter and each transition occurs with

rate

A±
i (v) =

αikBTi

m2a2
e∓amvi/2kBTi . (208)

The master equation is written as

∂

∂t
P (x,v) =



i

1

b
{P (H−

i x,H−
i v)− P (x,v)}

=


i

{A+
i (C

−
i v)P (x,C−

i v)− A−
i (v)P (x,v)}

+m


i

{A−
i (C

+
i v)P (x,C+

i v)− A+
i (v)P (x,v)}.

(209)

It is straighfoward to show that in the limit a → 0 and b →

0, the master equation reduces to Eq. (174), and the master

equation indeed can be understood as a representation of the

Fokker-Planck equation (174).

The stationary solution of the master equation when

all temperatures are the same, which corresponds to the

thermodynamic equilibrium, is the Gibbs distribution. Indeed,

the detailed balance of themaster equation gives us the relation

P e(H−
i x,H−

i v) = P e(x,v), (210)

which means that P e(x,v) depends on (x,v) through E(x,v).

Writing

P (x,v) =
1

Z
e−E(x,v)/kBT , (211)

we see that the other relation,

A+
i (C

−
i v)P

e(x,C−
i v) = A−

i (v)P
e(x,v), (212)

is fullled if we take into account that all temperatures are the

same, Ti = T .

C. Entropy production

We have seen that the entropy production rate of a system

described by a master equation is obtained by expression (3).

This expression is appropriate when the rates of the reversed

transitions are nonzero. This is the case of transitions dened

by (202). The entropy production rateM associated to these

transitions, according to (3), is given by

M =
kB

2



x,v



ij

λij

2m2θ2
{P (x,Mijv)− P (x,v)}

× ln
P (x,Mijv)

P (x,v)
. (213)

In the limit θ → 0, the right-hand side reduces to expression on

the right-hand side of (165). The entropy uxM associated to

the transitions (202) is obtained by using (12), but it vanishes

identically,

M = 0. (214)

Let us consider now the entropy production rate C

associated to the transitions dened by (206). According to

expression (3), it is given by

C =
kB

2



x,v



i

{A+
i (C

−
i v)P (x,C−

i v)− A−
i (v)P (x,v)}

× ln
A+

i (C
−
i v)P (x,C−

i v)

A−
i (v)P (x,v)

. (215)

After taking the limit a → 0 this expression is reduced to the

result (177). The corresponding entropy ux C is obtained

from (12) and is given by

C =
kB

2



x,v



i

{A+
i (C

−
i v)P (x,C−

i v)− A−
i (v)P (x,v)}

× ln
A+

i (C
−
i v)

A−
i (v)

. (216)

The limit a → 0 leads us to the result (178).

We now wish to consider the entropy production rate and

the ux of entropy coming from the parts of the stochastic

trajectory associated to the Hamiltonian ow, given by the

transitions dened by (200). We postulate that the entropy

ux associated to the Hamiltonion ow vanishes identically,

H = 0. Therefore, the entropy production rate associated
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to the Hamiltonian ow should be equal to part of dS/dt

coming from the Hamiltonian ow. This part can be obtained

by inserting the rst summation of the right-hand side of the

master equation (205) into Eq. (8). After doing this, we get the

following expression for the entropy production rate associated

to the Hamiltonian ow:

H = kB


x,v



i

1

b
P (x,v) ln

P (x,v)

P (H+x,H+v)
, (217)

which is similar to expression (10).

Next we have to show thatH > 0. To this end, we expand

each term in the summation in powers of b. Up to linear terms

in b the i element of the summation equals

(
vi
∂P

∂xi
+

Fi

m

∂P

∂vi

)
+

b

2P

(
vi
∂P

∂xi
+

Fi

m

∂P

∂vi

)2

. (218)

But the integral in x and v of the rst term vanishes so

H > 0. In fact, it vanishes in the continuum limit b → 0.

Therefore, in the continuum limit H = 0. From this result

it follows that M is the total production of entropy for the

microcanonical case. Since in the continuous limit, it goes

into (167), it follows that the expression given by (167) is

indeed the entropy production rate, as we have assumed.

Similarly, it follows that C is the total production rate for

the canonical case. In the continuous limit it is identied

with (177) so the expression given by (177) is indeed the

entropy production rate, as assumed.

VI. CONCLUSION

We developed the stochastic approach to thermodynamics

based on the stochastic dynamics. More specically, we used

the master equation, in the case of discrete state space, and

the Fokker-Planck, in the case of continuous state space.

Our approach is founded on the use of a form for the

production of entropy which is non-negative by denition

and vanishes in equilibrium. Based on these assumptions we

studied interacting systems with many degrees of freedom in

equilibrium or out of thermodynamic equilibrium and how the

macroscopic laws can be derived from the stochastic dynamics.

This required the introduction of the transition rates which thus

play a fundamental role in the present approach, similar to the

Gibbs distribution in the case of equilibrium.

Using the property that the production of entropy is non-

negative, which is understood as the dynamic formulation of

the second law of thermodynamics, we were able to show that

in the quasi-static process, the representative point in the ther-

modynamic space approaches a surface and that this surface

has the property of convexity. These statements are usually

introduced as postulates in equilibrium thermodynamics. We

have also shown the bilinear form of entropy production,

which is a sum of terms, each one being a product of a

force and a ux. We remark that this is the macroscopic form

used in nonequilibrium thermodynamics and should not be

confusedwith themicroscopic denition of entropy production

itself, which looks like a bilinear form. From the bilinear

form of entropy production, we have determined the Onsager

coefcients and shown that they obey the reciprocal relations.

The nonequilibrium steady states of a system with several

chemical species and chemical reactions were studied by the

use of appropriate transition rates. From the denition of the

entropy production rate it was possible to derive the bilinear

form, which in this case is written in terms of afnities and

the rates of the extents of reaction. In equilibrium the afnities

vanish, which is the condition for chemical equilibrium.

Using appropriate transition rates or appropriate stochastic

noise, in the case of the Fokker-Planck, it was possible to

study several situations that were analogous to those related

to the microcanonical, canonical, and grand-canonical Gibbs

ensembles. For the microcanonical case in continuous state

space we have introduced an energy-conserving stochastic

noise. For the canonical case we used the usual white Gaussian

noise. To make contact with the master equation, we have

used a master equation representation of the Fokker-Planck.

Using this representation we conrmed the expression for the

production of entropy that was introduced by the splitting of

the time derivative of entropy. In this case we postulated that

a Hamiltonian transition induces no ux of entropy. Since the

entropy is constant along a Hamiltonian ow in continuous

space, this implies no production of entropy.
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[52] T. De Donder, L’Afnité (Lamertin, Bruxelles, 1927).

[53] L. Onsager, Phys. Rev. 37, 405 (1931); ,38, 2265 (1931).

[54] K. G. Denbigh, The Thermodynamics of the Steady State

(Methuen, London, 1951).

[55] I. Prigogine, Introduction to Thermodynamics of Irreversible

Processes (Thomas, Springeld, 1955).

[56] S. R. de Groot and P. Mazur,Non-Equilibrium Thermodynamics

(North-Holland, Amsterdam, 1962).

[57] P. Glansdorff and I. Prigogine, Thermodynamics of Structure,

Stability and Fluctuations (Wiley, New York, 1971).

[58] G. Nicolis and I. Prigogine, Self-Organization in Nonequilib-

rium Systems (Wiley, New York, 1977).

[59] A. Einstein, Ann. Phys. 322, 549 (1905).

[60] M. Smoluchowski, Ann. Phys. 326, 756 (1906).

[61] P. Langevin, Comp. Rend. 146, 530 (1908).

[62] A. D. Fokker, Ann. Phys. 348, 810 (1914).

[63] M. Smoluchowski, Ann. Phys. 353, 1103 (1915).

[64] M. Planck, Sitz. Knig. Preuss. Akad. Wiss. 324 (1917).

[65] L. S. Ornstein, KNAW, Proceedings, Amsterdam 21, 96 (1919).

[66] H. A. Kramers, Physica 7, 284 (1940).

[67] N. G. van Kampen, Stochastic Processes in Physics and

Chemistry (North-Holland, Amsterdam, 1981).

[68] C. W. Gardiner, Handbook of Stochastic Methods for Physics,

Chemistry and Natural Sciences (Springer, Berlin, 1983).

[69] H. Risken, The Fokker-Planck Equation, Methods of Solution

and Applications (Springer, Berlin, 1984).
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