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I. INTRODUCTION

The second law stipulates that the entropy of an isolated

system cannot decrease. In a recent development f1g ssee
also f2–6gd, it was suggested that the second law can in fact

be split in two. The total entropy production sEPd S˙ tot is the
sum of two constitutive parts, namely, a so-called adiabatic

S˙a and a nonadiabatic S˙na contribution. These separate con-

tributions arise from the fact that there are two mechanisms

that lead to the time-symmetry breaking characteristic of a

dissipative process, namely, the application of steady non-

equilibrium constraints sadiabatic contributiond or the pres-

ence of driving snonadiabatic contributiond. The crucial point
is to note that each of these contributions is separately non-

negative. We can thus identify “three faces” to the second

law: the positive rate of production of the total EP, of the

adiabatic EP, and of the nonadiabatic EP,

S˙ tot $ 0, S˙na $ 0, S˙a $ 0. s1d

Explicit expressions for S˙ tot, S
˙
a, and S˙na, including a detailed

mathematical and physical discussion, were given at the

level of a master equation description in the preceding com-

panion paper f7g. However, in many applications, a descrip-

tion on the basis of a Langevin or a Fokker-Planck equation

is more appropriate. The purpose of this paper is to provide a

detailed discussion of the adiabatic S˙a and nonadiabatic S˙na
EPs for such a description. It should be noted that the master

equation description is the more general one, including the

Langevin and Fokker-Planck cases as special limits. The

rather technical transition between both descriptions based

on such a limiting procedure is given in the Appendix of this

paper. In order to be both self-contained and physically mo-

tivated, we derive the same expressions for the adiabatic and

nonadiabatic EPs directly from the Fokker-Planck equation

itself in the main text. The application to Langevin equations

driven by Gaussian white noise is immediate since there is a

mathematical equivalence between Fokker-Planck and

Langevin descriptions f8g. Note nally that we focus here on

the EP rates for which we provide explicit expressions. We

have previously obtained the results for the time-integrated

trajectory-dependent versions of the various EP contributions

f1g. The latter can be expressed in terms of relative entropies

between probabilities for paths in a direct and various types

of reverse experiments. While these results have a profound

meaning by revealing the temporal-symmetry breaking asso-

ciated to each contribution, the expressions for the EP rates

given here do not refer to any reverse experiment and are

thus much easier to measure or calculate.

II. FOKKER-PLANCK EQUATION

A. Total entropy balance

Our starting point is the Fokker-Planck equation describ-

ing the time evolution of the probability density pt=ptsxd for
the variable x,

ṗt = − ]xJt, s2d

with

Jt =o
n

Jt
snd = utpt − Dt]xpt, s3d

Jt
snd = ut

sndpt − Dt
snd
]xpt, s4d

ut =o
n

ut
snd, Dt =o

n

Dt
snd. s5d

The quantities pt , Jt , Jt
snd , ut

snd , Dt
snd, etc. are all functions

of the state x of the system, although this is not written

explicitly for simplicity of notation. The probability density

changes in time due to different processes n. As a result a

probability ux Jt
snd is associated to each process. We also

assume general time-dependent drift and diffusion coef-

cients ut
snd and Dt

snd.

We now proceed with the identication of various EP

contributions, whose positivity can be guaranteed on a purely

mathematical basis. As we will see in the next section, these

terms can be interpreted as genuine forms of EP when the

proper physical content is taken into account. We focus on

the time evolution of the Shannon entropy for the system,

Sstd = −E dxpt ln pt. s6d

Note that we assume here and henceforth that the Boltzmann

constant kB is set equal to 1. Using Eq. s2d one nds
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S˙ std = −E dxṗt ln pt

= −o
n

E dxJt
snd]xpt

pt

=o
n

E dxJt
sndS Jt

snd

Dt
sndpt

−
ut

Dt
sndD . s7d

We used partial integration sassuming that the boundary con-

tributions canceld and the denition of the probability ux

s4d to get the results on the second and third lines. One

identies the following two parts:

S˙ std = S˙ estd + S˙ istd . s8d

The rst term corresponds to the entropy ow into the sys-

tem,

S˙ estd = −o
n

E dxJt
snd ut

snd

Dt
snd . s9d

The second term is the non-negative irreversible EP,

S˙ istd =o
n

E dx
sJt

sndd2

Dt
sndpt

$ 0. s10d

These expressions are in agreement with the results given

previously in the literature for the case of a single process n
f9–12g.

We mention two additional properties of the total EP.

First, we note the following inequality:

S˙ istd$E dx
sJtd

2

Dtpt
$ 0, s11d

which shows that the total EP is underestimated if the con-

stituent processes n are not properly identied. The above

result follows from the following inequality, valid for any set

of numbers yi$0:

o
i

xi
2

yi
$

So
i

xiD2
o
i

yi

. s12d

To prove this inequality, consider rst the case with all xi
$0. The above inequality is identical to Jensen’s inequality

kx /ylky /xl$1, where the averages are over the variables

xi /yi and yi /xi with respect to the probability distribution pi
=xi /oixi. The above inequality will hold a fortiori if not all

xi$0, since the left-hand side is insensitive to a change of

sign of the variables xi, while the right-hand side can only

become smaller. Second, the irreversible total EP has the

familiar form of a sum over uxes times forces,

S˙ istd =o
n

E dxJt
sndXt

snd, s13d

with the force associated to process n given by

Xt
snd = Xt

sndsxd =
Jt
sndsxd

Dt
sndsxdptsxd

. s14d

B. Thermodynamic interpretation

The above description can be postulated on a purely phe-

nomenological or mathematical basis, as it corresponds to

the general equation of evolution for a continuous Markov-

ian process. We now make a number of comments that vali-

date the model and the derived expressions for the various

types of EPs, from a physical point of view.

A Markovian stochastic evolution for the degree of free-

dom of interest, the system, originates from the elimination

of fast degrees of freedom, the reservoir, that do not need to

be described because they are at instantaneous equilibrium

for any given state of the relevant variables. Furthermore, it

is assumed that the different processes n corresponding to

groups of fast eliminated variables sreservoirsd at different

equilibrium values do not directly interfere which each other.

Otherwise, this interaction would need to be described and

the set of variables describing completely the physical pro-

cess would need to be enlarged. The correct identication of

the reservoirs n is a crucial step since we have seen in in-

equality s11d that failure to do so will typically lead to an

underestimation of the EP. At constant sin timed drift and

diffusion coefcient, when all reservoirs but one is switched

off, say n, the system should reach an equilibrium steady-

state distribution corresponding to the thermodynamic prop-

erties of the reservoir n and satisfying the condition of de-

tailed balance Xt
snd=0. In the presence of different reservoirs

n, the steady state is out of equilibrium because it will break

detailed balance. Indeed, all the reservoirs try unsuccessfully

to impose their equilibrium value on the system. The essen-

tial step to connect the stochastic description to the present

thermodynamics discussion is the local detail balance condi-

tion

ut
snd

Dt
snd = bsndFt. s15d

This relation implies to identify the energy Et of the system,

because the force Ft is the negative derivative of the energy:

Ft=−]xEt sfor more details, see also the Appendix and Eq.

s22d in f7g for the corresponding relation for the master equa-

tiond. It is also mathematically guaranteed that in the pres-

ence of a single reservoir n and of a time-independent exter-

nal force F, the probability distribution of the Fokker-Planck

equation s2d will eventually reach the equilibrium distribu-

tion peq,exph−bEj. Since Eq. s15d translates the fact that

each of the reservoirs remains at equilibrium, the EP s10d is
also the total EP since no irreversible processes take place in

the reservoirs: S˙ istd=S˙ totstd. For the same reason, the entropy

ow s9d into the system corresponds to minus of the entropy

change into the reservoirs: S˙ estd=−S˙ rstd.
By introducing the generalized mobility mt

snd of process n

as ut
snd=mt

sndFt, we see that Eq. s15d is in fact the generalized

uctuation-dissipation Einstein relation mt
snd=bsndDt

snd. This

claries the thermodynamic meaning of force s14d since
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Jt
snd
/pt can be identied as the local speed v

snd of process n,

so that Xt
snd=vsnd / smsndTsndd corresponds to the usual thermo-

dynamic expression of a force, speed divided by mobility,

over the temperature. Furthermore, using Eq. s15d in Eq. s9d,
we nd that the entropy ow takes the familiar thermody-

namic form

S˙ estd =o
n

bsndQ˙ sndstd , s16d

where heat owing into the system is given by

Q˙ sndstd = −E dxJt
sndFt. s17d

Introducing the system energy

Estd =E dxptEt, s18d

we nd susing integration by parts and neglecting the bound-

ary termsd that the rst law of thermodynamics assumes the

familiar form

E˙ std =W˙ std +o
n

Q˙ sndstd , s19d

where the work is given by

W˙ std =E dxptE
˙
t. s20d

We have thus shown that the local detail balance condition

s15d provides an explicit connection to thermodynamics and

justies the names used for the various entropies in the pre-

vious section.

We should note however that for systems subjected to

nonconservative forces, the local detail balance condition

s15d will not be satised. Even in the presence of a single

reservoir n, the steady state will break detailed balance and

will thus be a nonequilibrium steady state.

C. Adiabatic and nonadiabatic entropy balance

To identify a component related to the relaxation of the

system, we introduce the instantaneous steady-state solution

pt
st, being the normalized ssupposedly uniqued solution of the

following equation:

]xJt
st = 0, s21d

with

Jt
st =o

n

Jt
stsnd = utpt

st
− Dt]xpt

st,

Jt
stsnd = ut

sndpt
st
− Dt

snd
]xpt

st. s22d

It corresponds to the steady-state solution of the Fokker-

Planck equation s2d, if the drift and diffusion coefcients are

frozen at their instantaneous values. We can now rewrite the

ux Jt
snd fcf. Eq. s4dg as follows:

Jt
snd

pt
−
Jt
stsnd

pt
st

= − Dt
snd
]xSln pt

pt
stD . s23d

As a result, the following expression is identically zero:

o
n

E dxJt
stsnd pt

Dt
sndpt

stS Jtsndpt
−
Jt
stsnd

pt
st D = −E dxJt

st
]xS pt

pt
stD = 0.

s24d

The last step in Eq. s24d follows from Eq. s21d by partial

integration, assuming that the boundary term is zero sinnite
system or system with periodic boundary conditiond. The
separation of total EP s10d in two contributions that are sepa-

rately positive is now straightforward. We write the integrand

in Eq. s10d as follows:

pt

Dt
sndS Jtsndpt

D2 = pt

Dt
sndS Jtsndpt

−
Jt
stsnd

pt
st

+
Jt
stsnd

pt
st D2. s25d

From Eqs. s24d and s25d, we conclude that the total EP s10d
can be written as follows:

S˙ totstd = S˙nastd + S˙astd , s26d

with the following explicit expressions for the nonadiabatic

and adiabatic rates of EP:

S˙nastd =o
n

E dx
pt

Dt
sndS Jtsndpt

−
Jt
stsnd

pt
st D2 $ 0, s27d

S˙astd =o
n

E dx
pt

Dt
sndS Jtstsnd

pt
st D2 $ 0. s28d

These quantities are clearly non-negative. The nonadiabatic

EP is zero for an innitely fast relaxing system being all the

time in the instantaneous steady state. The expression for the

adiabatic EP is similar to the total EP, but with the steady-

state contributions Jt
stsnd

/pt
st rather than the actual Jt

snd
/pt

singled out. Both expressions can also be obtained as the

limits of the corresponding expressions for the nonadiabatic

and adiabatic EPs for a master equation scf. the Appendixd.
In the case of a system in contact with a single reservoir and

subjected to a nonconservative force sthe steady state breaks

detailed balanced, the adiabatic EP is the housekeeping heat

divided by the reservoir temperature f3,4,13–15g.
We now make a number of further comments including

alternative expressions for the adiabatic and nonadiabatic

EPs. First, from

1

Dt

S Jt
pt

−
Jt
st

pt
stD = 1

Dt
sndS Jtsndpt

−
Jt
stsnd

pt
st D = − ]xSln pt

pt
stD , s29d

which is valid for any n, it follows that the nonadiabatic EP

can be written in terms of compound quantities sobtained by

summation over the processes nd only,
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S˙nastd =E dx
pt

Dt

S Jt
pt

−
Jt
st

pt
stD2 $ 0. s30d

We conclude that the nonadiabatic EP is not sensitive to the

identication of the various separate processes describing the

exchange with different reservoirs. The rationale is that this

EP reects relaxation EP within the system itself. We recall

furthermore that the total EP, which is the sum of the adia-

batic and nonadiabatic contributions, can only decrease upon

coarse graining the processes n. Hence, we conclude that the
adiabatic EP is underestimated in exactly the same way as

the total EP, when the constituting processes n are not prop-

erly identied.

Second, we mention the following alternative form of the

nonadiabatic EP:

S˙nastd = −E dxṗt ln
pt

pt
st
, s31d

obtained from Eq. s30d with Eq. s29d. This form is quite

convenient for a direct calculation of the nonadiabatic EP

when the probability distribution pt is known explicitly. We

also note that for constant in time drift and diffusion coef-

cients, one has H˙ =−S˙na#0, where H=edxpt ln pt /pt
st$0 is

a Lyapunov function. This thus proves the convergence of pt
to the ssupposedly uniqued steady state pst f16g.

Third, we introduce another entropic contribution, the so-

called excess heat f13g,

S˙ exstd =E dxJt]x ln pt
st. s32d

This expression allows us to complement the familiar EP

balance equation s8d with two other balance equations, lead-

ing to an alternative presentation of the three faces of the

second law. Indeed, one immediately veries that

S˙ std = − S˙ exstd + S˙nastd , s33d

S˙ rstd = S˙ exstd + S˙astd . s34d

Each of these balance equations features the sum of an ex-

change term, the excess entropy, which has no denite sign,

plus an irreversible non-negative EP term. The nonadiabatic

term is related to the system properties and is independent on

the constituting processes n. This is not the case of the adia-
batic term which represents the dissipation incurred via the

contacts with the various reservoirs. We note that when con-

sidering transitions between steady states, Eq. s33d becomes

the second law of steady-state thermodynamics f13,14g.
Fourth, upon introducing the following thermodynamic

forces:

Xt
snd =

Jt
snd

Dt
sndpt

= At
snd + Nt, s35d

At
snd =

Jt
stsnd

Dt
sndpt

st
, Nt =

]xpt
st

pt
st

−
]xpt

pt
, s36d

each of the irreversible EP terms can be written under the

familiar form of a sum over uxes times forces,

S˙astd =o
n

E dxJt
sndAt

snd, s37d

S˙nastd =E dxJtNt. s38d

III. APPLICATIONS

A. Brownian particle in contact with two thermal reservoirs

We consider an underdamped Brownian particle in con-

tact with two separate heat baths at temperatures Ts1d and

Ts2d. Such a model has been studied in the context of an

analysis of the Feynman ratchet f17g. It corresponds to the

simplest model for thermal conduction by a single degree of

freedom. The more suggestive presentation is via an equation

of motion written under the form of a Langevin equation,

v̇ = − sgt
s1d + gt

s2ddv + Œ2gt
s1d
Ts1djs1d + Œ2gt

s2d
Ts2djs2d,

s39d

with js1d and js2d as independent Gaussian white noises of

intensity 1. The variable v plays the role of the “speed” of

the Brownian particle, while gt
s1d and gt

s2d are the friction

coefcients appearing due to the contact with the respective

reservoirs 1 and 2 which we assume externally controllable

seven if this might be physically not very realistic it serves to

illustrate our resultsd. The mass of the particle is taken equal

to unity. Note that we do not take into account a spatial

degree of freedom. This further simplication corresponds to

a thermal contact tightly bound to a specic location sin a

“delta function” potentiald.
In the context of the Fokker-Planck description, we

identify the following two drift and diffusion coefcients

sn=1,2d:

ut
snd = − gt

snd
v, Dt

snd = gt
sndTsnd. s40d

Note that we have incorporated the appropriate uctuation-

dissipation theorem through the relation linking the diffusion

to the friction coefcient shere, E=v2 /2 corresponds to the

kinetic energyd. We mention a further peculiarity of this

model. The Langevin equation can be rewritten as

v̇ = − gtv + Œ2Dtj , s41d

with

ut =o
n

usnd = − gtv ,

gt =o
n

gt
n, Dt =o

n

Dt
snd = gtTt. s42d

Consequently, if the distinction between the two processes n
is not made, this situation corresponds to Brownian particle

in contact with a single heat bath at temperature
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Tt =
gt
s1d
Ts1d + gt

s2d
Ts2d

gt
s1d + gt

s2d , s43d

and the steady state corresponds to equilibrium szero EP,

with equipartition kv2lt=Tt; see also belowd. This point illus-
trates our discussion concerning the physical input needed to

validate the expression for EP, and in particular the correct

identication of the basic processes that are taking place. As

mentioned before, the nonadiabatic EP will be correctly re-

produced, but both total and adiabatic EPs will be underes-

timated. In the present case, the underestimation is dramatic

since the stationary distribution of the reduced description

corresponds to thermal equilibrium, so that the coarse-

grained adiabatic EP will be identically zero.

The probability distribution ptsvd for the speed v obeys

the following Fokker-Planck equation:

ṗtsvd = gt]vfvptsvd + Tt]vptsvdg . s44d

The solution to this equation is a Gaussian distribution, if it

is so initially,

ptsvd =
1

Œ2pkv2lt
expS− sv − kvltd

2

2kv2lt
D . s45d

Its time evolution is completely determined by that of the

rst and second moments, obeying the following set of equa-

tions:

]tkvlt = − gtkvlt, s46d

]tkv
2lt = − 2gtskv

2lt − Ttd . s47d

The steady-state form is given by

pt
stsvd =

1

Œ2pTt

expS− v
2

2Tt

D . s48d

One easily veries that

Jt
snd =

Qsndstd
kv2lt

ptv, Qsndstd = gsndsTsnd
− kv2ltd ,

At
snd = S 1

Tt

−
1

TsndDv, Nt = S 1

kv2lt
−

1

Tt

Dv . s49d

It is also convenient to dene Qstd=Qs1dstd+Qs2dstd. Inserting
the above results in the expression for the various forms of

irreversible EP, we nd

S˙astd =
Qstd
Tt

−o
n

Qsndstd
Tsnd =

g1g2

g

kv2lt
Tt

sT1 − T2d
2

T1T2

,

S˙nastd = QstdS 1

kv2lt
−
1

T
D = Q2std

gTkv2lt
,

S˙ totstd = S˙astd + S˙nastd . s50d

For the initial condition pt=0svd=dsvd and in the absence of

external control of the friction coefcients, the result for the

second moment reads

kv2lt = Ts1 − e−2gtd , s51d

which leads to the simplication

S˙astd =
g1g2

g
s1 − e−2gtd

sT1 − T2d
2

T1T2

,

S˙nastd = g
e−4gt

1 − e−2gt
,

S˙ totstd = S˙astd + S˙nastd . s52d

These EPs reproduce expected properties. In the absence of

external driving the nonadiabatic EP decays to zero as the

steady state swhere kv2l=Td is approached. The adiabatic

contribution associated to the application of the nonequilib-

rium boundary conditions tends toward the usual thermody-

namic expression for the EP associated to a steady heat ux

between two reservoirs by a device with a thermal conduc-

tivity equal to k=g1g2 /g f17g. We nally note that Fourier

law is recovered in the steady state, Q˙ 1=−Q
˙
2=ksT1−T2d.

B. Driven Brownian particle on a circle

We next consider an overdamped Brownian particle

ẋ = ut + Œ2Dj , s53d

where ut and D are the stime-dependentd drift and stime-

independentd diffusion coefcient, both being position inde-

pendent. We furthermore assume xP f0,1g with periodic

boundary conditions. This model was discussed in stochastic

thermodynamics as a simple example of a particle driven by

a nonconservative force f18g. For simplicity, we consider the

special initial condition pt=0=dsxd. The exact time-dependent

solution of the Fokker-Planck equation is expressed in terms

of the well-known solution on the innite line,

pt
psxd =

1

Œ4pDt
exp3− Fx − E0

t

dtustdG2
4Dt

4 , s54d

namely sxP f0,1gd,

ptsxd = o
n=−`

+`

pt
psx + nd . s55d

It converges to the steady-state solution,

pt
stsxd = 1. s56d

This model has a peculiarity: the steady-state distribution is

identical to the equilibrium distribution pt
stsxd=peqsxd=1. As

a consequence one has Jt
st=ut. Furthermore, once pt has re-

laxed to this distribution, this remains the case even while a

time-dependent driving ut is still applied. We nd that the

various EPs read

S˙astd =
ut
2

D
, S˙nastd = DE

0

1

dx
f]xptsxdg

2

ptsxd
,
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S˙ totstd = S˙astd + S˙nastd . s57d

The adiabatic EP is proportional to the square of the exter-

nally applied drift. The nonadiabatic EP is given by a more

complicated expression, but goes to zero as the probability

distribution relaxes to the uniform stationary distribution. It

remains zero once this distribution is reached, even if a time-

dependent driving ut persists. As an illustration, we repro-

duce the results for the various EP contributions in Fig. 1,

including the effect of a switch in the driving speed.

IV. CONCLUSION

In this paper, we have identied the non-negative EP as

well as its two non-negative contributions, the adiabatic and

the nonadiabatic parts, for Fokker-Planck dynamics. This

parallels a similar identication for master equation dynam-

ics presented in the companion paper f7g. We have shown

that this identication allows us to “split the second law in

two parts.” It remains to be seen what are the implications of

this “doubling” of the second law. In particular, we speculate

that it should imply the impossibility of some physical phe-

nomena, being incompatible with the inequalities, that it may

provide novel limits, for example, on efciencies of ma-

chines, or may be linked to novel symmetries, such as the

symmetry of Onsager coefcients. Finally, we reiterate that

the positivity of the adiabatic and the nonadiabatic EPs ob-

tained here follows by Jensen’s inequality from the detailed

uctuation theorems derived in f1g. The latter deal with the

trajectory-dependent adiabatic and nonadiabatic EPs and

thus reveal a much more detailed and deeper statistical sym-

metry deriving from microreversibility.
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APPENDIX: FOKKER-PLANCK LIMIT

OF THE MASTER EQUATION

In the companion paper f7g, we derive the adiabatic and

nonadiabatic EPs for Markovian processes obeying a master

equation fcf. Eq. s7dg. The results for the Fokker-Planck

equation given in the main text can be derived by applying

an appropriate limiting procedure, similar to that of Ref.

f19g. As a starting point it sufces to consider the case of a

tridiagonal transition matrix, i.e., the only nonzero nondiago-

nal elements of Wm61,m
snd sltd are those with m8=m61. The

master equation thus has the following form:

ṗm = −o
n

fJm+1,m
snd std − Jm,m−1

snd stdg , sA1d

where

Jm,m−1
snd std =Wm,m−1

snd sltdpm−1std −Wm−1,m
snd sltdpmstd .

We introduce

2Dm
sndsltd =Wm,m−1

snd sltd +Wm−1,m
snd sltd , sA2d

um
sndsltd =Wm,m−1

snd sltd −Wm−1,m
snd sltd . sA3d

The idea is that the sgenerald nearest-neighbor random walk

in the variable m goes over into a sgenerald diffusion process

for a continuous variable x=me. We illustrate the procedure

for xP f−L ,Lg with reecting boundary conditions, covering

in the limit L→` the case of real variables. A similar pro-

cedure can be applied for periodic boundary conditions. We

consider m=−N ,−sN−1d , . . . ,0 ,1 ,2 , . . . ,N, with reecting

boundary conditions, WN+1,N=W−N−1,−N=0. We take the lim-

its e→0 and N→`, where N=L /e with L xed, obtaining a

continuous variable x=meP f−L ,Lg. Using exph6]mjfm
= fm61 and

pt ; psx,td = pmstd/e , sA4d

]x = e−1]m, sA5d

Dt
snd ; Dsndsx,ltd = Dm

sndsltde
2, sA6d

ut
snd ; usndsx,ltd = um

sndsltde , sA7d

we nd that Eq. sA1d goes over into the Fokker-Planck equa-

tion,

ṗt = −o
n

]xJt
snd, sA8d
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FIG. 1. sColor onlined Probability distribution at different times

and total, nonadiabatic, and adiabatic EPs sD=0.02d. The initial

divergence of the nonadiabatic EP is due to the singular initial con-

dition pt=0=dsxd. As the uniform distribution is approached, the

nonadiabatic EP decreases. The application of a switch from the

initial value of 0.8 to the value of 1.2 of the drift scf. insetd has no
effect on the nonadiabatic EP, but results in an additional adiabatic

EP.
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Jt
snd = ut

sndpt − Dt
snd
]xpt, sA9d

with zero-ux boundary conditions. Similarly forces s28d–
s30d in f7g become

Xt
snd =

Jt
snd

Dt
sndpt

= At
snd + Nt, sA10d

At
snd =

Jt
stsnd

Dt
sndpt

st
, Nt =

]xpt
st

pt
st

−
]xpt

pt
. sA11d

Using these results, it is easy to verify that the various EPs

from Sec. II of f7g lead to the EP of Sec. II of the present

paper. Finally, we note that the local detailed balance condi-

tion with respect to the various processes n given by Eq. s22d
in f7g reduces in the Fokker-Planck limit to Eq. s15d.
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