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We propose a formulation of stochastic thermodynamics for systems subjected to nonequilibrium constraints

si.e. broken detailed balance at steady stated and furthermore driven by external time-dependent forces. A
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I. INTRODUCTION

The second law of thermodynamics species that the total

entropy of an isolated macroscopic system cannot decrease

in time. This statement applies to the stages of the evolution

in which the entropy is well dened. For example, for a

system in equilibrium at initial and nal times, the nal en-

tropy will be larger than the initial one, even though the

entropy may not be well dened during the intermediate evo-

lution. However, it is often a very good approximation to

assume that the system is in a state of local equilibrium, so

that the entropy is well dened at any stage of the process.

For example, linear irreversible thermodynamics is built on

such an assumption, allowing the use of the Gibbs relation to

dene entropy locally in terms of the slow conserved quan-

tities sfor example, momentum, energy, and concentration of

the constituentsd f1–3g. The second law can then be reformu-

lated as the non-negativity of the irreversible entropy pro-

duction sEPd S˙ istd$0 f4,5g,

S˙ std = S˙ estd + S˙ istd , s1d

where S˙ std is the entropy change of the considered subpart

and S˙ estd is the entropy ow to the environment. In some

cases, the environment is idealized as being one or more

reservoirs without internal dissipation, so that their entropy

change is equal to minus the exchange term: S˙ rstd=−S˙ estd.
For a single heat reservoir, this entropy exchange is given by

the energy inow divided by its temperature. In the sequel,

we will be mainly interested in this situation, with the sub-

system of interest, henceforth called the system, in contact

with an environment consisting of one or more ideal reser-

voirs. The irreversible EP in this system is then equal to the

total EP S˙ totstd;S˙ istd$0.

In more recent developments f6–33g, it has been realized

that one can formulate thermodynamics for small systems

incorporating the effect of the uctuations. These develop-

ments can be seen as the continuation of the pioneering work

started by Onsager and co-workers f34–37g, with as interme-

diate steps the uctuation-dissipation theorem f38g, the

theory of Gaussian stochastic processes and linear response

f39,40g, and Green-Kubo relations f41,42g. The essential in-

gredient is to guarantee the consistency of the statistical ir-
reversible laws on the system dynamics with the reversibility
of the equilibrium reservoirs statistics. In this new thermo-
dynamics, also called stochastic thermodynamics f43,44g, the
system is described by a probability distribution pm evolving
according to a Markovian master equation. The exchange of
energy sheatd or particles with the environment and the other
thermodynamic quantities associated to the system states m
become stochastic variables. The rates associated to each res-
ervoir satisfy the property of local detailed balance reminis-
cent of the fact that they always remain at equilibrium. The
system entropy is dened using the Shannon expression S=
−Smpm ln pm and entropy balance equations of the usual
form can be derived via the identication of a non-negative
EP consistent with macroscopic nonequilibrium thermody-
namics. A minimum EP theorem can also be proved
f6,8,43,45–47g.

More recently, it was realized that one can study stochas-
tic trajectory-dependent quantities. This is obviously the case
for the energy, which is a well-dened mechanical quantity
even for single trajectories. For example, an explicit formu-
lation of the rst law, conservation of total energy, was given

for the stochastic trajectory of a Langevin equation by

Sekimoto f7g ssee also f48gd. The stochastic exchange of en-

ergy with idealized reservoirs also allows us to identify the

stochastic entropy ow into these reservoirs and to study its

statistical properties. This led to the discovery of the cel-

ebrated uctuation theorem: the probability distribution for

the cumulated change in stochastic reservoir entropy Dsr for
a nonequilibrium steady state obeys the symmetry relation

PsDsrd /Ps−Dsrd,expsDsrd for asymptotically large times.

We will use henceforth the notation lowercase s for entropic

contributions associated to a given stochastic trajectory, in

contrast to ensemble average entropies denoted by a capital

letter S. This result was rst proven for thermostated systems

sthe main trust of this work is however the development of

equilibriumlike statistical-mechanical concepts for dissipa-

tive systems f9–12gd, followed by derivations for Langevin

and master equations f15,17g, and for Hamiltonian dynamics

f23,24g. The asymptotic nature of the result was linked to the

large deviation properties of the characteristic function, and

in particular to those of the currents. Implications include

Onsager symmetry and beyond f49g and universal features of
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efciency of thermal machines at maximum power f50,51g.
Very much in the spirit of the uctuation theorem, Jarzynski
f13,14g and Crooks f16,20,21g obtained the work theorem
ssee also f52–54gd. They found that the probability distribu-
tion for the work w performed on a driven system, initially in

canonical equilibrium at a specic inverse temperature b−1,

obeys the relation Pswd / P̄s−wd=exphbsw−DFdj. The over-

bar corresponds to the probability distribution for the time-

reversed experiment. If one assumes that, at the end of the

driving, the system relaxes back to equilibrium sat inverse
temperature b−1d then bsw−DFd, the so-called dissipated

heat, is equal to the change in total entropy Dstot of system
plus reservoir, so that the work theorem becomes a uctua-

tion theorem for the change in total entropy Dstot,

PsDstotd / P̄s−Dstotd=expsDstotd f23,25g. Note that this result

is valid for all times. The previous asymptotic uctuation

theorem can in fact be seen as a special case if one assumes

that, aside from an initial transient, the steady state can be

maintained for long enough times by appropriate driving, so

that Dstot=Ds+Dsr<Dsr. The focus on the asymptotic form

and the accent on large deviation properties are in our opin-

ion a somewhat misleading representation of the uctuation

theorem. This form arises from the neglect of the system’s

entropy sthe so-called boundary termd, for which no readily

acceptable interpretation was deemed to exist at the time of

the rst formulations of the uctuation theorem. Further-

more, the validity of the theorem is typically compromised

for a system with unbounded energy f55–59g, which is of

course more of the rule rather than the exception. We note

however that current uctuation theorems f27,28g do require

the long-time limit since currents are related to the Dsr part
of the entropy.

A further advance consisted of the formulation of the

equivalence of the second law at the stochastic level. This

required the identication of a trajectory-dependent system

entropy. Even though the idea is well known in information

theory, where −ln pm is the surprise at observing outcome m

when its probability is pm, it took some time before Seifert

f25g identied this quantity as the appropriate stochastic sys-

tem entropy, sstd=−ln pmstdstd. Note that it depends on the

actual state mstd of the considered trajectory at the consid-

ered time, as well as on the probability for this state, which

itself is in general time dependent. By taking this term into

account, the asymptotic uctuation theorem could be re-

placed with a uctuation theorem for the total entropy, which

is valid for all times, just as the work theorem of Jarzynski

and Crooks. For driven systems in contact with a single res-

ervoir and subjected to a nonconservative force keeping the

steady states out of equilibrium, Oono and Paniconi f60g
discussed an alternative way of splitting the EP by introduc-

ing the excess entropy and housekeeping heat. This led to the

formulation of two other uctuation theorems, namely, the

one derived by Hatano and Sasa f22g sfor system entropy

plus excess entropyd and the other one derived by Speck and

Seifert f61g sfor the housekeeping heatd. While both assume

single reservoirs, the former is further restricted to transitions

between nonequilibrium steady states.

To close this introductory discussion, we turn to a recent

development f33g ssee also f29–31,62,63gd, which provides a

clarifying and unifying approach of the various uctuation

and work theorems. The total stochastic EP Dstot is the sum

of two constitutive parts, namely, a so-called adiabatic Dsa
and a nonadiabatic Dsna contribution. Each of these contri-

butions corresponds to the two basic ways that a system can

be brought out of equilibrium: by applying steady nonequi-

librium constraints sadiabatic contributiond or by driving

snonadiabatic contributiond. Note that the term “adiabatic” is

used here, not in its meaning referring to the absence of heat

exchange, but in the meaning of instantaneous relaxation to

the steady state. The crucial point is the observation that each

of these contributions obeys a separate uctuation relation,

namely f33g,

PsDstotd

P̄s− Dstotd
= eDstot, s2d

PsDsnad

P̄+s− Dsnad
= eDsna,

PsDsad

P+s− Dsad
= eDsa. s3d

The superscript + refers to the adjoint dynamics salso called

dual or reversal f21,62gd. The aforementioned uctuation

theorems of Hatano and Sasa and of Speck and Seifert are

special cases of the uctuation theorem for Dsna and Dsa,
respectively, when single reservoirs and transitions between

steady states are considered. To stress the special status of

these theorems, we notice that they arise because of the two

available operations to gauge the amount of time-symmetry

breaking, namely, time reversal of the driving soverbar: −d
and the time reversal of the nonequilibrium boundary condi-

tions ssuperscript: +d. Applying each of them separately, or

both, leads to the three different contributions for the EP.

The above uctuation theorems imply that the total, adia-

batic, and nonadiabatic entropy changes have to be non-

negative, each taken separately,

DStot = kDstotl$ 0, s4d

DSna = kDsnal$ 0, DSa = kDsal$ 0. s5d

This suggests that the second law can in fact be split in two.

There are thus three faces to the second law: the increase in

the average total entropy, the increase in the average adia-

batic entropy, and the increase in the average nonadiabatic

entropy. Our purpose here is to clarify and document further

the physical properties and the meaning of this remarkable

result. In this paper we will focus on the implications for a

description in terms of a master equation. The next paper

f64g deals with the corresponding results for Langevin and

Fokker-Planck dynamics.

II. MASTER EQUATION

A. Entropy balance

We rst review and extend the entropy balance equation

derived previously for a Markovian process f6,8,29,65g. Our
starting point is the following master equation:

MASSIMILIANO ESPOSITO AND CHRISTIAN VAN DEN BROECK PHYSICAL REVIEW E 82, 011143 s2010d

011143-2



ṗmstd =o
m8

Wm,m8
pm8std , s6d

where the rate matrix satises

o
m

Wm,m8
= 0. s7d

The transitions between states m can be due to different

mechanisms n. Furthermore, these rates can be time depen-

dent via a control variable l. We thus have

Wm,m8
=Wm,m8

sltd =o
n

W
m,m8

snd sltd . s8d

When the control variable lt changes in time we say that the

system is externally driven. For rates that are “frozen” at the

values W
m,m8

snd sld, there is a corresponding stationary distribu-

tion, pm
stsld, which we suppose to be unique si.e., the rate

matrix is irreducibled and which will always eventually be

reached by the system. It is given by the normalized right

eigenvector of zero eigenvalue of the transition matrix,

o
m8

Wm,m8
sldp

m8

st sld = 0. s9d

Let us now investigate the time dependence of the system’s

Shannon entropy sBoltzmann constant kB=1d,

Sstd = −o
m

pmstdln pmstd . s10d

Using Eqs. s6d and s7d and omitting for compactness of no-

tation the dependences of pm on t and of W on lt, we nd

S˙ std = −o
m

ṗm ln pm

= − o
m,m8,n

W
m,m8

snd
pm8 ln

pm

pm8

=
1

2
o

m,m8,n

hW
m,m8

snd
pm8 −W

m8,m
snd

pmjln
pm8

pm

=
1

2
o

m,m8,n

hW
m,m8

snd
pm8 −W

m8,m
snd

pmjln
W

m,m8

snd
pm8

W
m8,m
snd

pm

+
1

2
o

m,m8,n

hW
m,m8

snd
pm8 −W

m8,m
snd

pmjln
W

m8,m
snd

W
m,m8

snd . s11d

It is revealing to introduce the uxes J
m,m8

snd
and corresponding

forces X
m,m8

snd
,

J
m,m8

snd std =W
m,m8

snd sltdpm8std −W
m8,m
snd sltdpmstd , s12d

X
m,m8

snd std = ln
W

m,m8

snd sltdpm8std

W
m8,m
snd sltdpmstd

. s13d

We can rewrite the master equation s6d as

ṗmstd = o
m8,n

J
m,m8

snd std =o
m8

Jm,m8std , s14d

where we dened

Jm,m8std =o
n

J
m,m8

snd std . s15d

The system’s EP can thus be rewritten under the familiar

form of irreversible thermodynamics,

S˙ std = S˙ estd + S˙ istd . s16d

The quantity

S˙ estd =
1

2
o

m,m8,n

J
m,m8

snd stdln
W

m8,m
snd sltd

W
m,m8

snd sltd

= o
m,m8,n

W
m,m8

snd sltdpm8stdln
W

m8,m
snd sltd

W
m,m8

snd sltd
s17d

is the entropy ow and the positive quantity

S˙ istd = o
m,m8,n

W
m,m8

snd sltdpm8stdln
W

m,m8

snd sltdpm8std

W
m8,m
snd sltdpmstd

=
1

2
o

m,m8,n

J
m,m8

snd stdX
m,m8

snd std

$ 0 s18d

is identied as the EP. The latter is zero if and only if the

condition of detailed balance is satised,

W
m,m8

snd sldpm8 =W
m8,m
snd sldpm. s19d

We note an important property of the EP. If all the relevant

processes n causing transitions between states m are not cor-

rectly identied sfor example, if one only identies a sub-

class of these processesd the EP will be underestimated. In-

deed, using the logarithmic-sum inequality scf. Theorem

2.7.1 of f66gd, it follows that ssee also f52–54gd

S˙ istd = o
m,m8,n

W
m,m8

snd sltdpm8stdln
W

m,m8

snd sltdpm8std

W
m8,m
snd sltdpmstd

$ o
m,m8

Wm,m8
sltdpm8stdln

Wm,m8
sltdpm8std

Wm8,m
sltdpmstd

$ 0. s20d

B. Thermodynamic interpretation

The above derivations and statements can be viewed as

purely mathematical in nature and can be applied to any

system described by a master equation. The connection with

physics is made by associating with each mechanism n re-

sponsible for the transitions between system states a group of

variables each separately at it own equilibrium or in other

words idealized reservoirs with well-dened thermodynamic
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variables se.g., temperature or chemical potentiald. The tran-

sitions between states m due to different mechanisms n can,

for example, correspond to exchange of heat with different

reservoirs or the change in number of particles due to differ-

ent chemical reactions. As a result the transition rates asso-

ciated to a given mechanism n need to obey the condition of

local detailed balance,

W
m,m8

snd sltdpm8
eq slt,nd =W

m8,m
snd sltdpm

eqslt,nd , s21d

where the equilibrium distribution peqslt ,nd is the stationary
distribution that would be reached by the system if only a

single mechanism n were present and for the frozen value of

the control variable l=lt. In case multiple mechanisms are

present, each reservoir tries unsuccessfully to impose its

equilibrium distribution on the system resulting in a station-

ary distribution that does not satisfy the detailed balance con-

dition s19d except if their thermodynamical properties are

identical, making the distinction between the various mecha-

nisms useless. As we have seen in Eq. s20d, an incorrect

identication of the various reservoirs would underestimate

the EP and could lead one to believe that a system is at

equilibrium while it is not f8g. The assumption that the same

expressions for the transition probabilities in Eq. s21d can be

used when the control parameter becomes time dependent is

based on an assumption that the idealized reservoirs relax

innitely fast to their equilibrium compared to the time

scales of the system dynamics.

By an argument of physical consistency, it follows that

S˙ istd is also equal to the total EP S˙ totstd in system plus envi-

ronment. Indeed, since one implicitly assumes that the envi-

ronment remains at equilibrium at all times using Eq. s21d, it
does not have an internal EP of its own. Otherwise, the above

description in terms of the system alone is not complete, and

one needs to include the description of the irreversible pro-

cesses taking place in the environment. For the same reason,

the entropy ow is equal to minus the entropy increase in the

reservoir S˙ estd=−S˙ rstd. The microscopic origin of these rela-

tions has been recently claried f67g.
In order to make the thermodynamic interpretation of the

stochastic dynamics transparent, we now explicitly evaluate

the various entropies for multiple heat reservoirs satisfying

local detailed balance with respect to the canonical equilib-

rium distribution at the inverse temperature of the corre-

sponding reservoir, i.e., Eq. s21d becomes

W
m,m8

snd sld

W
m8,m
snd sld

= exph− bsndfemsld − em8sldgj , s22d

where emsld is the energy of the system when in the state m

for the value l of the control variable. We note that in order

to make the connection between the system Shannon entropy

s10d and the true thermodynamic entropy, one might have to

add a contribution omSmpmstd to the entropy, where Sm is the

entropy of each level m f32,68,69g. However, for simplicity,

we now assume that the index m refers to the nondegenerate

microscopic state of the system si.e., Sm=0d. It immediately

follows from Eq. s22d that the entropy ow s17d takes on the

familiar thermodynamic form of heat ux over temperature,

S˙ estd =o
n

bsndQ˙ sndstd , s23d

where the heat from the n reservoir is given by

Q˙ sndstd = o
m,m8

J
m,m8

snd stdem8sld . s24d

Since the system energy is obviously given by

Estd =o
m

emsldpmstd , s25d

we nd from the rst principle of thermodynamics senergy
conservationd,

E˙ std =W˙ std +o
n

Q˙ sndstd , s26d

that the work is given by

W˙ std =o
m

ėmsldpm. s27d

This illustrates that the local detailed balance conditions with

the reservoirs s22d lead to a proper formulation of the rst

fEq. s26dg and second fEq. s16dg principles of thermodynam-

ics. We note that it is possible to include particle exchanges

with the reservoirs f51g. In the latter case, work can be non-

zero even in the absence of driving.

We should nally mention that the system could also be

driven out of equilibrium by a nonconservative force instead

of different reservoirs. In this case, the local detailed balance

condition s21d is not satised and even in the presence of a

single reservoir, the detailed balance condition s19d will not
be satised at steady state.

C. Adiabatic and nonadiabatic entropy balance

We next note that the force X s13d can be split in an

adiabatic contribution A and a nonadiabatic contribution N,

X
m,m8

snd std = A
m,m8

snd sltd + Nm,m8
std , s28d

A
m,m8

snd sltd = ln
W

m,m8

snd sltdpm8
st sltd

W
m8,m
snd sltdpm

stsltd
, s29d

Nm,m8
std = ln

pm
stsltdpm8std

p
m8

st sltdpmstd
. s30d

The total EP can thus also be split into an adiabatic and a

nonadiabatic contribution,

S˙ istd ; S˙ totstd = S˙astd + S˙nastd , s31d

with

S˙astd =
1

2
o

m,m8,n

J
m,m8

snd stdA
m,m8

snd sltd$ 0

= o
m,m8,n

W
m,m8

snd sltdpm8stdln
W

m,m8

snd sltdpm8
st sltd

W
m8,m
snd sltdpm

stsltd
, s32d
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S˙nastd =
1

2
o
m,m8

Jm,m8stdNm,m8
std$ 0

= −o
m

ṗmstdln
pmstd

pm
stsltd

. s33d

We make a number of remarks. First and most importantly,

both S˙astd and S˙nastd are non-negative EPs. This follows from
Jensen’s inequality, −ln x$1−x for x.0, together with Eqs.

s7d and s9d. The non-negativity of these quantities is in

agreement with the fact that the trajectory entropies sa and

sna obey detailed uctuation theorems f33g. Second, it is

clear that the nonadiabatic thermodynamic force, and hence

the nonadiabatic EP, is zero in the adiabatic limit pmstd
→pm

stsltd. This will, for example, be the case when the re-

laxation to the steady state is extremely fast, and in particular

faster than the time scale of the driving lt. This observation

justies a posteriori the name given to each contribution.

Third, we note that one does not need to identify the separate

mechanisms n by which the transition between states takes

place for the evaluation of nonadiabatic EP or its correspond-

ing uxes and forces. It is a function only of the coarse-

grained transition probabilities W=onW
n. Finally, we note

that for a system subjected to a nonconservative force and in

contact with a single reservoir, the adiabatic EP is the house-

keeping heat sdivided by the temperature of the reservoird
f22,60,63,70g.

The fact that there are two contributions to the total en-

tropy production, which are separately non-negative, sug-

gests that the second law can be “split in two.” An elegant

way to do so is by the introduction of the so-called excess

entropy change f60,22g,

S˙ exstd =
1

2
o
m,m8

Jm,m8stdln
pm
stsltd

p
m8

st sltd
=o

m

ṗmstdln pm
stsltd .

s34d

One easily veries that

S˙ std = − S˙ exstd + S˙nastd , s35d

S˙ rstd = S˙ exstd + S˙astd . s36d

From these two relations, we see that the changes in system

and reservoir entropy both have a structure similar to the

original second law s16d: they consist of the sum of a revers-

ible and an irreversible term if the concept of reversibility is

understood with respect to the external driving in the rst

case sslow external driving implying S˙na=0d and with respect

to the nonequilibrium constraint exerted by the different res-

ervoirs in the second case sfor identical reservoirs S˙a=0d. As
a result, the excess entropy change can be seen as minus the

reversible change of the system entropy change with respect

to the driving and as the reversible part of the reservoir en-

tropy changes with respect to the nonequilibrium constraint.

By summing these two relations we recover Eq. s31d. Rela-
tions s31d, s35d, and s36d thus represent the three faces of the
second law.

III. SPECIFIC CLASS OF TRANSFORMATIONS

Additional comments can be made when considering the

specic classes of transformation discussed below. To pro-

ceed, it is useful to split the nonadiabatic entropy s33d into a

“boundary” and a “driving” part f29g,

S˙nastd = S˙bstd + S˙dstd , s37d

where

S˙bstd = −
d

dt
So

m

pmstdln
pmstd

pm
stsltd
D , s38d

S˙dstd = −o
m

pmstd

pm
stsltd

ṗm
stsltd . s39d

The boundary contribution only depends on the initial and

nal distributions of the considered transformation while the

driving part is only nonzero when the control variable

evolves in time.

A. Transient relaxation to steady state

The system is supposed to be in an arbitrary state when

the external driving is switched off, say at t=0. For t.0, we

have that lt=l is time independent, implying S˙dstd=0, and
therefore

S˙nastd = S˙bstd = − H˙ std . s40d

Here, Hstd is the relative entropy sor Kullback-Leibler en-

tropyd f66g between the actual and the steady-state distribu-

tions,

Hstd = D„pstd i pstsld… =o
m

pmstdln
pmstd

pm
stsld

$ 0. s41d

We conclude that Hstd is a Lyapunov function, decreasing

monotonically in time until the probability distribution

reaches its steady-state value. This proof of convergence to

the steady state is well known f71g, but its connection to the

nonadiabatic EP has never been pointed out. The nonadia-

batic entropy assumes its minimum value equal to zero at the

steady state, but the latter needs not be close to equilibrium.

B. Transitions between steady states

We consider a system that is initially in a steady state

pms0d=pm
stslti

d. Then somewhere between ti and tf the driving

variable lt changes and after an asymptotically long time T

the system has reached its new steady-state distribution

pmsTd=pm
stsltf

d. Let us consider the total nonadiabatic en-

tropy change during the time interval T. The boundary term

is zero and the driving term is nonzero between ti and tf.

Relation s35d becomes the second law of steady-state ther-

modynamics f22,60g,

DSnasTd = DSdsTd = DSexsTd + DSstsTd$ 0, s42d

where DSstsTd is the system entropy change between the ini-

tial and nal steady states.
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C. Time-dependent cycles

We consider a system that is subjected to a time-periodic

perturbation with period T. After an initial transient, the

probability distribution and the various EP’s will also be-

come time-periodic functions with the same period. Because

of continuity, we have pms0d=pmsTd. Furthermore, pm
stsl0d

=pm
stslTd. Hence, both the boundary term along a cycle as

well as the system entropy change over a period are zero,

DSsTd=DSbsTd=0, and relation s35d becomes

DSnasTd = DSexsTd = DSdsTd$ 0. s43d

We also have, using Eq. s16d,

DStotsTd = DSrsTd = DSexsTd + DSasTd$ 0. s44d

D. Perturbing the steady state

Finally, we investigate how the adiabatic and nonadiabatic

EPs change upon applying a perturbation around the steady-

state distribution,

pmstd = pm
stsld + dpmstd . s45d

Clearly, ux s12d can be split as

J
m,m8

snd std = J
m,m8

snd sld + dJ
m,m8

snd std , s46d

where

J
m,m8

snd sld =W
m,m8

snd sldp
m8

st sld −W
m8,m
snd sldpm

stsld , s47d

dJ
m,m8

snd std =W
m,m8

snd slddpm8std −W
m8,m
snd slddpmstd . s48d

The adiabatic contribution to the EP can be written as the

sum of two contributions,

S˙astd = S˙asld + dS˙astd$ 0, s49d

with

S˙asld =
1

2
o

m,m8,n

J
m,m8

snd sldA
m,m8

snd sld$ 0, s50d

dS˙astd =
1

2
o

m,m8,n

dJ
m,m8

snd stdA
m,m8

snd sld . s51d

We now turn to the nonadiabatic EP which using Eqs. s33d
and s45d now reads

S˙nastd = −o
m

dṗmstdln
pmstd

pm
stsld

$ 0. s52d

In analogy to the total EP fwhich can be written in a bilinear

form in terms of ux and forces s18dg, we can write the

nonadiabatic EP as a bilinear form of the nonadiabatic ux

and force as

S˙nastd = − o
m,m8

dJm,m8Nm,m8
$ 0. s53d

We conclude that the adiabatic EP has a constant szero-orderd
and rst-order terms in the deviation dp around the station-

ary state pm
st, while the nonadiabatic EP is of second order. In

general, since dS˙astd can be negative, we can nd situations

where S˙astd and even S˙ istd are smaller than S˙asld. This is the
well-known result that the total EP is not necessarily mini-

mum in nonequilibrium steady states. It is however a mini-

mum if the steady states correspond to equilibrium since in

this case A
m,m8

snd sld=0 f6,8g.

IV. APPLICATIONS

A. Two-level system

We consider a system with two levels, m=1,2, with pm as

the probability to nd the system in level m. Due to conser-

vation of total probability, the master equation s6d can be

reduced to a single differential equation for the probability

p=p2=1−p1 to be in level 2,

ṗstd = − gsltdpstd +W21sltd , s54d

with gsld=W21sld+W12sld. The steady-state solution is

pstsld=W21sld /gsld.
We rst present the general solution for a periodic pertur-

bation, with a period T, without specifying the form of the

rates at this stage. We focus on the long-time regime, where

all transients have disappeared, and the time behavior of pstd
itself is periodic with period T. We need to solve Eq. s54d
subject to periodic boundary conditions ps0d=psTd. For sim-

plicity, we focus on the case of a piecewise constant pertur-

bation. Hence, the driving period consists of two regimes I

and II, namely, lt=lI for 0# t, tI, and lt=lII for tI# t,T.

The solution of Eq. s54d reads fpI
st=pstslId, pII

st=pstslIIdg

0# t, tI: pstd = fpsTd − pI
stge−gIt + pI

st, s55d

tI # t, T: pstd = fpstId − pII
stge−gIIst−tId + pII

st. s56d

Using the matching condition scontinuity of pd at the transi-

tions between regions I and II, we nd that

pstId =
pI
stsegItI − 1d − pII

stse−gIIsT−tId − 1d

egItI − e−gIIsT−tId
, s57d

psTd =
pI
stse−gItI − 1d − pII

stsegIIsT−tId − 1d

e−gItI − egIIsT−tId
. s58d

Equations s57d and s58d with Eqs. s55d and s56d provide the

exact and explicit long-time solution of Eq. s54d under piece-
wise constant periodic driving.

We now turn to the entropies. We consider the case of two

different reservoirs n=L ,R, with corresponding transition

rates W=onW
snd. Entropies s31d–s33d become

S˙ tot =o
n

fW12
sndp −W21

snds1 − pdgln
W12

sndp

W21
snds1 − pd

, s59d

S˙a =o
n

fW12
sndp −W21

snds1 − pdgln
W12

sndpst

W21
snds1 − pstd

, s60d
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S˙na = ṗstdln
s1 − pdpst

s1 − pstdp
. s61d

As an illustration, we consider two physical models that are

described by the above two-level master equation. The rst is

a single-electron quantum level in contact with a left sLd or a
right sRd electronic reservoir sn=L ,Rd. The level can thus be

empty, 1−p, or lled, p, and transitions between these two

states correspond to the exchange of an electron with one of

the two reservoirs. The rates are given by the Fermi golden

rule rates for each of the reservoirs f72g,

W21
snd = Gfslnd, W21

snd = Gf1 − fslndg , s62d

where fsxd= sexphxj+1d−1 is the Fermi distribution and G is

the system-reservoir couplings chosen for simplicity identi-

cal for the two reservoirs. Physically, the changes in the driv-

ing parameter ln= se−mnd /Tn could result from changes in

the energy of the level e or in the temperature Tn and chemi-

cal potential mn of the n reservoir. The thermodynamics of

this model has been discussed in Refs. f73,74g. The time

dependence of the rates can result from either the external

control of the energy of the level se.g., with an electric eldd
or the control of the reservoir chemical potentials.

Our second model represents a two-level atom interacting

with left sLd and right sRd reservoirs of thermal light. The

rates describing the transitions between the levels are then

given by

W21
snd = Gnslnd, W21

snd = Gf1 + nslndg , s63d

where nsxd= sexphxj−1d−1 is the Bose-Einstein distribution

and ln=e /Tn. The time dependence of the rates can thus

come either from an external control of the energy spacing

between the levels e or from the control of the temperature of

the reservoirs Tn.

The probability distribution as well as the various entro-

pies around the cycle can be analytically evaluated. For the

purpose of illustration, we reproduce the typical behavior in

Figs. 1 and 2.

B. Chemical reaction model

Consider the following chemical reaction:

AsLd
≠

kM
sLd

kA
sLd

M≠

kA
sRd

kM
sRd

AsRd. s64d

Denoting by m the number of particles of species M and

using n=L ,R, we nd that the corresponding transition rates

are given by

Wm−1,m
snd = kM

sndm, Wm+1,m
snd = kA

sndAsndstd . s65d

The concentrations of AsLdstd and AsRdstd are externally con-

trolled in a time-dependent manner. Rescaling time by kM
sLd

+kM
sRd, we can redene the rates as

Wm−1,m
snd = asndm, Wm+1,m

snd = lt
snd, s66d

where we introduced

asnd =
kM
snd

kM
sLd + kM

sRd , lt
snd =

kA
sndAsndstd

kM
sLd + kM

sRd . s67d

The resulting master equation reads sm=0,1 , . . . with con-

vention p−1=0d f71g

ṗm =o
n

hasndsm + 1dpm+1 + lt
sndpm−1 − slt

snd + asndmdpmj

= sm + 1dpm+1 + ltpm−1 − slt + mdpm. s68d
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FIG. 1. sColor onlined sAd Actual probability distribution along

the cycle and stationary solution corresponding to the instantaneous

values of the driving displayed in the inset. sBd The total, adiabatic,
and nonadiabatic entropy productions along the cycle. The Bose

rates s63d are used with G=0.5. Also, T=1 and tI=0.4.
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FIG. 2. sColor onlined Same as Fig. 1, but using the Fermi rates

s62d instead of the Bose rates.
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From rst to second line, we used onlt
snd=lt and ona

snd=1.

Equation s68d can be most easily solved by switching to the

generating function

Fss,td = o
m=0

`

smpmstd . s69d

Using Eqs. s68d and s69d, one nds

]tFss,td = ss − 1dltFss,td − ss − 1d]sFss,td . s70d

For the purpose of illustration, we focus on a specic time-

dependent solution of this equation, for which the explicit

analytical expression can be obtained. Indeed, one readily

veries by inspection that

Fss,td = em̄stdss−1d s71d

is an exact solution of Eq. s70d, propagating in time. As

suggested by the notation, m̄std is the time-dependent aver-

age

m̄ = m̄std = o
m=0

`

mpmstd , s72d

which obeys the following equation:

ṁ̄std = lt − m̄std . s73d

Its exact time-dependent solution is given by

m̄std = e−st−t0dHm̄st0d + E
t0

t

dtest−t0dltJ . s74d

We conclude that the propagating Poissonian distribution,

pmstd =
m̄m

m!
e−m̄, s75d

with the average given by Eq. s74d, is an exact time-

dependent solution of the master equation. The correspond-

ing frozen steady states are

pm
ststd =

fm̄stgm

m!
e−m̄

st

, s76d

with

m̄st = lt. s77d

We note, using Eqs. s66d and s75d, that

Wm+1,m
snd pmstd

Wm,m+1
snd pm+1std

=
lt
snd

asndm̄std
. s78d

We see that at steady state, the detailed balance condition is

not in general satised. Equilibrium is only attained if lt
snd

=asndlt. We thus have two mechanisms bringing the system

out of equilibrium: the breaking of detailed balance by the

steady state and the time-dependent driving from lt
snd.

Using these analytical results, we can now obtain explicit

results for entropies s31d–s33d,

S˙ totstd =o
n

sasndm̄ − lt
snddln

asndm̄

lt
snd , s79d

S˙astd =o
n

sasndm̄ − lt
snddln

asndm̄st

lt
snd , s80d

S˙nastd = − ṁ̄ ln
m̄

lt

= sm̄ − ltdln
m̄

lt

, s81d

which are all positive. Not surprisingly, the nonadiabatic

contribution vanishes in the adiabatic limit m̄=lt. On the

other hand, the adiabatic contribution vanishes under the in-

stantaneous detailed balance condition lt
snd=asndlt sremem-

bering that lt= m̄
std.

To compare the results with the two-level model, we

again assume that the system is subjected to a periodic piece-

wise constant driving of period T. One nds

0# t, tI: m̄std = e−tfm̄sTd + lIse
t
− 1dg ,

tI # t, T: m̄std = e−st−t0dfm̄stId + lIIse
t−tI − 1dg , s82d

where

m̄stId =
lIse

−tI − 1d + lIIse
−T

− e−tId

e−T − 1
, s83d

m̄sTd =
lIse

tI − 1d + lIIse
T
− etId

eT − 1
. s84d

The resulting behavior of the probability distribution and the

various EPs around the cycle are shown in Fig. 3.
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FIG. 3. sColor onlined sAd Actual average m̄std and stationary

average lt along the cycle fthey uniquely determine the actual and

stationary probability distributions s75d and s76dg corresponding to

the instantaneous values of the driving displayed in the inset. sBd
The total, adiabatic, and nonadiabatic entropy productions along the

cycle. Also, T=5 and tI=2.
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V. CONCLUSIONS

In this paper, we started by showing how to identify en-

tropy and entropy production for a stochastic dynamics de-

scribed by Markovian master equations with time-dependent

rates. The key element is that the entropy production can be

“split” into two parts, each satisfying a second-law-like rela-

tion. By assuming that the rates satisfy a local detailed bal-

ance condition, we have also shown that the dynamics pro-

vides a nonequilibrium thermodynamics description of the

system. The thermodynamic implications of this splitting re-

main to be properly understood. To progress in this direction

we calculated the various entropies on different exactly solv-

able models. In the companion paper f64g, we proceed simi-

larly for a stochastic dynamics described by a Fokker-Planck

equation.
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