Rotinas pararesolver sistemas lineares, auto-problemas:

IMSL Fortran Numerical Library:

https://developer.nvidia.com/imsl|-fortran-numerical-library

The IMSL Fortran Numerical Library is a comprehensive set of mathematical
and statistical functions that developers can embed into their Fortran software
applications. It offloads CPU work to NVIDIA GPU hardware where the cuBLAS
library is utilized. Users with supported hardware are able to link the IMSL
Fortran Library with cuBLAS to gain significant performance improvements for
many linear algebra functions. The calling sequences for IMSL functions are
untouched, so there is no learning curve and users can be immediately
productive.

Key Features

« 1000+ accurate and highly reliable algorithms
e Support for the optional arguments of modern Fortran
syntax EE Rogl
¢ Intuitive naming conventions eliminate the need for
developers to learn or remember special function names
¢ Evolves easily with software and hardware upgrades

The IMSL Fortran Numerical Library provides analytical building blocks that elimi
scratch, and can save up to 95% of the time required to research and develop algo
algorithms free QA teams to focus on core application testing.

For more information about IMSL and other GPU Accelerated Libraries:

» Download evaluation copy
= Rogue Wave IMSL for Fortran features
» GPU Accelerated Libraries
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LAPACK —Linear Algebra PACKage  http://www.netlib.org/lapack/index.html

Presentation

LAPACK is written in Fortran 9o and provides routines for solving systems of simultaneous linear equations, least-squares solutions of linear systems of equations, eigenvalue problems, and
singular value problems. The associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also provided, as are related computations such as reordering of the Schur
factorizations and estimating condition numbers. Dense and banded matrices are handled, but not general sparse matrices. In all areas, similar functionality is provided for real and complex
matrices, in both single and double precision.

The original goal of the LAPACK project was to make the widely used EISPACK and LINPACK libraries run efficiently on shared-memory vector and parallel processors. On these machines,
LINPACK and EISPACK are inefficient because their memory access patterns disregard the multi-layered memory hierarchies of the machines, thereby spending too much time moving data
instead of doing useful floating-point operations. LAPACK addresses this problem by reorganizing the algorithms to use block matrix operations, such as matrix multiplication, in the innermost
loops. These block operations can be optimized for each architecture to account for the memory hierarchy, and so provide a transportable way to achieve high efficiency on diverse modern
machines. We use the term "transportable” instead of "portable” because, for fastest possible performance, LAPACK requires that highly optimized block matrix operations be already
implemented on each machine.

LAPACK routines are written so that as much as possible of the computation is performed by calls to the Basic Linear Algebra Subprograms (BLAS). LAPACK is designed at the outset to exploit
the Level 3 BLAS — a set of specifications for Fortran subprograms that do various types of matrix multiplication and the solution of triangular systems with multiple right-hand sides. Because of
the coarse granularity of the Level 3 BLAS operations, their use promotes high efficiency on many high-performance computers, particularly if specially coded implementations are provided by
the manufacturer.

Highly efficient machine-specific implementations of the BLAS are available for many modern high-performance computers. For details of known vendor- or ISV-provided BLAS, consult the
BLAS FAQ. Alternatively, the user can download ATLAS to automatically generate an optimized BLAS library for the architecture. A Fortran 77 reference implementation of the BLAS is available
from netlib; however, its use is discouraged as it will not perform as well as a specifically tuned implementation.
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LAPACK — Linear Algebra PACKage

Software

Licensing

LAPACK is a freely-available software package. It is available from netlib via anonymous ftp and the World Wide Web at http://www.netlib.org/lapack . Thus, it can be included in commercial
software packages (and has been). We onlv ask that proper credit be given to the authors.

The license used for the software is the modified BSD license, see:

+ LICENSE

Like all software, it is copyrighted. It is not trademarked, but we do ask the following:
« If you modify the source for these routines we ask that vou change the name of the routine and comment the changes made to the original.

+ We will gladly answer any questions regarding the software. If a modification is done, however, it is the responsibility of the person who modified the routine to provide support.

LAPACK, version 3.7.1
+ Download: lapack-3.7.1.tgz
» LAPACK 3.7.1 Release Notes
« Updated: June 25, 2015
+ LAPACK GitHub Open Bug (Current known bugs)

Standard C language APls for LAPACK
collaboration LAPACK and INTEL Math Kernel Library Team
+ LAPACK C INTERFACE is now included in the LAPACK package (in the lapacke directory)
+ LAPACKE User Guide
« Updated: November 16, 2013
« header files: lapacke.h, lapacke config.h, lapacke mangling.h, lapacke utils.h




http://icl.cs.utk.edu/lapack-for-windows/index.html

The LAPACK community has decided to extend its support to Microsoft Windows based users. The decision was taken due
to the large amount of requests we received. The project included in this initiative are | AFACK, CLAPACK and Scal APACK

For more information on those libraries, please refer to their website.

Computational Software Development with Windows HPC

The Innovative Computing Laboratory (ICL) at the University of Tennessee has been engaged in High-performance
computing (HPC) research through the development of applications, scientific codes, and computational libraries that have
helped form the fabric of HPC computing in the 21st century.

One of our goal is to extend HPC applications, software and mathematical libraries to the Microsoft Windows Compute
Cluster environment. To this end we hope to understand the requirements and opportunities for computational based
research and innovation utilizing Windows high performance computing.

What you will find here

Here you should be able to able all Windows-related libraries and package for LAPACK (Fortran), CLAPACK (C), and
Scal APACK (C and Fortran). The first question to ask you is what you really need .

« For a basic usage, we recommend to use prebuilt libraries.

« For an advanced usage requiring special compilation or optimization, we recommend to use the packages that will
allow you to compile our libraries on your machine.

Pre-built libraries

This is the easy way to get the library installed on your machine. Read carefully the requirements that are needed.

APACK pre-built libraries

Requirement: Visual Studio, Intel Fortran compiler

CLAPACK pre-built libraries
Requirement: Visual Studio, Intel Fortran compiler
Scal APACK pre-built libraries

Requirement: Visual Studio, Microsoft MPI, Intel and C Fortran compiler




http://math.nist.gov/MatrixMarket/
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A visual repository of test data for use in comparative studies of algorithms for
numerical linear algebra, featuring nearly 500 sparse matrices from a variety of
applications, as well as matrix generation tools and services.
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http://www.netlib.org/cgi-bin/search.pl

Search :
* Netlib Repository (standard interface)

Netlib Repository (advanced interface)
GAMS Problem Taxonomy
Numerical Analysis Digest

To search the Netlib repository, enter your search query in the form below and then press the Go button.

|Iinear systems

Look for : | any of the words ~| Gol

Query "linear systems" found 968 matches.

1.

tennessee/ut-cs-91-145.ps

by:
title:
ref:
for:

Bruce MacLennan,

Continuous Symbol Systems: The Logic of Connectionism,

University of Tennessee Technical Report CS-91-145, September 1991.

It has been long assumed that knowledge and thought are most naturally represented as discrete symbol systems (calculi). Thus a major contribution of connectionism is that it provides an alternative model of knowledge and
cognition that avoids many of the limitations of the traditional approach. But what idea serves for connectionism the same unifying role that the idea of a calculus served for the traditional theories? We claim it is the idea of a
continuous symbol system., This paper presents a preliminary formulation of continuous symbol systems and indicates how they may aid the understanding and development of connectionist theories. It begins with a brief
phenomenological analysis of the discrete and continuous; the aim of this analysis is to directly contrast the two kinds of symbols systems and identify their distinguishing characteristics. Next, based on the phenomenological
analysis and on other observations of existing continuous symbol systems and connectionist models, I sketch a mathematical characterization of these systems. Finally the paper turns to some applications of the theory and to
its implications for knowledge representation and the theory of computation in a connectionist context. Specific problems addressed include decomposition of connectionist spaces, representation of recursive structures,
properties of connectionist categories, and decidability in continuous formal systems.

Score: 99%

. tennessee/ornl-tm-12404.ps

title:
by:
ref:
for:

Software Libraries for Linear Algebra Computation on High-Performance Computers

Jack J. Dongarra and David W. Walker

Oak Ridge National Laboratory, ORNL TM-12404, August, 1993.

This paper discusses the design of linear algebra libraries for high performance computers. Particular emphasis is placed on the development of scalable algorithms for MIMD distributed memory concurrent computers. A
brief description of the EISPACK, LINPACK, and LAPACK libraries is given, followed by an outline of ScalL APACK, which is a distributed memory version of LAPACK currently under development. The importance of
block-partitioned algorithms in reducing the frequency of data movement between different levels of hierarchical memory is stressed. The use of such algorithms helps reduce the message startup costs on distributed memory
concurrent computers. Other key ideas in our approach are the use of distributed versions of the Level 3 Basic Linear Algebra Subprograms (BLAS) as computational building blocks, and the use of Basic Linear Algebra
Communication Subprograms (BLACS) as communication building blocks. Together the distributed BLAS and the BLACS can be used to construct higher-level algorithms, and hide many details of the parallelism from the

annlicatinn davalanar Tha hlacl_cwvalic dAata dictribatian ic dacerihad and adantad ac a annd wratr af dictribating hlaclk_nartitianad matricas Rlackonartitinnad varciane nf tha Chalacl~r and TTT fanrtarizatinne ara nracantad and



Para resolver sistemas lineares esparsos, sugiro MA27

HSL for IPOPT

HSL provides a number of linear solvers that can be used in IPOPT. We
provide several different ways for IPOPT users to download our codes.

Free downloads

Are available from the boxes on the right. The personal licence on the HSL
Archive package permits commercial use, but not redistribution.

A condition of the licence is that HSL is cited in any resulting publications or
presentations:

"HSL. A collection of Fortran codes for large scale scientific
computation. http://iwww_hsl.rl.ac.uk/”

Commercial Licencing

Details of commercial licencing, including incorporation licencing, are
available on our licencing page. Alternatively, please contact us at
hsl@stfc.ac.uk

Which solver?

For general use we recommend HSL_MAS7. For small or highly sparse
problems use MASY. For huge problems use HSL_MAGSS (if factors fit in
memory) or HSL_MATT (if they don't).

Free

Solver to S u.) Pro_b — Parallel s Notes
all academics size answers
Qut dated,
MA27 Yes Yes Small No Yes relatively
slow
Small/ Threaded
MAST Yes Medium  BLAS Yes
HSL MAT7 Yes Huge  Limited Yes Qut-of-core
) . Designed
HSL MAS86E Yes Large Highly No for multicore
Slower than
Small /
HSL MAS7 Yes Medium Yes Yes HEL LD
on large
/ Large

problems

http://www.hsl.rl.ac.uk/ipopt/



http://www.hsl.rl.ac.uk/catalogue/

HSL Software Index

For information on licencing HSL please see our licencing page.

Please remember to cite HSL as:
"HSL. A collection of Fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk/"

HSL has moved to a rolling release schedule. New and upgraded packages are added continuously.
A list of recent changes is available.

Fortran MATLAB C

EIGENVALUES AND EIGENVECTORS

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EA: Eigenvalues and eigenvectors of real symmetric matrices

EA16 Compute selected eigenpairs using rational Lanczos method

HSL_EA19 Sparse symmetric or Hermitian: leftmost eigenpairs

HSL_EA20 s-root of a sparse self-adjoint positive-definite pencil

EA22 Sparse symmetric: simultaneous iteration

EAZ25 Sparse symmetric: Lanczos for the spectrum

EB: Eigenvalues and eigenvectors of general matrices

EB13 Sparse unsymmetric: Arnoldi's method

EB22 Sparse unsymmetric: subspace iteration

EP: Parallel eigenvalues and eigenvectors of real symmetric matrices

EP25 Sparse symmetric: Lanczos for the spectrum
......................................... T AT AL RN IO e,
FA: Random numbers

FA14 Uniform distribution

HSL_FA14 Uniform distribution

FD: Simple Functions

FD15 Real-valued machine constants 9
.................................................... SR

KB: Sorting numbers
KB05 Sort numbers into ascending order using Quicksort
KBO06 Sort numbers into descending order using Quicksort




Respostas Dinamicas

Resposta Estatica: [K]-{U}={F} Acbes ndo variam no tempo

Resposta Dinamica: [K]-{U}+[M]-{U}={F}
AcOes variam no tempo, inclusao das forcas inerciais

[M]: matriz de massa da estrutura

Respostas Dinamicas, duas classes a ser analisado, para obter:

« as frequéncias naturais das vibracoes livres e seus
correspondentes modos:

[K]-{U}+[M]-{U}={0}

« Movimentos e esfor¢cos devidos a acdes prescritas
forcadas: ) N

[KI-{U}+[M]-{U}={F}




Respostas Dinamicas

Matriz de Massa Consistente: Uma das formas mais usadas.

Advém do uso da funcdes de forma da matriz de rigidez. Assim, para

/
cada elemento “e”: M° = _[P'[N]t-[N] dé
0
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Respostas Dinamicas

Matriz de Massa Lumped (massa concentrada; “amontoadora’)

11 7

Matriz alternativa, concentrar a massa em seus nos, para cada elemento “e”.

AR RN P T I NN

O1 0 O 0 O 00 0 0 0 O

IS AR AN A AN AN AN, RRRRNER TR TR RNG
m=—— R R

2100 0 1 00 N A 12))0 0 0 0 0 O

O OO0 010 O 00 O0O0DO

LA AR A AN NN AN Y

Matriz com vantagem p/ montagem, economia de memaria e processamento.

)




Matriz de Massa Lumped (massa concentrada; “amontoadora’)

E interessante seu uso para aplicacdes onde simulam-se massas
nao-estruturais, como na engenharia aeronautica, considerando

massas concentradas devidos a: cargas, combustiveis, etc..

The first appearance of a mass matrix in a journal article occurs in two early-1930s papers’ by Duncan and
Collar [34,35]. There 1t 15 called “mertia matrix” and denoted by [m]. The original example [34, p. 869]
displays the 3 x 3 diagonal mass of a triple pendulum. In the book [55] the notation changes to A.

Diagonally lumped mass matrices (DLMM) dominate pre-1963 work. Computational simplicity was not the
only reason. Direct lumping gives an obvious way to account for nonstructural masses in simple discrete
models of the spring-dashpot-particle variety. For example, m a multistory building “stick model” wherein
each floor 1s treated as one DOF in lateral sway under earthquake or wind action, it i1s natural to take the entire
mass of the floor (including furmiture, 1solation. ete.) and assign it to that freedom. Nondiagonal masses pop-up
ocassionally in aircraft matrix analysis — e.g. wing oscillations in [55, §10.11] — as a result of measurements.
As such they necessarily account for nonstructural masses due to fuel, control equipment, etc.
) 13




Matriz de Massa Consistente

The formulation of the consistent mass matrix (CMM) by Archer [6,7] was a major advance. All CMMs
displayed in §31.3 were first derived in those papers. The underlying 1dea 1s old. In fact 1t follows directly
from the 18"-Century Lagrange dynamic equations [84]. a proven technique to produce generalized masses.

These had to wait until three things became well established by the early 1960s: (1) the Direct Stiffness Method.
(1) the concept of shape functions. and (111) the FEM connection to Rayleigh-Ritz. The critical ingredient (111)
was established in Melosh’s thesis [97] under Harold Martin. The link to dynamics was closed with Archer’s
contributions, and CMM became a staple of FEM. But only a loose staple. Problems persisted:

(a) Nonstructural masses are not naturally handled by CMM. In systems such as ships or aircraft, the
structural mass 1s only a fraction (10 to 20%) of the total.

(b) Itis inefficient in some solution processes, notably explicit dynamics.®

(¢) It may not give the best results compared to other alternatives.’

(d) For elements derived outside the assumed-displacement framework, the stiffness shape functions may
be unknown or be altogether missing.

Problem (a) can be addressed by constructing “rigid mass elements” accounting for inertia (and possibly
gravity or centrifugal forces) but no stiffness. Nodes of these elements must be linked to structural (elastic)

Y

Copy Right: http://kis.tu.kielce.pl/mo/COLORADO FEM/colorado/IFEM.Ch31.pdf




Matriz de Massa Consistente

nodes by MFC constraints that enforce kinematic constraints. This 1s more of an implementation 1ssue than a
research topie, although numerical difficulties typical of rigid body dynamics may crop up.

Problems (b.c.d) can be attacked by parametrization. The father of NASTRAN., Dick MacNeal. was the first
to observe [87.90] that averaging the DLMM and CMM of the 2-node bar element produced better results
than using either alone. This idea was further studied by Belytschko and Mullen [163] using Fourier analysis.
Krieg and Key [171] had emphasized that in transient analysis the introduction of a time discretization operator
brings new compensation phenomena, and consequently the time integrator and the mass matrix should be not
be chosen separately.

A good discussion of mass diagonalization schemes can be found in the textbook by Cook et al. [28].

The template approach addresses the problems by allowing and encouraging full custonmization of the mass to
the problem at hand. It was first described in [47.48] for a Bernoulli-Euler plane beam using Fourier methods.

[t 1s presented 1 more generality m the following Chapter. where 1t 1s applied to other elements. The general
concept of template as parametrized form of FEM matrices 1s discussed in [46].

Y s




Compulers

Computers & Structures & Sutures
Volume 46, Issue 6, 17 March 1993, Pages 1041-1048 S

A review of mass matrices for eigenproblems
Ki-ook Kim

H Show more

https://doi.org/10.1016/0045-7949(93)90090-2 Get rights and content

Abstract

Various nonconsistent mass matrices have been presented to achieve more accurate
natural frequencies in eigenproblems of the finite element analysis. The matrices are
obtained as a linear combination of lumped and consistent mass matrices. For an improved
accuracy, the consistent mass should be more weighted than the lumped mass. Instead of
the mass combination, the interpolation functions can be combined to give nonconsistent
mass matrices, which show the same tendency. To find a nonsingular lumped mass matrix
for the bending vibration of beams, a translational inertia has been proposed for rotational
degrees of freedom. The inertia effect is highly overestimated and hence lower natural
frequencies are obtained. When combined with the consistent mass matrix, however, the
modified lumped mass matrix gives a significant improvement for the natural frequencies of
intermediate and higher modes. A simple corrective method was applied to get a better
estimation of the natural frequencies through the use of the frequency dependent stiffness
and mass matrices. The method shows high accuracy without complicated calculations.

Y s



Respostas Dinamicas

Matriz de Massa Global:

Como se faz para a matriz de rigidez sistema global:

M = [RT [ -[mf -[R]

Matriz de Massa Global: Enderecamento idem.

Elemento ne:
NG inicial — j
N6 final — k

[MeSt]Bnnx3nn N Z [M ]EXG
e=1

No Global | Posigao Posig¢ao
Local Global
1 3-j-2
J 2 3-j-1
3 3
4 3-k-2
k 5 3-k-1
6 3-k




Respostas Dinamicas

As equac0des para 0 movimento entdo pode ser representadas matricialmente,

apos inserir as condicdes de contorno da estrutura, e sdo dadas por:

Onde as condicoes de contorno podem ser inseridas nas matrizes [K] e [M] da

maneira usual, por exemplo, pela técnica de “zeros” e “uns”, nao usar
penalidade.

Y s




Analise de Vibracéao Livre:

As equacoOes para o movimento livre, apds inserir as condigcdes de contorno
da estrutura, sao dadas por:

[K]-{U}+[M]-{U}={0}

Considerando movimento harménico: U =¢-sen(w-t)

Com ¢ e w sendo, respectivamente, os modos fundamentais de vibracao
e suas frequéncias naturais.

De modo que se leva a resolucao do auto-problema:

[K]1-?-[M])-¢ ={0}

Y

Como ¢ é nao-trivial, assim:




Analise de Vibracéao Livre:

Como ¢ ¢é nao-trivial, assim: ‘[K] —o°[M ]‘ =0

E tomando: @’ =1
Chega-se a equacéao caracteristica: ‘[ K] N ﬂ’ \ [M ]‘ N O

E ) s&o os auto-valores dessa equacéao. A estrutura tem seu modo de

vibracao, ¢, associado a cada um dos auto-valores, ) :

Existem varios algoritmos para resolver esse auto-problema na literatura.

Y2




Analise de Vibracéao Livre:

» Os diferentes tipos de matriz de massa levam a diferencas suaves no
calculo dos auto-valores;

« N&o ha indicacao definitiva de qual matriz € melhor para quaisquer
problema em estruturas;

« Com 0 uso dessa matriz lumped (“amontoadora”), a convergéncia
para a solucao exata dos auto-valores acontece por baixo;

« (Os auto-valores obtidos com 0 uso da matriz de massa consistente

levam a valores maiores que o0s exatos. Esse tipo de matriz leva
respostas mais precisas para problemas de flexao.

)



Analise de Vibracéo Livre:
Rotinas para calculo de auto-problemas:

Lapack: DSYGV()

Y
* Online html documentation available at
= http://www.netlib.org/lapack/explore-html/

*» \htmlonly

*» Download D5YGV + dependencies

*% <@ href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack routine/dsygv.f">
*» [TRZ]</ax

*% <@ href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack routine/dsygv.f">
*» [ZIP]</azx

*%» <@ href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack routine/dsygv.f">
*> [TXT]</az

*» \endhtmlonly

* pefinition:

#*

SUBROUTINE DSYGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
LWORK, INFO )

. Scalar Arguments ..
CHARACTER JOBZ, UPLO
INTEGER INFO, ITYPE, LDA, LDB, LWORK, N

. Array Arguments ..
DOUBLE PRECISION A( LDA, * }, B( LDB, * ), W( * ), WORK( * )

# O# # # # O #H O OH H K OH O®




Analise de Vibracéo Livre:
Rotinas para calculo de auto-problemas:

Lapack: DSYGV()

*» DSYGV computes all the eigenvalues, and optionally, the eigenvectors
*» of a real generalized symmetric-definite eigenproblem, of the form
*» A*w=(lambda)}*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.

*» Here A and B are assumed toc be symmetric and B is alsc

*» positive definite.

*» ‘endverbatim

*  Arguments:

*» \param[in] ITYPE
*» ‘werbatim

*» ITYPE is INTEGER

* Specifies the problem type to be solved:
* = 1: A*x = (lambda)*B*x

* = 2: A¥B*x = (lambda)*x

* = 3: B*A*x = (lambda)*x

*» ‘endverbatim

*x

*» \param[in] JOBZ
*» ‘werbatim

*» JOBZ is CHARACTER*1

* = "N': Compute eigenvalues only;

* = "W': Compute eigenvalues and eigenvectors.
*» ‘endverbatim

*x

*» \param[in] UPLO

*> ‘werbatim

*» UPLO is CHARACTER*1

* = "U': Upper triangles of A and B are stored;



Analise de Vibracéo Livre:
Rotinas para calculo de auto-problemas:
Lapack: DSYGV()

SUBROUTINE AUTOPROELEMA(A,M,N, I, ITER ,RESFRED)
| input: & = M: matrizes de rigidez = massa da estrutwra, 1g sarg 2@ ser impresso auto-resposias
| output: A[,]: contem o= autowvetores, wetor da coluna i & o desloc da freg matural i; M[]: contem os autovalores na 1a. coluna
| arguivo fort.55 imprime auvtovalores

Real{s) A{N,M),M(M,N),RESFREQ{18)} ,4LX

Real{B), &llocstable :: AUTOVALORL:), WORK(:)

CHARACTER*1 JDEZ,UPLO

INTEGER N

ALLOCATE( BUTOVALDR(M] )

| MATRIZES TEM QUE SER SIMETRICAS!

ITYPFE =1 ! = 1: &a*x = (lambda)*B*x

IF(ITER.EQ.1)I0BZ = 'v' | "W° = Compute eigenvaluss and eigenvectors.
IF(ITER.NE.1)J0BZ = 'N° | "N° = Compute only eigenvalues.

uPLO = "uU" ! upper triangles of & and B are stored; W = The order of the matrices A and B. M »= 8.
LDA = N

LOB = N

INFO = 8

LWORE = (N+2)*N

ALLOCATE (WORK [ LWORK ) )

WORK = B.D8

|LWORK 1s INTEGER, The length of the array WORK. LWORK »= max(1l,3*N-1}). For optimal efficisncy, LWORK »>= (NB+2)*N,
| where ME is the blocksize for DSYTRD returned by ILAENV.
I AUTOVALOR is DOUBLE PRECISION array, dimensiom (M}, IF INFO = 8, the eigenvalues in ascending order.
CALL DSYGV(ITYPE,JOBZ,UPLO,N,A, LDA,M, LDE, AUTOVALOR , WORK , LWORK , INFO) ! dsygv.for
louT: IHFI:[ iz INTEGER: = @: swccessful exit; < 8: 1f INFO = -i, the i-th argument had an illegal walue;
| » 81 DPOTRF or DSYEW returned an error code:; <= N: 1f INFO = i, DSYEVW failed to conwverge i off-diagonal elements of an intermediate
| » tridiagonal form did not converge to zero;
I0=8
D0 I =1,N
AUTOVALDR(I) = DSQAT(AUTOVALOR{I))
M{I,1) = AUTOVALOR{I}
IF{M(I,1).GT.1.AND.ID.EQ. B} THEN
AESFREQ(3) = I
D=1
EMDIF
ENDDD
IF(IQ.MNE.B)}CALL PRINT_AUTOWALOR{AUTOVALOR,M,I0,ITER)



Analise de Vibracéao Livre: Comparar MEF com Solucao

analitica de uma viga bi-apoiada

Solucéao analitica de uma viga bi-apoiada:

n’n’ |EI
@, =—-; — n=12...
L PA

E: Modulo de Young em N/m2;
p: massa especifica em kg/m3

E=31000MPa ro=2500 kg’
I=64E-4m' A=0048m" Seglo (12cm x 40cm)
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Solucéo analitica de uma viga bi-apoiada:

n'n’ |EI
w,=—-; — n=12..
L PA

E=31E9N/m?;L=3m;|=6,4E-4 m*; A=0,048 m?, p = 2500 kg/m?3

w, =445,9rad/s ouf; = w,/(2r) = 70,97 Hz
w, = 1.783,6 rad/s ouf, = w,/(2r) = 283,9 Hz

Matriz Consistente
MEF:

M EF Freq(rad/s) Freq(Hz) 10 EF

AUTOVALOR( 1 57@.88 98.85

:|=
2 EF: ATOVALOR( 1= 107965 1507 Freq(rad/s)  Freq(Hz)
\ AUTOVALOR( 4)= 3902.52 621.11 AUTOVALOR( 1)= 1.8 @.1e
AUTOVALOR( 5)= 6687.61 1851.63 AUTOVALOR( 2)= 451.36 71.84
AUTOVALOR( 6)= 9871.89 1443, 84| AUTOVALOR( 3)= 1845.68 283.75
AUTOVALOR{ 4)= 1871.38 297 .84
AUTOVALOR( 5)= 4457.16 789,38
AUTOVALOR{ B8)= 5582.66 888.51
AUTOVALOR{ 7)= 8587.34 1353.99
AUTOVALOR{ 8)= 0457.38 1585.18

AUTOVALOR( 9= 13562.16 2158.48




Solucéo analitica de uma viga bi-apoiada:
E=31E9N/m2;L=3m;|=64E-4m*;A=0,048 m?, p = 2500 kg/m3
w; = 4459 rad/s ouf; = w,/(2r) = 70,97 Hz

w, = 1.783,6 rad/s ouf, = w,/(2r) = 283,9 Hz

MEF:

Matriz Lumped 10 EE-

M EF: Freq(rad/s) Freq(Hz)

AUTOVALOR{ 1)= 448,59 78.17

2 E F : AUTOVALOR{ 2)= 17a7.8l1 271.68

AUTOVALOR{ 3)= 1841.89 293,15

AUTOVALOR{ 4)= 3658.98 58l.86

AUTOVALOR{ 5)= 5438.31 872.22

Freq{radf’s} Freq{Hz} ALWWALUR{ E:I= 6879.71 957.62

AUTOVALOR( 1)= A@1.99 53.98 AUTOVALOR{ 7)= 8708.48 1399.85

AUTOVALOR( 2)= 1209.77 192.54 AUTOVALOR( 8)= 8983.78 1429.81

AUTOVALOR( 3)= 1796.76 285.96 AUTOVALOR( 9)= 11582.15 1843.36

ALWWALURI: 4} - 1883.95 200,84 ALWWALURI:I@:I = 12266.85 1952.28
AUTOVALOR( 5)= 2895,37 333.49
AUTOVALOR( B)= 4337.75 698. 38

primeiro modo segundo modo



