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PREFACE

Recently a large amount of research has been related to nonlinear systems having
multidegrees of freedom, but hardly any of this can be found in the many exist-
ing books related to this general area. The previously published books empha-
sized, and some exclusively treated, systems having a single degree of freedom.
These include the books of Krylov and Bogoliubov (1947); Minorsky (1947,
1962); Den Hartog (1947); Stoker (1950); McLachlan (1950); Hayashi (1953a,
1964); Timoshenko (1955); Cunningham (1958); Kauderer (1958); Lefschetz
(1959); Malkin (1956); Bogoliubov and Mitropolsky (1961); Davis (1962);
Struble (1962); Hale (1963); Butenin (1965); Mitropolsky (1965); Friedrichs
(1965); Roseau (1966); Andronov, Vitt, and Khaikin (1966); Blaquiére (1966);
Siljak (1969), and Brauer and Nohel (1969). Exceptions are the books by Evan-
Iwanowski (1976) and Hagedom (1978), which treat multidegree-of-freedom
systems. However, a number of recent developments have not been included.
The primary purpose of this book is to fill this void.

Because this book is intended for classroom use as well as for a reference to
researchers, it is nearly self-contained. Most of the first four chapters, which
treat systems having a single degree of freedom, are concerned with introducing
basic concepts and analytic methods, although some of the results in Chapter 4
related to multiharmonic excitations cannot be found elsewhere. In the remain-
ing four chapters the concepts and methods are extended to systems having
multidegrees of freedom.

This book emphasizes the physical aspects of the systems and consequently
serves as a companion to Perturbation Methods by A. H. Nayfeh. Here many
examples are worked out completely, in many cases the results are graphed, and
the explanations are couched in physical terms.

An extensive bibliography is included. We attempted to reference every paper
which appeared in an archive journal and related to the material in the book.
However omissions are bound to occur, but none is intentional. Many exercises
have been included at the end of each chapter except the first. These exercises
progress in complexity, and many of them contain intermediate steps to help the
reader. In fact, many of them would expand the state of the art if numerical re-
sults were computed. Some of these exercises provide further references.
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CHAPTER 1

Introduction

1.1. Preliminary Remarks

In this chapter we attempt to abstract the entire book. We introduce some of
the nonlinear physical phenomena that are discussed in detail in subsequent
chapters. The development of many of the results discussed here requires some-
what elaborate algebraic manipulations. Here we describe only the physical
phenomena, leaving all the algebra to the subsequent chapters. The descriptions
in this chapter are intended to give an overview of the whole book. Thus one
might better see how a given topic fits into the overall picture by rereading
portions or all of this chapter as one progresses through the rest of the book.

1.2. Conservative Single-Degree-of-Freedom Systems

In Chapter 2, free oscillations of conservative nonlinear systems are considered.
Most of these systems are governed by equations having the general form

utfw)=0 (1.1)
Upon integrating, we obtain
a2 =h- Fu) (1.2)

where F(u)= [fdu and h is a constant of integration. Referring to (1.1) and
(1.2), we note that f(u) is the (nonlinear) restoring force, F'(«) is the potential
energy, %—122 is the kinetic energy, and % (which is determined by the initial
conditions) is the total energy level per unit mass.

In the upper portion of Figure 1-1, the undulating line represents the potential
energy, while the straight horizontal lines represent total energy levels. Each
total energy level corresponds to a different motion, and the vertical distance
between a given horizontal line and the undulating line represents the kinetic
energy for that motion. Thus motion is possible only in those regions where the
potential energy lies below the total energy level.

In the lower portion of Figure 1-1, the variation of & with u is shown. Such a
graph is called a phase plane. For a given set of initial conditions (i-e., for a given
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| F(u)

Figure 1-1. Phase plane for a conservative system having a single degree of freedom.

total energy level), the response of the system can be viewed as the motion of a
point along a one-parameter (time) curve. Such a curve is called a trajectory. The
trajectory labeled T, corresponds to the energy level &,,. The arrows indicate the
direction in which the point representing the motion moves as time increases.

The points labeled S are called saddle points or cols, and the one labeled C'is
called a center. Saddle points and centers correspond to extrema of the potential
energy and hence they are equilibrium points. Saddle points correspond to
maxima while centers correspond to minima of the potential energy. The tra-
jectories that intersect at the saddle points (T3 and T’ in Figure 1-1) are called
separatrices. They are the heavy lines. The point representing the motion moves
toward § along two of the separatrices and away from S along the other two. If
the representative point is displaced a small distance away from S, there are
three possibilities. First, the point can be placed exactly on an inward-bound
separatrix, and hence it approaches S as time increases. Second, it can be placed
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on a closed trajectory, and at times it is far away from S, though it periodically
passes close to S. (Here we assume that the equilibrium points are isolated.)
Third, it can be placed on an open trajectory, and hence it approaches infinity
as time increases. Because the representative point does not stay close to S for
all small displacements, the motion is said to be unstable in the neighborhood of
a saddle point (i.e., an equilibrium point corresponding to a maximum of the
potential energy is unstable).

In the neighborhood of the center, the trajectories are closed, and hence the
response is periodic (though not necessarily harmonic). Thus if the motion is
displaced slightly from a center, the representative point will always move on a
closed trajectory which surrounds the center and stay close to it. (Again we
assume that the equilibrium points are isolated.) Thus the motion is said to be
stable in the neighborhood of a center (i.e., an equilibrium point corresponding
to a minimum of the potential energy is stable). An examination of these closed
trajectories shows that the period is a function of the amplitude of the motion.
In general, these trajectories do not extend the same distances to the right and
the left of the center; thus the midpoint of the motion shifts away from the
static center as the amplitude increases. This shift is often called drift or
steady-streaming.

Several analytical methods are introduced and subsequently used to provide
approximate expressions for the response. These methods treat small, but
finite, periodic motions in the neighborhood of a center. For various examples,
the approximate and exact values of the periods are compared.

1.3. Nonconservative Single-Degree-of-Freedom Systems

In Chapter 3, free oscillations of nonconservative systems are introduced.
Examples of positive damping due to dry friction (Coulomb damping), viscous
effects, form drag, radiation, and hysteresis are presented; examples of negative
damping are also included.

In Figure 1-2, a typical phase plane is shown. This one describes the oscilla-
tions of a simple pendulum under the action of viscous damping. Depending on
the initial conditions, the pendulum may execute several complete revolutions
before the oscillatory motion begins. The trajectories spiral into points that
correspond to the straight-down position of the pendulum. These points are
called foci. The straight-up positions correspond to the saddle points in the
phase plane. And as in the case of conservative systems, the trajectories that pass
through the saddle points are called separatrices.

The concept of a limit cycle is introduced. As an example, we consider
Rayleigh’s or van der Pol’s equation:

U+ wiu=e@- 3% (1.3)
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30

1
3T  Figure 1-2. Phase plane for a simple
pendulum with viscous damping.

We regard the right-hand side of (1.3) as a damping term and note that its influ-
ence depends on the amplitude of the motion. When the amplitude of the motion
is small, %123 is small compared with & and the “damping” force has the same
sign as the velocity (negative damping); thus the response grows. When the

LIMIT CYCLE

R

Figure 1-3. Phase plane for van der Pol’s equation (e = 0.1).
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amplitude is large, %d:" is large compared with # and the damping force has the
opposite sign of the velocity (positive damping); thus the motion decays. This
behavior of growth when the amplitude is small and decay when the ampitude is
large suggests that somewhere in between there exists a motion whose amplitude

e=0.1

ARRYA
VUV

iR
DT

Figure 1-4. Responses of the van der Pol oscillator for various values of e.
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neither grows nor decays. This is the case, and the motion is said to approach a
limit cycle.

In Figure 1-3, a phase plane for the van der Pol equation is shown. There are
two trajectories. One begins well outside the limit cycle, while the other begins
near the origin. Again the arrows indicate the direction in which the point repre-
senting the motion moves. The two trajectories approach the same limit cycle.

The influence of the parameter € on the response is shown in Figure 1-4. The
two curves in the top graph correspond to the two trajectories shown in Figure
1-3. We note that, as € increases, the motion becomes jerky; that is, in each cycle
there is a period of very rapid motion which is followed by a period of very slow
motion. This jerky motion is called a relaxation oscillation. Among other ex-
amples, this jerky type of motion is characteristic of a beating heart.

A system such as the Rayleigh or van der Pol oscillator is said to be a self-
exciting or a self-sustaining system. Some other examples of self-sustaining sys-
tems are found in various other electronic circuits, flutter, supersonic flow past a
liquid film, violin strings, a block on a moving belt, Q machines, multimode
operation of lasers, ion-sound instability in an arc discharge, and a beam-plasma
system.

In Chapter 3, a general discussion of singular points is given, and then various
qualitative methods and the analytical methods of multiple scales and averaging
are described. The analytical methods treat small, but finite, motions in the
neighborhood of a focus or a center. Several examples are worked out, and the
analytical results are compared with numerical results.

The comparisons made in the second and third chapters provide confidence
for the reader who is not well versed in perturbation methods. Confidence is
essential because in the subsequent chapters the analysis predicts many phe-
nomena that are associated only with nonlinear systems and that are in sharp
contrast with those associated with linear systems. Some of these phenomena,
such as “saturation,” are described for the first time in this book.

1.4. Forced Oscillations of Systems Having a Single Degree of Freedom

In Chapter 4, we consider forced oscillations of weakly nonlinear systems
having a single degree of freedom. A number of concepts that are associated only
with nonlinear systems are introduced. The analytical methods introduced in
Chapters 2 and 3 are used for the analysis, and some of the analytical predictions
are verified by numerical integration. The problem reduces mathematically to
finding the solution of

i+t wiu=e(u,u)+E (1.4)

where € <1 and £ is an externally applied, generalized force called the excita-
tion. We distinguish between two types of excitations. The first type of excitation
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draws on an energy source that is so large the excited system has a negligible
effect on it. In this case, E = E(f); that is, E is not a function of the state (u, i, #)
of the excited system. The second type of excitation draws on an energy source
that is not large enough to be independent of the response of the excited system.
In this case, £ = E(u, u, #). The former is called an ideal energy source, while the
latter is called a nonideal energy source. Both types of energy sources are consid-
ered. Thus the response of the system depends on the type of excitation, or
energy source, as well as on the natural frequency of the system, the order of
nonlinearity, and the type of damping mechanism.

In the next five subsections, we briefly introduce some of the topics treated in
detail in Chapter 4.

1.4.1. PRIMARY RESONANCES OF THE DUFFING EQUATION

For an ideal energy source, the response of the system depends on the fre-
quency content of the excitation as well as on the amplitudes and the phases of
the different frequency components. In the case of a single-frequency excitation,
a cubic nonlinearity, and linear viscous damping, (1.4) becomes

i+ wiu=-2eui - eau® + K cos Qt (1.5)

where K and €2 are constants. For small amplitudes, the nonlinear term can be
neglected and the response of the resulting linear system is

u=aexp (-eut) cos [(w3 - 4e*u?)V?t + ] + K [(wd - 2)2
+4€2u? Q2] "V cos (2 +0) (1.6)

Thus the response of the system consists of two parts: a particular solution and a
homogeneous solution (free-oscillation term) having the constants a and § which
are determined from the initial conditions. For positive damping (i.e., u > 0),
the free-oscillation term decays with time. The resulting response is called the
steady-state response and it consists of the particular solution only. Thus the
steady-state response has the same frequency as the excitation, but its phase 6
is shifted from that of the excitation an amount that depends on the damping
and the relative magnitudes of w, and 2. Moreover it is independent of a and
B, and hence it is independent of the initial conditions.

We note from (1.6) that large motions occur when K is large and/or £ = w,.
The latter case is called a primary or a main resonance. When the motions are
large, one cannot neglect the nonlinear term eau® in (1.5). When Q/w, is away
from %, 1, and 3, the response can be written as

u=a(t) cos [wot + ()] + K[(wE - Q) +4e2u* Q%] Y2 cos (Q1 + 0) + O(€)
(1.7)
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As t >0, g >0 and to first order the response of the nonlinear system is the
same as that of the linear system.

When Q = w, +es where 0=0(1) and is called the detuning parameter or
simply the detuning, the free-oscillation term cannot be uncoupled from the
particular solution. The excitation changes the natural frequency of the system
which in turn changes the response of the system to

u=acos (2t -vy)+0(e) (1.8)

where in the steady state a and 7 are constants that depend on the amplitude
and frequency of the excitation, a, and in some cases the initial conditions. The
dependence of the steady-state response on the initial conditions is discussed
below. For now we note that, in the presence of damping, this dependence is a
nonlinear phenomenon. The amplitude of the response a is related to the ampli-
tude (K) and frequency (o) of the excitation by the so-called frequency-response

equation
3aa?\? K?
2+ lo- = 1.9
K (0 8w0> 4e?wia® (1-9)

Figure 1-5 shows three representative curves for the cases « =0, a > 0, and a <0.
Comparing these curves shows that the nonlinearity bends the frequency-response
curves to the right when a > 0 (hardening nonlinearity) and to the left when
a < 0 (softening nonlinearity).

The bending of the frequency-response curves leads to multivalued amplitudes
and hence to a jump phenomenon. To see the jump phenomenon, let us suppose
that an experiment is conducted for a > 0 in which the amplitude of the excita-
tion is held constant while the frequency is varied very slowly. We refer to this as
a quasi-stationary process, and to the excitation as stationary. When the experi-
ment is started at an £ far above w, and €2 is monotonically decreased, the
amplitude of the response increases slowly along the curve AFB in Figure 1-5b
until B is reached. At that point, any slight decrease in 2 precipitates a spon-
taneous jump from B up to C. For further decreases in €2, the amplitude de-
creases slowly along the curve from C toward D. When the experiment is started
at an § far below wq and £ is monotonically increased, the amplitude of the
response increases slowly along the curve DCE. For this process, the amplitude
varies smoothly through C; there is no downward jump to B. The amplitude of
the response continues to increase smoothly until £ is reached. At that point,
any further increase in £ precipitates a spontaneous downward jump from E to
F. For further increases in §2, the amplitude continues to decrease along the
curve from F toward 4.

For a <0, the jumps take place in the opposite directions as shown in Figure
1-5¢. We emphasize again that the jumps are a consequence of the multivalued-
ness of the frequency-response curves, which in turn is a consequence of the
nonlinearity.
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oz

UN

(c) o

Figure 1-5. Frequency-response curve for the Duffing equation for () a linear spring, (b) a
hardening spring, and (c) a softening spring.

Qe'>

For frequencies of the excitation in the interval between BF and CE in Figure
1.5b, there are three steady-state solutions for each value of ¢. The middle one
is a saddle point; hence the response corresponding to it is unstable and unrealiz-
able in any experiment. The other two are stable foci; hence both are realizable.
Thus for a given frequency of the excitation, there can be more than one steady-
state response. The initial conditions determine which of the possible responses
actually develops. This dependence of the steady-state response contrasts sharply
with the behavior of positively damped linear systems for which the steady state
is independent of initial conditions.

In Figure 1-6, we show a state plane [refer to (1.8) for the meaning of a
and ] for this example when three steady-state solutions exist. Generally the
transient response has the same form given by (1.8), but ¢ and v are functions of
time. The trajectories show how the response progresses toward a steady state
from any initial conditions. Again the arrows indicate the movement of the
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Figure 1-6. State plane for the Duffing equation when three steady-state solutions exist;
Py is the upperbranch stable focus, P, is the saddle point, and P3 is the lower-branch stable
focus.

point representing the motion as time increases. For all the initial conditions
lying in the shaded area, the high-amplitude steady state will develop, while for
all the initial conditions lying in the unshaded area, the low-amplitude steady
state will develop. Thus one says that these areas constitute domains of attraction
for the possible steady-state responses. We note that the two inward-bound
separatrices for the saddle point (the unstable middle-amplitude steady-state)
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Figure 1-7. Comparison of nonstationary and stationary frequency-response curves.

separate the domains of attraction for the stable steady states. Again we note
that, in the presence of damping, the steady-state solution can depend on the
initial conditions. This behavior of nonlinear systems contrasts sharply with that
of linear systems.

In addition to the quasi-stationary process described above, we consider varia-
tions at small, but finite, rates. An excitation whose frequency and/or amplitude
vary at a finite rate is said to be nonstationary. In this case, the frequency-
response curves may develop oscillations and deviate somewhat from the sta-
tionary case. The deviations increase as the rates of varying the frequency and
amplitude of the excitation increase, as illustrated in Figure 1-7.

1.4.2. SECONDARY RESONANCES OF THE DUFFING EQUATION
Another characteristic of nonlinear systems is the secondary resonance. As an
example, when 2 = 3w, + €0, the response is given by

K
u=a(f)cos [3Q- Sy + o2 Qt + O(e) (1.10)
- 0

Q2

As t —> oo, there are two possibilities: either @ =0, or ¢ = a nonzero constant
whose value depends on K, o0, and «. The initial conditions determine which
possibility represents the actual response. Thus it is possible for the steady-state
response to consist of the particular solution, which has the same frequency as
the excitation, and a free-oscillation term whose frequency is changed by the
nonlinearity to exactly one-third the frequency of the excitation. For this rea-
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son, one speaks of this as the one-third subharmonic resonance. This subhar-
monic resonance is a consequence of the nonlinearity.
When 3Q = w, + €0, the response is given by

u=a(t)cos [3Q2 - v(2)] + —&%cos Qt+ 0(e) (1.11)

As t >0, g and 7 tend to constants that are functions of K, o, and «, and, in
some cases, the initial conditions. Thus the steady-state response consists of a
particular solution, which has the same frequency as the excitation, and a free-
oscillation term whose frequency is changed by the nonlinearity to exactly three
times the frequency of the excitation. For this reason, one speaks of this as a
superharmonic resonance of order 3. Figure 1-8a shows the variation of the

a o=20,50
a=1
wy =1
o =50 u=1
0=20
3
(a)

a 0=6
0=3
0=0
og=-3
0=—6

(b) K

Figure 1-8. Response curves for the Duffing equation: (¢) superharmonic resonances; (b)
primary resonances.
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steady-state amplitude with the amplitude of the excitation K for a constant .
If K is very slowly increased from zero, there will be a spontaneous upward jump
in a. But after the jump, ¢ does not continue to increase as K increases. This
contrasts with the case of primary resonance as shown in Figure 1-85. In the case
of superharmonic resonance, the nonlinearity introduces two competing influ-
ences. In addition to the direct relationship between the amplitude of the
response and the amplitude of the excitation, there is also a relationship between
the amplitude of the excitation and the apparent natural frequency of the sys-
tem. Thus, when KX is increased one effect is to increase a, while the other is to
detune the system. Right after the jump, the second is stronger.

Figure 1-9 shows the synthesis of a steady-state superharmonic response which
occurs when wgy = 3. Figure 19a is the steady-state free-oscillation term,
which differs from zero in spite of the presence of viscous damping in the
system. Moreover the amplitude and phase of this steady-state term are influ-
enced by the initial conditions. Figure 1-95 is the particular solution, which is,
to the approximation being considered, the solution of the linearized governing
equation. Figure 1-9c is the correct first approximation of the actual response.

The existence of nonlinear phenomena (such as jumps and superharmonic and
subharmonic resonances) in nature is well known. As examples, we note that
von Kdrman observed that certain parts of an airplane can be violently excited

u _—

AANAN
VUV VYUY

(a)

<~ A~
NZARARRN

(b)

T
| /\ /\
V V t
Figure 1-9. Synthesis of the response of
the Duffing equation for superharmonic
(c)

resonance: (¢) free-oscillation solution;
(b) particular solution; (¢) actual response.
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by an engine running at an angular speed much larger than their ‘natural fre-
quencies, and that Lefschetz described a commercial airplane in which the
propellers induced a subharmonic vibration in the wings which in turn induced
a subharmonic vibration in the rudder. The oscillations were violent enough to
cause tragic consequences.

1.4.3. SYSTEMS WITH QUADRATIC NONLINEARITIES

All the preceding discussion is for the case of a cubic nonlinearity. When the
system has quadratic nonlinearities in addition to the cubic nonlinearity, its
response to a sinusoidal excitation in the presence of linear viscous damping is
governed by

i+ wiu=-2euit - eoyu® - e2azu® + K cos Qt (1.12)

where K and £ are constants. When a3 = 0, this system possesses a subharmonic
resonance of order %, and a superharmonic resonance of order 2. That is, the
order of the nonlinearity changes the order of the subharmonic and superhar-
monic resonances. For a subharmonic resonance, the first approximation given
by the perturbation analysis predicts unbounded growth of the free-oscillation
term under certain conditions. This growth is predicted in the presence of damp-
ing and is in sharp contrast with linear systems. Carrying out the expansion to
higher order, one finds that, at the point where growth is predicted, the free-
oscillation term no longer decays as time increases but grows to a finite value.
This result is illustrated in Figure 1-10. For this case, K = 6 is the boundary be-
tween stable and unstable responses predicted by the perturbation analysis. The
graphs in Figure 1-10, which were obtained by numerical integration, clearly
show a pronounced change in the character of the solution as K increases be-
yond 6; Figure 1-10b shows the presence of a lower harmonic.

1.4.4. MULTIFREQUENCY EXCITATIONS
There are many interesting phenomena associated with multiharmonic excita-
tions of the form ‘

N .
E= 3% Kycos(Qnt+0,), 2,>Q, 4 (1.13)
n=1

where the K,,, 2,,, and 6, are constants. For a system with cubic nonlinearities
and for NV =2, the free-oscillation term will not vanish when w, =~ %(92 +Q,),
W~ 28, £Q,, and wo = N, + 280, in addition to the primary resonances
wo =~ §),, the subharmonic resonances wgy =~ %Qn, and the superharmonic
resonances wq ~ 3£2,,. We note that more than one type of resonance may occur
simultaneously such as £, ~ % wq and 2, = 3w,. However, the steady-state re-
sponse will not be periodic unless 2, = p, 2, for all n > 2 where p,, is a rational
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7igure 1-10. Response of a system having quadratic nonlinearities: () subharmonic re-
sponse not excited; (b) subharmonic response excited.

fraction. When Q, =mQ; and wo =~ 3 (R + Q,), then wo~ 3 (m +1)Q,; and
an ultrasubharmonic resonance is said to exist if m is even.

In considering systems having cubic nonlinearities, we find that when there
are three terms in the excitation and wqy ~ Q5 + Q, + Q,, a combination reso-
nance occurs which is similar to the superharmonic resonance discussed above.
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In this case, however, the response may be aperiodic. This could represent a
structural element, such as a beam or a plate, supporting three rotating machines
simultaneously. The cubic term in the governing equation accounts for stretch-
ing of the neutral axis or midplane. It is common engineering practice to ignore
the stretching; however the results in Figure 1-11 show that this practice can
dangerously oversimplify the model. In Figure 1-11a, the response of the corre-
sponding linear system is plotted as a function of time; while in Figure 1-115,
the response of the nonlinear system is plotted. The same scale and excitations
are used in both graphs. The amplitude of the response for the nonlinear system
is nearly four times as large as the amplitude of the linear system. The non-
linearity is responsible for phase shifts that enable a given set of exciting forces
to do more work on the nonlinear system than on the corresponding linear
system.

u 20 »
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Figure 1-11. Response of a system to a three-frequency excitation: (¢) linear case; (b) non-
linear case.
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1.4.5. SELF-SUSTAINING SYSTEMS
Self-sustaining systems are introduced in Chapter 3. Here we determine the
response of such a system to a harmonic excitation. As an example, we consider

U+ wlu=ei- $d®)+K cos Qt (1.14)

where wy, K, and Q are constants and € is a small parameter. Since the non-
linearity is cubic, in addition to primary resonances, to first-order there are sub-
harmonic resonances of order % and superharmonic resonances of order 3. Away
from these resonances,

= 4n 1/2
u= {w% + [(4n/ad) - w3] exp (‘ent)} cos (wot +B8) +

K
m cos 2t +0(e)
0

(1.15)

where aq is the initial amplitude and n =1 - 3 Q2K ?(w3 - ©2)72. Thus as one
would expect from experience with linear systems, in the first approximation
the response consists of a free-oscillation term (homogeneous solution) and a
forced-oscillation term (particular solution). And because the free oscillations
develop a limit cycle, one would expect the free-oscillation term to remain
permanently and the motion to be essentially the sum of two harmonic terms
having the frequencies w, and §2, which need not be commensurable. Such a
motion may be aperiodic. However in this case there is a nonlinear interaction
between the free- and forced-oscillation terms which can change the character
of the damping completely. When the amplitude of the excitation is large enough
to make n<0 (i.e., K>V2 Q7 !wi - Q2]), the free-oscillation term decays
with time and the steady-state motion becomes periodic. This process of increas-
ing the amplitude of the excitation until the free-oscillation term decays is called
quenching. This behavior, which contrasts with those of the previously discussed
nonself-sustaining systems, is illustrated in Figure 1-12. Here the parameters of
the system are such that the critical value of K is unity. In Figure 1-12a4, K =0.9
and the motion does not become periodic, while in Figure 1-125, K = 1.1 and
the motion does become periodic.
It follows from (1.15) that for small K, n > 0 and in the steady state

u=2ﬁ cos (wot +p) + %cos Qt + 0(e) (1.16)
wWo Q% - wj
Thus the steady-state response contains both the forced and natural frequencies.
Moreover if K is O(e), the free-oscillation term is expected to dominate. How-
ever as §2 —> wy, the character of the solution is modified drastically and a
phenomenon peculiar to self-sustaining systems takes place. As £ —> w, the
forced response becomes significant, but instead of the persistence of the forced-
and free-oscillation solutions independently, the free-oscillation term is entrained
by the forced solution. The result is a synchronization of the response at the
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u,

(b)

Figure 1-12. Numerical solutions of equation (1.14) (wo =1, = V2), illustrating the
phenomenon of quenching: (¢) unquenched response; (b) quenched response.

frequency of the excitation and, to the first approximation, the steady-state
response is given by

u=acos (2t - y)+0(e) (1.17)
where 7 is a constant and g is given by the frequency-response equation
KZ
402p+p(1—p)2=z"2‘ (1.18)
€

where p = Fw3a® and €0 =Q - w,. In Figure 1-13, p is plotted as a function
of 0. The dotted curve separates stable from unstable steady-state motions.
When the value of p is above the dotted curve, the periodic steady-state solution
given by (1.17) and shown in Figure 1-144 is physically realizable. However
when the value of p is below the dotted line and there is only one steady-state
value, a periodic steady-state solution of the form (1.17) is not physically realiz-
able. In the latter case, the solution (long-time behavior) has the two frequencies
wy and £, and since they are near each other, a beating phenomenon takes place
as shown in Figure 1-14b.

Both curves in Figure 1-14 were obtained by numerically integrating (1.14) for
K?2=2€%* wg=1,and e=0.1. But 6 =04 (i.e., = 1.04) for Figure 1-144 and
0=0.5 (i.e., 2=1.05) for Figure 1-14b. The first-order solution predicts that
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the steady-state solution is unstable for 0 > 0, = 7 (2K 2e~2 - 1)Y/2. If an experi-
ment is performed with K2 = 2¢? and o is decreased very slowly from a value
above o0, = % 3, initially the response will contain the two frequencies 1 and
€. As o is decreased below o,, the response becomes periodic with the fre-
quency 2. In other words, as o is decreased below o, the free-oscillation term is
entrained or locked onto the forced-oscillation term. If the experiment is per-
formed by increasing o very slowly from a value below o, then as o is increased
beyond 0., the response will change from a periodic solution having the fre-
quency £2 to an aperiodic solution having the frequencies 1 and 2. Thus as ¢ is
increased beyond o, the free-oscillation term will be pulled out of the forced-
oscillation term. The phenomenon of entrainment of the free-oscillation term by
the forced-oscillation term is usually called locking while the unlocking is usually
called pulling out. And one speaks of the frequency associated with o, as the
pull-out frequency .

1.5. Parametrically Excited Systems

In Chapter 5, parametrically excited systems are considered. In contrast with
the case of external excitations, which lead to inhomogeneous differential equa-
tions with constant or slowly varying coefficients, parametric excitations lead to
homogeneous differential equations with rapidly varying coefficients, usually
periodic ones. Moreover, in contrast with the case of external excitations for
which a small excitation produces a large response only if the frequency of the
excitation is close to a linear natural frequency, a small parametric excitation
can produce a large response when the frequency of the excitation is away from
the linear natural frequencies of the system.

Faraday (1831) seems to have been the first to recognize the phenomenon
of parametric resonance. He noted that surface waves in a fluid-filled cylinder
under the influence of vertical excitations have twice the period of the excita-
tion. Melde (1859) performed the first serious experiments on parametric
resonance. He tied a string between a rigid support and the extremity of the
prong of a massive tuning fork of low pitch. For a number of combinations of
the mass and tension of the string and the frequency and loudness of the fork,
he observed that the string could be made to oscillate laterally, though the
exciting force is longitudinal, at one half the frequency of the fork.

The simplest differential equation with periodic coefficients is the Mathieu
equation

u+@+ecos20)u=0 (1.19)

where 6 and e are constants. This equation governs the response of many
physical systems to a sinusoidal parametric excitation. An example is a pendu-
lum consisting of a uniform rod pinned at a point O on a platform that is made
to oscillate sinusoidally in the vertical direction as shown in Figure 1-15.
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Figure 1-15. Uniform-rod pendulum oscillating in two positions as a result of giving the
horizontal platform a harmonic vertical motion.

Using Floquet theory, one can show that (1.19) possesses normal solutions
having the form

u(?) = exp (vt)o(1) (1.20)

where 7 is called a characteristic exponent and ¢(z) = ¢(¢ + 7). When the real
part of one of the s is positive definite, u is unbounded (unstable) with time,
while when the real parts of all the y’s are zero or negative, u is bounded (stable)
with time. The vanishing of the real parts of the y’s separates stable from un-
stable motions. The loci of the corresponding values of € and § are called transi-
tion curves. They divide the ed-plane into regions corresponding to unbounded
(unstable) motions and bounded (stable) motions as shown in Figure 1-16. When
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Figure 1-16. Stable and unstable (shaded) regions in the parameter plane for the Mathieu
equation.
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e = 0, positive values of & correspond to stable positions of the pendulum
(i.e., downward position), while negative values of & correspond to unstable posi-
tions of the pendulum (i.e., upward position). In the presence of the parametric
excitation, Figure 1-16 shows that there are values of € and & for which the
downward position is unstable and the upward position is stable.

There are a number of techniques for determining the characteristic exponents
and the transition curves separating stable from unstable motions. One method
combines Floquet theory with a numerical integration of (1.19). To determine
the transition curves by this technique, one divides the e5-plane into a grid and
checks the solution at each grid point, which is quite a costly procedure. A
second technique involves the use of Hill’s infinite determinant. When e is small
but finite, one can use perturbation methods such as the method of strained
parameters, the method of multiple scales, and the method of averaging.

The preceding discussion does not account for dissipation which is present in
almost all physical systems. Dissipation has a stabilizing effect on all one-degree-
of-freedom systems. Including a linear viscous term, we rewrite (1.19) as

u+2uu+ @ +tecos2)u=0 (1.21)

The transition curves separating stable from unstable solutions of (1.21) are
shown in Figure 1-17. Comparing these graphs shows that the presence of the
linear viscous term lifts the unstable regions from the 8-axis, rounds the point
at the bottom, and narrows the unstable regions.

For a parametric excitation that is periodic but not necessarily sinusoidal, one
obtains the following Hill equation:

u+[6+ef(®)]u=0 (1.22)

where f(¢) is periodic in place of the Mathieu equation (1.19). Since Floquet
theory is also applicable to this problem, the numerical procedure and the
infinite-determinant technique can be used to determine the characteristic ex-
ponents and transition curves of this equation. When e is small, one can also use
perturbation techniques (Lindstedt-Poincaré, multiple scales, averaging) to ana-
lyze the solutions of this equation. If f(¥) is expressed in a Fourier series as

f(@®) =73 (an cos 2nt + B, sin 2nt)
n=1
the transition curves are

1 evo2 +2+0(?) ford~n®andn>1

§=-1e 3 % 6" ——"-+0(e*) for6=0 (1.23)

n=1

Comparing these transition curves with those of the Mathieu equation (ie.,
o, and B, =0 for n >2), we conclude that the presence of the higher harmonics
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Figure 1-17. Effect of viscous damping on the stability of the solutions of the Mathieu
equation. Shaded areas are unstable.

has a destabilizing effect on the transition curves emanating from & = n? where
n = 1, but it may have a stabilizing effect on the transition curve emanating
from 6 = 0.

The problem of a sinusoidal parametric excitation of a system having many
degrees of freedom leads mathematically to the following coupled system of
differential equations:

x + {[A] + 2¢[B] cos t}x=0 (1.24)

where § is the frequency of the excitation. The response of such a system
depends on the eigenvalues of the matrix [A4]. For a vibrating system, these
eigenvalues are real and positive. If these eigenvalues are distinct, a transforma-
tion x = [P] u can be found such that (1.24) can be rewritten in the form

N
Uyt Whtty +2€C08 QU > fumUm =0 (1.25)
m=1

In addition to the resonances (w, =~ % m&2, where m is an integer) that occur in
the case of a single-degree-of-freedom system, combination resonances of the
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form w, * w, =~ m might exist in a many-degree-of-freedom system. More-
over, a given mode might be involved in more than one resonance such as
w, t w; & Q and w; - w, = Q. Figure 1-18 shows the transition curves for a
free-clamped column. Comparing Figures 1-16 and 1-18 shows an increase in the
number of unstable regions in the case of multi-degree-of-freedom systems.
Figure 1-18 also shows that the presence of simultaneous resonances has a de-
stabilizing effect because it decreases the stable regions.

Including linear viscous damping in the analysis of multi-degree-of-freedom
systems shows that it may have a destabilizing effect in the case of combination
resonances. This contrasts with the always-stabilizing effect of viscosity on
simple resonances.

When the eigenvalues of [4] are not distinct, there are cases for which [A4]
cannot be diagonalized but can be expressed in a Jordan canonical form. This
occurs in the case of flutter. If all the eigenvalues are distinct except the first
pair, one can use a transformation x = [P] u to rewrite (1.24) as

Uy + wiuy +2ecoswt Y. fiuu, =0 (1.26)
n=1
iy + wiuy uy +2ecos Wt Y fontty =0 (1.27)
n=1
02 -
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Figure 1-18. Transition curves for the dynamic buckling of a free-fixed column under the
influence of a sinusoidal follower force.
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Uy +wiuz +2ecoswt Y. fiuu, =0 (1.28)

n=1

We note that when e = O (i.e., in the absence of the parametric excitation),
u, grows linearly with time and hence the response of the system is unbounded
with time. Including the parametric excitation can result in the stahilization of
the system depending on the values of €, w, w;, w3, and the f’s.

Although the linear analysis of parametric excitations is useful in deter-
mining the initial growth or decay of the motion, it cannot account for the long-
time behavior in the case of growth. Moreover if the initial amplitude is large,
the linear analysis may predict a motion that decays to zero in contradiction
with the prediction of a nonlinear analysis. The nonlinearity can be the result of
damping (form drag and the van der Pol oscillator) and large deformations
(Duffing’s equation). The latter could represent the lateral vibrations of a
column produced by an axial follower force.

Considering a cubic nonlinearity and assuming small viscous damping, we have

U+ wu+2eucos 2t +e(Qui +oau®)=0 (1.29)

The stability boundaries are shown in Figure 1-19. The line separating Region II
from Regions I and III is the stability boundary for the corresponding damped
linear system. The boundaries are not influenced by the value of a, the coef-
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Figure 1-19. Frequency-response curves for the parametrically excited Duffing’s equation
in the presence of viscous damping.
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ficient of the nonlinear term. According to the linear equation (see Figure 1-17),
the response to any initial disturbance grows without bound in Region II and
decays in Regions I and III. In sharp contrast, the nonlinear equation predicts
finite-amplitude motions in both Regions II and III. In Region II, the motion
approaches the same steady state regardless of the initial disturbance, but in
Region III, for small initial disturbances the motion decays while for large initial
disturbances it approaches a finite-amplitude steady state.

1.6. Systems Having Finite Degrees of Freedom

In contrast with the case of systems having a single degree of freedom, avail-
able exact solutions of systems having finite degrees of freedom are quite
limited. Hence, most of the existing analyses deal with weakly nonlinear systems
which are amenable to perturbation analysis. In the case of strongly nonlinear
systems, recourse is often made to geometrical methods, numerical analysis, and
perturbations about an exact nonlinear solution. Thus, Chapter 6 deals essen-
tially with weakly nonlinear systems having finite degrees of freedom.

In contrast with a single-degree-of-freedom system, which has only a single
natural frequency and a single mode of motion, an n-degree-of-freedom system
has n natural frequencies w,, w,, - * *, w, and n corresponding natural modes.
All these natural frequencies are assumed to be real and different from zero. The
presence of more than one natural frequency and mode produces new physical
phenomena such as internal resonances, combinational resonances, saturation,
and the nonexistence of periodic responses to a periodic excitation in the pres-
ence of positive damping.

New physical phenomena occur in the free oscillations of a system some of
whose frequencies are commensurable or nearly commensurable; that is, there
exist positive or negative integers m,, m,, ms, - * -, m, such that m,;w, +
Myw, + m3wsz + - - -+ m,w, ~ 0. When such a condition exists, we speak of
the existence of an internal resonance, and conditions might exist for the strong
interaction of the modes involved in the internal resonance. For example, con-
sider the motion of a particle of mass m suspended from a linear spring, with a
constant k£, which is in turn suspended from a fixed platform as shown in
Figure 1-20. This system has two modes of oscillation: a pendulumlike mode
with the linear natural fréquency w; = (g/l)"/? and a springlike (breathing)
mode with the linear natural frequency w, = (k/m)l/ 2. The parameters k, m,
and / can be easily adjusted so that w, =~ nw,; where n is an integer. When
wy ~ 2w;, the two modes are strongly coupled and the energy initially im-
parted to one of them can, in general, be continuously exchanged between
them during the ensuing motion as shown in Figure 1-21. This contrasts with
the linear solution, which predicts that the two modes are uncoupled. The strong
coupling is a consequence of the internal resonance and it decreases as the
detuning of this internal resonance increases.
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Figure 1-20. Spring pendulum.

If a system having finite degrees of freedom is gyroscopic and possesses an
internal resonance, then its free nonlinear oscillations may be unbounded with
time even though its linear free oscillations are bounded. This occurs when its
first-order Hamiltonian is not positive definite. For a system with two degrees of
freedom and w, =~ 2w, the equations describing the amplitudes and the phases
have the form

a;=-el'ya,a, sin y (1.30)
, = elyai siny (1.31)
';’ = ef(ala as, 7) (132)

Eliminating y from (1.30) and (1.31) and integrating the resulting equation,
we have

ai+ (I, /T)a? =E (1.33)
where E is a constant that is proportional to the Hamiltonian or energy of the

first order. If I'; and I'; have the same sign, E is positive definite and @, and a,
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Figure 1-21. Continual exchange of energy in the case of internal resonance.
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are bounded for all time. However if I'; and I', have opposite signs, £ is not
positive definite and a; and a, may be unbounded with time depending on the
value of the detuning ¢ = (w, - 2w;)/e.

As in the case of parametric excitations of finite-degree-of-freedom systems,
combinational resonances might occur in the forced response of these systems
to a single-harmonic excitation of frequency 2. The type of excited combina-
tional resonance depends on the order of the nonlinearity. For a quadratic non-
linearity, combinational resonances involve to first order two of the linear
natural frequencies of the system in the form Q =~ w, * w,. For a cubic non-
linearity, combinational resonances involve to first order two or three modes in one
of the following forms: = w,, * w,, * Wi, Q= w, £ 2w,,, 2~ 2w, £ w,,
and Q =~ %(wn * w,,). If an internal resonance exists in addition to a combina-
tional resonance, a fractional-harmonic pair might exist in the response such as
(1 Q, 2Q) in the case of quadratic nonlinearities and (3 Q, 2Q) or (3 2, 2Q)
in the case of cubic nonlinearities.

A saturation phenomenon occurs in the forced response of a system with
quadratic nonlinearities in the presence of an internal resonance. For example,
the forced response of a ship whose motion is restricted to pitch and roll only
can be modeled by the following equations:

i, +wiuy, =200 +20quuy + Fyocos (Qt+7,) (1.34)
il'2 + w%u2 =_2ﬁ21:l2 + azu% +F2 COS (Qt"l‘ 7'2) (135)

where u, is the roll angle, u, is the pitch angle, and the w,, i, &, Fy,, and 7,
are constants. For an internal resonance, w, =~ 2w;.

When Q is near w, and F; = 0, one expects the u,-mode to be strongly
excited and, in the first approximation, the #,-mode to be dormant; initially this
is so. But the perturbation analysis predicts an upper bound on the amplitude of
u, and an instability for the trivial solution for u, when F, increases beyond a
critical value. In other words, the u,-mode becomes saturated and the energy
“spills over” into the u,-mode. These results are illustrated in Figure 1-22 where
the amplitudes of the two modes, @, and a,, are plotted as functions of F,. This
analysis was verified by numerically integrating (1.34) and (1.35); the small
circles and triangles are the numerical data.

These results provide an explanation for a phenomenon first reported by
Froude (1863). He wrote that ships having a natural frequency in pitch which
is nearly twice the natural frequency in roll (an internal resonance) have un-
desirable roll characteristics. Thus in accordance with the saturation phenom-
enon, the ship could be advancing into a head sea, or moving with a following
sea, and, if the waves are big enough and at the right frequency, begin to roll
violently.

When F, = 0 and Q =~ w,, the analytical results also show that for some
combinations of the parameters a steady-state response does not exist, in spite of
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Figure 1-22. Saturation phenomenon: a; and a, as function of f,.

the presence of positive damping, Instead of a steady state there is a continual
exchange of energy between the two modes. For such a combination of param-
eters (the combination was predicted by perturbation methods), the numerical
results are shown in Figure 1-23. This type of behavior in ships was observed by
Robb (1952).

We should note that saturation and the nonexistence of periodic motions
under the influence of a periodic excitation in the presence of positive damping
are peculiar to systems with quadratic nonlinearities. For systems with cubic

2

Figure 1-23. Nonexistence of periodic motions in a system with quadratic nonlinearities.
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nonlinearities and an internal resonance, energy can be easily transferred from a
high-frequency mode to low-frequency modes but not the other way round.

1.7. Continuous Systems

In Chapter 7, we consider the forced oscillations of continuous systems—
beams, strings, plates, and membranes. In contrast with the finite-degree-of-
freedom systems discussed in Chapters 5 and 6, the systems considered in
Chapter 7 have an infinite number of degrees of freedom. The sources of non-
linearities in such systems can be geometric, inertial, or material in nature. Most
of Chapter 7 is devoted to geometric nonlinearities and in particular to those
arising from midplane stretching in structural elements.

Since exact solutions are generally not available, recourse has been made to
approximate analyses including purely analytical techniques, purely numerical
techniques, and numerical-perturbation techniques. The purely analytical tech-
niques are applicable to systems with simple geometries, composition, and
boundary conditions. Purely numerical techniques may involve the use of finite
differences in both space and time, finite differences in time and finite elements
in space, and finite elements in both space and time. These purely numerical
techniques are especially costly for two and three-dimensional systems. There
are two approaches in using numerical-perturbation techniques. One approach
assumes the time dependence, uses the method of harmonic balance, and yields
nonlinear differential equations describing the spatial behavior. The second
approach assumes the spatial variation (such as the linear mode shapes), uses the
orthogonality of the mode shapes or the Galérkin procedure, and yields non-
linear coupled second-order ordinary-differential equations describing the
temporal behavior. The latter equations are solved by using a perturbation tech-
nique such as the method of multiple scales or the method of averaging.

According to the second approach of the numerical-perturbation technique,
the deflection w(r, ¢) is assumed in the form

W )= Y (D)9 (x) (1.36)

n=1

where the ¢, are the linear natural modes of the system. These are more con-
venient for interpreting the results than other arbitrarily assumed spatial varia-
tions. These mode shapes can be obtained either analytically if the system is
simple or numerically if the system is complicated in geometry, boundary con-
ditions, and composition. Substituting (1.36) into the governing equations and
using the orthogonality property of the ¢,,, we obtain an infinite set of nonlinear
ordinary-differential equations for the u,,. The form of these equations depends
on the system under consideration and the type of nonlinearity. In what follows,
we consider linear material properties. For an initially straight beam, a string,
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an isotropic membrane, and an isotropic plate, these equations have the form

U, + wrzxun =-2Unl, + Z TrmpqmUplq +fa(0) (1.37)
m,p,q=1

where modal damping is assumed, wy,, iy, and Iy, pq are constants, and f,(7)
'is the excitation. For a shell, a laminated plate, and an initially curved beam,
these equations have the form

oo oo
. 2 _ .
Uy + Wy, =-2u,u, + Z UpmpUmUp + Z TrmpqtmUpliq +1a(0)
m,p=1 m,p,q=1

(1.38)

where the a,,,,, are constants. The interaction of longitudinal and lateral oscilla-
tions in a beam is governed by a set of equations having the same form as (1.38).

Most existing analyses of continuous systems are limited to the determination
of the amplitude-frequency relationship of a single mode or the steady-state
forced response to a single-harmonic excitation. Since many physical phenom-
ena, such as internal resonances, combinational resonances, saturation, and non-
existence of periodic motions, are characteristics of multi-degree-of-freedom
systems, we concentrate our discussion on these systems.

As discussed in the preceding section, the response of a system depends on the
order of its nonlinearity and its internal resonances. Since the nonlinear vibra-
tions of shells, laminated plates, and buckled beams are governed by differential
equations with quadratic nonlinearities, one expects to observe the saturation
phenomenon discussed in Section 1.6 as well as the nonexistence of periodic
motions when one of the linear frequencies of the system is equal to, or approxi-
mately equal to, twice another linear natural frequency (i.e., w, =~ 2w,,) or
when one of the linear natural frequencies is equal to, or approximately equal
to, the sum or difference of two other natural frequencies (i.e., w, = w,, F wg).
The latter case also occurs in the interaction of longitudinal and lateral oscilla-
tions in a beam.

We should note that the internal resonances that might occur in a system
depend on its geometry, composition, and boundary conditions. In the case of
uniform beams, w; = 2w, + w; for a hinged-hinged or a free-free beam,
w, ~ 3w, for a clamped-hinged beam, and w4 =~ w3 + w, + w,; for a clamped-
clamped beam. However, the interaction terms in (1.37) vanish in the case of
hinged-hinged beams and the commensurability of w;, w,, and w5 does not
have any effect on the response. Moreover, there is no midplane stretching in
the case of free-free beams and the nonlinear terms vanish in (1.37). In the latter
case, the nonlinear curvature needs to be included to account for finite-
amplitude effects. Strings and membranes have an infinite number of commen-
surable frequencies. In the case of clamped, homogeneous, isotropic plates,
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w3 =~ 2w, + w, for a circular plate and ws = w3 + w, + w; and w4 ~2w; - W,
for an elliptic plate whose axes are in the ratio of 9 to 10.

Next we consider the forced response of clamped-hinged beams to a harmonic
excitation having the form f,(¢) = F,, cos t. When £ is near w,, the variations
of the amplitudes of u; and u,, a; and a,, are shown in Figure 1-24. Although
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Figure 1-24. Frequency-response curves for a hinged-clamped beam for the case of a pri-
mary resonance of the fundamental mode: (e) first mode; (b) second mode.
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a, cannot be zero, typically it is small compared with a,. This indicates that
for all practical purposes the response (deflection) can be described by a single
mode, in spite of the presence of an internal resonance. Typically, early investi-
gators considered only one mode in studying finite-amplitude beam vibrations.
When Q is near w, this appears to be justified, but as we shall see next, this is
definitely not the case when {2 is near w,.

When Q is near w,, the variations of the amplitudes are shown in Figure 1-25.
There are two possibilities: either @, = 0 and a, # 0, or neither a, nor a, equals
zero. Only the stable portion of the solution when a; # 0 is shown in Figure
1-25a; the entire graph is shown in Figure 1-25b. In the latter case, a; can be
considerably larger than a,, and once again the deflection can be described by
a single term in the expansion for all practical purposes. However, this time the
mode is still the fundamental mode, not the second mode, in spite of the fact
that the frequency of the excitation is near the second frequency. This possi-

AANNANNNN

(a) (b)

Figure 1-26. Possible steady-state responses of hinged-clamped beam to the same harmonic
excitation for the case of a primary resonance of the second mode (ty > tp-1): (@) in the
absence of internal resonance; (b) in the presence of internal resonance.
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bility cannot be predicted by a linear theory, and it was completely overlooked
by all the early investigators, who assumed single-mode expansions for the
deflection. Figure 1-26 illustrates the two possibilities. These results show that,
through the mechanism of an internal resonance, energy can be passed down to
the low mode from the high mode but not from the low to the high in signifi-
cant quantity.

These figures clearly illustrate the advantage of having an analytical solution.
One can easily imagine the difficulty in obtaining these graphs by numerical
means alone. In fact for a certain class of problems governed by partial-differen-
tial equations, the optimum approach is a combination of numerical and per-
turbation methods.

Another interesting phenomenon which is a consequence of internal resonance
occurs in the stability of planar motions of a string resulting from a harmonic
planar force. Experiments show that the response of a string to a plane harmonic
excitation is planar provided the response amplitude is smaller than a critical
value. Above this critical value, the planar motion becomes unstable and gives
way to a nonplanar, whirling motion; that is the string begins to whirl like a
jump rope. This whirling motion is a direct consequence of the fact that the
frequency of the motion in the plane of the excitation is the same as the fre-
quency of the motion in the plane perpendicular to the plane of the excitation.
Thus, the two components of motion are strongly coupled.

1.8. Traveling Waves

In contrast with Chapters 6 and 7 which deal with standing waves, Chapter 8
deals with traveling waves. To exhibit the methods and physical phenomena
without an elaborate involvement in algebra, we consider the propagation of
longitudinal waves along a rod with nonlinear elastic properties and transverse
waves along a beam on a nonlinear elastic foundation. These problems are
described by the following two partial-differential equations:

?u , d%u ou

o c*(e) P 0, e= ™ (1.39)
*w 3w
P +_8t2 +twt+oaw® =0 (1.40)

We choose to distinguish dispersive from nondispersive waves by investigating
the dispersion relationship w = w(k) between the frequency and wavenumber of
a linear harmonic wave of the form exp(ik - r - iwt). The waves are called
dispersive if the group velocity ¢, = dw/0k is a function of k while the waves are
called nondispersive if cg is independent of k. If ¢, is a weak function of k, the
waves are called weakly dispersive. Expanding c?(e) in powers of e, we have
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¢® = ¢3(1 +2E e + - - -), where E, is a constant. Then it follows from (1.39)
that the linear dispersion relationship for longitudinal waves along a bar is
w? = ¢3k? and hence these waves are nondispersive. On the other hand, it
follows from (1.40) that the linear dispersion relationship for transverse waves
along a beam on an elastic foundation is w? = 1 + k* and hence these waves are
dispersive.

Thus waves of different wavelengths travel with the same phase speed if the
waves are nondispersive and travel with different phase speeds if the waves are
dispersive. In other words, the dispersion tends to sort out the waves based on
their phase speeds. If the nonlinearity tends to increase the phase speed with
amplitude, then larger waves tend to catch up with smaller waves. The result
is a steepening of the waveform with time or propagation distance as shown in
Figure 1-27 leading to a shock wave in the bar. Similar effects occur in the
propagation of waves in gases. Waves propagating on shallow water also steepen
and sometimes break. In the case of dispersive waves, there are two competing
effects: a steepening due to the nonlinearity and a spreading due to the disper-
sion. If the former effect is stronger, the waves focus; otherwise they will
disperse.

There are a number of techniques available for the analysis of nondispersive
waves traveling in one or two directions in homogeneous as well as hetero-
geneous media. These include expansions by using the exact characteristics of
the problem as the independent variables, the method of renormalization, the
method of averaging, and the method of multiple scales. Neglecting viscous
effects, one obtains for waves traveling in one direction (simple waves) an equa-
tion of the form

o, .o
ax+f63§ 0 (1.41)

Figure 1-27. Steepening of waveforms propagating along a bar.
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Including viscous effects, one obtains a Burgers’ equation of the form

o S
FA vt s (1.42)

in place of (1.41).

There are also a number of techniques available for analyzing nonlinear disper-
sive waves. These include the methods of multiple scales and averaging. Seeking
a wavepacket solution for a dispersive-wave problem in the form A(x, £)¢(y, z)
exp [i(kx - wt)] + cc, where cc stands for the complex conjugate of the pre-
ceding terms, one finds that A is described by one of the following Schrodinger
equations:

04 04 1 9%4 _
2z 4 R SN R 2A 4
o w 2 iw o A4 (1.43)

34,84 1,04 _
— 4k —+—ik"—=1,4%4 1.44
ax ar 2" a7 (1.44)

where ' = dw/dk, " =d?w/dk?, k' = dkldw, and k" = d*k[dw?. Here T, and
I', are known interaction coefficients which depend on the medium. Equations
(1.43) and (1.44) possess steady-state solutions, which can be expressed in terms
of the Jacobian elliptic functions. These solutions include a bright and a dark
soliton, a phase jump, and a plane wave with constant amplitude as special
cases.

The preceding solution breaks down in cases of harmonic resonances which
exist whenever (w, k) and (nw, nk) simultaneously satisfy the dispersion rela-
tionship for an integer n > 2. In the case of a beam on an elastic foundation,
harmonic resonances exist when

w?=k*+1 and nPw?=nkt+1
Eliminating «w? from these relations yields k> = 1/n. At or near these critical
wavenumbers, the fundamental and its nth harmonic travel with the same
phase speed and hence may strongly interact. For example, when k? ~ %, the

fundamental and its third harmonic strongly interact. In this case, the deflection
has the form

w(x, 1) = Aq(x, t) exp [i(k1x - w18)] +A;5(x, £) exp [i(ksx - w3t)] +cc

(1.45)
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/J\AM Figure 1-28. Periodic wave profiles that exist

(b) in deep water: (@) third-harmonic resonance;
(a) (b) second-harmonic resonance.

where

a141_‘_‘ ' a/11 1 .o a2Al

3 — _
= _—2'ia0)1_1(A1A1 + 2A3A3)A1

o Vax 27 ax?
3 _
-3 iawi' A3A4% exp () (1.46)
043 , 045 1., 0%4, _ 3, . — —
E‘ w3 3;_51@3 axz __'Elawg, (2A1A1 +A3A3)A3

1
- EiawglA? exp (-il") (1.47)

and I' = (k3 - 3k;)x - (w3 - 3w;)t. Since k3 =~ 3k; and w3 =~ 3w,, Nisa
slowly varying function of x and z. Equations (1.46) and (1.47) possess solutions
that are stationary and include the nonlinear interaction of the two wavepackets
centered at the fundamental and its third harmonic. In the present problem,
there are three possible periodic solutions. In the case of waves in deep water
they have triple- or quintuple-dimpled profiles as shown in Figure 1-28a.

In the case of second-harmonic resonance, the interaction equations have
stationary solutions that include solitons and periodic waves. In the case of
periodic waves, there are two possible waves. For waves in deep water, they have
single- and double-dimpled profiles as shown in Figure 1-285.



CHAPTER 2

Conservative
Single- Degree-of-
Freedom Systems

In this chapter several examples of conservative, nonlinear systems having one
degree of freedom are described. A method for obtaining a qualitative analysis
of the free (undamped and unforced) oscillations is presented. Then various
methods for obtaining a quantitative analysis are presented. Finally these methods
are applied to three specific examples.

2.1. Examples

In this section, we consider a number of conservative systems having a single
degree of freedom that are governed by simple nonlinear differential equations
having the form

¥+ f(x)=0 (2.1.1)

The examples are chosen to exhibit different sources of nonlinearity.

2.1.1. A SIMPLE PENDULUM

As the first example we consider the motion of a simple pendulum consisting
of a mass m attached to a hinged weightless rod of length / as shown in Figure
2-1. The equation describing the motion of the mass is

mil6 + mgsin =0
or
6+ wisinf=0 (2.1.2)

where wg =g/l. We note that the nonlinearity in this example is due to large
motions (it corresponds to large deformations).

39
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Figure 2-1. Simple pendulum.

2.1.2. A PARTICLE RESTRAINED BY A NONLINEAR SPRING

As the second example we consider the motion of a mass m on a horizontal
frictionless plane and restrained by a nonlinear spring as shown in Figure 2-2a.
If x(¢) denotes the position of the mass, then the differential equation describing
its motion is

mi+ f(x)=0 (2.1.3)

where -f(x) is the force exerted by the spring on the mass. For a linear spring,
f(x) = kx, where k is called the spring constant. For a nonlinear spring, the force
is a nonlinear function of the deformation, as shown in Figure 2-25b. For a soft
spring the nonlinearity decreases the force, while for a hard spring it increases
the force. In this section we assume the spring loads and unloads along the same
curve and therefore does not exhibit hysteresis, which leads to damping. In this
example the nonlinearity is due to the material behavior rather than to large
deformations.

2.1.3. A PARTICLE IN A CENTRAL-FORCE FIELD
As the third example we consider the motion of a particle in a plane under the
influence of a central-force field as shown in Figure 2-3. In polar coordinates the

f hardening

linear

softening

k
VvV m

softening.

, linear
i-—free Iength—-’ }-—x hardening

(a) (6)

Figure 2-2. () Mass-spring system. (b) Spring characteristics.
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o ~—— 8y Figure 2-3. Particle in a central-force field.

motion of the particle m is governed by
m(F - ré?) + mF(r)=0 (2.1.4)
m(rf +276)=0 (2.1.5)

where m is the mass of the particle if the field is gravitational and m is the charge
of the particle if the field is electrical. Equation (2.1.5) has the integral

rh=p (2.1.6)
where p is a constant; this integral is a statement of conservation of angular
momentum. Eliminating 6 from (2.1.4) and (2.1.6) yields

p?
F- F+F(r)=0 .17

Equation (2.1.7) can be put in a simpler form by changing the dependent
variable from 7 to u = r~! and changing the independent variable from ¢ to 6. The
derivatives are transformed according to

dr _dr . 0 du du

_dr_dro 0 du_ 218
"Tar a0’ wrae Pas (2.18)
. 2u . 2u
r=-p ——d02 0= —p2u2 d02 (21.9)
Hence (2.1.7) becomes
d?u 1 1
dru o1 pf1) 2.1.10
a0z ¥ p2u? (u) 0 ( )

In this example the nonlinearity is due to inertia as well as material properties.

Bond (1974) used the regularizing time transformation dt/ds=r and the
Kustaanheimo-Stiefel transformation (Stiefel and Scheifele, 1971) to transform
the nonlinear Newtonian differential equations of motion for the two-body
problem into four linear harmonic oscillator equations.

2.14 A PARTICLE ON A ROTATING CIRCLE

As the fourth example we consider the motion of a mass m moving without
friction along a circle of radius R that is rotating with a constant angular velocity
Q about its vertical diameter as shown in Figure 2-4. The forces acting on the
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\ N Figure 2-4. Particle moving on a smooth, rotating circular

wire.

q

particle are the gravitational force mg, the centrifugal force mQ2R sin 0, and the
reaction force N. Taking moments about the center of the circle O and equating
their sum to the rate of change of the angular momentum of the particle about
O, we obtain

mR2§ = mQ2R? sin 6 cos 6 - mgR sin 0 (2.1.11)

In this example the nonlinearity is due to both inertia and large deformation.

2.2. Qualitative Analysis

The behaviors of the aforementioned physical systems are governed by equa-
tions having the form

i+ fu)=0 (2.2.1)

In this section we consider a powerful, general method of obtaining many of the
distinguishing features of the solutions of this equation.
If follows immediately from (2.2.1) that

fziiidt+ff(u)ddt=h,fddzz+ fw)du=n

and
FvE+F(u)=h (2.2.2)

where v =4 and A is a constant. For a mechanical system, the first term is essen-
tially the kinetic energy; the second term is the potential energy; and the con-
stant 7, which is determined from the initial conditions, is the energy level. Thus
(2.2.2) is a statement of conservation of energy. For a given value of /, the solu-
tion (2.2.2) in the uv-plane (called the phase plane) is called a level curve, or a
curve of constant energy, or an integral curve;the branches of these level curves
are called trajectories.

As time passes, the point in the phase plane representing the solution moves
along a trajectory. The direction or “sense” of the motion of this point can be
determined by considering the velocity, v =4. Clearly « must be increasing if v
is positive.
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We rewrite (2.2.2) as follows:
1v2=h-F(u) (2.2.3)

and note that a real solution for v exists if, and only if, # = F(u) and that the
trajectories are symmetric about the u-axis. Moreover we obtain from (2.2.1)

v=-f(u) (2.24)
from which it follows immediately that
dv _ [
—=-— 2.5
du v (2.2.5)

Thus when the trajectory has a horizontal tangent (dv/du = 0), f(u)=0; and
when the trajectory has a vertical tangent (dv/du =), v=0. As we shall see,
the points where either f(u) or v is zero are points of special interest. Also of
special interest are the points where v and f(u) are zero simultaneously and thus
the slope is indeterminate; these are called singular points. Thus singular points
correspond to the simultaneous vanishing of the acceleration and the velocity,
and hence they are equilibrium points. Because the slopes are uniquely deter-
mined everywhere except at the singular points, trajectories cannot intersect
anywhere except at the singular points. Next we determine the form of the
trajectories for various forms of the function F'(u).

We begin by considering the case of F(u) being monotonic. In Figure 2-5,
the case of F(u) monotonically increasing is shown. We note that each level
curve consists of one branch (trajectory) similar in shape to a hyperbola that
opens to the left. Clearly the case of F (1) monotonically decreasing would have

Flu)

N

Figure 2-5. Case of F(u) increasing monotonically.
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the trajectories opening to the right. We note that, because the trajectories do
not close, the motion is not oscillatory in either case.

As a second example we consider the case of F(x) having a maximum as
shown in Figure 2-6. When the energy level 4 is less than A, each level curve
consists of two branches, which intersect the u-axis and are similar in shape to
branches of hyperbolas, one opening to the right and the other opening to the
left. When & > hg, each level curve consists also of two branches, but in this case
they do not intersect the u-axis. When & = kg, the level curve consists of four
branches that meet at the point S, which is a singular point and called a saddle
point, or col. The branches (trajectories) passing through the saddle point are
called separatrices. None of the other trajectories passes through the point S,
and the separatrices are asymptotes to all other trajectories. The equilibrium
point S is unstable because any small disturbance will result in a trajectory on
which the state of the system deviates more and more from S as ¢ = o,

An infinite amount of time is required by a particle to pass along a separatrix
from any point in the neighborhood of a saddle point to the saddle point itself.
This can be seen as follows. From (2.2.3)

i =2%[2hy - 2F(u)]Y? (2.2.6)
It is convenient to introduce a change of the dependent variable from u to

X =u - up, where uy is the location of the saddle point. Thus the expansion of

F(u) ho

s
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/\ Figure 2-6. Case of F(x) having a maxi-

mum.
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the function Ao - F(u) in the neighborhood of the saddle point has the form
(see Figure 2-6)

ho - F(u)=ho - F(uo+x)=-1F"(ug)x? + 0(x*) (2.2.7)

because F(uo)=ho and F'(uo) = 0. Substituting (2.2.7) into (2.2.6) and inte-
grating leads to the following expression for the time required to move from
x1=u1 ‘u0t0x=u“u0:

t=-[-F"(uy)] V2 m(;’ﬁ) (2.2.8)
1

We note that F"(uo) < 0 near a col. Thus x = 0 (i.e., u = up) as t = oo

As a third example we consider the case of F(u) having a minimum as indi-
cated in Figure 2-7. When h = h,, the level curve degenerates into the single
singular point C which is called a center. When k < h there is no real solution,
while when &> hq each level curve consists of a single closed trajectory which
need not be an ellipse surrounding the center C. We note that C is stable in the
sense of Liapunov (1966) because a small disturbance will result in a closed

F(u)

u,

Figure 2-7. Case of F(u) having a minimum.
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trajectory that surrounds C along which the state of the system stays close to C.
The motions corresponding to the closed curves are periodic but need not be
harmonic. Moreover, in contrast with linear systems for which the period is
independent of the amplitude (i.e., energy level), the period T of a nonlinear
system is a function of 4. It can be found from (2.2.6) and Figure 2-7 to be

T=2 f "2 - 2F @)V du (2.2.9)

1

Though both centers and cols (saddle points) are singular points, in the neigh-
borhoods of these points the motions produced by small disturbances are quite
different as discussed above. Near a singular point, u,,

h-F@)=-3F"(uo) x>+ 0(x*) (2.2.10)

where x = u - uy. If the motion is small, then we may neglect the higher-order
terms so that the equation of motion becomes

X+F"(ug)x=0 (2.2.11)
The solution has the form
x=cyexp [V-F"(uo)t] + ¢, exp [-V-F"(uo)t] (2.2.12)

where ¢, and ¢, are constants. Near a saddle point F"(u,) is negative, hence one
term decays exponentially but the other-grows exponentially. On the other
hand, near a center F"(u,) is positive; hence the solution is oscillatory, being
described in terms of circular functions. For these reasons the saddle point is
called unstable, while the center is called stable.

As a fourth example we consider the case when maximum and minimum
points coalesce to form an inflection point as shown in Figure 2-8. Each level
curve consists of one branch that opens to the left. The level curve & = ki, passes
through the singular point P, which is unstable. It is a nonelementary or degen-
erate singular point, which may be thought of as resulting from the fusion or
coalescence of a saddle point on the left of P with a center on the right of P. We
note that this point corresponds to a cusp in the phase plane; this can be seen by
considering the following. At point P,

dr d*F

F(u) = /’lo, El—l_z 0, and du? =0

Therefore

v=0 (2.2.13)
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Figure 2-8. Case of F(u) having an in-
] flection point.

Moreover, since

dv dv dr
@V 0= =0
(2.2.19)
(dv)2 d*v df d*F
- +v__=._——=_——=0
du du? du du?
Because v =0,
dv
—=0 2.2.15
i ( )

The preceding three examples constitute an elementary proof of a theorem
due to Lagrange and Dirichlet, which states that if the potential energy has an
isolated minimum at an equilibrium point, the equilibrium state is stable. They
also constitute an elementary proof of a converse theorem due to Liapunov,
which states that if the potential energy at an equilibrium point is not a mini-
mum, the equilibrium state is unstable.

We note that, if the functional form of F(u) or F'(u) is given, one can deter-
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mine whether a singular point is a saddle point or a center by examining the
second derivative. Clearly at a saddle point

d*F df
=<
du®? du 0
while at a center
d*F df
=—>0
au® du

As an example, we consider the equation
ut(1-w)-uw)=0 (2.2.16)
The singular points are located at
u=1 and u=2
It follows that

ar

T =2u-3|,-,=~1

u=1
and

daf

=1
du

u=2

Thus u =1 is a saddle point, while u = 2 is a center. There are oscillatory solu-
tions in the neighborhood of # = 2 but not in the neighborhood of u = 1.

When F(u) is more complicated than the cases considered above, the corre-
sponding representations of the solutions in the phase plane are composed of
combinations of those presented above. An example is shown in Figure 2-9.
When & = kg, the level curve consists of the two centers C; and C,, while when
h = hs, the level curve consists of two trajectories (separatrices) meeting at the
saddle point S. When ko <k < hj, each level curve consists of two closed trajec-
tories, one surrounding the center C; and the other surrounding the center C,.
When % > hj, each level curve consists of a single closed trajectory that sur-
rounds the two centers as well as the saddle point. This example illustrates the
strong dependence of the state of the system on the initial conditions and the
system parameters.

The remainder of this chapter is devoted to finding the solutions, or approxi-
mations that exhibit the characteristics of the solutions, in a small but finite
neighborhood of a center. From the discussion above one can recognize several
features of the motions of nonlinear systems which distinguish them from linear
systems. Let us suppose that, in the limit as the amplitude of the motion
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Figure 2-9. Case of F(u) having a maximum and two minima.

vanishes, the solution of the nonlinear equation approaches the solution of the
corresponding linear equation. As we shall see, this turns out to be the case.
Then a single harmonic will describe the motion in an infinitesimal neighbor-
hood of the center. But as the preceding phase diagrams (Figures 2-7 and 2-9)
clearly show, the closed trajectories for large amplitudes are not merely
scaled-up versions of those for very small amplitudes. The shape changes notice-
ably, but the motion is periodic and hence can be represented by a Fourier sine
and cosine expansion. Thus one term in the expansion is sufficient to represent
the infinitesimal motion accurately; but as the amplitude grows, so does the
number of terms required to represent the solution accurately. Consequently
one expects higher harmonics in the motion of nonlinear systems. Moreover it
appears from (2.2.9) that the period of the motion depends on the amplitude
(i.e., it depends on %). Finally we note that the trajectories around a center are
not necessarily symmetric with respect to the center. Thus the motion appears
to drift or stream as the amplitude increases; the midpoint of the motion is not
the center (equilibrium position). The asymmetry is the result of the presence of
even functions of the distance from the center in f(u).

In the next section we present various methods for determining approximate
solutions of (2.2.1) in the neighborhood of a center.
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2.3. Quantitative Analysis

As the examples in the preceding section illustrate, the motion is oscillatory in
the neighborhood of a center. In this section we discuss methods of obtaining
approximate expressions describing this oscillatory motion. Numerical methods
were used by a number of investigators. Einaudi (1975) used an iterative method;
Argyris, Dunne, and Angelopoulos (1973) used a finite-element technique; and
Susemihl and Laura (1975) used a collocation technique.

We have been considering systems governed by equations having the form

i+ fu)=0 (2.3.1)

where, in general, f is a nonlinear function. It is convenient to shift the origin to
the location of the center, u = uy. Thus we let

X=u-u (2.3.2)
Then (2.3.1) becomes
X+f(x+ug)=0 (23.3)

Assuming f can be expanded, we rewrite (2.3.3) as

N
Xt Y opx"= (2.3.49)
n=1
where
1
o = =1 (o) (23.5)

and £ denotes the nth derivative with respect to the argument. For a center,
f(uo)=0and f'(uo) > 0.

The solution describes the response of the system to an initial disturbance. To
describe the initial disturbance, one needs to specify both the initial position and
the initial velocity, s and vy, respectively. It is convenient to write the initial
conditions in polar form. Thus we introduce an amplitude and a phase according
to s

QoW Gin }?’r
So =@ CcosfBy, Vo=-auwpsinfy (2.3.6)
where

Wo = \/01_1 = [f'(uo)] 1z

271/2
ay= [s% + (ﬂ)—) ] , Bo=cos! (_s£> =sin~! (— % ) (2.3.7)
Wo ao o Wo

and
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The system governed by the equation obtained from (2.3.4) by deleting all the
nonlinear terms is called the corresponding linear system. It plays a key role in
the analysis of weakly nonlinear systems. Basically one obtains the response of
the nonlinear system by perturbing the response of the corresponding linear
system.

There are a number of ways in which this perturbation can be effected. We
begin with the so-called straightforward expansion, which is not uniformly
valid, and then discuss the details of several modifications of the straightforward
procedure which lead to uniformly valid expansions. The present discussion is
not meant to be comprehensive; for such a discussion the reader is referred to
Perturbation Methods by Nayfeh (1973b). Here we only discuss the basic con-
cepts of the methods appearing most frequently in the literature.

2.3.1. THE STRAIGHTFORWARD EXPANSION

We seek an expansion that is valid for small- but finite-amplitude motions. It is
convenient to introduce a small, dimensionless parameter € which is the order of
the amplitude of the motion and can be used as a crutch, or a bookkeeping de-
vice, in obtaining the approximate solution.

We assume that the solution of (2.3.4) can be represented by an expansion
having the form

x(t;€)=ex () +e2x,(D) + E€x3(0) + - - - (2.3.8)
Then we substitute (2.3.8) into (2.3.4) and, because the x,, are independent of €,

set the coefficient of each power of € equal to zero. This leads to the following
set of equations:

Order €

%+ wix; =0 (2.3.9)
Order €2

Xy + Wixy = -0y x? (2.3.10)
Order €

X3+ w3x3=-20,xXx, - a3x3 (2.3.11)

In satisfying the initial conditions, there are the following alternatives:

1. One can substitute the assumed expansion (2.3.8) into the initial conditions
(2.3.6) and equate coefficients of like powers of e. The result is

x1(0)=ay cosBy and x;(0)=-weay sin By (2.3.12)
x,(0)=0 and x,(0)=0forn=>2 (2.3.13)

Then one determines the constants of integration in x; such that (2.3.12) is
satisfied; and one includes the homogeneous solution in the expressions for the
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x,, for n > 2, choosing the constants of integration such that (2.3.13) is satisfied ~*
at each step.

2. One can ignore the initial conditions and the homogeneous solutions in all
the x,,, for n > 2, until the last step. Then, considering the constants of integra-
tion in x, to be functions of €, one expands the solution for x; in powers of €
and chooses the coefficients in the expansion such that (2.3.6) is satisfied.

Initially it may appear that the second alternative is inconsistent because we
stipulated that the x,, are independent of e. However, as we demonstrate by an
example, the two approaches are equivalent, yielding precisely the same result.

We prefer the second approach because there is much less algebra involved and,
in many instances, we are only concerned with steady-state responses, which
frequently are independent of the initial conditions.

The general solution of (2.3.9) can be written in the form

X1 =acos (wot +P) (2.3.19

where @ and 8 are constants. Following the first alternative, we let a =a, and
B=8Bo in order to satisfy (2.3.12). Following the second approach, we con-
sider ¢ and f8 to be functions of € and at this point pay no regard to the initial
conditions.

Substituting (2.3.14) into (2.3.10) yields

¥a+ whx, = -aya” cos? (wot +B) = - Laya® [1 + cos Qwot +26)]  (2.3.1¢

where trigonometric identities were used to eliminate all products and powers
the cosines. This is a necessary step in all the subsequent perturbation methc
discussed. In accordance with the discussion above, we have two choices
expressing x,:
2
Qzap
X2 = e 3 [cos (2wt +2PB0) - 3] +a, cos (wot +6,) (2.3.1
wWo

or
4
X, = ‘o 2 [cos (2wt +2p8) - 3] (2.3.17)
where a, and f3, are additional constants of integration, independent of €, chosen

such that (2.3.13) is satisfied.
Thus following the first alternative, we have

2a
X = eaqcos (wot + o) + €2 {22022 [cos (2wot + 2f0) - 3] + a; cos (wot + ﬁz)}
0

+0(e3) (2.3.18)
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% Following the second alternative we have

2.2
x = €a cos (wet +P) + e6a ;IZ [cos (2wet +2P) - 3] +O(e®) (2.3.19)
Wo
Now into (2.3.19) we put
ta=eA; te*dA,+-+-, P=By+eB,+ -

Then
€acos (wot +P)=(ed, + €Ay + - *)[cos (wot +Bo) cos (eBy ++ )
- sin (wot + By) sin (eB; + - )] = €A cos (wot + By)
+€?[A; cos (wot +By) - Ay By sin (wot + By)] + 0(e?)
= €A, cos (wot +Bo) + €2 (A% + A2B)Y? cos (wot +0,)
+0(e?)
where

AB
0,=RB, +’can'l<*/l1 1)

2

“We can choose A; = aq, By = B, and A, and B, such that

AB
(45+A43B) 2 =g, and Bo+ tan‘1< ,; l) =8,
2
then (2.3.18) and (2.3.19) are equivalent. Thus either alternative can be used in
‘he subsequent schemes and either alternative can be used for higher-order
i dpproximations.
Substituting (2.3.14) and (2.3.17) into (2.3.11) yields

2.3
X3+ wdx; = ai; [3 cos (wot +B) - cos (wet + ) cos Quwot + 2P)] - aza’
0
562 3a a o
- cos® (wot + ) =(6w(2, - 73) @’ cos (wot +B) - (—43 + 6(33
- cos (3wt +3p) (2.3.20)

Any particular solution of (2.3.20) contains the term

1062 - 9aswd )
<——ﬁ—°) at sin (wyt +P)
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If the straightforward procedure is continued, terms containing the factors
t"™ cos (wet + ) and ™ sin (wot + ) appear. Terms such as these are called
secular terms.

Because of secular terms, expansion (2.3.8) is not periodic. Moreover x5 /x,
and x3/x, grow without bound as ¢ increases; thus x5 does not always provide
a small correction to x; and x,. One says that expansion (2.3.8) is not uni-
formly valid as ¢ increases.

The discussion in Section 2.2 indicates that one of the features distinguishing
nonlinear from linear systems is frequency-amplitude interaction. Yet in the
procedure used to generate the straightforward expansion, there is no provision
for such a relationship. Thus this approach was doomed from the beginning.
One modification of the straightforward procedure that does account for the
frequency-amplitude interaction is the Lindstedt-Poincaré method, which is
discussed next.

2.3.2. THE LINDSTEDT-POINCARE METHOD

The idea is to introduce a new independent variable, say 7 = wt, where initially
w is an unspecified function of e. The new governing equation will contain w in
the coefficient of the second derivative; this permits the frequency and ampli-
tude to interact. One can choose the function w in such a way as to eliminate
the secular terms (i.e., to render the expansion periodic in accordance with the
discussion of Section 2.2).

We begin by assuming an expansion for w:

w(e)=wotew; +etw, +- - (2.3.21)

where w;, w,, and so on, are unknown constants at this point. Moreover we
assume that x can be represented by an expansion having the form

x(t;€)=ex,(r) + €x,(1) + €3x5(1) +- - - (2.3.22)

where the x,, are independent of e. Then (2.3.4) becomes

2
(ot ew+Ewyt P o (ex+ ety b edxs +o0)
T

N
+ > auex; +ePx, +elxz+-) =0 (2.3.23)

n=1

Equating the coefficients of €, €2, and €3 to zero and recalling that o, = w3, we
obtain

X x,=0 (2.3.24)
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w3 ("Z:j +x2) = =200 w1 d—;:‘T‘ - apx? (2.3.25)
w3<%+x3>=—2wowl jd_di;_z_ 20,x,%, - (W + 2w w,) dsz - oz3x3
(2.3.26)
We write the general solution of (2.3.24) in the form
X, =acos¢ (2.3.27)
where
p=1+p (2.3.28)

and @ and 8 are constants. Substituting (2.3.27) into (2.3.25) leads to

d2
w3 (d—x;+x > 20w, a cos ¢ - a2a [1+cos 2¢] (2.3.29)
r

Thus we must set w; =0, or x, will contain the secular term w;wg a7 sin ¢.
Then disregarding the solution of the homogeneous equation, we write the
solution of (2.3.29) as

a2£12

X, = - 208 [1- 3 cos 2¢] (2.3.30)

Substituting for x; and x, into (2.3.26) and recalling that w, =0, we obtain

d?x aZa® 203
<d23+x3 =2 wowza—%a3a3+% 22 cos ¢ - 4 3w 2+oz3a cos 3¢
Wo

(2.3.31)

To eliminate the secular term from x3, we must put

(9a3 w3 - 1003)a?
= 2.3.32
2 24wy ( )

Hence from (2.3.2), (2.3.21), (2.3.22), (2.3.27), and (2.3.30), it follows that

eaa2

u=ugteacos(wt+f)- — e

[1- 4 cos (2wt +26)] +0(e®) (2.3.33)
where

9 10
w= \/al[l 200 =104 , 2] +0(e%) (2.3.34)
24a?
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We note that carrying out the expansion to higher order is cumbersome. One
seldom has the courage to go beyond third order unless the algebraic manipula-
tions are performed by a computer. Consequently, by using a computer to per-
form algebraic manipulations, Helleman and Montroll (1974), Montroll and
Helleman (1976), Eminhizer, Helleman, and Montroll (1976), Berry (1978), and
Helleman (1978) developed a recurrence algorithm by which they solved for the
Fourier coefficients of the solution and the frequency corrections rather than
solving for the individual u,,.

Imposing the initial conditions (2.3.6), we have

2¢%a, .
¥ agcosfy=eacosf- — [1- 3cos2f]
20,
and (2.3.35)
2,2
~{Wodo sin o = -€aw sin - 2% sin 28
o

To solve (2.3.35), we expand @ and § in powers of € and equate coefficients of
like powers of €. The result is

c 2

) Lazao

ea=ay+ + cos 36)
12¢4

(2.3.36)
fa

121

B=Bo - % (9 sin B, + sin 3Bo)

The resulting solution is in agreement with the solution that can be derived by
including the homogeneous solution in x, and satisfying the initial conditions at
each level of approximation.

In accordance with the qualitative description of the motion given in Section
2.2, we note that the Lindstedt-Poincaré procedure produced (a) a periodic
expression describing the motion of the system, (b) a frequency-amplitude
relationship (which is a direct consequence of requiring the expression to be
periodic), (c¢) higher harmonics in the higher- order terms of the expression, and

(d) a drift or steady-streaming term - 3 e2aa, a7 .

2.3.3. THE METHOD OF MULTIPLE SCALES

The uniformly valid expansion given by (2.3.33) and (2.3.34) may be viewed
as a function of two independent variables rather than a function of one.
Namely we may regard x to be a function of # and €2¢. The underlying idea of
the method of multiple scales is to consider the expansion representing the
response to be a function of multiple independent variables, or scales, instead of
a single variable. The method of multiple scales, though a little more involved,
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has advantages over the Lindstedt-Poincaré method; for example, it can treat
damped systems conveniently.
One begins by introducing new independent variables according to

T,=€¢"t for n=0,1,2,--- (2.3.37)

It follows that the derivatives with respect to ¢ become expansions in terms of
the partial derivatives with respect to the T;, according to

d_dly 3 T o

__+...=D +6D +..-
dt dt 3T, dt oT, 0 !

2 (2.3.38)
52—=D%, +2eDoD; +€*(D} +2DoDy) +- - -

One assumes that the solution of (2.3.4) can be represented by an expansion
having the form

x(t5€) = €x1(T0, T,,T, - ') + €2x2(T0, Tla T2, s ‘)
+€x3(To, Ty, Ty, - )+ 0+ (2.3.39)

We note that the number of independent time scales needed depends on the
order to which the expansion is carried out. If the expansion is carried out to
O(e?), then T, and T, are needed. In this section we carry out the expansion
to O(e*), and hence we need Ty, Ty, and T,. Substituting (2.3.38) and (2.3.39)
into (2.3.4) and equating the coefficients of €, €2, and € to zero, we obtain

Dix, + w3x, =0 (2.3.40)

Dix, + w3x, =-2DgDyx, - a,x? (2.3.41)

Dix; + wix; =-2DogD1Xxy - D?xy - 2DgDyx; - 205X, X5 — Q3X3
(2.3.42)

With this approach it turns out to be convenient to write the solution of
(2.3.40) in the form

x1 =A(Ty, Ty) exp (iwo To) + A exp (-iwo To) (2.3.43)

where A4 is an unknown complex function and A4 is the complex conjugate of 4.
The governing equations for A are obtained by requiring x, and x; to be
periodic in T.

Substituting (2.3.43) into (2.3.41) leads to

D3x, + wix, =-2iweDy A exp (iwoTo) - ap [A? exp (2iwoTo) + AA] + cc

(2.3.44)
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where cc denotes the complex conjugate of the preceding terms. Any particular
solution of (2.3.44) has a secular term containing the factor Ty exp (iwoTy)
unless

D;A=0 (2.3.45)
Therefore 4 must be independent of T'; . With D; 4 =0, the solution of (2.3.44) is
A? —
Xy = 2 exp (2iwoTo) - —% A4 +cc (2.3.46)
3(.00 wWo

where the solution of the homogeneous equation is not needed as discussed in
Section 2.3.1.

Substituting for x; and x, from (2.3.43) and (2.3.46) inte (2.3.42) and recall-
ing that D; 4 = 0, we obtain

1003 - 9a;3 w3

D%X3 + OJ%X:; =- 21(&)0D2A - 2
3(,00

Az;] exp (iwoTo)

30305 + 205
- &_0;02—%143 exp (3iwoTy) +cc (2.3.47)
wWo

To eliminate secular terms from x3, we must put

90y - 1003 -
TR 424 =0 (2.348)

2iwgD, A +
3(1.)0

In solving equations having the form of (2.3.48), we find it convenient to write
A in the polar form
A=1Laexp (if) (2.3.49)
where g and 8 are real functions of T,. Substituting (2.3.49) into (2.3.48) and
separating the result into real and imaginary parts, we obtain
1003 - a3 wh

wad' =0 and wyaf’ + 2402

=0 (2.3.50)
where the prime denotes the derivative with respect to 7,. It follows that a is
a constant and hence that

_ 903w} - 1003

2403 a*Tz + o

where B, is a constant. Returning to (2.3.49), we find that
 903w3 - 1003 ,

A=Zaexp [z € at+ iﬁo} (2.3.51)
0

where we used the fact that T, = €2¢.
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Substituting for x; and x, from (2.3.43) and (2.3.46) into (2.3.39) and using
(2.3.51), we obtain

e’d’a, . 5
x = ea cos (wt +By) - n [1- 3 cos (2wt +26,)] +O(e%)
1
(2.3.52)
where
- 1003
w =+« I:l + 90‘3—012142—% 62(12] +0(e®) (2.3.53)
oy

in agreement with the solution, (2.3.33) and (2.3.34), obtained in the preceding
section by using the Lindstedt-Poincaré procedure.

2.3.4. THE METHOD OF HARMONIC BALANCE
The idea is to express the periodic solution of (2.3.4) in the form

M
x= D Ay cos (mwt+mby) (2.3.54)
m=0

Then substituting (2.3.54) into (2.3.4) and equating the coefficient of each of
the lowest M + 1 harmonics to zero, we obtain a system of M + 1 algebraic equa-
tions relating w and the 4,,. Usually these equations are solved for Ao, 4,, 43,
*, Ay and w in terms of 4. The accuracy of the resulting periodic solution
depends on the value of 4, and the number of harmonics in the assumed solu-
tion (2.3.54).
For example, substituting the one-term expansion

x=A4; cos (wr+Py)=A, cos ¢ (2.3.55)
into (2.3.4) yields
-(w? - a;)A; cos ¢+ 30y A3[1 +cos 2¢] + 2 a3 A3 [3 cos ¢ + cos 3¢] =0
(2.3.56)
if NV = 3. Equating the coefficient of cos ¢ to zero, we obtain
w?=a; + 334} (2.3.57)
which for small 4, becomes
W=V [1+3a30743] (2.3.58)

Comparing (2.3.58) with (2.3.34), we conclude that only part of the nonlinear
correction to the frequency has been obtained. The reason for the deficiency is
that terms O(A4}) were neglected in (2.3.56), while terms 0(A43) were kept. To
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obtain the rest of the nonlinear correction, we need to include other terms
besides the first harmonic in the expression for x.
Following Mahaffey (1976) and putting

x=A,cosp+ A, (2.3.59)
in (2.3.4) with N = 3, we obtain
a Ao + A+ ’%0‘21421’ +azAg + %0‘314014% + [-(w? - ay)4,
+20,404; + 303434, + 3 a3A43] cos ¢+ [L 0,47 + 3 a3 40AT] cos 2¢
+1 0343 cos3¢=0 (2.3.60)
Equating the constant term and the coefficient of cos ¢ to zero, we have

ale + agA?) + %azA% + a3A(3) + %a3AOA% =0

(2.3.61)
~(w? - ay) + 20,40 + 30343 + 32347 =0
When A, is small, the solutions of (2.3.61) are
Ap =-Lay0it 41 + 0(4
° 2 ) (2.3.62)
w? =y +(Za3 - ojait)Ad
Hence
3 4
w=/a, [1 +—°‘3—°‘8i——‘-"l,4§] (2.3.63)
(451

Again, comparing (2.3.63) with (2.3.34), we conclude that the assumption
(2.3.59) also produced a solution that does not account for all the nonlinear
correction to the frequency to O(4?). Inspecting (2.3.60), we find that we
still neglected terms O(A?%) while we kept terms O(43}).

Next let us try to include three terms in the solution, that is,

x=AytA;, cosp+ A, cos2¢p (2.3.64)
where 4, and A, << A,. Substituting (2.3.64) into (2.3.4) with NV = 3 yields
[((w? +ay)A; +0,4,(240 + Ay) + as(3 47 +3434, +3404,4,
+34,4%)] cos o+ [a14p + oy (4] + 54T + FA%) + a3(43
+32 4047 +3 4,45 + 3A434,)] + [(-4w? + 01)A, tay(3 AT +2404,)
+305(43 +4434, + 2434, +24,47)] cos 2¢ + higher harmonics = 0
(2.3.65)
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Equating the constant term and the coefficients of cos ¢ and cos 2¢ to zero, we
obtain

~w? tay 20,40 oAy + 3 a3AY + 303404, + 30343 + 20343 =0
(2.3.66)
@ Aot o (AF + 34T+ 143+ 3034340 + 1 4,5) t a4} +24,43)=0
(2.3.67)
-(4w? - a))A; + S04 + 20,404, + 30342 (A40 + 4,)
+303434, + 30343 =0 (2.3.68)

For small 4, (2.3.66) through (2.3.68) show that Ao = 0(4%) and 4, = 0(4?),
and hence

Ao =-Laa7' 42+ 0(4%) (2.3.69)
Ay =ta,07 AT +0(4Y) (2.3.70)
w? =y +3a343 - 2adait 42 + 0(4D) (2.3.71)

Substituting for Ay and 4, from (2.3.69) and (2.3.70) into (2.3.64) yields

A%OL2 1
x=Aycos¢p-— [1- 3 cos2¢] +--- (2.3.72)
20(1
Moreover it follows from (2.3.71) that
9 - 1003
w =0 1+a_3a1__2__0<_xlA% +o (2.3.73)
24a7

Comparing (2.3.72) and (2.3.73) with (2.3.33) and (2.3.34), we find that they
are in full agreement if 4, is identified with ea. Inspecting the coefficients of the
higher harmonics in (2.3.65), one finds that they are O(4%), and hence the
neglected terms are the order of the error in (2.3.72) and (2.3.73), which is the
reason why it is in agreement with the solutions obtained by the Lindstedt-
Poincaré procedure and the method of multiple scales.

It is clear from the development above that, to obtain a consistent solution by
using the method of harmonic balance, one needs either to know a great deal
about the solution a priori or to carry enough terms in the solution and check
the order of the coefficients of all the neglected harmonics. Otherwise one might
obtain an inaccurate approximation (Mahaffey, 1976) such as (2.3.58) or
(2.3.63). Therefore we prefer not to use this technique.

Borges, Cesari, and Sanchez (1974) studied the relationship between func-
tional analysis and the method of harmonic balance.
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2.3.5. METHODS OF AVERAGING

Foremost among the remaining methods are those based on averaging. These
include the Krylov-Bogoliubov method, the Krylov-Bogoliubov-Mitropolsky
technique, the generalized method of averaging, averaging using canonical vari-
ables, averaging using Lie series and transforms, and averaging using Lagrangians.
For a comprehensive treatment, see Chapter 5 of Nayfeh (1973b).

Most of the solutions based on averaging start with the method of variation
of parameters to transform the dependent variable from x to @ and 8 where

x=a(t) cos [wot + ()] (2.3.74)
X =~ woa(t) cos [wet + B@)]

and wo = v/a;. Then it follows from (2.3.4) that the equations governing
a and § are

a=wg' sin ¢ [a,a® cos ¢ + aza® cos® ¢]
. (2.3.75)
B=wo! cos ¢ [opa cos? ¢+ aza® cos® ¢]
where ¢ = wot + (7).
Using the Krylov-Bogoliubov first approximation, one averages the right-hand
sides of (2.3.75) over ¢ from 0 to 2w, assuming a and 8 to be constants. The
result is

=0, B=32 wi'aza? (2.3.76)
which when combined with (2.3.74) yields
x =qacos (wt +By) (2.3.77)

where 3, is a constant and
w=+voy [1+3 az0;'a?] (2.3.78)

Comparison of (2.3.78) with (2.3.34) shows that the first approximation does
not account for all the nonlinear correction to the frequency. Hence one must
use a technique that is valid to second order rather than first order.

To obtain a consistent approximate solution to (2.3.75), one needs to employ
the generalized method of averaging. The resulting solution will be in agreement
with those obtained in Sections 2.3.2 and 2.3.3 by using the Lindstedt-Poincaré
technique and the method of multiple scales.

It should be noted that using the methods of averaging correctly leads to valid
results. On the other hand, averaging in an ad hoc manner may lead to an in-
correct answer. For example, Mahaffey (1976) wrote (2.3.4) when N = 3 in the
form

X+ (o +ayx+0a3x2)x=0 (2.3.79)
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Then he interpreted the quantity inside the parentheses as the square of the
nonlinear frequency, that is

Qy Q3 1/2
w =, <1 +—=x+—x? (2.3.80)
[« %} o
Hence

2
w=\/&7[1+°‘—2x+<33—-—°‘2—2)x2] TR (2.3.81)

2(!1 20, 8&1

Assuming x = a cos ¢ in (2.3.81) and averaging over ¢ from 0 to 27, he obtained

2

w=v/a; [1 ¥ (4—°‘i°‘—1—2—°‘—2> a2] (23.82)
16a]

Comparison of (2.3.82) with (2.3.34) shows that the nonlinear correction to the

frequency is totally incorrect. Therefore one must be careful in using an ad hoc

technique, for one may obtain a solution that may be believable but nevertheless

totally incorrect. In this book we only use consistent methods.

2.4. Applications

In this section we apply the general results obtained in the preceding section
to some specific examples.

2.4.1. THE MOTION OF A SIMPLE PENDULUM
The equation describing the motion of a simple pendulum was derived in
Section 2.1.1 as

0+ w2sinh =0 (2.4.1)
where w§ = g/l. A first integral is
62 =2[h - F(6)] (24.2)

where F(0) = - w} cos 0 and A, the energy level, depends on the initial condi-
tions. Let us take

2h=62% - 232 cos 0, (2.4.3)

Since F(0) has the minima - w3 at even multiples of 7, the level curve 4 = - w3

consists of an infinite number of discrete centers located along the 6-axis at even
multiples of 7. The centers correspond to the stable equilibrium position of the
pendulum. Moreover since F () has the maxima w3 at odd multiples of 7, the
level curve & = w} consists of the two separatrices shown in Figure 2-10 that

meet at an infinite number of saddle points located along the §-axis at odd
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multiples of 7. The saddle points correspond to the unstable equilibrium posi-
tion (inverted pendulum). It follows from (2.4.2) that the equation describing
the separatrices is

. 0
62 = 4w3 cos? —
2
or
. 0
0 = 2w, cos Py 24.4)
When -w3 < h < w3, the level curves consist of an infinite number of closed
trajectories each of which surrounds one of the centers; they correspond to
periodic motions about an equilibrium position of the pendulum. When # > w3,
a level curve consists of two wavy trajectories outside the separatrices which

correspond to rotating or spinning motions of the pendulum.
Rearranging (2.4.2), we can obtain

= f [62 + 2w3 (cos 8 - cos B,)] V2 db (24.5)

For convenience, let us regard the motion as one started in the vertical position
(6 = 0) with the angular velocity 6. Then one can rewrite (2.4.5) as

de
= 4.
|00 J. (1-«?sin® § 0)"/? (2:4.6)

where k = 2w0/léol.

The character of the motion varies according to the value of k. If k <1 (i.e.,
1001 > 2w, ), the integrand is always real and the value of 6 increases indefinitely.
In this case 2 > w? according to (2.4.3), the motion is unbounded, and the
pendulum undergoes a spinning, rather than an oscillatory, motion. The sepa-
ratrices in Figure 2-10 are between the trajectories representing this motion and
the @-axis. If k = 1, the integrand is real and approaches o as 6 approaches .
Thus the motion carries the pendulum from straight down to straight up. How-
ever § approaches m asymptotically as ¢ becomes infinite (see Section 2.2). In
this case # = wj according to (2.4.3), and the trajectories representing the
motion are the separatrices. If k > 1, the integrand is only real if

]
10]1<0,, =2sin™ lz—u‘j—' (2.4.7)
0

Thus the pendulum oscillates between %6, . In this case -w3 <h < w3, and the
closed trajectories represent this motion.
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Figure 2-10. Phase plane for a simple pendulum.

The value k = 1 is often called a bifircation value because it separates values of
k for which the trajectories vary qualitatively (from open to closed).

In the case of oscillatory motion, the integral (2.4.6) from O to 6,,,, where we
must use the positive sign, yields one fourth the period. Thus the period T is

0
4 m do
=— 2.4.8
T 10,1 Yo (1-«k?sin? 36)'/2 (248)

This expression can be put into a more convenient form by letting
k sin 30 =sin ¢

It follows that

_ 2cos ¢d¢
¢=1m when 0=0, and df= (- K sin? ) (2.4.9)
where k = 6,1/2w, = sin (% 0,n)- Then the period becomes
1
4 (27 d
= ¢ (2.4.10)

wo b (1- k? sin? ¢)'/2

This exact expression for the period is in terms of the elliptic function of the
first kind.
In this case one can readily obtain an approximate value for the period by
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expanding the integrand and integrating term by term, that is,

m

4
T=——f [1+2k%sin® ¢+ 3k*sin® ¢+ -] do
wWo 0

D=

Hence
Ul 1., 4
T,=— (1+—Kk>+—k*+---
wWo 4
But
k=sin(30,,)=20m - 205 +
Hence
2 1 11
T,=— (1+—0% +——0} +) 2.4.11
”w0<16’"3o72’" ( )

An approximation to the periodic orbit surrounding the origin can also be
obtained by using the Lindstedt-Poincaré technique. To this end we expand
sin 0 in (2.4.1) about 0 = 0 and obtain

6+w3(0-L16°+--9=0 (2.4.12)
We let 7 = wt and expand 6 and w as

= 3 .

0=eb,(r)+e°03(7) + (2.4.13)

W=woterw, +o
where € is a small dimensionless parameter characterizing the amplitude of the
motion. The term €20, is missing from (2.4.13) because the nonlinearity appears
at O(e®). The term €w; is missing because the frequency is independent of the
sign of € (the amplitude of the motion). Substituting (2.4.13) into (2.4.12) and
equating coefficients of like powers of €, we obtain

Wi (07 +6,)=0 (2.4.14)
w305 +03) +2wew, 07 - L w303 =0 (2.4.15)

The solution of (2.4.14) is
0,=acos(r+f) (2.4.16)

where a and (3 are constants. Hence (2.4.15) becomes
w3 (05 +03) = Qwow,a + § wha®) cos (1 +P) + 55 2> w§ cos (37 + 3P)

(2.4.17)
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Eliminating the term that produces secular terms in (2.4.17) gives w, =

_1 2 - s .
15 woa”. Hence a first approximation to 6 is

0 = ea cos [wo(l - i €2a®)t + ] + O(*) (2.4.18)

To compare the exact and approximate solutions, we set €z = 0,, so that from
(2.4.18) a first approximation to the period T, is given by

woT, =2m(1- & 627 ~2n(1 + {5 07,) (2.4.19)

in agreement with (2.4.11). Thus we have seen that the perturbation solution
and the exact solution yield the same results for small values of 6,,. Table 2-1
shows that T, /T gets closer and closer to unity as 0,, = 0.

TABLE 2-1. The Ratio of the Approximate Period to the Exact Period for
Various Amplitudes of the Motion of a Simple Pendulum

60° 70

o] o o] o o o

6,, 0 10° 20° 30 40 50 80 90

T,/T 1. 1.0000 1.0000 0.9997 0.9992 0.9979 0.9956 0.9920 0.9862 0.9778

2.4.2. MOTION OF A CURRENT-CARRYING CONDUCTOR

As an example of a single-degree-of-freedom system in which the restoring
force depends on a parameter in addition to the coordinate, we consider the
motion of a current-carrying wire with mass m in the field of an infinite current-
carrying conductor and restrained by linear elastic springs as shown in Figure
2-11, The differential equation describing the motion of the wire is

d*x? . 2iyi,l
m +kx-—=>=0 2.4.20
dr? b-% ( )
Flexible Wires ,,_gigdig
source | i Tie

Free l__
Length X

‘: b — Figure 2-11. Current-carrying wire in the field of an in-
finite current-carrying conductor.
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where kX is the restoring force due to the springs and 2i,i,//(b - X)is the attrac-
tion force between the conductors due to the magnetic fields produced by the
currents. Equation (2.4.20) can be rewritten as

Px, A

+x - = 4.
S tx-T—=0 (2.4.21)

where x = X/b, t = wot, w2 = k/m, and A = 2iyi,l[kb?. A first integral of
(2.4.21) is
132 +1x2+Aln|l-x|=h (2.4.22)
We let
v=xand F(x)=3x*+Aln |1 - x|
The function F(x) has singular points at x;, where
F'(x))=x;- A1-x)"' =0
or
X1,%, =1 (3 - A2 (2.4.23)
The nature of the singular points can be determined by examining F"(x;). Since
F”(Xi) =1- A(l - Xi)_z =1- A_lx,-z
then
F'(x2) =207 (5 - NP3 - G - MYV
F'(x1)=-207(3 - N[5 +(G - N'?]
It follows from (2.4.23) and (2.4.24) that there are five cases to be considered:
A<0,A=0,0<AL %, A= %, and A > %. These are taken up individually.
When A <0, F(x) has minima at x, and at x, (here we take x; > x,); hence
both points are centers. Because x; > 1, there can be motion in the neighbor-
hood of x; only if the bracket for the spring-supported conductor extends
around the fixed conductor. Because |v| = o0 as x = 1, the moving conductor
remains on the same side of the fixed conductor (this is true in all the cases
considered). The possible motions are represented in Figure 2-12. The energy
levels are labeled 4, and the corresponding trajectories T,. When 4 < h,, no
motion is possible. When /; < h < k3, a level curve consists of a single branch,
which encircles the center at x,. For & > h; a level curve consists of two
branches, one encircling the center at x, and the other encircling the center

at x;.
When A = 0, the electromagnetic force vanishes, and there is only one singu-

(2.4.24)
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F(x)

Figure 2-12. Phase plane for a current-carrying wire in the field of an infinite current-
carrying conductor when A < 0.

lar point, a minimum at x = 0. Thus x = 0 is a center. The possible motions in
the neighborhood of this point are represented in Figure 2-13a.

When 0 < A< %, F(x) has a maximum at x; and a minimum at x, ; hence x;
is a saddle point and x, is a center. Both points lie on the left-hand side of the
fixed conductor. The possible motions on the left-hand side of the fixed con-
ductor are represented in Figure 2-13b. When h, <h <4, a level curve consists
of two branches, a closed branch encircling the center and an open branch on
the right-hand side of the saddle point. Both branches have the same label in
Figure 2-13b. When A > hy, the level curves are open and pass on the left-hand
side of both singular points. When & = h4, the level curve consists of a separatrix
whose equation is

1P+ 3x?+Aln|l-x|=h; =1x}+Aln|1- x| (2.4.25)

When & < h,, the level curves are open but pass on the right-hand side of both
singular points. When A& = h,, the level curve consists of the center x, and a
branch that is similar in shape to a hyperbola that opens to the right. Thus the
motion can be bounded only if 2, < h < hy, and then only if the initial condi-
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F(x)

T

hy

o
>
o

T oz
~

F(x)

(c) (d)

Figure 2-13. Phase plane for a current-carrying conductor in the field of another: (@) A = 0;
B O<A<E@A=5@A>F.

tions place the representative point on the closed branch of the level curve near
the center.

As A increases, the center and the saddle point approach each other. They
coalesce at x = 3 when A = 4. Thus at x = 1, F(x) has an inflection point. The
possible motions are represented in Figure 2-13¢. We note that there is a cusp on
one of the trajectories and that bounded motion does not exist.

Finally when A > 1, there are no singular points and hence there is no
bounded motion. This is represented in Figure 2-13d.

The scale in the four parts of Figure 2-13 is uniform, but not the same as the
scale in Figure 2-12. Figure 2-12 covers a much larger area in the phase plane
than Figure 2-13. We note that A = 0 and % are bifurcation values because they
separate values of A for which the phase plane varies qualitatively.
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Ifx=xpand x=0at¢ =0, then 2 = %x% + A ln |1 - x4| according to
(2.4.22). Moreover an exact solution of (2.4.22) can be obtained by separating
variables. The result is

x 1- -1/2
t= f (x%; S X2 42AI—20) g (2.4.26)
Xo

1-x

For one of the closed trajectories shown in Figure 2-13, the period T'is

Xo2 1-xq -1/2
T= ZJ (x%l -x242Aln ——— dx (2.4.27)
X

01

where xo; and Xy, are the abscissas of the points of intersection of the closed
trajectory with the x-axis.

To obtain an approximate solution for x, we let x = x, + u in (2.4.21) and
expand the resulting equation in a Taylor series about u = 0. The result is

itautautou’+---=0 (2.4.28)
where
a;=1-A1-x,)72  o=-A1-x)72, a3=-A1-x,)"
(2.4.29)

Since (2.4.28) is the same as (2.3.4), then according to (2.3.33) and (2.3.34) it
has the following approximate solution:

e?a’a
» 201~ L cos (2wt +20)] +0(e*)

1

X =X, teacos (wt+p)-

(2.4.30)

where

2
w=va, [1 + M—;—%‘l e2a2] +0(e®) (2.4.31)
24at

and ¢ and {8 are constants of integration.

To compare the approximate period T, = 27/ with the exact period T given
by (2.4.27), we set § = 0 so that xo; = x, + €a - 3 aya;* €a® + O(e®). Table
2-2 shows the variation of T,/T with ez for A = %. We note that 7,/T - 1 as
ea ~> 0 as expected.

TABLE 2-2. The Ratio of the Approximate Period to the Exact Period for
Various Amplitudes of the Motion of a Current-Carrying Conductor

€a 0.2 0.3 0.4 0.5 0.6

T,/T 1.000 0.998 0.993 0.977 0.924
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2.4.3. MOTION OF A PARTICLE ON A ROTATING PARABOLA

As an example of a single-degree-of-freedom conservative system that is de-
scribed by an equation different from (2.2.1), we consider the motion of a ring of
mass m sliding freely on the wire described by the parabola z = px? which rotates
with a constant angular velocity £2 about the z-axis as shown in Figure 2-14.

It is convenient to write the equation of motion of the ring by using an Euler-
Lagrange formulation. For a conservative, holonomic (constraints are integrable)
system, we express the kinetic and potential energies T and ¥V in terms of what
are usually called generalized coordinates q, where q is a vector whose elements
are the independent coordinates needed to describe the system under considera-
tion. Then we form the Lagrangian L as

L(q,4,)=1T(q,4, ) - (q,4,1) (24.32)
Applying Hamilton’s principle leads to the following Euler-Lagrange equations:
d {aL\ oL
-('*) -—=0 (2.4.33)
dt\dq/ 9q

For the present problem,
T=1m@@* + Q*x® +22%), V=mg (2.4.34)
Using the constraint z = px?, we rewrite these energies as
T=7m[(1 +4p*x?)%? + Q*x%], V=mgpx? (2.4.35)

Since the kinetic energy is not a quadratic function of the velocity, the system is
usually called a nonnatural system (e.g., Meirovitch, 1970, p. 77). Substituting
for T and V into (2.4.32) yields

L=1m[(1 +4p*x*)%* + Q%x?] - mgpx? (2.4.36)

Substituting for L into (2.4.33) and letting ¢ = x, we find that the equation
describing the motion of the ring is

(1 +4p%x*)X +Ax +4p®x*x =0 (2.4.37)

mg
0 ¥ Figure 2-14. Particle on a rotating parabola.
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where
A=2gp- Q* (2.4.38)
The equations describing the motion in the phase plane are obtained next. Let
2.2
i=v, b=- % (2.4.39)
Eliminating ¢ from these equations, we obtain
+ 2 2
% =- —~———/:(xl +j’; 2’;’;) (2.4.40)
which can be rewritten as
1(1+4p*x?) d(v*) +4p*xv? dx + Ax dx =0 (2.4.41)
Equation (2.4.41) has the integral
(1+4p*x¥)v? + Ax? = (2.4.42)

where % is a constant. Equation (2.4.42) shows that T + Vis not a constant for
this system; this is a consequence of the system being nonnatural. The integral
(2.4.42) is called the Jacobi integral.

For a general holonomic, conservative system described by a Lagrangian that
does not depend explicitly on #, the Jacobi integral can be obtained as follows:

dL oL oL ..
—=—qt+t— 2.4.43
dr aq 1 aq 1 (2.443)
But
oL d (oL
—=— (—> (2.4.44)
dq dr\d9q
according to (2.4.33). Hence (2.4.43) can be rewritten as
ﬂ—i(%).}.il’_—i(‘é_li) (2445)
dt dtaqqaq dr \" 9q o
Therefore
d|.oL
—|q=—=-L| =0 2.4.46
dt [q 34 ] (24.46)
or
oL
q—~-L=h (2.4.47)
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where £ is a constant. Substituting for L from (2.4.36) into (2.4.47), we obtain
an integral that is equivalent to (2.4.42), which we obtained by direct integra-
tion. Rearranging (2.4.42) can produce

h- Ax?
2 e ——
v = i (2.4.48)
and it follows that
d A+4p*h
L (A+ 4p”h)x (2.4.49)

=%
dx ~ (h- Ax*)2(1 +4p2x?)3?

Next we consider the influence of the parameter A on the character of the solu-
tions. We consider three cases: A>0, A<0,and A=0.

When A > 0, it follows form (2.4.48) that v? decreases from the value % at
x = 0 to zero at x2 = h/A. For x* > h/A, there is no real solution for v. Thus the
motion, which is bounded, is represented by closed trajectories surrounding the
origin, which is a center as shown in Figure 2-15a. We note that as A decreases
the trajectories become more oblong as shown in Figure 2-15b.

N\, N
/

Vs

(a) (b)

<1
A<O

(@)

Figure 2-15. Phase plane for a particle on a rotating parabola: (@) A=1;(d) -9<A<S;
CA=0;d)A<O.
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When A < 0, v? approaches |Al|/4p® and dv/dx approaches zero as x
approaches infinity. The values of v? at large x are independent of the value of
h, and consequently all trajectories approach the same asymptote. The motion,
which is unbounded, is represented by open trajectories, and the origin is a
saddle point as shown in Figure 2-15d. The velocity approaches the same asymp-
totes (which depend on the value of p and A) regardless of the value of 4.

As A decreases toward zero, the trajectories in Figure 2-154, become more
oblong; and as A increases toward zero, the asymptote of all the trajectories in
Figure 2-15d approaches zero. The limiting case when A = 0 marks the boundary
between the bounded and the unbounded motions; for this reason, A = 0 is
called the bifurcation value. In Figure 2-15¢ the trajectories are shown for the
bifurcation value of A (zero) and various values of 4. In this case the velocity
approaches zero regardless of the value of 4.

The discussion above shows that periodic motion exists when A > 0. We con-
sider this periodic motion next. Proceeding as before, we manipulate (2.4.48) to

obtain
x 1+ 4p2x2>1/2
t=+% —— d 2.4.50
.[ ( h- Ax? N (24:50)

where we assumed that # = 0 when x = 0. Changing the variable according to

x = (h/A)Y? cos 0 leads to
s 4hp? 1/2
(1 + /f cos? a) do

t=A“1/2j
A \

The time required for x to change from 0 to (#/A)Y/? is one fourth of the

period 7. Hence
T=4A™? f

0

D=

(S

™ 4h 2 1/2
<1+ /i’ cos? a) o (2.4.51)

We can rewrite (2.4.51) in terms of the elliptic function of the second kind as
1

'2‘11
T=4A"1(A + 4hp?)'/? j (1 - k2 sin® 6)Y2 db (2.4.52)
0

where k% = 4hp? [(A + 4hp?).
An approximate value for T can be obtained by first expanding the integrand
in (2.4.51) and then integrating term by term. The result is

1

27 2Whp? hp?
T=4A"1? J [l + 1f cos? 6+---] do ~ T, =2mA™'/? (1 +%)

0

(2.4.53)
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An approximate expression for the period can also be obtained by the Lind-
stedt-Poincaré method. Thus we let 7= wt and expand x and w as

x=ex; () +e3x,(1) +- - - (2.4.54)
wW=wo te2wy +- - (2.4.55)

In (2.4.54) the term proportional to €? is missing because the nonlinearity is
cubic rather than quadratic; and in (2.4.55) the term proportional to € is missing
because the frequency must be independent of the sign of ¢, as discussed in
Section 2.2.
Substituting (2.4.54) and (2.4.55) into (2.4.37) and equating coefficients of
like powers of €, we obtain
wgxy +Ax; =0 (2.4.56)
wixh + Ax; = -2wow,x) - dpwixix| - 4p?wixtx,  (2.4.57)
We choose wq =+/A so that the solution of (2.4.56) becomes
x, =acos(7+f) (2.4.58)
where a and f3 are constants. Hence (2.4.57) becomes

Wi (x5 +x3)= (Qwow,a +2p%wia®) cos (1 + ) + 2p* wia® cos [3(7 + )]

(2.4.59)
To eliminate secular terms from x5, we must put
W, =-plwya® (2.4.60)
Hence
x = ea cos [wo(l - €2p2a®)t +f] + O(e®) (2.4.61)

To compare this result with the exact result, we put the amplitude of the motion
ea = (h/A)"?. Then it follows that the approximate expression for the period is

2

2\ -1 h
T, = 2nA™V2 <1 - ﬁ%) ~2mAV2 (1 + %> (2.4.62)

We note that (2.4.62) agrees with (2.4.53). Table 2-3 shows that the agreement
between the approximate and exact values for the period improves as hp?/A
decreases.

TABLE 2-3. The Ratio of the Exact Period to the Approximate Period for
Various Values of 2p? /A for the Motion of a Particle on a Rotating Parabola

hp? /A 0. 0.05 0.1 0.15 0.25 0.4

TIT, 1. 0.995 0.994 0.988 0.973 0.946
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Exercises

2.1. For each of the following systems, (1) sketch the solution trajectories in
the phase plane, and (2) indicate on the sketch the singular points and their
types, as well as the separatrices:

(@) .ii+u=0
(b) u+u-u®=
() u-u+ud=
@ u+u+u®=0
() u-u-u=0
() u+u=0

(g) u+tu- az\u=0

2.2. Determine a two-term expansion for the frequency-amplitude relation-
ship for the systems governed by the following equations:

(@) i+whu(l+u?) =0 (w=w- 3woea?)

(b) utwiu+tau®=0 (w=wo+ > ws aa)

(¢) u-u+tu®=0 (wW¥=2-34d%)

(d) u+wiu+au?i=0 (w=wo- 3woad?)

2.3. The relativistic motion of a particle having a mass m at rest and attached
to a linear spring with stiffness k on a smooth horizontal plane is

d|___mou_ _
ar (1 - ey | FRu =0

where c is the speed of light. Determine a two-term expansion for the relation-
ship between the frequency and the amplitude.

2.4. Determine a two-term expansion for the relationship between the fre-
quency and the amplitude for a system governed by

i+ wdu+tulul=0

2.5. Consider the system shown in Figure 2-164.

f(x)
N
X X
p— M
f(x)
M Figure 2-16. Mass restrained by a nonlinear spring:
TITTTTTT 7 77 N (@) in the absence of gravity force; (b) in the pres-

(a) (b) ence of gravity force.
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(a) Determine a two-term expansion for the relationship between the fre-
quency and the amplitude for this system where the spring force f(x) = k;x + k3x°3
with x being the spring deformation.

(b) Suppose that the same system is rotated 90° as shown in Figure 2-16b.
Compare the relationship between the frequency and the amplitude for this con-
figuration with that for part (a).

2.6. A rigid rod slides back and forth on the smooth walls as shown in Figure
2-17. Show that its motion is governed by
. g(R?-1)V2 _
6+ (—25‘)2— sinf =0

R*- 31

What is the linear natural frequency? What effect does increasing / have on the
nonlinear natural frequency? Obtain a two-term expression relating the period to
the amplitude of the motion.

2.7. The small cylinder rolls without slip on the circular surface (Figure 2-18).
(a) Show that the governing equation for 0 is

2g

b+ —=—
3R-7)

sinf=0

(b) What is the minimum value of 6 at 6 = 0 for which the cylinder will make
a complete revolution? (Note that the normal force at point A must be equal to
or greater than zero.)

(c) How long does it take the cylinder to make a complete revolution in part
(b)?

2.8. Reconsider the motion of a particle on a rotating parabola that was dis-
cussed in Section 2.4.3. However now assume that the wire is weightless and that
its angular velocity {2 is changing with the position of the mass along the wire.
There is no outside influence acting on the wire.

% 244
7//
+
R /
Figure 2-17. Rigid rod slides on Figure 2-18. Small circular cylin-
the smooth walls of a circular der rolls on a circular cylindrical

cylindrical surface. surface.
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(a) Show that the equations of motion are
203 +Qx =0
and
(1 +4p%x?)x +4p*xx* + (2pg - QHx =0
(b) Show that
Qx*=~H

where \/I? is a constant of integration (essentially this is a statement of conserva-
tion of angular momentum) and that the governing equation for x can be written
in the form

. . H
(1 +4p%*x%)x +4p2xx? + <2pg - -;;)x =0

(c) In a manner similar to that used in Section 2.4.3, discuss the motion of
the mass along the parabola. Show that the motion is always bounded in this
system, in contrast with Section 2.4.3.

(d) For p=1, g=32.2, h=1000, and H = 12, plot the trajectories in the
phase plane.

2.9. The rigid frame (Figure 2-19) is forced to rotate at the fixed rate Q.
While the frame rotates, the simple pendulum oscillates.

(a) Show that the equation governing @ is
§+(1 -Acosf)sinf=0

where A =(Q%r/g) and the new independent variable is 7 = (g/r)’l 2¢. Compare
this with the motion of a particle on a rotating circle considered in Section 2.1.4.
(b) Show that this equation can be integrated to yield the following:

142=102- Fo)

» X

; Figure 2-19. Simple pendulum attached
to a rotating rigid frame.
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where éo is the speed at § = 0 and
F@)=1- %A— (1- %Acos@)cos@

Sketch the motion in the phase plane for A<1, A=1, and A > 1. Discuss the
changes in the characteristics of the motion as A increases. What is the signifi-
cance of A= 17

(c) Assuming A > 1, obtain a two-term, approximate relationship between
the amplitude and the frequency for small but finite motions.

(d) Assuming A <1, obtain a two-term, approximate relationship between
the amplitude and the frequency for small but finite motions.

2.10. In the preceding problem, suppose that the rigid frame is free to rotate
(i.e., it is not driven at constant £2). Thus {2 becomes a function of time.

(a) Neglecting the mass of the frame, show that the equations governing 6
and §2 can be written in the following form:

(rsin 0)2Q =+/H
e g 2 . _
0+<7—Q cosB) sinf =0

where H is a constant of integration (\/f? is, essentially, the angular momentum).
(b) These equations can be combined to yield

.9.+§(sin0—Acot0)=0

where A = H/gr. Show that essentially only one singular point exists, regardless
of the value of A, and that it is always a center. For A = 1, what is the value of
at the center?

(c) Find the two-term, approximate amplitude-frequency relationship for
small but finite oscillations around this center. )

2.11. Consider the system shown in Figure 2-20.

(a) Show that the equation of motion is

myxt\.. myltxx? x _
m; + 2.2 x + @ - 22y +kx +myg ‘—‘———(Zz - x2)1/2 =0

x
(b) Let R =m,/m, and u = x/I. Then expanding for |u| << 1, obtain

. . R
(1 +Ru?)u + Rui?® +w§u+2—lgu3 $---=0
where
2 k Rg
wh=—+—

my 1
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AN\NN

Figure 2-20. Exercise 2.11.
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(c) Obtain a two-term, approximate relationship between the amplitude and

the frequency of the motion.

2.12. Consider the system shown in Figure 2-21.

(a) Show that the equation governing y is given by

myg

__2mey
(12 +y2)1/2 2

. 2my [ .
myy + +
yta )7 (yy

12};2

? +y2

(b) Show that the equilibrium value of y is

Ve

lm2

- (4m}-mhV?

(assume 2m; > my)

(c) Letu=y/l and R = m,[m, and obtain

3

g

1

2Rgu

N 2Ru f .. . u?
= uu
A+uy? " vt 1+u?

< —b

Figure 2-21. Exercise 2.12.
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(d) Let

Y
u=—+=+
] n

and expand for small values of 1. Use this governing equation for 7 to obtain a
two-term, approximate relationship between the frequency and the amplitude of
the motion.

2.13. A rigid rod is rigidly attached to the axle as shown in Figure 2-22. The
wheels roll without slip as the pendulum swings back and forth. Only the ball on
the end of the pendulum has appreciable mass, and it may be considered a
particle.

(a) Show that the equation governing 0 is
(% +7* - 211 cos )6 + 7l sin 06% + gl sin § = 0

(b) For small but finite motions, determine a two-term, approximate
frequency-amplitude relationship.

2.14. Consider the same system as in the preceding exercise, except now
there is a linear spring attached to the axle as shown in Figure 2-23. The spring
force is zero when 0 is zero.

(a) Show that the governing equation for 0 is
m(® +r? - 2rl cos 0) 0 + mrl sin 002 + mgl sin 0 + kr20 =0

(b) For small but finite motions, obtain a two-term, approximate frequency-
amplitude relationship.

2.15. Consider a simple pendulum that makes repeated inelastic impacts with
a wall as shown in Figure 2-24 (Meissner, 1932). While the mass is not in contact
with the wall, the governing equation is

5+£sin0=0

2

1
7 /\/W/‘
£
6 /
Figure 2-22. Pendulum attached to roll-
ing wheels.
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\
\

AU

/&

Figure 2-23. Pendulum attached to rolling wheels that are restrained by a spring.

This equation can be rewritten in a convenient form by changing the indepen-
dent variable: Let

T=wt where w?=

Nqu

Then
0" +sinf =0
For small angles, this equation becomes
60" +6=0

(a) Show that, in the case of no impacts at all, the trajectories in the phase
plane are a family of circles.
(b) Sketch the family of trajectories when

(1) >0, (2)a=0, and (@3) a<0

Figure 2-24. Simple pendulum that makes inelastic impacts with a
WALL wall.
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Hint: Idealizing the situation, we can model the impact by a sudden change in
velocity while the position remains fixed. The impact causes the direction of
the velocity to change and, because the impact is inelastic, the magnitude to
decrease.

(c) Show that the rest position is reached in a finite length of time when
« > 0 and not at all (infinite length of time) if o <X 0. Hint: Show that the time
required for the representative point to traverse a trajectory between impacts
is equal to the central angle of the trajectory in the phase plane. Then examine
the behavior of the central angle as the time increases.

2.16. Consider the structure shown in Figure 2-25. The mass m moves in the
horizontal direction only. Using this model to represent a column, we demon-
strate how one can study its static stability by determining the nature of the
singular point at x = 0 of the dynamic equations. This “dynamic” approach is
simpler to use, and the arguments are more satisfying than the “static’” approach.
Vito (1974) analyzed the stability of vibrations of a particle in a plane con-
strained by identical springs.

(a) Neglecting the weight of all but the mass, show that the governing equa-
tion for the motion of m is

.e P
mx+(k1‘2—P>x+(k3—7§>x3+...=0

)
where the spring force is given by
Fypring =k1x + Tegx3 4
This equation can be put in the general form

¥+ax+azx+---=0

«X» F sprinG

Figure 2-25. Model for the buckling of a column.
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KN
Lo
3
e

ol
>

Figure 2-26. Rigid rod rocks on a circular surface.

(b) Sketch the potential energies and the phase planes for a; < 0 and a; > 0.
These sketches describe the behavior of the system when it is disturbed from its
equilibrium position at x = 0. What is the critical value of P (i.e., the buckling
load which causes a large response to a small initial disturbance)?

2.17. The rigid rod (Figure 2-26) rocks back and forth on the circular surface
without slipping.

(a) Show that the equation governing  is (Gaylord, 1959)
(ﬁl2 +r202)5 +7r2062 +grf cos0=0

(b) Obtain the two-term, approximate relationship between the amplitude
and the frequency of the motion.

2.18. Consider the system shown in Figure 2-27.
(a) Show that the equation of motion is

mi + ke (2 + 1222+ 7)Y -] =0 (1)

— x —|
m

SMOOTH SURFACE »
Z 7,

k , LINEAR y
SPRING

l Figure 2-27. Mass slides on a smooth sur-
face while restrained by a linear spring.
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Then show that this equation can be put in the following convenient form:
i+ 2u(l +ud)y 2@+ 1)Y2-L]1=0 (2)

where

The new independent variable is 7 = wt where w?=k/2m.

(b) Sketch the motion in the phase plane for L <1,L =1,and L > 1. What is
the significance of L = 1?

(¢c) Expanding (2) for small u (i.e., for x small compared with /), show that

u+ud+--+=0 when L=1 3)

(d) Using (3), obtain the following exact relationship between u and 7:

T\/—J————;W{ 4)

where the motion begins from rest at u = -u,. This expression can be put in a
more convenient form by letting

U=-uycosd 5

Using (5), show that (4) becomes

= 1
T f (1- 1 5 sin ¢>)1/2 F(2’ % (6)

where F is called the elliptic integral of the first kind and is a tabulated function.
Show that the period of the motion is T =~ 7.416 /u,.
(e) Equation (6) defines ¢ as a function of 7. One writes

¢ =am(7)
(and one says amplitude of 7). Then it follows that
u=-ugcos ®p=-uqycos [am(r)] = -ugcn(t)

The function cn is one of Jacobi’s elliptic functions. Plot u as a function of 7 and
compare this graph with a plot of the cosine function, giving both the same fre-
quency and amplitude. Plot only one half of the cycle.

2.19. Consider the behavior of a system governed by
W +ud=0
(a) Use the method of harmonic balance and show that

u=1ug cos (w7 +f)
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where w = (\/3—/2)110. Hence T'=7.255/uy. Compare this result with that ob-
tained in part (d) of Exercise 2.18. What is the percent error?

(b) By expanding the integrand and integrating term by term, refer to (6) in
Exercise 2.18, obtain an approximate expression for the period. Show that three
terms are needed in the expansion before one can obtain greater accuracy than
that given in part (a) above.

Number of Terms
in Expansion

1 2 3 4 5 6

Tuy | 6.283 7.069  7.289 7.366 7.396  7.407

2.20. Use the method of harmonic balance to show that the first term in the
nonlinear frequency of the system

u+tou’=
is w = (5/8)242, where a is the amplitude of oscillation.

2.21. Apply the method of equivalent linearization (e.g., Caughey, 1963;
Blaquiére, 1966; Iwan 1969, 1973; Patula and Iwan, 1972; van der Werff, 1973,
1975, Srirangarajan, Srinivasan, and Dasarathy, 1974; Dasarathy, 1975; Chou
and Sinha, 1975; Iwan and Miller, 1977) to

u"+ud=0 (1)
that is, replace (1) by
xX"+Ax=0

(the ““equivalent” linear equation). Then the integrated square of the error over a
time interval T is given by

T
e =J‘ (Ax - x3)2dr=(Ax - x3)?
0

Minimize this error with respect to A and obtain

A= xHx?
Next write the solution of the linear equation in the form

x =ug cos (wr +3)
where u and f§ are constants of integration and
w=v
Choosing T to be the period of x, show that
V3
wW=—u,

in agreement with the results of Exercise 2.19.
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2.22. Again consider
W +ut=0 (1)
Now let the approximate form of u be
u=uqy cos (wr +f) (2)

where uy and f are arbitrary constants and w is to be chosen in such a way as to
optimize the approximation. Substituting (2) into (1), show that the “residue’ is

R =3 ud - wup) cos (w1 +P) + 3 uj cos Bwr +3p)

and that the average of R? over the interval 2m/w is

(R?)= 3 (Fu3 - w?uo)® + 35 us
(a) Show that if (R?) is minimized with respect to u, (assuming ug is not
Zero),

w= %(6 + \/6_)1/2140

The root with the positive sign maximizes (R?) and must be discarded. The
other root is not in agreement with the result obtained by the methods of har-
monic balance and equivalent linearization.

(b) Instead of minimizing (R?) with respect to ug, show that if (R?2) is mini-
mized with respect to w,

W=—"ug
2

(c) Instead of minimizing (R?), show that if R is made orthogonal to the
assumed solution (i.e., in this case {u#yR cos (w7 + ¢))=0)

This is the Galérkin procedure.

2.23. Is the method of multiple scales appropriate for solving u" +ud =07
Explain your answer.

2.24. Consider the system of Exercise 2.18 when the free length of the spring
oLl _ 1
is5l(ie,L=7).

(a) Show that the equation of motion becomes
u"tut+qud+o=0

Assuming the motion begins from rest at u = -u,, show that

_ J. du
T=2) M- )G+

-u



EXERCISES 89

(b) Letu =-ug cos 6 and put this expression in the form

2 f" d0
T @) J, (- K2 sin? 0)12

where k2 = u3 /(4 + 2ud).

(c) Make a plot of the period as a function of u,.

(d) Foruy much less than unity, expand the integrand, then integrate term by
term, and obtain the following two-term expression for the period:

3u3
T=2m{1- ="+
16

Compare this result with (2.3.34).
2.25. (a) Consider a system governed by the nonlinear equation
X+a;x +agx3=
Using the method of equivalent linearization, show that it can be replaced by
X+Ax=0

where
_ a{x?) +as(x*)

(x?)

Let x =a cos (wt + ), where a and 8 are constants of integration and w = ﬁ
Perform the averaging over 2m/w and obtain

A

)\=OL1 +%a3a2

in agreement with (2.3.34).
(b) Now consider a system governed by the nonlinear equation

Xx+togx +opx? +azxd=
Using the method of equivalent linearization, replace it by
X+Ax=0

where

a{x ) + ap{x?) + ag(x?)

(x?)

A=

Show that in this case, one also obtains

- 3, 2
A=a; +303a

in disagreement with (2.3.34).
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(c) Can you make any conclusions about the method of equivalent
linearization?

2.26. Show that the results obtained by using the Galérkin procedure depend
on the assumed form of the solution for the following governing equation:

X+a;x +ayx?+ax3=0
(a) Let
x =a cos (wt +)
and show that
wl=a; +303a?
(b) Let
x =acos (wt+P)+B
and show that
R = [-aw? + aya + 20,aB + 3 a3a® + 3a3aB?] cos (wt +P) +a; B
+0oy(3a? +BY) + a3 (B> +34%B) + [§ a,a® + 3 aza®B] cos (2wt +ff)
+ %a3a3 cos (3wt + 30)
(c) Using the condition that
(aR cos (wt +P))=0
over the interval 7' = 2m/w, obtain
—aw? +aya +20aB + 3 aza® +303aB> = 0
(d) Using the condition that
(BR)=0
over the interval T = 27/w, obtain

a0, B+ay(3a® +B?) +a3(B° +34°B)=0

Then show that
B=-laai'a®+---
and
w?=0y +3a3a% - adayta? 4
(e) Let
x =a cos (wt+ )+ B+ C cos Quwt + 26)
and obtain
wr=a; + 3030 - 2a3a7'a?
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(f) Compare these results with (2.3.34) and draw conclusions about the use
of the Galérkin procedure.

2.27. Consider the system governed by the following equation of motion:

u-u+u*=0

(a) Show thatu =1 is a center. Then let v =u - 1 and obtain

v+3v+6v2+4P+0vt=0

(b) Use either the Lindstedt-Poincaré method or the method of multiple
scales to obtain a two-term frequency-amplitude relationship.

Flu)
4
4 F(u)
ko
H k
i |
—Qc ! =Qac

T L —>u »u
1 Qe Q¢
i
1
1

(@) (b)

F(u)
L
kz
ol
-ac :
. . »u
: Qe
Tk,
L
k2
(c) Figure 2-28. Exercise 2.28.
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2.28. Consider the free oscillations of a system governed by
U+Fu)=0

where F(u) is defined in Figure 2-28 for three different cases. Show that in the
first approximation

2% 2\1/2
(a) wi="— [sin”(fﬁ) +2e (1 - a—;)
s a a a
2\1/2
o oter 2 e (=) )]
7 a a a

2\1/2
© w§=k2-%(k2—kl)[sin‘l(—aﬁ>+&(1—%—) ]

a
[Many more cases were treated by Siljak (1969, Appendix F).]
2.29. Consider the system governed by the following equation of motion:
Uu+ku"=0

where n is an odd integer. Using the method of harmonic balance, show that an
approximation of the frequency-amplitude relationship is

1
o 2k A1 P53 (n+2)]
VT T3 +3)]
where I is the gamma function.

2.30. Consider the motion of a system governed byu-u+u”= 0, where n is
a positive integer. Let u = 1 + v, expand for small €, and obtain

vE(m- Do+ gne- Dol +inm-DE-2)®+---=0
Determine a two-term frequency-amplitude relationship.
2.31. Consider the system shown in Figure 2-29.
(a) Show that the equation of motion of the disk can be written in the form

. 2] f . _
0+w [1 [2r(r+l)(l—0059)+12]1/2 sind =0

where w? = 2k(r + I)/mr and f is the free length of the spring.

Figure 2-29. Particle on a wheel restrained by
a spring.




EXERCISES 93
(b) Sketch the potential energy as a function of  for

@ rsi
Gi) 1<f<i+2r
(i) f=>1+2r

Show the equilibrium positions and indicate whether they are stable or unstable.
(c) For f>1 obtain a two-term expression relating the amplitude and the fre-
quency of small oscillations around the equilibrium position.

2.32. The cylinder rolls back and forth without slip as shown in Figure 2-30.
(a) Show that the equation of motion can be written in the form
X+wil-f1+x)Vx=0

where w? = 2k/3M and f is the free length of the spring. All lengths were made
dimensionless with respect to the radius 7.
(b) Sketch the potential energy as a function of x for

@ 1<f
G 1>r¢

Show the equilibrium positions and indicate whether they are stable or unstable.
(¢c) Forf= \/5 , obtain a two-term frequency-amplitude relationship for small
oscillations around the equilibrium position.

2.33. Consider the system governed by (Baker, Moore, and Spiegel, 1971):
- 8(1-u)u=-elu+(1-8)ul
where € << 1 and 6 = 0(1)
(a) When € =0, show that
u? +26(1—12-u4 - lu2 +bu)=E

Show that there are three equilibrium positions if |b] < 2 5 and only one if
|b| >2 5- Sketch the trajectories in the phase plane for the cases

(i) b=0
(ii) 0<b<%
Gii) b>2

(b) Determine a first-order approximate solution for small €.

Figure 2-30. Cylinder rolls without slip.
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2.34. Consider the motion of the simple pendulum of Section 2.4.1.

(a) Use the Lindstedt-Poincaré technique to show that
33

€°a
0 = ea cos (wt + ) -
( B 192

cos (3wt +30) + 0(e%)

24?2 et
wW=woll - ——+

+O(e®
16 1024) )

(b) Use the initial conditions 8(0) = 0 and é(O) = éo to show that

s €2a?
m, Op=-eawll+ +oo

g=

(SIS

64
(c) Use (a) to eliminate w from (b) and obtain
ég _ 3e34®

2k=-€ea+
Wo 64

IR

Then show that
ea=-2k-3K>+- -

(d) Determine the period of oscillation and compare it with (2.4.6).



CHAPTER 3

Nonconservative
Single- Degree-of-Freedom
Systems

In this chapter we consider the damped unforced oscillations of systems having
a single degree of freedom. We begin with a discussion of several damping
mechanisms. For a comprehensive discussion we refer the reader to the book of
Lazan (1968). Next we discuss methods for obtaining qualitative and quantita-
tive analyses. Then we consider systems with slowly varying coefficients, and
finally we consider relaxation oscillations.

Forces that are functions of the velocity are called damping forces. When the
damping force, or simply the damping, causes the amplitude of the unforced
motion to decrease, it is called positive damping. When the damping causes
the amplitude to increase, it is called negative damping. In this chapter we con-
sider both types of damping mechanisms.

3.1. Damping Mechanisms

3.1.1. COULOMB DAMPING

When the contact surface between two solids is dry, the friction force
opposing their relative motion is called Coulomb damping. When an external
force is applied to move the block in Figure 3-1a from rest, a friction force
which opposes the impending motion develops. The magnitude of the friction
force f increases until a critical value is reached, and then the block moves. After
the motion begins, the magnitude of f decreases as long as | x| <|X,, | and then
increases when |x| becomes larger than |X,, | as shown schematically in Figure
3-1b. The critical value is usually expressed as u,/N, where ug is the so-called
static coefficient of friction and N is the normal force between the block and
the surface; in this case, it is mg. In many applications, the Coulomb force is
approximated by a constant. Thus referring to Figure 3-1a, one writes the equa-

95
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f

(a) (b)

Figure 3-1. (@) Spring-mass system. (b) Friction force as a function of velocity.

tion of motion as

B Mgmg when x <0
mx+F(x)=f= . (3.1.1)
-ugmg when x >0
where gy is the so-called dynamic, or kinetic, coefficient of friction and F(x)
is the negative of the restoring force of the spring.

3.1.2. LINEAR DAMPING

When the contact surface in Figure 3-1a is covered with a thin liquid film so
that the two surfaces do not touch, it is usual to assume that the friction force is
proportional to the velocity gradient (i.e., f « x/h, where X is the relative veloc-
ity and A is the thickness of the film) and opposes the motion (Newton). Thus
referring to Figure 3-1a, one writes the equation of motion in the form

mx +cx+ F(x)=0 (3.1.2)

where ¢ is a positive constant that is a function of the fluid properties and the
condition of the surfaces. Mahalingam (1975) investigated the combined in-
fluence of Coulomb and linear damping on the response of vibratory systems.
Another example of the drag force being proportional to the velocity occurs
when an immersed body moves through a fluid at very low Reynolds numbers
(Stokes flow). The case when the Reynolds number is large is discussed next.

3.1.3. NONLINEAR DAMPING

When an immersed body moves through a fluid at high Reynolds numbers, the
flow separates and the drag force is very nearly proportional to the square of the
velocity. Thus one writes the equation of motion in the form

mx +F(x)=-c|x|% (3.1.3)
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where c is a positive constant that is a function of the body geometry and the
fluid properties. For moderate Reynolds numbers, the damping force lies be-
tween the linear and quadratic forms. Consequently some researchers have repre-
sented the damping force as —c|%|*X, where 0 < a < 1. Since these models of
damping are not analytic, other researchers have used damping forms such as
-cf (x)x or - cg(x)x, where f(x) and g(x) are even analytic functions of x and
%, respectively. Hemp (1972) proposed a combination of Coulomb and qua-
dratic damping for a runaway escapement mechanism.

3.1.4. HYSTERETIC DAMPING

Let us consider the system shown in Figure 3-2a, which is a simple example
illustrating hysteretic damping. The mass m lies on a smooth surface, and the
restoring mechanism consists of an elastic spring (not necessarily linear) in
parallel with a linear elastic spring and a “Coulomb damper” in series. The func-
tions f; and f, give the forces in the springs.

Let us suppose that the motion is started from rest by moving the mass m to
the right. The restoring force in the top element is always given by f; (x), where
x is the position of the mass m. However the restoring force in the bottom
element depends on the path traveled by m. If x < x,, where f,(x,) = f; is the
critical friction force in the damper, the elongation in the bottom spring is x
and the restoring force is kx, where & is the spring constant. When x > x;, the
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Figure 3-2. (e) Simple example of hysteretic damping. (b) Typical loading diagram for the
bottom element in the restoring mechanism of Figure 3-24.
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damper slips, the elongation in the spring remains x,, and the restoring force
remains fy = kx; as shown in Figure 3-2b.

Let us assume that the motion reverses its direction at x = x; > x,. Initially
the damper does not slip and the restoring force in the bottom spring decreases
from kxg to k(x + x; - x;) along the line BC. As the mass m reaches the location
X =X, = Xp - 2x;, the force in the bottom spring reaches the critical friction
value f;, but now it is compressive. As x decreases beyond x,., the damper slips
and the restoring force in the bottom element remains -kx,. If the motion
reverses its direction at x = x4, the damper does not slip initially and the re-
storing force in the bottom element is given by k(x - x; - x4) along the line
DA. As x reaches x,, slipping occurs and the restoring force in this element
remains kxg. If the motion reverses its direction again at x 1, initially no slipping
occurs and the restoring force in the bottom element starts decreasing as shown
in Figure 3-2b. The area enclosed in the diagram as the load is cycled equals the
energy dissipated.

The hysteresis described by the above example is of the hardening type and is
linear. There are many structures that exhibit a hardening behavior under cyclic
loading. These include riveted and bolted structures (Iwan and Furuike, 1973),
externally reinforced masonry walls (Tso, Pollner, and Heidebrecht, 1974), and
reinforced concrete shear walls and beam-column connections (Shiga, Shibata,
and Takahashi, 1974; Townsend and Hanson, 1974). Miller (1977) presented a
physical model, which produces a form of hardening hysteresis, and used it to
determine the steady-state response of single- and multidegree-of-freedom
systems. Caughey and Vijayaraghavan (1976) treated a one-degree-of-freedom
system with linear hysteretic damping. Systems with bilinear hysteretic damping
models were analyzed by Jacobsen (1952); Goodman and Klumpp (1956);
Thomson (1957); Berg and DaPeppo (1960); Caughey (1960b, c); Tanabashi and
Kaneta (1962); Iwan (1965); Jong (1969); Tso and Asmis (1970); Drew (1974);
and Karasudhi, Tan, and Lee (1974).

In addition to the structural systems discussed above, there are composites of
ductile materials that are assembled in such a way as to slip or yield gradually.
These exhibit a softening hysteretic behavior under cyclic loading; that is, their
hysteresis loops are generally composed of smooth curves with rounded knees.
Such systems were treated by a number of investigators including Jennings
(1964), Iwan (1967, 1968a, b), and Jennings and Husid (1968). Distributed-
element models for hysteresis were used by Pisarenko (1948), Iwan (1966,
1970), and Jong and Chen (1971).

Other interesting examples of hysteresis can be found in nonlinear aero-
dynamics. In Figure 3-3, from Atta, Kandil, Mook, and Nayfeh (1977), the
pitching moment and normal-force coefficients are plotted as functions of angle
of attack. For this plot a rectangular wing is initially in a steady state at an angle
of attack of 11°. Then the angle of attack suddenly starts to increase. When the
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v

(a) (b)

Figure 3-3. (e) Pitching-moment and (b) normal-force coefficients as functions of angle of
attack.

angle of attack reaches 15°, it stops changing and a new steady state develops.
Then the angle of attack suddenly begins to decrease. It continues to decrease
until it reaches 11°. Then it stops decreasing and a new steady state develops.

In Figure 3-4 from Thrasher, Mook, Kandil, and Nayfeh (1977), a rectangular
wing at an angle of attack undergoes a harmonic yawing motion around an axis
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through the leading edge and perpendicular to the wing surface. The plots show
the rolling-moment, pitching-moment, and normal-force coefficients as functions
of the angle of yaw. The loads are calculated by using potential theory and
allowing for viscous effects by separated vortex sheets. The area enclosed by a
loading path equals the energy dissipated during one cycle of the motion.

Davidenkov (1938) proposed an analytic hysteretic model which has a pointed
hysteretic loop. It was used by Mozer and Evan-Iwanowski (1972) to analyze
parametrically excited columns with hysteretic material properties and by Rajac
and Evan-Iwanowski (1976) to analyze the interaction of a motor having limited
power with a dissipative foundation.

3.1.5. MATERIAL DAMPING

When a real material is deformed, certain internal mechanisms are responsible
for a dissipation of energy. Several models have been proposed for these mechan-
isms; among them are analogies to springs and dashpots in series (Maxwell fluid)
and springs and dashpots in parallel (Kelvin and Voight solid). For more details
of these models of viscoelastic materials and other more complicated models we
refer the reader to the books of Fligge (1967) and Lazan (1968). Besides the
investigators mentioned in Chapter 7 who treated the nonlinear vibrations of
viscoelastic beams, plates, and shells, a number of other investigators studied the
nonlinear vibrations of viscoelastic systems. These include Maiboroda and Mor-
gunov (1972); Maiboroda, Koltunov, and Morgunov (1972); Movlyankulov
(1974); Kravchuk, Morgunov, and Troyanovskii (1974); Karimov (1974);
Ibragimov (1975); and Nambudiripad and Neis (1976). Caughey (1960a) showed
that the variations of the amplitude and the phase of a wave train along a semi-
infinite rod exhibiting weak bilinear hysteresis are quite different from those
along a linear viscoelastic rod.

It should be noted that viscous damping, including viscoelastic damping used
to simulate the internal damping mechanism of physical systems, may lead to
the prediction of some peculiar instabilities in certain circulatory systems sub-
jected to nonconservative forces which depend on the generalized coordinates
(Ziegler, 1952, 1953, 1956, 1968; Bolotin, 1963; Leipholz, 1964 ; Herrmann and
Jong, 1965, 1966; Nemat-Nasser and Herrmann, 1966; Nemat-Nasser, Prasad,
and Herrman, 1966; Herrmann, 1967; Nemat-Nasser, 1967, 1970).

3.1.6. RADIATION DAMPING

One mechanism of radiation damping involves the transfer of energy from a
moving body to a surrounding, unbounded fluid. As examples, a pulsating
bubble in a compressible fluid does work on the fluid during the motion and
hence causes the kinetic energy of the fluid (in the form of pressure waves that
radiate outward) to increase; similarly, a body vibrating at the interface between
two liquids creates surface waves that radiate outward. In both cases the amount
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of fluid set into motion continually increases. The effect is to damp the motion
of the body. To illustrate this concept, we consider in detail the symmetric
pulsations of a spherical bubble in an infinite, slightly compressible liquid.

We assume that the bubble is initially in equilibrium with the liquid. The initial
radius of the bubble is R,, the initial density of the gas inside the bubble is pqg,
the initial pressure in both the gas and the liquid is p,, and the initial density of
the liquid is pg.

The linearized equations describing the motion of the liquid are

Conservation of Mass

r—lz-éa;(rzuy;l;g—‘;:o (3.14)
Conservation of Radial Momentum
w1 815
Equation of State
dp=cdp (3.1.6)

where u, p, p, and ¢ are the radial component of the velocity, the density, the
pressure, and the speed of sound in the liquid, respectively. The problem for-
mulation is completed by the specification of the boundary conditions. The
linearized form of these boundary conditions at the bubble surface is

p=p, and u=eRon atr=R, 3.1.7)
where
R=Ry[1 +en(®)] (3.1.8)

is the instantaneous radius of the bubble. Since disturbances decay away from
the bubble,

u—>0 and p—>p, as Fr—>™ (3.1.9)

Equations (3.1.4) through (3.1.6) can be combined to yield the wave equation
19 (,0p\_ 13
—— —l=— = 3.1.10
r? or (r 8r> c? or? ( )

The solution corresponding to an outward-propagating wave is

(3.1.11)

P=Do * f(r; <t)
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Hence

3 D
g;(m)——ca(rp) (3.1.12)

To determine the equation describing n, we integrate (3.1 S)fromr=R, tor=oo,
use (3.1.7) and (3.1.9), and obtain

Ry 5 _
f Lar+B"Po_ (3.1.13)
w Of Po

To evaluate the integral in (3.1.13), we replace du/dt by (1/r?) (3/dr) (r*u),
integrate the result by parts, and obtain
RO Ro 1 aZ
+ f — (r*u)dr

R 'R
° du f 190 du
—d =  (y2 d =—p —
f ot 4 r? at(r u)dr ratm

o oo r or ot
(3.1.14)

But from (3.1.4) and (3.1.6) one can obtain

1 9 r 9%p 1 92

= e o= 3.1.15

r or ot (r*u) poc? 3t poc? ar? (p) ( )
Using (3.1.12) we express (3.1.15) as

1 9% 1 9 1 3 < ap)

— =— =——\r— 3.1.16

r or ot (ru) PocC Ot ar(’p) PocC or ¢ ot ( )

Combining (3.1.14) and (3.1.16) and performing the integration, we obtain

R, 1 R,

op
— =
o PoC ot

(3.1.17)

oo

Using (3.1.7) through (3.1.9) in (3.1.17) and combining the resulting equation
with (3.1.13), we obtain

“erzii+ Ko %Pg  PePo_ (3.1.18)
poc 0t Po

Conservation of mass in the bubble gives
PeR> = pog Ry (3.1.19)

For an isentropic motion of the gas inside the bubble

Y
Pg _ (ﬁg—) (3.1.20)
Po Pog
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where v is the ratio of the specific heats of the gas. Thus from (3.1.8) it follows
that

p Ro\*
;& = ? =(1+en)>7 =1- 3eyn (3.1.21)
0

Substituting (3.1.21) into (3.1.18) yields

. 3wo . 370
nt———nt—n=0 (3.1.22)
PocRo poR}
The second term in (3.1.22) is a damping term which is due to the radiation of
energy from the bubble outward via the liquid. ‘

For this damping mechanism there is actually conservation of energy if one
regards the vibrating body and the surrounding fluid to be a single dynamic

system.

3.1.7. NEGATIVE DAMPING

In all the examples described above, the damping is positive. Here we consider
a van der Pol oscillator in detail. This is a simple example of a system having a
dampinglike mechanism which acts to increase the energy (i.e., which is nega-
tive) when the amplitude of the motion is small and to decrease the energy when
the amplitude is large. As a result, the system reaches a so-called limit cycle
which is independent of the initial conditions.

The van der Pol oscillator is an electrical circuit consisting of two dc power
sources, resistors, inductance coils, a capacitor, and a triode as shown in Figure
3-5. The triode has three main elements: a cathode (filament A) heated by one
of the dc sources so that it emits electrons; an anode (plate P, positively
charged), which attracts the electrons emitted by the cathode; and a grid (course
mesh G), which controls the flow of electrons from the anode to the cathode.
The control is accomplished by changing the potential of the grid by a mutual
inductance.

Figure 3-5. Circuit diagram for the van der Pol oscillator.
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To derive the equation governing the current i in the inductance coil of the
oscillator, we apply Kirchhoff’s laws:

di

L ——+M——-—R 3.1.23
' dr IR ( )

di dig _4qc
L +M—==——= 3.1.24
Lt a C ( )

le di
Vg =L +M— 3.1.25
¢=L— I ( )
Vp=E- Rig (3.1.26)
ip=i+ig *i, (3.1.27)

In addition,
dq.

j, = —— 3.1.28
e dr ( )

where g, is the charge on the capacitor.
The current in the grid ig is assumed to be negligible. Moreover it was shown
experimentally, and it can be shown theoretically, that

ip=0(Vg +AVp) (3.1.29)

where A is a constant. The reciprocal of A is called the amplification factor, and
the function ¢ is called the characteristic of the vacuum tube.
Using these assumptions one can combine (3.1.23) through (3.1.29) to obtain

L cgti %‘3—% ~¢[AE+(M—AL1)S—;:] (3.1.30)
To simplify (3.1.30), we let
x=i- ¢(AE)
and find
L,Cx+x+F(Xx)=0 (3.1.31)
where
F(i)=%5c— O[AE + (M- AL,)X] + ¢(AE) (3.1.32)

The function F(%) describes the damping mechanism for the circuit.
The character of the damping mechanism depends on the characteristic of the
triode ¢. Typically the function ¢ has the properties shown in Figure 3-6. The
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Figure 3-6. The characteristic of the triode.

saturation exhibited by the triode is the result of the plate current being limited
by the rate of production of electrons.
When the amplitude of the motion is small (|x| << 1), we may write

F®) =F'(0)Xx=[L,R™' - (M- AL,)¢'(AE)] % (3.1.33)

We note from Figure 3-6 that ¢'(AE) is positive. Thus if one can make
(M- AL,)>0and (M- AL,)¢'(AE)> L, /R, then one can make the damping
negative. It is possible to build such a circuit.

When the amplitude of the motion is large, ¢ is nearly a positive constant if
X is positive, and ¢ is nearly a negative constant if X is negative. Now the
damping is positive. Thus the character of the damping mechanism changes from
negative to positive as the amplitude of the motion increases.

To approximate the function F(x) in a region around the point X = 0 which
includes the transition from negative to positive damping, one can represent
F(x) by a cubic function as

F(x’)="a1i+a33e3 (3.1.34)

where o; and a5 are positive constants. Substituting (3.1.34) into (3.1.31) and
letting x = u\/a; /a3, we obtain

U+ wiu-e@-a)=0 (3.1.35)

where € = a; wj and w} = (L,C)". Equation (3.1.35) is often called Rayleigh’s
equation. Differentiating (3.1.35) with respect to ¢ yields

v+ wiv-e(1-0v?)d=0, v=+/3u (3.1.36)

which is often called van der Pol’s (1922) equation.

Next we describe a mechanical system that exhibits negative damping. Specifi-
cally we consider the system shown in Figure 3-7a. It consists of a block of mass
m resting on a rough belt which moves with a constant speed X, and connected
to a spring attached to a rigid support. If x is the displacement of the block from
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oy
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Figure 3-7. (a) Mechanical system capable of executing self-sustained oscillations. (b) The
characteristic of the mechanical system.

the free-length position of the spring, then
mx+kx-f(x-%0)=0 (3.1.37)

where f is the Coulomb friction force between the block and the belt and is
shown in Figure 3-1b.
We introduce a new variable u defined by

u=x-k71 f(-%) (3.1.38)
Then (3.1.37) becomes
Ut wdu+F@)=0 (3.1.39)
where wj = k/m and
F@)=m™ [f(-%¢) - f(l - %o)] (3.1.40)

If X, is not too large, F(i) has the form shown in Figure 3-7b. We note that the
slope of F(i) at the origin is negative if X, <|%X,, |. If X, is large, then the slope
of F(&i) at the origin will be positive. Thus negative damping occurs only for
values of X, < |X,, |, where |X,, | corresponds to the relative extrema of the
curves in Figure 3-15.

We note that dry friction can be used to exhibit negative damping in many
other mechanical systems. Rayleigh used arguments similar to the above to
explain the production of oscillations in a violin string resulting from drawing
a bow in one direction across the string. Dry friction also produces self-excited
oscillations in a pendulum swinging from a rotating shaft, and it causes whirling
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of a shaft in a loose bearing. Dry friction can also be used to explain the chatter-
ing of the brake shoes against the wheels of a railroad car when the brakes are
applied.

Self-excited oscillations resulting from a form of negative damping occur in
many other physical systems. Lamb (1964) used a van der Pol model to de-
scribe the multimode operation of lasers, Lashinsky (1969) used van der Pol
models to describe mode locking and frequency pulling in Q machines, Keen
and Fletcher (1970) used a van der Pol model to describe suppression of the
ion sound instability in an arc discharge, and DeNeef and Lashinsky (1973)
used a van der Pol model for unstable waves on a beam-plasma system. A van
der Pol model was also used to describe the effect of a beam modulation on
standing waves on an electron beam-produced plasma in which the endplate
potential reflects the electron beam back into itself (Nakamura, 1971).

Self-excited oscillations also occur in supersonic flutter of plates and shells
(Fung, 1963; Dowell, 1975, Section 7.6) and in oil film journal bearings (Jain
and Srinivasan, 1975). They also occur whenever a supersonic gas flows over a
thin liquid film (Nayfeh and Saric, 1971a; Saric, Nayfeh, and Lekoudis, 1976).

3.2. Qualitative Analysis

The equations governing the systems discussed in the previous section have the
form

%= f(x, %) (3.2.1)

where in general f is a nonlinear function of both x and X. It is convenient to
replace (3.2.1) by a system of first-order equations by introducing two new
dependent variables:

X1 =X and xZ:.X.‘

Then, in place of (3.2.1) we can write

T (322)
Xy =f(x1,%,)

In subsequent chapters we consider more general systems of equations having
the form

£i=Xi(xl>x2’x3!-'-:xn) (3'2'3)

fori=1,2,...,n. Clearly (3.2.2) is a special case of (3.2.3). Here we begin the
discussion with some general observations which apply to (3.2.3) for all #. Then
we limit the discussion to the case n = 2.
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It is convenient to introduce the matrix notation

X, X,
Xq X,
x=< ° randX=< - (324
Xp Xn
so that (3.2.3) becomes simply
x = X(x) (3.2.5)

We assume that the vector function X has bounded first partial derivatives in
the region D. It follows from the mean-value theorem for functions of several
variables that in D there exists a constant M for which

IX(x)- X(y)| <M|x-y]| (3.2.6)

Here | | indicates the norm of the vectors, which is defined by
n
x-yl=> Ix;- il (3:2.7)
i=1
and

|X(X)* X(Y)I=Z lXi(xl,'xZa <. ,xn)— Xi(ylay27 <. ayn)l

(3.2.8)

Vector functions X that satisfy (3.2.6) are called Lipschitz functions. The sig-
nificance of the vector function X being a Lipschitz function is that there exists
a unique solution to the initial-value problem defined by (3.2.5) and a set of
initial conditions having the form

x=c¢ att=0 (3.2.9)

(e.g., Coddington and Levinson, 1955; Struble, 1962).

At any instant, we may regard the solution vector as a point in space. For
n =1, 2, or 3, this space can easily be identified with the ordinary physical
space, but for n greater than 3 it is an abstract space. The point representing the
solution is often called the state of the system, or simply the state. The totality
of all possible states, corresponding to all initial conditions and all times in the
range under consideration, forms the state space. In two dimensions this space is
simply a plane. In the special case when the equations have the form (3.2.2), the
state space is called the phase plane, as in Chapter 2.
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It follows that we may view the response of any system to an initial distur-
bance as the motion of a single point through the state space. The path followed
by this point representing the solution is a curve defined in terms of the param-
eter £. As in Chapter 2, it is called the trajectory. The portion of the trajectory
corresponding to ¢ < 0 is called the negative half-trajectory, while the portion
corresponding to ¢ 2 0 is called the positive half-trajectory.

It may happen that the initial conditions, c, are such that

X;i(c)=0 fori=1,2,...,n (3.2.10)
Then it follows that for all ¢
x;=0 fori=1,2,...,n (3.2.11)

In this case the trajectory consists of a single point, c. Such a trajectory is called
a singular trajectory, or a singular point, and the corresponding solution is called
a singular solution. Points that are not singular are called regular.

The state speed is defined by

. n ‘s 1/2 n 1/2
v=mag(x)=[z x,—] =[Z X,Z] (3.2.12)
i=1 i=1

Thus the state speed is zero if, and only if, each X; is zero. It follows that the
state speed is zero at a singular point.

One can determine the components e; of the unit vectors which are tangent to
the trajectories from

PP — (3.2.13)

At every regular point, the direction field given by (3.2.13) is definite, and hence
only one trajectory can pass through such a point. But at a singular point the
direction field is not definite, and more than one trajectory can pass through
such a point. There are cases for which all the X,, are zero at a point, but the
direction field is definite. This occurs when the X,, have a common factor. Such
cases are not included in this book.

If trajectories pass through a singular point, as in the case of the saddle point
considered in Chapter 2, an infinite amount of time is required for the state to
reach the singular point from any other point. This is proved in Chapter 2 and is
indicated here by the fact that the system is both at rest and in equilibrium at
a singular point. In other words, if the initial conditions start the motion at
such a singular point, the state of the system never changes; or if the initial
conditions start the motion on a trajectory going into a singular point, but not
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at the point itself, the state of the system continually changes but never reaches
the singular point.

A nontrivial trajectory corresponds to a periodic motion if, and only if, it does
not pass through a singular point and it is closed. This follows from the fact
that the representative point, having begun its motion at an arbitrary point on
the closed trajectory, will return to its initial point in a finite period of time (the
period of oscillation) because the state speed is nonzero at every point of the
trajectory.

One can obtain a good qualitative representation of the motion in the entire
state space if one knows the character of the motion in the neighborhoods of
the singular points. In the remainder of Section 3.2, we restrict our attention fo
systems for which n = 2. First we obtain the character of various singular points
and in the process classify them; then we construct trajectories for the entire
phase plane; and finally we study the stability of the motion in the neighbor-
hood of a singular point. For a topological description of the singular points of
systems with n > 3, we refer the reader to the book of Blaquiére (1966) and the
monograph of Tondl, Fiala, and Skliba (1970).

3.2.1. A STUDY OF THE SINGULAR POINTS

As discussed above, the singular points of (3.2.5) are the solutions of (3.2.10).
To study the behavior of the solution near one of these points, we shift the
origin to this point by introducing the transformation

Y1 =X1 7~ X0, Y2 TX2~ X20 (3.2.14)
in (3.2.3) to obtain

V1 =X1(X10 t Y1, X5 +y5)

V2 =Xy (X1 +y1, %50 1))

If X; and X, have bounded first p;drtial derivatives at x;o and x,y, we rewrite
(3.2.15) as

(3.2.15)

V1= X1(X10, X20) t @11V tapy, +Ri(V1,¥2)
Y2 =X2(X10, X20) T an V1 Y anys Ry (¥, 2)

where a;; = 0X;/0xj(X10, X30) and Ry(¥1, ¥2) = o(r) asr =+/y?3 +y = 0. Since
Xj(x10, X5) = 0 for j = 1 and 2 and since R, and R, are small compared with
Vy? + y2, one expects the character of the trajectories near the origin to be
given by the linearized form of (3.2.16); namely

y=14]y (3.2.17)

(3.2.16)
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where

Y2 az dxp

I1 i1 42
Yz{ } and [4] = [ ] (3.2.18)

This is so provided that |[A] | =a;,a4; - ajpa,; # 0 (i.e., the origin is an isolated
singularity). The condition |[4]| # O is violated when the development of X;
and X, begins with terms of higher order than the first. In the latter case,
singularities of higher order and of types which differ from those obtainable
from (3.2.17) can occur; examples of these can be found in Section 2.4.2 when

= 7 and Section 2.4.3 when A = 0.

To study the singular points of (3.2.17), we find it convenient to introduce a
linear transformation from y to u by using the nonsingular constant matrix [P]
according to

y= [Plu (3.2.19)

This linear transformation preserves the topological features of the system
(3.2.17). Under this transformation the origin is mapped into the origin, straight
lines are mapped into straight lines, and parallel lines are mapped into parallel
lines, with the spacing between them remaining proportional.

Substituting (3.2.19) into (3.2.17) and premultiplying the result by [P] !, we
obtain

u=[Blu (3.2.20)
where
[B] = [P] 7! [4] [P] (3.2.21)

Matrices [A] and [B], related as in (3.2.21), are said to be similar matrices. The
significance of this is that these matrices have the same eigenvalues. This is
shown next. The eigenvalues of [B] are given by

det ([B] - A[7])=0 (3.2.22)
Using (3.2.21) and observing that
(P17 111 [P] = [1]
we can rewrite (3.2.22) as
det ([P] 7 ([4] - NI [P]) =0
or, from the properties of determinants,

det ([P] ™) det ([4] - A[1]) det ([P]) =0
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and because
det ([P] ™) det ([P =1
it is also true that
det ([4] - A[D=0 (3.2.23)

We can choose [P] in such a way as to make [B] have the simplest possible
form, the so-called Jordan canonical form. If the eigenvalues are distinct,

[B] = [M 0 ] (3.2.24)
0 N -

If the eigenvalues are not distinct, [B] may have the form (3.2.24) where

A1 =A,, or it may have the following form:

[B] —[)\ 1] (3.2.25)
0 2.
Generally, the transformation (3.2.19) defines each component of y as a
combination of both components of u. Consequently u may not be a convenient
form for studying the response quantitatively. However u can be very convenient
for studying the response qualitatively, which we do in this section.
The eigenvalues of [4] are the solutions of

an -\ an
as adx ~ 7\‘ -0
or
A2 - (a1 +agp) N+ anas - apay =0 (3.2.26)
Hence
M2 =ipr(tp?- 2 (32.27)

where p = ay; + ay,, the trace of [4];and q =a;,a4; — @124, the determinant
of [A]. Thus the eigenvalues are real and distinct if p? > 4q, real and equal if
p? = 4q, and complex conjugates if p? < 4q. These cases are discussed in order
below.

The Case of Distinct Real Roots. In this case the Jordan canonical form is the
following diagonal form:

b )
[B] = (3.2.28)
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Hence (3.2.20) becomes

whose solutions are
Uy = Uy €Xp ()\1 t), Uy = Uyg €XP ()\2 t) (3.230)
Eliminating ¢ from (3.2.30) gives
u; \* Ay
Uy Uyl —), a=—" 3.2.31
2 » <“10> Ay ( )

if uyo # 0. If uyy =0, the half-trajectories coincide with the u,-axis.

The behavior of the trajectories passing through the origin depends on the
sign of a. If a is positive (i.e., A; and A, have the same sign), the origin is called a
node, or nodal point, and the arrangement of the trajectories is shown in Figures
3-8 and 3-8b. When a > 1, the trajectories are tangent to the u, -axis, and when
a < 1, the trajectories are tangent to the u,-axis at the origin. When A; and A,
are positive, the representative point moves away from the origin as ¢ increases,
and the origin is called an unstable node. Figure 3-8 shows the arrangement of
the trajectories for negative \; and A, .

If A\; and A, have different signs, the origin is called a saddle point; it is an
unstable point. The arrangement of the trajectories is shown in Figure 3-9. It is
clear that the u, - and u,-axes are integral curves.

up<0 u;0>0
Uz0>0 Uz0>0

U

(a) (6)
Figure 3-8. Stable nodes: (@) a > 1;(b) a < 1.
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uz

U

//h

\ + i Figure 3-9. Saddle point.

The Case of Equal Real Roots. In this case two Jordan forms are possible,
namely

B —[)\ O] [B] = [)\ 1] (3.2.32)
[B] 0 A or 0 2 2.
When [B] has the first form, (3.2.20) becomes
=Ny, Uy =Ny (3.2.33)
Hence
_ _ Uy U
Uy =ugp exp(N), Uy =uypexp(Nt), —=— (3.2.34)
Uy Uy

and the origin is called a node. The node is stable if A < O and unstable if
A > 0. The arrangement of the trajectories when A <0 is shown in Figure 3-10.

Uz

Y

Figure 3-10. Stable node when the eigenvalues
are equal and the Jordan form is diagonal.
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<

D

U
X<O
\ Figure 3-11. Stable node when the eigenvalues
are equal and the Jordan form is not diagonal.

When [B] has the second Jordan form, (3.2.20) leads to
L’ll = )\ul + Uy, 122 = )\Uz (3235)

with the solution
Uy = Uy exp (N1), Uy =(Uyo T uyet) exp () (3.2.36)

The origin is also called a node in this case. The node is stable if A <0 and
unstable if A > 0. The arrangement of the trajectories when A < 0 is shown in
Figure 3-11. The half-trajectories corresponding to u,y = 0 coincide with the
u, -axis. From (3.2.36)
__ Mo 1. (3.2.37)
u, U0 + Uyl t
for u,y # 0.

It follows from (3.2.36) that u, cannot change sign. Thus any one trajectory
must lie entirely in either the upper half plane or the lower half plane. Moreover,
as ¢t approaches infinity u; and u, have the same sign and u,/u; approaches
zero. Thus all trajectories in the lower half plane approach the origin from the
left with zero slope, while all trajectories in the upper half plane approach the
origin from the right with zero slope. This is illustrated in Figure 3-11.

The Case of Complex Roots. In this case the Jordan canonical form is
[B] = [A 2] (3.2.38)
0 A
so that (3.2.20) can be rewritten as

121 =Nuy, 122 = )\Uz (3.2.39)
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\]

Figure 3-12. Stable focus.

where the overbar denotes the complex conjugate. Hence u, = u,. The solution
of (3.2.39) is

Uy = U0 €Xp (7\,-[' + l)\lt) (3240)

where A, and \; are the real and imaginary parts of A. In this case u; and u, and
[P] are complex; however y, and y, are real.

Letting u; = v; + iv, in (3.2.40), where v, and v, are real and separating real
and imaginary parts, we obtain

v, =aexp (o) cos(\ttB), vy =aexp(N)sin(\t+0) (3.241)

where u,, = a exp (i8). In this case the origin is called a focal point, or focus,
when A, # 0, and it is called a center when A, = 0. The focus is stable if A\, <0
and unstable if A, > 0.

In a similar way u, can be represented as the sum of a real and an imaginary
part. A possible arrangement for u; is shown in Figure 3-12 for A, < 0. The
corresponding arrangement for u,, which is not shown, is similar.

The preceding discussion shows that the character of the linear system (3.2.17)
depends on the eigenvalues of [4] and hence on the parameters p and ¢ accord-
ing to (3.2.27). Thus one can divide the pg-plane into regions characterizing
different singular points as shown in Figure 3-13. When ¢ > 0, A, and A, are
complex or real having the same sign depending on whether A =g - % p? is posi-
tive or negative. Hence A > 0 and p > 0 correspond to unstable foci, while
A > 0 and p < 0 correspond to stable foci. Moreover A < 0 and p > 0 corre-
spond to unstable nodes. The curve p? = 4q, which corresponds to repeated
eigenvalues, separates the nodes from the foci; while the positive g-axis, which
separates the stable from the unstable foci, corresponds to centers.

Again we emphasize that usually it is ¥, and y, which are convenient for
describing the state of the system (i.e., it is y; and y, which can readily be
associated with observed data), not u; and u,. But u; and u, are more con-
venient to use for the analysis; consequently we obtained a qualitative repre-
sentation of the state space using u, and u,. Though the y;y,-plane and the
u,u,-plane are not the same, they are similar and the results above also provide
a true, albeit qualitative, picture of the state plane in terms of ¥, and y,.
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There exist a number of techniques for graphically constructing the trajec-
tories of systems governed by two first-order ordinary-differential equations
(see, for example, Butenin, 1965; Andronov, Vitt, and Khaikin, 1966). In this
book we describe the method of isoclines and Liénard’s method.

3.2.2. THE METHOD OF ISOCLINES
If the equations describing the motion of the system are

Xy =X (x1,x,) and X, = X,(xy, Xx;) (3.2.42)
the direction field is given by

ax, _ Xy (x1,%2) _

dx, = X, (5. %2) =Y (xy, x3) (3.2.43)

The curve Y(x;, x,) = ¢ for a fixed c is called an isocline; it is the locus of all
state points for which the slopes of the trajectories are the same.

This method consists of constructing a family of isoclines in the state plane as
shown in Figure 3-14. The points of intersection of the isoclines are singular
points. If a trajectory is to be initiated at a point A, on the isocline correspond-
ing to ¢ = ¢y, we draw two straight lines passing through 4; and having the
slopes ¢, corresponding to the isocline on which A, lies and ¢, corresponding to
the adjacent isocline. We extend these lines until they meet the isocline ¢, at a,
and b, and take the point 4,, lying halfway between a, and b, on the isocline
¢, as the next point on the desired trajectory. Then we draw two straight lines
passing through 4, with the slopes ¢, and ¢5. The third point on the trajectory

4q:=p?

P

UNSTABLE
NODES

UNSTABLE
FOCt

SADDLE POINTS
CENTERS —,

SADDLE POINTS

| STABLE
‘ FoC!

STABLE
NODES . . . .
Figure 3-13. Singular points of equation

4q=p2 (3217)
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X2
'y
< c2
*F)
INITIAL__| A
POINT A2, e
N3,
Q
'3
by \\
Qetc.
> )(|
— — — TRAJECTORY Figure 3-14. Method of isoclines.

Aj is the point on c; halfway between a3 and b3. By repeating the process, we
determine an approximate but fairly detailed portrait of the trajectory. Ob-
viously the more dense the family of isoclines is, the more accurate the tra-
jectory is.

3.2.3. LIENARD’S METHOD

A simple method was devised by Liénard (1928) for constructing the integral
curves of equations having the form

¥+ 0(F) + wix=0 (3.2.44)
We let 7 = wqt and transform (3.2.44) into
x"+¢(x)+x=0 (3.2.45)

where primes indicate derivatives with respect to 7. Moreover we let x; = x and
x, = x' and obtain the following differential equation for the trajectories:

o

cC, X1

x; = —(x;)

Figure 3-15. Liénard’s method.
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dx; _ $(x3)tx,

3.2.46
dx, X5 ( )

To draw the trajectories, we first plot the curve x; =-¢(x,) in the phase plane
as shown in Figure 3-15. To initiate the trajectory passing through point 4, we
draw a line parallel to the x,-axis until it intersects the curve x; = -¢(x,). We
denote the point of intersection by B and construct a line which is parallel to
the x,-axis from B to C. Then the line CA4 is perpendicular to the direction field
at A because the slope of C4 is BC/AB = x,/[x; + ¢(x,)]. Hence we draw a line
from A perpendicular to AC and approximate the integral curve by a short
segment A4, along the direction field. Then, starting with 4,, we repeat the
process.

3.3. Approximate Solutions

In this section we determine approximate solutions of the equations governing
the oscillations of systems having a single degree of freedom. Different types of
damping are considered. In particular, we obtain approximate solutions of
equations having the form

U+ wiu=ef(u,u) 3.3.1)

where € is a small dimensionless parameter and f(u, ) is a general nonlinear
function of u and #. Klotter (1955) treated systems having quadratic damping
and arbitrary restoring forces. Rasmussen (1970, 1973, 1977), Soudack and
Barkham (1971), Christopher and Brocklehurst (1974), and Beshai and Dokainish
(1975) devised approximate solutions for oscillators with strong nonlinear forces
and small damping. Ludeke and Wagner (1968) treated a generalized Duffing
equation with large damping. Popov and Paltov (1960), Mendelson (1970), and
Arya, Bojadziev, and Farooqui (1975) used the method of averaging to deter-
mine an approximate solution (Exercise 3.29) for

U+ 2uit+ wiu=ef(u, )

when p = O(1). Tondl (1973b) investigated some properties of nonlinear systems
and used his results to identify their damping characteristics. Cap (1974) devised
a method based on the method of averaging to determine approximate solutions
for systems governed by equations having the form (Exercise 3.30)

u+fu)=eF(u,u)

in terms of the solutions of i + f(u) = 0.

Since € is small, (3.3.1) is weakly nonlinear, and a number of perturbation
methods are available for the determination of approximate solutions of this
equation (see, for example, Nayfeh, 1973b). In this section we use the methods



120 NONCONSERVATIVE SINGLE-DEGREE-OF-FREEDOM SYSTEMS

of multiple scales and averaging to determine first-order expansions, which are
valid as ¢ increases, and use these expansions to investigate the effects of the
various types of damping.

3.3.1. THE METHOD OF MULTIPLE SCALES

In using this technique, we introduce different time scales according to (2.3.37)
and expand the time derivatives according to (2.3.38). We consider u to be a
function of the various new scales, instead of #, and assume that « can be repre-
sented by an expansion having the form

u= uo(To, T19 Tz, .. )+ eul(To, T17 T2, .. .) +-- (33.2)

Substituting (2.3.37), (2.3.38), and (3.3.2) into (3.3.1) and equating coeffi-
cients of like powers of e, we obtain

D3uy + wiuy =0 (3.3.3)
D3u, + w3u; = -2DgDyug + f(ug, Do) (3.3.4)
D3u, + wdu, = Flug,uy, ..., u,_;) forn>=2 (3.3.5)

It is convenient to write the general solution of (3.3.3) in the complex form
Uy =A(T1, T2, .o ) exXp (lCOoTo) +Z(T1, T2, .. ) exp (“iono) (3.36)

The function A4 is still arbitrary at this level of approximation; it is determined
by eliminating the secular terms (invoking the so-called solvability conditions) at
the higher levels of approximation.

Substituting for u, into (3.3.4), we have

D2u; + wiu, = -2iweD, A exp (iwo To) + 2iweDy A exp (-iwo To)
+ f[A exp (iwo To) + A exp (-iwo Ty), iwe A exp (iwo To)
- iwoA exp (iwo Ty)] 3.3.7)

Depending on the function A4, all particular solutions of (3.3.7) contain terms
proportional to Ty exp (+iwoT,) (these are the so-called secular terms). Thus
eu, can dominate u, for large ¢, resulting in a nonuniform expansion. We choose
the function A so that secular terms are eliminated from u, and thereby obtain a
uniformly valid expansion. To this end we expand f[uq, Douto] in a Fourier series
as

f= 3 fulA, A) exp (inwoTo) (3.3.8)
where

2w/ W,
Fod,A)= 20 f Fexp (-inwoTo) dTo (3.3.9)

2 J,
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Hence the condition for the elimination of secular terms is
1 2mjw,
21D1A = 'i; J‘ feXp (_iono) dTQ (3310)
0

For a first approximation we consider 4 to be a function of T, only and end
the solution here. To solve (3.3.10) we find it convenient to express A(7) in
its polar form as

A(T1) = 3a(Ty) exp [i6(Ty)] (33.11)
so that we rewrite (3.3.6) as
uop=a(Ty)cosd, ¢=woTo+p(T1) (3.3.12)

Substituting (3.3.11) into (3.3.10) we have

1
2w

2m
i(a' +iaf')= f f(a cos ¢, -woa sin ¢) exp (-ip) do
0

Separating real and imaginary parts we obtain

2w
a=- ! J- sin ¢ f(a cos ¢, -woa sin ¢) do (3.3.13)
2nwg J,
1 2m
g'=- f cos ¢ f(a cos ¢, - wea sin §) do (3.3.14)
2mwea J,

Therefore a first approximation to the solution of (3.3.1) is
u=a(T,)cos [woTy +B(T;)] +0(e) (3.3.15)
where ¢ and § are given by (3.3.13) and (3.3.14).

3.3.2. THE METHOD OF AVERAGING
When e = 0, the solution of (3.3.1) can be written as

u=acos(wottf)=acoso (3.3.16)

where @ and § are constants. When € # 0, the solution of (3.3.1) can still be ex-
pressed in the form (3.3.16) provided that @ and § are considered to be functions
of t rather than constants. Thus (3.3.16) can be viewed as a transformation from
the dependent variable u(7) into the dependent variables a(¢) and B(¢). Since
(3.3.1) and (3.3.16) constitute two equations for the three variables u, a, and ,
we are at liberty to impose an additional condition. It is convenient to require
the velocity to have the same form as the case when € = 0; that is,

U= -wpasin ¢ (3.3.17)
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To determine the equations describing a(#) and §(z), we differentiate (3.3.16)
with respect to ¢ and obtain

4=-weasin¢+acos¢-afsin ¢ (3.3.18)
Comparing (3.3.17) and (3.3.18), we find that
dcos¢ - afsinp=0 (3.3.19)

Differentiating (3.3.17) with respect to ¢, we have
i = ~w3a cos ¢ - wed sin ¢ - weaf cos ¢ (3.3.20)
Substituting for  and # in (3.3.1) yields
Wl sin ¢ + woaf cos ¢ = -€f(a cos ¢, ~wya sin ¢) (3.3.21)

Solving (3.3.19) and (3.3.21) for 4 and B, we obtain

a=- (oi sin ¢ f(a cos ¢, ~wqa sin P) (3.3.22)
0
f=-——cos ¢ f(acos ¢, -woa sin §) (3.3.23)
Woda

Equations (3.3.16), (3.3.22), and (3.3.23) are exactly equivalent to (3.3.1) be-
cause no approximations have been made yet.

For small €, & and §3 are small; hence @ and 8 vary much more slowly with #
than ¢ = wyt+B. In other words, @ and 8 hardly change during the period of
oscillation 27/w, of sin ¢ and cos ¢. This enables us to average out the variations
in ¢ in (3.3.22) and (3.3.23). Averaging these equations over the period 2m/w,
and considering a, 8, a, and 6 to be constants while performing the averaging,
we obtain the following equations describing the slow variations of @ and §:

2m
i=-— f sin ¢ f(a cos ¢, ~woa sin ¢) do (3.3.24)
277(.00 0
€ 2m
f=-— f cos ¢ f(a cos ¢, - woa sin ¢) dp (3.3.25)
2mwoa Jy

in agreement with (3.3.13) and (3.3.14) obtained in the previous section by
using the method of multiple scales.

Next we use these results to analyze the effects of the different types of damp-
ing on the response of systems having a single degree of freedom.

3.3.3. DAMPING DUE TO FRICTION
In this section we consider the effects of linear damping, quadratic damping,
constant damping, and hysteretic damping.
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Linear Damping. In this case the equation of motion is
i+ wiu=-2eut (3.3.26)
Hence f=-2uu, and (3.3.24) and (3.3.25) become

2m
l.l o .E_I{Ef Sin2 ¢ d¢ = -eua (3327)
LA
. eu 2m
f=--— f sin ¢ cos ¢ dp =0 (3.3.28)
T Jo

Solving these equations yields
a=agexp (-eut), =0 (3.3.29)
where aq and f, are constants. Hence (3.3.16) becomes
u=agyexp (-eur) cos (wet +fo) + 0(5 (3.3.30)

To this approximation the frequency is not affected by the viscosity, while the
amplitude decays exponentially with time.

In Figure 3-16 the exact solution of (3.3.26) (solid line) and the amplitude
given by (3.3.29) (dotted line) are plotted.

Quadratic Damping. In this case the equation describing the motion has the
form

U+ wiu = -eulul (3.3.31)

Then f= -ulul, and (3.3.24) and (3.3.25) become

27
g=-2 %o f sin? ¢{sin ¢| d¢
2n 0
. eaw, [T
f=- ; 0 f sin ¢ cos ¢|sin ¢| do
m

0

To perform the integration above, we break each integral into two parts—one
with the limits O and 7 and the other with the limits 7 and 27. That is

. ed’w,
a: -

™ 2m 4
f sin® ¢ d¢ - f sin® ¢ d(i)] =-—ea’wy (3.3.32)
27 0 o 3m

B=0 (3.3.33)
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Figure 3-16. Linear damping: (— ——) equation (3.3.29); (—) numerical integration.

The solution of (3.3.33) is § = 8, while the solution of (3.3.32) is

1 1 dewy

a ag 37

or

a
a= —2—— (3.3.34)
4€woa0
1+ —20
3w

where a4, is a constant. Hence (3.3.16) becomes

u=——2 (o5 (wot +Bo) + O(e) (3.3.35)
1+ dewpag ;

3w

As in the case of linear damping, the frequency is not affected by the damping
to this order. However the amplitude decays algebraically rather than exponen-
tially with time.
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Figure 3-17. Quadratic damping: (———) equation (3.3.34); (—) numerical integration.

In Figure 3-17 the exact solution of (3.3.31) (obtained by numerical integra-
tion) and the amplitude as given by (3.3.34) are plotted (solid and dotted lines,
respectively).

It follows from (3.3.27) and (3.3.32) that initially the rate at which the ampli-
tude of the response decreases is proportional to the amplitude of the initial
disturbance for linear damping and to the square of the amplitude of the initial
disturbance for quadratic damping. Thus when the amplitude of the initial
disturbance is large, one expects the initial decay to be slower for linear damping
than for quadratic damping. If the initial disturbance is small, one expects the
opposite to be true. A glance at Figures 3-16 and 3-17 will confirm this.

Coulomb Damping. In this case
-4 whenu >0

U+twiu=f= 3.3.36
o=t {,u when # <0 ( )

Substituting for f into (3.3.24) and (3.3.25) and splitting the integration as in
the previous case, we obtain

™ 27
2
i=-—2 U sin¢d¢—f sin¢d¢]=— e (3.3.37)
27w | Jo ' MWy
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=0 (3.3.38)
The solutions of these equations are

2
a=a- -t g=8, (3.3.39)
TWe

Hence to this level of approximation, the frequency is not affected by the damp-
ing, while the amplitude decreases linearly with time.

In Figure 3-18a the exact solution of (3.3.36) (obtained by numerical integra-
tion) and the amplitude given by (3.3.39) are plotted (the solid and dotted lines,
respectively).

The phase plane can be obtained exactly by Liénard’s method (Meissner,
1932). The motion can be described by the differential equation

X+¢p@E)+x=0

20

1.0
K=-FL x=+#

v

INITIAL L
POINT

-1.0

—2.0(

SO
0 3 6 9 12 15 18 21 24 27
TIME
(a) (b)

Figure 3-18. (a) Coulomb damping: (———) equation (3.3.39); (
tion. (b) Liénard’s method applied to Coulomb damping.

) numerical integra-
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where

. u o forx>0
P(x)= .
-u forx<O0

We draw the lines x = £y in the state plane as shown in Figure 3-18b. The tra-
jectories consist of a series of circular arcs having the centers C and B, depending
on whether the representative point is in the upper or lower half-plane. Thus if a
trajectory is initiated at A, we draw a circle clockwise with center C and radius
CA until it meets the x-axis at 4. Then we switch the center to B and draw half
a circle clockwise with a radius BA; which meets the x-axis again at 4,. We
switch the center to C and draw half a circle clockwise with a radius CA, which
meets the x-axis at 43;. We continue the process until the representative point
intersects the x-axis between C and B. The motion ceases at such a point be-
cause the maximum possible friction force exceeds the force in the spring.

Hysteretic Damping. As an example we let the springs be linear and denote
the constant of the top spring by k and that of the bottom spring by em in
Figure 3-25b. Then if we neglect other forms of damping, the equation of motion
becomes

¥+ wix=ef (3.3.40)

where w§ = kf/m and

-X X, ZXZXg

-f=< ¢ (3.3.41)
X-Xg—Xg X,2XZ=Xg
Xg Xp ZX 22X,

where
X, =Xp-2xg and x,=xg4+2xg

Substituting for f from (3.4.41) into (3.3.24) and (3.3.25), we obtain

€

Xo *d
f (x +x5 - xp) sin ¢ do(x) - J‘ xg sin ¢ do(x)
*b Xc

27TOJo

Xq *b
+ J‘ (x - x5 - xg)sin ¢ do(x) +f xgsin pdp(x)| (3.3.42)
xg X

a
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Xo *d
g= < j (G +x5-xp)cos ¢ do(x) - f Xxg cos ¢ do(x)
2nwgN Jy, e
xa Xb
+ f (x - x5 - xg) cos ¢ dp(x) + f xgcospdp(x)] (3.3.43)
xq *a

where the integrations over the cycle BCDAB of Figure 3-2b have been broken
into four parts over the segments BC, CD, DA, and AB.

To perform the integrations in (3.3.42) and (3.3.43), we change the integra-
tion variable from x to ¢. To accomplish this, we note that the period in the
variable ¢ is 2m; and since the motion is periodic, we set ¢ = 0 at point B so that
¢ = m at point D. Since x =a cos ¢,

Xp=a, X, =Xp - 2X,=acos¢
’ cTe T 1 (3.3.44)
Xg=-a, Xz=Xxg+2xg=acos¢@,
where
- 2 —
¢1 =cos™! (a 2xs> and ¢, =cos™’ (—ﬁa—a) (3.3.45)
a
Then (3.3.42) and (3.3.43) become
€ ¢ 4
a= f (acos¢+xs—a)sin¢d¢-xsf sin ¢ d¢
2nwo | Jo s,

5 2m
+ f (acos¢ - xg+a)sin ¢ do +xsf sin ¢ d¢ (3.3.46)
m o,
™
€

9,
B= f (acos¢+xs—a)cos¢d¢—xsf cos ¢ do

2nwea | J, ®,

o, 2m
+j (acos¢—xs+a)cos¢d¢+xsf cospdp| (3.3.47)
w o,

Performing the integrations in (3.3.46) and (3.3.47) and using (3.3.45), we
obtain

2exg

a= (xs-a) (3.3.48)

MTWwoa

) _ 2\ 1/2
6 _ i. [% Cos_l (a 2xs> _ <1 - %) (}-)is‘__ - x—‘;) ] (3349)
TWo a a a a
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Figure 3-19. Hysteretic damping: (— ——) equation (3.3.50); (—) numerical integration.
The solution of (3.3.48) is

2
a+xgln(a-xg)=- ﬂfjs t+c (3.3.50)
0

where ¢ is a constant of integration. Thus a is given implicitly in terms of . We
cannot integrate (3.3.49) as we were able to do for a; however we note that, as
t—>o, g—>xg and [3—>e/2w0, which agrees with the exact solution when the
hysteretic mechanism is not activated.

In Figure 3-19 the numerical solution of (3.3.40) is compared with the asymp-
totic result (3.3.50).

3.3.4. NEGATIVE DAMPING

For a comprehensive treatment of self-excited mechanical oscillations, we refer
the reader to the monographs of Tondl (1970b, 1976b). Tondl (1968) and
El-Owaidy (1974) studied the perturbations of a class of self-excited oscillators,
while Nguyen (1976b) analyzed some properties of the generalized van der Pol
equation. George, Gunderson, and Hahn (1975) studied sustained small oscilla-
tions in nonlinear control systems, while St. Hilaire (1976) studied the response
of a self-excited structure. Warncke (1973) studied the vibrations of a rigid rotor
running in a sliding bearing, while Kelzon and Yakovlev (1974) experimentally
investigated self-excited vibrations of a high-speed rotor. Tarantovich and
Kohnkin (1975) treated a two-frequency system with a stiff excitation. Klotter
(1955) and Klotter and Kreyszig (1957, 1960) studied equations of the form

i - uif(u)sgnu + g(u)=0 (3.3.51)
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Gumpert (1974) included the effects of friction when he investigated the exis-

tence of nonrelaxation cycles for self-excited vibrations. Gyozo (1974) investi-

gated the elimination of self-excitations by the use of Lanchester-type dampers.
For the Rayleigh oscillator

feii- i (3.3.52)
so that (3.3.1) becomes
i+ wlu= e - i) (3.3.53)
and (3.3.24) and (3.3.25) become
ca (2T
a= o i (in® ¢ - wia®sin* p) dp= L ea(l - 3 wia? (3.3.54)
27
f= ;—WJ; (1 - wia? sin® ¢) sin ¢ cos ¢ d = 0 (3.3.55)

The solution of (3.3.55) is § = f,, while the solution of (3.3.54) can be obtained

by separation of variables. The result is
a3

a=

Jehah (1~ 3 whad) exp (e1) (3329
where a, is the initial amplitude.

Equation (3.3.56) shows that the amplitude of oscillation tends to a, = 23, Wy,
irrespective of the magnitude of the initial amplitude as long as it is different
from zero. Oscillators of this type are called self-sustained oscillators. Equation
(3.3.54) shows that when a <a,, a >0, and hence a tends to increase; while
when a > ag, 4 <0, and 4 tends to decrease. The value a = a is a stable amplitude.

In Figure 3-20 the numerical solutions of (3.3.53) are compared with the

(a) (b) I

Figure 3-20. Rayleigh oscillator: (#) large initial disturbance; (b) small initial disturbance;
(———) equation (3.3.56); (——) numerical integration.
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Limit cycle

)

& G

Figure 3-21. Phase plane for the Rayleigh oscillator.

asymptotic results (3.3.56) for ao > ag and ay < aj, respectively. In Figure 3-20a
the initial amplitude is greater than the amplitude of the limit cycle; hence the
damping is positive initially and the amplitude decays until it reaches the limit
cycle. In contrast the initial amplitude in Figure 3-20b is less than that of the
limit cycle; hence the damping is negative initially and the amplitude increases
until it reaches the limit cycle. The corresponding trajectories in the phase plane
are shown in Figure 3-21.

When € is very large, systems such as the one being considered here exhibit

rather jerky motions called relaxation oscillations. These are discussed in Section
3.5.

3.3.5. EXAMPLES OF POSITIVELY DAMPED SYSTEMS HAVING
NONLINEAR RESTORING FORCES
For a pendulum with viscous damping the governing equation has the form

6 +2006 + w3sin6=0 (3.3.57)

and the exact phase plane, obtained by numerical methods, is shown in Figure
3-22. The singular points of (3.3.57) are 6 = integral multiples of , as in the
undamped case. The even multiples of 7 are stable foci, while the odd multiples
are saddle points.

We seek an approximate solution of (3.3.57) that is uniformly valid near 6 = 0
and that accounts for nonlinear effects. To this end we expand sin 0 and retain
only the first two terms; consequently (3.3.57) becomes

6+200+w306-16%=0 (3.3.58)
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30

-1 o T 27T 3‘7, Figure 3-22. Phase plane for a simple
9 pendulum with viscous damping.

We are primarily concerned with lightly damped motions. Consequently we let

i=eu (3.3.59)

where € is a measure of the amplitude of the motion. Now the nonlinear and
damping terms will interact at the same level of approximation.
Following the method of multiple scales we assume

0(t;€)=€0,(To, T1, To) + €20, (To, T1, To) + €205(To, T1, To) +- -+ (3.3.60)

Substituting (3.3.59) and (3.3.60) into (3.3.58) and equating coefficients of like
powers of €, we obtain

D30, + w%0,=0 (3.3.61)
D30, + w%0,=-2DyD,0, (3.3.62)
D303+ w303=-2DyD, 0, - 2DoD, 0, - D30, - 2uDo6; + 163 (3.3.63)

We can write the solution of (3.3.61) in the form
0,=A4,(T, T;) exp (iweTy) + cc (3.3.64)

where cc stands for the complex conjugate of the preceding terms. Substituting
(3.3.64) into (3.3.62) yields

D002 +CO(2)62 = _2iw0D1A1 exp (i(t)oTo)+cc (33.65)
To eliminate secular terms from 6,, we must put

DA, =0 (3.3.66)
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Thus 4, = A,(T,). It follows that
0,=A,(T,, T;) exp (iweTyp) + cc (3.3.67)
Substituting (3.3.64) and (3.3.67) into (3.3.63), we obtain
D30, + w303 = -2iwg DA, exp (iwoTo) - 2iweDyA; exp (iweTo)
- iwomA; exp (iwoTo) + £A43 exp (3iwo To)
+ 2434, exp (iwTo) + cc (3.3.68)
To eliminate secular terms from 03 we must put
=2iwoD 1A, - 2iweDy Ay - 2iconA, + 3A3A,=0 (3.3.69)

Since 4, = A,(T,), it follows from (3.3.69) that A, « T, and hence 6,/0, is
unbounded as T'; = o unless D; 4, = 0 and

Zin(D2A1 + #Al) - %A%Zl =0 (3370)

Consequently 0, and 6, have exactly the same form, and we may drop 6,.
It is convenient to introduce the polar notation

Ay =%aexp (if) (3.3.71)
where @ and § are real functions of T,. Then substituting (3.3.71) into (3.3.70)

and separating the result into real and imaginary parts, we obtain

d2

d+pa=0, p'+ =0 (3.3.72)
16wy

where primes denote derivatives with respect to T',. Thus

a3

 3200u

a=agexp (-uT,), B= exp (-2uT2) *+Bo (3.3.73)
where g, and B, are constants of integration. In terms of the original variables
and parameters, we obtain

2,2

~ €“a N
0 =eage ™™ cos |wot - S M4 Byl +0(e?)
320)0[.1

for the first approximation.
When the motion is started from rest by giving the pendulum an initial dis-
placement, this result becomes

. 62 .
6=0,e " cos [wot - e (e 1)] +0(ed) (3.3.74)
32wol



134 NONCONSERVATIVE SINGLE-DEGREE-OF-FREEDOM SYSTEMS

where 0y = €ay, the initial displacement. Thus in the first approximation, the
amplitude decays as in the linear case; but unlike the linear case, here the fre-
quency is a function of the amplitude. However we note that the dependence of
the frequency on the amplitude vanishes rapidly after the motion begins.

It is essential to make the nonlinearity and damping interact at the same order
[recall (3.3.59)]. If the damping term had been lower in order than the non-
linear term, the solution would have predicted a slight perturbation of the linear
damped solution, not the nonlinear frequency-amplitude dependence obtained
above.

As a rule in this book, we do not consider these highly damped systems.
Instead we focus on the lightly damped systems, which strongly exhibit non-
linear effects.

For a pendulum with quadratic damping, the governing equation has the form

6 +2/1616] + w2 sin 6 =0 (3.3.75)

We can obtain an exact expression for the trajectories in the phase plane. We
note that, as before, the singular points of (3.3.75) are 6 = integral multiples of
m; even multiples are stable foci, while odd multiples are saddle points. We let

0 = v so that (3.3.75) can be rewritten as

b =-2{lv|v] - w3sin O (3.3.76)
It follows that
dv _ A 2 .
v——=-2uv|v| - wjsin 6 (3.3.77)
do
Hence,
1dv’ o~ o
T +2uv* =-wgsin 0 (3.3.78)

which we can integrate to obtain v? as a function of 6. The sign is chosen accord-
ing to (3.3.77). It follows that
8wl

1/2
mcos ¥ msin 0] (3.3.79)

v= t[c e¥AH0 4

where c is a constant of integration. The signs change where the trajectories cross
the f-axis; at each crossing a new constant of integration must be chosen to
insure the continuity of the trajectory. The exact trajectories in the phase plane,
constructed by using (3.3.79), are shown in Figure 3-23.

Next we obtain a uniformly valid approximate solution of (3.3.75) by using
the method of multiple scales. Again we suppose the motion is started from rest
by giving the pendulum an initial displacement, and we assume

0(z;€)=€6,(To, Ty, T) + 62‘92(To, T,,Ty)+ 6303(T01 T,,T))+ -+ (3.3.80)
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Figure 3-23. Phase plane for a simple pendulum with quadratic damping.

where € is a measure of the amplitude. In this case we must put
d=eu (3.3.81)

so that the nonlinear and damping terms will first appear at the same order.
Again we expand sin 8 and retain only the first two terms.
It follows from (3.3.75) that

D26, +w30,=0 (3.3.82)

D20, + wi0, =-2DoD, 0, (3.3.83)

D305+ w303 =-2DoD,0, - 2DoD,0, - D38, - 2uDy0,|Do0,| + 163
(3.3.84)

Proceeding as before, we express the solution of (3.3.82) in the form
0,=A(Ty, Ty) exp (iwe Ty) + cc (3.3.85)

Then we find that secular terms are eliminated from 6, if 4 is a function of 7,
only. As in the case of a pendulum with viscous damping, we may drop 6,. It
follows that

D303+ w§0;3=-2iwg [A" exp (iwo To) - A’ exp (-iwo To)]
- 2ufiweA exp (iwo To) - iwoA exp (-iwo To)] liweA
»exp (iwo To) - iwoA exp (iwo To)| + 243 exp (3icw, Tp)
+ 3 A4 exp (iwo To) + 2 424 exp (-iw, Ty)
+ L 43 exp (-3iwTy) (3.3.86)
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In this case it is convenient to introduce the polar notation
A=Zaexp (if) (3.3.87)
where 2 and § are real functions of T',. Introducing (3.3.87) into (3.3.86) leads to
D303+ w§03 = 2wod’ sin ¢ +2woap’ cos ¢ + 1a® cos ¢ + 2 @ cos 3¢
+2uwia® sin ¢lsin ¢| (3.3.88)

where ¢ = wqot +f. We note that the damping term is periodic in ¢ and can be
expanded in a Fourier series (as we did earlier in this section); that is

sin ¢|sin ¢| = i fn sin ng (3.3.89)
n=1

where in particular f; = 8/3w. Thus secular terms are eliminated from 8 if

2

v, 8 y,_a
d+ B0 g gy =0 (3.3.90)
3 16(/.)0
It follows that
377(10 9772[10

a= ————— = + 3.391
37+ 8uweay T, g 128uw3(3m + 8uwoayT?) bo ( )
where a¢ and B, are constants of integration.
Rewriting the solution in terms of the original variables and using the initial
conditions, we obtain
370,

= ———————C0s |wet +
3w+ 8wy lot

9724 3mf
RT3t eh - 27| +0(e)
woﬂ(3ﬂ' + S,Uwoeot) 1280)0#

(3.3.92)

when 6, = eay, the initial displacement. Again the amplitude decays as in the
linear case; but unlike the linear case here the frequency is a function of the
amplitude.

3.4. Nonstationary Vibrations

In this section we consider nonlinear systems having components that are time
dependent. These components may be masses, lengths, rigidities, coefficients of
friction, material properties, the spin rate of the circle in Section 2.1.4 and
the parabola in Section 2.4.3, etc. In analyzing the response of such systems by
using the method of averaging, one uses the method of variation of parameters as
in Section 3.3.2 to arrive at the following equations describing the amplitudes
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and the phases:
x=ef(x,t;¢) (34.1)

where € is a small dimensionless real parameter and x and f are real vectors. Since
€ is small, x is a slowly varying function of #, and to the first approximation one
is tempted to average (3.4.1) and obtain

£=efo () (342

where

t+T
f,(&) = }E‘L[El: f f(g,s;O)ds] (3.4.3)

Krylov and Bogoliubov (1947) and Mitropolsky (1965) gave sufficient conditions
for the solutions of (3.4.1) to remain close to the solutions of (3.4.2) satisfying
&(to) = x(Z,), over time intervals which are O(e™!). Hale (1969) generalized these
results to systems governed by

x=ef(x,y,t;6) and y=[4)y+tegx,y,t;¢€) (34.4)

where x and y are real vectors and [A] is a matrix which may be constant or
periodic in 7. These results were generalized further by Volosov (1961) to sys-
tems governed by

x=ef(x,y;€) and y=gx,v;¢€ (3.4.5)

The above systems depend on one time scale. Mitropolsky (1965) obtained an
asymptotic solution valid for ¢ = O(e™!) for systems governed by

x=ef(x,t, et;¢€) (3.4.6)

while Sethna and Balachandra (1974a) obtained a solution valid for finite time
for systems with several slow time scales. Sethna (1967a) obtained an asymptotic
solution valid for all ¢ for systems governed by

x=ef(x,t)+eg(x, ) (34.7)
while Roseau (1969) generalized these results to systems governed by
x=ef(x,y,t,et;¢) and y=[A4]ly+egx,y,t,et;e) (3.4.8)

where f and g are almost periodic in # and periodic in et. Sethna (1969, 1973)
removed the restriction of almost periodicity and obtained results valid for all ¢
provided that f and g are bounded in ¢ for all 7. Balachandra and Sethna (1975)
proved under certain hypotheses the existence of bounded solutions of

x=ef(x,y,t,et;¢) and y=gx,v, ¢ ¢€t;€) (3.4.9)
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which approach certain special solutions of a derived averaged system of equa-
tions as € > 0.

In this section we consider a single-degree-of-freedom system having slowly
varying coefficients. Thus we consider equations having the form

U+ wd(@u=ef(u,u,r) (3.4.10)

where 7 = et and € is a small, positive, dimensionless parameter. Since € is small,
7 is a slow scale. Such systems were treated by Kuzmak (1959), Nayfeh (1969),
Meyer (1976), Kaper (1976), and Rubenfeld (1977). Systems whose material
properties exhibit time-dependent characteristics were studied by Paria (1968).

The presence of the slow scale in (3.4.10) suggests the use of the method of
multiple scales. Thus we seek an expansion for the solution in terms of the two
scales 7 and ¢, where

dg
E= wo(7) (3.4.11)
In terms of these variables, the time derivatives become

d 6 0

— =Wy

dt % or

a _ ., 32+(2 L a> 2 0%
dr? C""aqs €\ 3700 °’°a¢ € o

(3.4.12)

Hence (3.4.10) becomes

2

, 0%u 0%u , ou , 0%u ou ou
o tel2wo T two|te ar 2+o.>0u—¢sfu wo—+te—,7

“0 % orop " 09 a9 or
(3.4.13)
We expand u as
u=uo(p,7)+eus (¢, 1)+ - (3.4.14)

Substituting (3.4.14) into (3.4.13) and equating coefficients of like powers of €,
we obtain

2
Z(aa;‘z +u0) 0 (3.4.15)

82u1 )_ 32u0 auo ( uo )
(B(I)Z tu,)=-2w, 3790 a¢ + flug, wo 26 —, 7] (3.4.16)

The general solution of (3.4.15) can be written in the complex form

ug = A(r) exp (ip) + cc (3.4.17)
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Hence, (3.4.16) becomes

2
w3 (aa(;z] + u1> = -iQwoeA' +woA) exp (i9) +i(2woAd’ + wyA) exp (-ig)
+ {4 exp (i¢) + A exp (-i9), iwy [A4 exp (i¢) - A exp (-i$)], 7} (3.4.18)

Eliminating the terms in (3.4.18) that produce secular terms in u; yields

, , 1 2w .
2iweA +iw0A=E f(4,4,¢,7)exp (-ip) do (3.4.19)
0
Letting 4 = 5 a exp (if) in (3.4.19), where a and § are real, and then separating
real and imaginary parts, we obtain

2m
R 1 f sin Y f(a cos Y, ~wea sin ¥, 7)dy (3.4.20)
0

2T
g =- 1 j cos Y f(acos Y, ~weasin ¢, 7) dy (3.4.21)
0

2mwoa

where ¢ = ¢ + . From (3.4.14) and (3.4.17) we can write a first approximation
tou as

u=a(r)cos [¢ +B(1)] +O0(e) (3.422)
where a and § are obtained from (3.4.20) and (3.4.21). The frequency of oscilla-
tion is given by

w= % @+p)=wo+ef (3.4.23)

When w, is a constant and f'is independent of 7, (3.4.20) and (3.4.21) reduce to
(3.3.13) and (3.3.14) obtained for the case of systems having constant param-
eters. Next we specialize these formulas for conservative systems and for systems
restrained by linear elastic forces and resisted by nonlinear friction forces.

3.4.1. CONSERVATIVE SYSTEMS

To allow for the variation of mass, charge, and length, we take the equation of
motion in the form

% [m(r)a] + k(r)u=eg(u, 1) (3.4.24)
Hence

i+ o3u=ef(u, i, 1)= —% [m'd - g(u, )] (3.4.25)
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where w§ = k/m. Substituting for f into (3.4.20) yields

, 1 ’ ’
a =-~<—‘*ﬂ+—m—>a (3.4.26)
2\woy m

whose solution is

_ [we@m©)]2_  [m(0) k()]
_aO[ wo(‘r) m(T)] ao[m(T) k(T) (3427)
where a(0) = a, is a constant. Substituting for finto (3.4.21) gives
1 2m
g=-—— f cos Y gacos ¥, 7)dy (3.4.28)
277'(.00771(1 0

Combining (3.4.23) and (3.4.28), we obtain the following expression for the
frequency:

2m
W= we(7) - m f cos Y g(acos Y, 7)dy (3.4.29)
0

Thus the oscillations described by (3.4.24) are nearly sinusoidal, with an ampli-
tude that varies inversely with the fourth root of m(7) k(1) and a frequency that
is given by (3.4.29).

We apply these results to the motion of a particle having a slowly varying mass
m(7) and restrained by a nonlinear cubic spring whose parameters vary slowly
with time. The equation describing the motion can be written as

d
= [m(T)x] +k(@)x+a(r)x*=0 (3.4.30)
Letting x = /e u and rearranging terms, we rewrite (3.4.30) as
d
o [m(r)d] +k(m)u=eg(u, )= -ea(r)u’ (3.4.31)

Hence the amplitude of oscillation is given by (3.4.27), and from (3.4.29) the
frequency of oscillation is

o= k(r) N 3ea}a(r) Vm(0) k(0) L 0 . .
v m(r) o

8m(r) k(1)

As a second example we consider the oscillation of a simple pendulum whose
mass m is constant but whose length varies slowly with time. The equation
describing the motion is

% [12(r) 6] +gl(r)sin6 =0 (3.4.33)
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We let 6 =ve u in (3.4.33), expand sin 0, and obtain

d

" [12(r)a] +gl(r)u= Legl(t)u® + O(e?) (3.4.34)
Comparing (3.4.31) with (3.4.34), we conclude that the solution of the latter
can be obtained from the solution of the former if we identify m(r) with I2(7),
k(t) with gI(7), and « with - %gl(r). Hence the amplitude and frequency of the
pendulum are given by

10
“ “"[ I )]

(3.4.35)
- 1 [l( )]3/2} +0( 2)
-1 €
Vil e
3.4.2. SYSTEMS WITH NONLINEAR DAMPING ONLY
In this case the equation describing the oscillations has the form
d
o [mmyal +k(@u=eg(@, 1) (3.4.36)
Hence
i + wdu = ef (u, i, 7) = % [m'ti - g(i, 7)] (3.4.37)
Substituting for finto (3.4.20) and (3.4.21) yields
wl m! 1 2m
a'——%<—°+—)a - f sin ¥ g(-wepa sin ¥, 7)dy (3.4.38)
Wo m 27me0 0
g=0 (3.4.39)

Hence to the first approximation, the oscillations are sinusoidal with the fre-
quency wo(7) and an amplitude given by (3.4.38).

We apply these results to the case of quadratic damping, that is, to a system
governed by

5; [m(r)a] + k(r)u=eg(u, 1) = -ea(r)ili] (3.4.40)

Substituting for g into (3.4.38) and carrying out the indicated integration, we
obtain

1 fwy m 4o,
=-= (2t —)a-—222 3.4.41
‘4 2 (wo m)a 3mm a4 ( )
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Equation (3.4.41) has the integral

! ! & [ e i@
0

avwo (1) m(r) i aoVwo(0) m(0) B 37 m2(7)
or
1/4 T 1/a -1
4= [Tmng(%%] {1 ¥ %% f a(r) [%8’6(7)] df} (3.4.42)
0

where a, is the initial amplitude. When k and m are constants, (3.4.42) reduces
to (3.3.34).

3.5. Relaxation Oscillations

In this section we return to Rayleigh’s equation
utu-e@-u*)=0 (3.5.1)

We have already studied the behavior of the solutions of this equation for small
€. We found that these solutions are approximately sinusoidal with slowly vary-
ing amplitudes and phases and that they always approach a limit cycle as ¢ = oo,
irrespective of the initial conditions. There are electrical and mechanical systems
of interest for which e is large; van der Pol (1922) mentions that there are cases
for which € is approximately 10°. Here we consider the case of large €.

Figure 3-24 shows the trajectories in the phase plane for the solutions of

5

(o,

u
a
u

[

c) he

Figure 3-24. Phase planes for Rayleigh’s equation; (2) € =0.01; (b) € =0.1; (¢) e = 1.0‘;
(d) e = 10.0.
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Figure 3-25. Solutions of Rayleigh’s equation: (2) e = 0.01; (b) e=0.1;(c)e=1.0;(d) e =
10.0.

(3.5.1) for four values of €, namely €= 0.01, 0.1, 1, and 10. For small ¢, the
resulting limit cycle (i.e., closed curve) is nearly a circle, and the corresponding
motion is nearly a harmonic motion with a definite amplitude as shown in Fig-
ure 3-25a. As € increases, the limit cycle in the phase plane deviates more and
more from a circle, and the corresponding motion deviates more and more from
a simple harmonic motion. We note from Figure 3-25 that the distortion of the
limit cycle (steady-state motion) from a sinusoidal form increases markedly with
increasing €. When e = 10, the corresponding motion is jerky and consists of
slowly varying stretches followed by abrupt changes. Such oscillations are often
called relaxation oscillations (van der Pol and van der Mark, 1928). For the
van der Pol circuit the energy is being stored in the capacitor during the slowly
varying part of the motion, while during the abrupt changes the energy is being
suddenly released.

To analyze the behavior of these relaxation oscillations, we introduce the
change of variable

t=elu, da=v 3.5.2)

Then (3.5.1) can be replaced by the following pair of first-order ordinary-
differential equations:

elo=-f+v-0° (3.5.3)
f=etv (3.5.4)

The set of equations (3.5.3) and (3.5.4) is a special case of the set
elx=1f(x,y, ;e (3.5.5)
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y=gx,y,t;e") (3.5.6)

where x, y, f, and g are real-valued vectors.
When € > o, the system (3.5.5) and (3.5.6) is called a singularly perturbed
system of equations because (3.5.5) and (3.5.6) become

f(x,y,1)=0 (3.5.7)
y=gxy,1) (3.5.8)

whose solution cannot satisfy in general all the initial and boundary conditions
because (3.5.5) is reduced from a differential to an algebraic equation. Thus the
solutions of (3.5.7) and (3.5.8) cannot be expected to approximate the solutions
of (3.5.5) and (3.5.6) for all t. Consequently a number of techniques have been
developed to determine uniform solutions for such singularly perturbed systems.
Foremost among these techniques are asymptotic methods, especially the
method of matched asymptotic equations. Dorodnicyn (1947) and Cartwright
and Littlewood (1947) applied this technique to the van der Pol equation in the
phase plane, while Cole (1968, Section 2.6) also applied it to the van der Pol
equation but in the physical plane. In addition to the method of matched
asymptotic expansions, a number of other techniques have been developed.
They involve idealizing the system under consideration by representing the solu-
tion as a combination of continuous segments and discontinuous or quasi-
discontinuous segments (Andronov, Vitt, and Khaikin, 1966; Minorsky, 1962).
Numerical solutions of the van der Pol equation for large € were obtained by
Yanagiwara (1960), Krogdahl (1960), and Urabe (1963).

Recently asymptotic methods have been the most widely used to study relaxa-
tion oscillations. Besides the aforementioned studies, systems governed by a
second-order differential equation were studied by Levinson and Smith (1942),
Graffi (1942), Corbeiller (1931), LaSalle (1949), Stoker (1950), Caprioli (1954),
and Coddington and Levinson (1955). Anh (1973) and Tondl (1970b) studied
mechanical relaxation oscillations. Flatto and Levinson (1955) treated the case
in which f and g are periodic in ¢, while Hale and Seifert (1961) and Hale (1963)
treated the case in which f and g are almost periodic in ¢. Balachandra (1973,
1975) obtained periodic solutions of singularly perturbed equations arising from
gyroscopic systems and obtained new results for (3.5.5) and (3.5.6).

In the remainder of this section we restrict our attention to (3.5.3) and (3.5.4).
Eliminating ¢ from these equations, we obtain the following equation for the
trajectories in the phase plane:

,dv_v-vP-¢
€ a " (3.5.9)
The curve £ =v - v® is shown by the solid line in Figure 3-264. Along this curve
the slopes of the trajectories are zero, and because € is very large, the magnitude
of the slope is very large away from this line. Around this line there is a bound-
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Figure 3-26. Relaxation oscillations of Rayleigh’s equation: (¢) motion of representative
points; (b) limit cycle.

ary layer inside which the slopes of the trajectories change very rapidly. Also
shown in Figure 3-264 are six trajectories, corresponding to six different starting
points. In the shaded regions the representative point moves downward, slightly
to the right when v is positive and slightly to the left when v is negative. In the
unshaded region the representative point moves upward, slightly to the right
when v is positive and slightly to the left when v is negative,

This construction clearly indicates the existence of a limit cycle as shown in
Figure 3-26b. As € - oo, the limit cycle approaches 0,0, 030,0,. Thus it con-
sists of the two vertical segments Q, Q, and 030, and the segments Q,Q,; and
0, 0s.

In Figures 3-27 two phase planes are shown. Each phase plane was constructed

; i
H

(a) (b)
Figure 3-27. Phase planes for Rayleigh’s equation: (2) e = 0.01;(d) e = 10.0.
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numerically, and each is for a different value of e. Several different trajectories
are shown in each figure. The trajectories apparently form limit cycles very
rapidly for large values of e.

Next we follow Stoker (1950) and determine an approximation of the period
of the limit cycle as €~ oo. Referring to Figure 3-26b, we note that a first
approximation to the period of the limit cycle as € = oo is

T= efiig (3.5.10)

v

Since as e = oo the segments O 0, and Q3 0, are vertical, d¢ =~ 0 along these seg-
ments and hence the times needed to traverse these segments are zero. Moreover
since the times needed to traverse the segments Q,03 and Q4;Q; are the same

2 gg 2 gv- 302 dv
T=2e — =2 —_— (3.5.11)
o, V 2, v
The point Q, corresponds to d§/dv=0 or 1- 3v2=0. Hence v=1/2/3 and

£ =2/3+/3. Moreover Q; corresponds to £ = -2/3+/3, and hence Q4 corresponds
to v = 2/+/3. Then (3.5.11) becomes

13 dv 3
T= 26] —=-3vdv =2e(——ln2 ~1.614e (3.5.12)
2/\/'3— 1 2

Using the method of matched asymptotic expansions, one can find the following
expansion for the period (Dorodnicyn, 1947):

T=16137e+7.0143¢" % - LetIne- 1.3246e7 + O(e™*?) (3.5.13)

The last two terms in (3.5.13) were in error in the original paper of Dorodnicyn,
and they were corrected by Urabe (1963).

Exercises

3.1. Determine the singular points and their types for the following equa-
tions, and for each case sketch the trajectories and the separatrices in the phase
plane:

(@) u+2ui+u+u>=0, u>0

b) u+2mi+u-ud=

(¢) u+2ui-u+u’=

d v+2mi-u-u=0

3.2. Determine the singular points and their types for the system

x=x%2-y

y=x-y

Sketch the trajectories and the separatrices in the state plane.
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3.3. Determine the singular points and their types of the system
i=x*+y?-5
y=xy -2
Sketch the trajectories and the separatrices in the state plane.
3.4. Consider the Rayleigh equation

X-e@-38)+x=0
Let u = x and show that u is governed by the van der Pol equation
u-e(l-uHu+u=0
3.5. Consider van der Pol’s equation in the following form:
UteBu’-1Du+u=0

Use Liénard’s method to construct two trajectories in the phase plane—one
starting far outside the limit cycle and the other starting near the origin. This
construction provides another, rather convincing, argument for the existence
of a limit cycle.

3.6. Consider the system governed by
U+using +u=0

Using Liénard’s method, construct several trajectories. Show that more than
one limit cycle exists. Some limit cycles are stable while others are unstable.
How can one determine the stability of the various limit cycles by examining
the trajectories in the phase plane? Indicate which limit cycles are stable and
which are unstable in this example (see Figure 3-28).

3.7. Consider the following system of equations:
X, =-ux, +ksinx,

. 2 K
X,=0-Q@xy]+——cCosXx,
X

Locate the singular points of this system. (Hint: Obtain ¢ as a function of x;.)
Show that the maximum value of x; is given by &/u and occurs when ¢ = ak? /u?.
Show your results by plotting x; and x, as functions of ¢ for

(@ a=1, k=1, andu=1

(b) a=0, k=1, andu=
(¢c) a=-1, k=1, andp=5

NS

Fora=1,k=1, and u= %, determine the nature of the singular points (i.e.,
focus, col, etc.) when ¢ =0, 3, and 4. Sketch the trajectories in the state plane
for each case.

3.8. In studying the primary-resonance response of the van der Pol oscillator
with delayed amplitude limiting, Nayfeh (1968) encountered the following sys-
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f LIMIT CYCLE

/ \\ LIMIT CYCLE

u
s

/ LIMIT CYCLE

Figure 3-28. Exercise 3.6.

tem of equations:

#1=x;(1-x%)+fcosx,
X,=0+vx3- ;fIsinxz
(a) Show that the x;-coordinate of a singular point is a solution of
pl(1 - p)* + (0 +vp)*] =12
where

=12
pP=x7

(b) Using v =-0.15, plot the locus of the singular points in the po-plane for
f2=1, %, 2;47, and TI6' What is the significance of the value 747—?
(c) Show that the interior points of the ellipse defined by

(1-p)(A-3p)+(a+vp)(0+3vp)=0

are saddle points and hence unstable. Also show that the exterior points are
nodes if D = 0 and foci if D <0, where

D = 4[(1 - 3v*) p? - 4vpo - 6?]
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(d) Finally, show that the exterior points are stable if p >% and unstable if
<1
3.9. Consider a pendulum with a dry, rusty hinge. Assume that friction has
constant magnitude so that the governing equation has the form
0 +2usgnb +w?sinf=0

Determine a first approximation for § which accounts for both damping and
nonlinearity. Ottl (1975) determined the transient motion of an oscillator with
Coulomb damping.

3.10. Consider the system defined by (Hayes, 1953)
6+2ub+w?sinf=f

where f is a constant (pendulum with linear damping and constant torque).
When f=0, let x; =0 and x, =x,. Then study the motion near the singular
point defined by x; =0 and x, = 0, using the discussion of Section 3.2.1. Then
compare your results with (3.3.74). Repeat for x; = 7. When f# 0, determine
the equilibrium points and discuss the nonlinear motion around these points.

3.11. Consider the system defined by
é+2ué|é|+w2 sin =0

(pendulum with quadratic damping). Let x; =6 and x, = x;. Then study the
motion near the singular point defined by x; = 0 and x, = 0, using the discussion
of Section 3.2.1. Then compare your results with (3.3.92). Explain the differ-
ences. Compare these results with those of Exercise 3.10 above.

3.12. Consider Rayleigh’s equation
U+wdu-e@-u%=0 1)

Let x; =u and x, =x,. Study the singular point(s), using the discussion of
Section 3.2. Then, instead of (1), consider the system

i=tea(1-2wia®, B=0 )
which is equivalent to (1) when € is small according to Section 3.3.4.

3.13. The motion of a particle in the restricted three-body problem is gov-
erned by

m(x -1 +m)- (1-m)x+m)
d3 3

$-2-x=-

my (1-m)y

J o+ 2% -y =-

where m is a reduced mass and

di=(1-m-x)?+y% di=(m+x)*+y?
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(a) Show that there are five equilibrium points of this system; two of them
are (% -m, i%\/—?? ), while the other three are the solutions of

m 1-m

TA-m-x)? (mix)?

X

These are usually called the libration, or Lagrange’s, points.

(b) Show that the first two are linearly stable when m <m, and unstable
when m = m,, where m, = %(1 - %\/@).

(c) Show that the remaining three points are always unstable.

3.14. In analyzing the effect of two-to-one resonances on the nonlinear
stability of the triangular points in the restricted three-body problem and in
analyzing second-harmonic resonances in the problem of capillary-gravity waves,
Simmons (1969), McGoldrick (1970b), and Nayfeh (1971b, 1973c) encountered
the following set of equations:

él =J1(l1l12 sin Y
éz =J2a% sin Y
ayY=0a, +(Jpa? +2J1a3) cos y

where J,, J,, and 0 are constants.
(a) Show that the singular points of this system are given by

y=nm, 0a,+ (Jya?+2J1a%) cosnm=0

(b) Show that these singular points are stable if J;J, < 0 and may be unstable
if JiJ, > 0.

3.15. Consider a simple pendulum with a dashpot as shown in Figure 3-29.
(a) Show that the equation of motion is

mi; 6 = -mgsin 0 - (iml,6 cos® (8 - ) 1)

— Figure 3-29. A simple pendulum with a dashpot.
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Then show that (1) can also be written as

- . B, +1,)* sin® 0 .
0 +w?sin 6 + 0=0 2
S 01Uy +1,) (1 - cos 0) @

(b) Expanding and retaining through the cubic terms, show that (2) becomes
6+w>(1- 1026 +2u0%6=0 (3)
where

_ By +1,)?
13

2u (4)

Using (3), obtain the following first approximation for 6 when the amplitude of
the motion is small but finite:

P 1n(1+lua(2,t)] }
0 =—F——=cos {w|t - —2—— +8 (5)
V1 + §uadt { [ 8u ¢

where aq and 8, are constants of integration. Note that u is not small and that
in this case the frequency is affected by the damping in the first approximation.
As a check, show that in the limit as u = 0 equation (5) reduces to equation
(2.4.18).

3.16. The free oscillations of a van der Pol oscillator with delayed amplitude
limiting are governed by

v+ wiv=2e[(l -2)0- zv]
T2 +2z = v?
(a) Use the method of multiple scales and show that (Nayfeh, 1967)
v=a cos (wot+6)+0(e)
z=bexp (-t/7) + %az + %az(l +4w3r?)~ 12
- cos (2wgt + 20 - arctan 2w, 7) + O(€)
where
i=ea(l- §0,a%), =@ +8wir?) (1 +4wdr?)!
0=-Lexqa?, 0; = -2woT(1 +4wdr?)™!
b=2(1+2w3r?) (1 +4wir?) 1ab

(b) Solve fora, 0, and b.

(c) Determine the steady-state motions and their stability. Free oscillations
of other third-order systems were studied by Dasarathy and Srinivasan (1969),
Srirangarajan and Srinivasan (1973, 1974), Srirangarajan and Dasarathy (1975),
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and Joshi, Srirangarajan, and Srinivasan (1976). Baker, Moore, and Spiegel
(1971) analyzed a third-order nonlinear system as a model for nonlinear instabil-
ity. Nayfeh (1968) and Tondl (1968, 1974) determined the forced response of
two third-order systems.

3.17. The motion of a particle restrained by a linear spring and under the
combined influence of Coulomb and viscous damping is governed by

U+ wiu +e(igsen s +2u,1)=0
where pg and (4 > 0 and e << 1.
(a) Show that
u=a cos (wot +f)+0(e)
where
a= _e(_?-ﬁ_O_ +u1a>
MWy

and

™
]
o

(b) Show that

2 2
a= <a0 + Ho )exp (—euqt) - Ho
MWl TWoM

where a is the initial amplitude.
(c) Explain how the motion decays. When does it stop?

3.18. The motion of a particle restrained by a linear spring and under the
combined influence of Coulomb and square damping is governed by ‘

U +wdu+e(ugsgn i +uyiliu|)=0
where Uy and 1, > 0 and € << 1.
(a) Show that
u=a cos (wWot +f)+ O(€)

where

. 2 4
a=*‘6( Ho +_IJ.2(,00112>
3n

and
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(b) Show that

1 3o € 8l Mo
a=—1/=—tanlc-—y1/ ——1t
Wy 2, T 3
where c¢ is a constant of integration.

(¢) Explain how the motion decays. When does it stop?

3.19. The motion of a particle under the combined influence of viscous
and square damping is governed by

U+ wiu+eQud +uuli|)=0
where ti; and 4, > 0 and e < 1.
(a) Show that
u=a cos (wet + )+ 0(e)

where

i =-e(ma + == pywoa?
My 317142 o

and

=
]
o

(b) Show that

EITIR) -1
a=ag {exp (61 1) + a0 222 [exp (et 1) - 11}

3mu,
where a is the initial amplitude.
3.20. Consider the free oscillations of a system governed by
U+ wdute(Quit- tgsenu)=0

where € <<'1 and py and po > 0.
(a) Show that

u=acos (wot+L)+ 0(e)

where

. 2 .
a=e<—lﬂ)'—ptla> and (=0
MWy

(b) Show that

2Uo
Twoll

2
a=(a0— #o >exp (-euit) +

TWoM;

where ag is the initial amplitude.
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(c) Discuss the limit cycle(s), if any.
3.21. Consider the motion of a system governed by
U+ wdu+e(uli| - posgnu)=0
where € << 1 and i, and pg > 0.
(a) Show that
u=acos (wet +f)+ O(e)

where

(b) Show that a can be written in the form

1 2
3o |—+
a=]/ — < w €
2M, ® cexp [? V32ugM, /3 f] - Wo

where ¢ is a constant of integration.
(c) Discuss the limit cycle(s), if any.

3.22. Consider the motion of a system governed by
U+ wdu+e(uyuld] - 2u1) + eau® =0

where € << 1 and u, and y; > 0. Klotter (1955) studied the free oscillations of a
system having quadratic damping and arbitrary restoring forces.

(a) Show that

u=a cos (wyt +0) + 0(e)

where
a=€{Mia - T HyWwpa
3
and
. 3exa
B=——a’
8(.4)0

(b) Show that ¢ can be written in the form

3mu
a= —[1+Cexp (~eu; )] "
4y wo
where C is a constant of integration.
(¢) Discuss the limit cycle(s). What influence does eau® have?
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3.23. Consider the motion of a system governed by
U+ wdu+eQud +uyulil +usi®)=0
where € << 1. Baum (1972) determined an approximate solution when u, = 0.

(a) Show that, to the first approximation, the amplitude is governed by

G=-¢ 4 2,3 2.3
Mya + Mrwoa” +— Uz woa
3w 8

(Note that u3 must be positive for a realistic system.)
(b) Determine the stationary motions and their stability as a function of the
magnitudes and the signs of u; and u,.

3.24. A clock pendulum excited by pulses is governed by
JX +kx + % - 310G - %) 8(x - x0)=0
where J, k, A, and I are constants and & (x - x) is Dirac’s delta function.
(a) Show that to the first approximation

X =acos y, Y=wt+¢

where
k
wi=—
J
and
. Aa fzn' ) Ia 2w
a=-— i dy +— 1) -
2 ) sin® ¢ dy i), (@acos Y - xq)
. . . Aa Ia 4 -
- sin Y(sin Y + |sin Y|)dyY = -—+ 8(a cos Y - xq) sin® ¢ dy
2] 2Jm J,
. )\ 2m I T
p=-—— cos ¢ sin ¢ dy + —— S(a cos Y - x¢) sin Y cos Y dy
2Jm J, 2Jm J,
(b) Ifa=>xy =0, show that
. \a I
= - — 4+ — gj
45707 T o s va
. I
= cos
ey Va

where ), is the root of a cos ¥ - xo = 0. Hence

. \a I ( )c%)ll2
a=-—+—[1-—
2J  2Jm a?
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Hint:

a

f 8(a cos Y - x¢) sin? Y dy = alf 8(z - xq) sin [Y(2)] dz =alsin Y,
o A

(¢) If xy,>a, show that

(d) Show that finite-amplitude stationary oscillations exist only whena = x,
and xo SI/2mA.

3.25. A number of problems involving convection phenomena, such as the
formation of Bénard cells, the Rayleigh-Taylor instability, and various aperiodic
plasma instabilities, lead to a model equation of the form

il+l.llz_ o u +C¥2u3=

where u, o, and a, are positive. Determine an approximate solution to this
equation and show that u =+/a;/a, is a saturation value (Cap and Lashinsky,
1973).

3.26. Use Liénard’s construction to describe the behavior of the system
governed by

U+ wiu+e(2ui - Mo sgnu) =0

where € >>1 and u; and yo > 0. Show that the period of the motion =>° as
€ = o0, Describe the motion when the signs of u; and u, are reversed.

3.27. Use Liénard’s construction to describe the behavior of the system
governed by

U+ wiu +e(upttlul - 2u,1)=0

where € >>1 and u, and u; > 0. What is the period of motion? Describe the
motion when the signs of u, and u; are reversed.

3.28. Use Liénard’s construction to describe the behavior of the system
governed by

U+ w3u+e(-2uq1 - payttli| +usu3)=0

where € >=> 1 where u;, Uy, and u3 > 0. What is the period of the motion? Baum
(1972) analyzed the case u, = 0.

3.29. Consider the response of a system governed by

u+2uitu+eud=
where 4= 0(1)and 1 - u2>0.

(a) Seek a solution in the form (Popov and Paltov, 1960; Mendelson, 1970;
Arya, Bojadziev, and Farooqui, 1975)
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u=acosy +eu;(a, Y)+---
i=pateb @+ = E@)

U=wp+ew; @)+ =wla)
where w3 = 1 - u?. Show that the time derivatives are transformed into
d 0
=y — —
dt oy é
d? 262+2§a2 v 2+§d§’8+dwa
= = ——+2w i x
dt? oy? 0Yda da? da Oa da oY
(b) Show that u, is governed by
02%u 9%u 0%u, ouy ou
2 1 1 2,2 1 2 2
We T3~ 2Mwa +u"a L+ 2Uwe — - e — + (w3 +u?) u
0811/2 #oawaaﬂ 342 Moawﬂ aa(oﬂ)l

= 2wowia cos Y + 2weky sin Y - pa?

L sinlp+u<a—d—é— El> cos
da

—%a3 cos Y - a cos 3y

(c) Show that elimination of secular terms leads to

dé,
2(})0(&)1&"“#(1_‘,“21 " =0
da

dw
200 &; — pa’ L=0
da

Hence
El=%ﬂ(13 and w1=%w0a2
(d) Show that
G=-ya+3 eua
7 +3
Y= +3 ewoa?
Hence

a=aoe ™1+ 3ead (e - 1)]71/?
- Wo 32, -2ut
L]/—\I/0+wot——2—ﬁln[l+§eao(e - DI

3.30. The free oscillation of a single-degree-of-freedom system is governed by
U+wlsinu=ef(u,u), e<<1
(a) When € =0, show that
u=2sin"! [ksn (Y, k)]
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where sn is the Jacobi elliptic sine function, Y = wt + ¢, k is the modulus of the
elliptic function (amplitude of the oscillation), and ¢ is the phase.

(b) When €# 0, seek a solution as in (a) but with time-varying k£ and ¢.
Moreover impose the condition

u=2kwecen (Y, k)

where cn is the Jacobi elliptic cosine function. Show that (Cap, 1974)

. €cn 1
k=——f[2sin"" (k sn), 2kw cn]
2w
é c #6250 £12 sin! (k sn) + 2keo en]
=- sn
ook dn e sin sn w cn

where dn? =1 - k2 sn?.
. (c) Determine a first approximate solution by averaging the equations for
k and ¢ over the period 4K of sn, cn, and dn. Note that

1/2m d0
K= _—
o 1 - k*sin% @

3.31. In analyzing the motion of a particle constrained to move on a circular
path within a body that is spinning and coning, Mingori and Harrison (1974)
encountered the equation

dv . 1,2
v;—+u1(v— 1) - poMzsinu -~ 3 u3sin 2u=0
u

where u;, U,, and U3 are constants.

(a) Determine the equations describing the singular points.

(b) When u; =0.1 and u, = 2.0, show that bifurcation occurs at u3 = 0.0502,
0.3, and 2.265.

(¢) Calculate the singular points and their types as u3 is varied from zero past
2.265.

(d) Sketch the trajectories in the phase plane.

3.32. Consider the system govened by
u+fw, 7)=0 (1)

where d7/dt =€, a very small quantity. The variable 7 appears explicity in the
coefficients of the various functions of u; thus (1) describes a system that has
slowly varying parameters.

(a) Following the generalized method of multiple scales (Nayfeh, 1973b,
Section 6.4), assume

u(t) = uo(r,n) +euy (1,n) +- - - )
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where dn/dt =g(1), a function to be determined as part of the solution. Here
n is the fast scale and 7 is the slow scale. We note that, in contrast with the
derivative-expansion version, here the derivative of n with respect to ¢ is a slowly
varying function of time.

Show that

d? a2 0 92
40 +0(e 3
ar E ot e( o aa) €% @)

Substituting (2) and (3) into (1), expanding f around u = u,, and equating
coefficients of like powers of €, show that

2 auo 2
g\ =) *+F(uo,1)=c1(1) (4)
on
3%u, Of(uq, 7) ou 9%u,
22 % Yo S _ 20 —_ 70 5
on? * dug “iToE on 28 on ot )

where

F(uo, 7)= 2ff(u0> 7) dug

and c¢; is an arbitrary function. In terms of the variable 1, (4) describes periodic
motions around a center.
Multiplying (5) by du /07 and integrating, obtain

(E)ul Qug 62u0> T fT d (E)uo) J ©)
& on 0n “1 am* /o o OT on K
where T is the period of motion in terms of the fast scale; T is independent of 7.

The left-hand side vanishes if u; is periodic; thus the condition of periodicity
(i.e., the solvability condition which eliminates secular terms) is

g(T)f( )dn 2c (@)

where c is an arbitrary constant.
Using (4), show that (7) can be rewritten as follows:

Va2
J‘ Vey - Flug, T)dug =c (8)
y

1

where y; and y, are the zeros of ¢; — F.
(b) Consider a linear oscillator having a time-dependent, restoring-force
coefficient

fluo, T)=k(T) ug )
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Show that (4) and (9) lead to

¢y (1)
= i 10
Ug Py sin ¢ (10)
where
g(r) ( m )
n= o+— (1)
Vk(T) 2
Hence the period (which is independent of 7) is given by
2mg(T)
T=—F= (12)
Vk(1)
If we let T = 2m, then it follows that
g(1) = Vk(r) (13)
Show that (8) and (9) lead to
T 2
210) =—C,aconstant (14)
Vk(t) w

Finally combine (14), (13), (11), and (10) to obtain

2
Ug =- —ck'l/4 cosn (15)
l‘ m

an _
o g(1)

Recalling that

we can rewrite (15) as follows:

a 1 (¢
Ug = [k(T)]1/4 COS[;—'/(; g(T) dT"'Tlo]

where a and ng are constants. Compare this result with that in Section 3.4.1.



CHAPTER 4

Forced Oscillations of Systems
Having a Single Degree of Freedom

In the previous chapters we considered systems having one degree of freedom
that were initially disturbed and then allowed to respond with no further
external excitation. In contrast, we now consider systems having one degree of
freedom that are continuously excited. In this book two types of excitations
are considered: (1) the excitation appears as an inhomogeneous term in the
equations governing the motion of the system, and (2) the excitation appears as
a variable (i.e., time-dependent) coefficient in the governing equations. The
second type, which is called a parametric excitation, is considered in the fol-
lowing chapter. The first type, which is called an external excitation, is con-
sidered in this chapter.
Here we consider systems governed by

U+ wiu=ef(u, ) +E

where € is a small parameter, f is a nonlinear function of u and #, and E is an
externally applied force called the excitation. We distinguish between two types
of excitations. First, the excitation draws on an energy source that is assumed to
be unlimited or so large that the excited system has a negligible effect on it. In
this case E = E(¢); that is, E is not a function of the state of the system u, &, or
. Such sources are said to be ideal sources of energy. Second, the excitation
draws on an energy source that is limited so that the excited system has an
appreciable effect on it. In this case E = E(t, u, u, u); that is, E is a function of
the state of the system. Such sources are said to be nonideal sources of energy.
Systems are classified as ideal or nonideal according to the energy source.

In Sections 4.1 through 4.4 we treat ideal systems and take the excitation to
be the sum of NV terms, each of which is harmonic:

E(t)= IZV: K, cos (2,t+0,)

n=1

161
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If the K,, (amplitudes), 2, (frequencies), and 6,, are constants, the excitation
is said to be stationary; otherwise it is said to be nonstationary. Perturbation
methods lend themselves to the analysis of nonstationary systems when the
amplitudes and frequencies are slowly varying functions of time.

In Sections 4.1 through 4.3 we treat stationary excitations. Systems having
cubic nonlinearities are treated in Section 4.1, those having quadratic and cubic
nonlinearities are treated in Section 4.2, and self-excited systems are treated in
Section 4.3. Generally the discussion treats only one-term (harmonic) excita-
tions; however multifrequency excitations are treated in Sections 4.1.5-4.1.7,
4.2.4, and 4.3.5. In these subsections, the frequencies are assumed to be distinct
and away from each other. The case in which two or more frequencies are close
to each other is best treated by the approach used in Section 4.4, where non-
stationary excitations are considered. This is so because, if

E(f)=K, cos (2,t+0;)+ K, cos (Q,2+0,)
then we can write
E(t) = K(t) cos [2,(2) + 0(2)]
where
K*=(K, +K, cos ) +K3sin® B=K? + K} + 2K, K, cos 8

K, sin )
K, +K, cosf3

B=(R - Q)t+0,- 0,

0=6,+ arctan(

Thus, if ; =~ Q,, the excitation may be considered a monofrequency excita-
tion with slowly varying amplitude and frequency.

For a detailed treatment of nonstationary excitations we refer the reader to
the book by Mitropolsky (1965). Anderson (1974a, b) analyzed a system sub-
jected to a step-function excitation; Arya, Bojadziev, and Farooqui (1975)
analyzed a system subjected to a slowly varying excitation; and Srirangarajan
and Srinivasan (1973) analyzed a system subjected to a pulse excitation. Helfen-
stein (1950) and Hsu (1960) obtained exact solutions for the Duffing equation
when E() is a Jacobian elliptic function. In a series of papers, Loud (1957,
1968, 1969) studied the response of nonlinear systems to large-amplitude
excitations.

In Section 4.5 we treat nonideal systems.

4.1. Systems with Cubic Nonlinearities

Instead of treating general systems for which the algebra is involved, we
treat simple systems that exhibit the essential ideas. Thus we consider the forced
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oscillations of a particle attached to a nonlinear spring under the influence of
slight viscous damping so that the equation of motion has the form

U+ wiu=-2eul - ecrs® + E(t) 4.1.1)

where u is positive and o can be either a positive (hard spring) or a negative
(soft spring) constant. As mentioned in the introduction, we assume that

E(t)=K cos 2t 4.1.2)

except in Sections 4.1.5-4.1.7, where E(#) is a multifrequency excitation.
Primary resonances (i.e., £ = w,) are considered in the next section, and other
resonances are considered in Sections 4.1.2 through 4.1.4. Besides the books
listed in the preface, there are many studies dealing with primary and secondary
resonances in single-degree-of-freedom systems under the influence of mono-
frequency excitations (e.g., Klotter, 1953a, b; Klotter and Pinney, 1953; Sethna,
1954; Caughey, 1954; Loud, 1955, 1965; Shen, 1959; Lamb, 1960; Plotnikova,
1962, 1963b; Kononenko, 1964 ; Newland, 1965; Moser, 1965; Aks and Carhart,
1970; Ness, 1971; Bykov and Chinkaraev, 1972; Stani§ic and Euler, 1973; van
Dooren, 1973a; Ablowitz, Funk, and Newell, 1973; Chao and Sikarskie, 1974;
Dobias, 1974; Samoilenko and Momot, 1974; Varga and Aks, 1974; Nocilla and
Riganti, 1974; Ovcharova and Goloskokov, 1975; Hsieh, 1975; Cheshankov,
1975; Anderson, 1975a, c; Bastin and Delchambre, 1975; Plakhtienko, 1975;
Beshai and Dokainish, 1975; Eminhizer, Helleman, and Montroll, 1976; Mishra
and Singh, 1976). Tondl (1970a, 1973a, b) analyzed the primary responses of
general systems with various types of damping. He intended the results to be
used for the identification of the damping character and for finding the most
suitable function expressing the damping force from experimental observations.

4.1.1. PRIMARY RESONANCES, Q ~ w,

Instead of using the frequency of the excitation §2 as a parameter, we intro-
duce a detuning parameter g, which quantitatively describes the nearness of &
to wo. This has the advantage of helping one to recognize the terms in the
governing equation for u, that lead to secular, and nearly secular (small divisor),
terms. Accordingly we write

Q=wy +eo (4.1.3)

where ¢ = O(1). The linear undamped theory will predict unbounded oscillations
when ¢ = 0 irrespective of how small the excitation is. In the actual system these
large oscillations are limited by the damping and the nonlinearity. Thus to
obtain a uniformly valid approximate solution of this problem, we need to order
the excitation so that it will appear when the damping and the nonlinearity
appear. To accomplish this, we set K = ek. We note that this scheme for ordering
the terms is consistent with our primitive notions of primary resonance; namely
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we anticipate that in a lightly damped system a small-amplitude excitation pro-
duces a relatively large-amplitude response.

An approximate solution of the problem can be obtained by a number of per-
turbation techniques. Here we use the method of multiple scales. Accordingly
we express the solution in terms of different time scales as

u(t;e)=uo(To, Ty) + euy (T, Ty) +- - (4.14)

where T = t and T; = et. We also express the excitation in terms of T’ o and
Tl as

E(t) =€k cos (wo Ty +0Ty) (4.1.5)

Substituting (4.1.4) and (4.1.5) into (4.1.1) and equating the coefficients of
€° and € on both sides, we obtain

Diug + wiuy, =0 (4.1.6)
Djuy + wiuy =-2DoDyug - 2uDoy - ottd + k cos (wo Ty + oT;)
(4.1.7)

We note that, as a result of the ordering, the excitation, damping, and nonlinear
terms appear in (4.1.7).
The general solution of (4.1.6) can be written as

ug = A(Ty) exp (iwoTo) + A(Ty) exp (-icoo To) (4.1.8)

where A(T}) is an undetermined function at this point; it will be determined by
eliminating the secular terms from u, . Substituting u#, into (4.1.7) and express-
ing cos (w Ty + 6T;) in complex form, we have

Djuy + wiuy =~ [2iwe (A + pd) + 30424 | exp (iwoTo)
- ad® exp (3iwo To) + 3 k exp [i(woTo + aTy)] +cc (4.1.9)

where cc stands for the complex conjugate of the preceding terms. Secular terms
will be eliminated from the particular solution of (4.1.9) if we choose 4 to be a
solution of

2iwo(A' + pA) + 30424 - Lk exp (ioT;)=0 (4.1.10)
To solve (4.1.10), we write 4 in the polar form r
A=2Laexp(iB) (4.1.11)

where @ and § are real. Then we separate the result into its real and imaginary
parts and obtain

k
@' =-pa+ % —sin (0T, - )
w
° (4.1.12)

a k
—a* -} —cos (oTy - B)
Wo Wy

aff =

oolw
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Substituting (4.1.11) into (4.1.8) and substituting that result into (4.1.4), we
obtain the first approximation

u=acos (wot+P)+ 0(e) (4.1.13)

where @ and 8 are given by (4.1.12).
Equations (4.1.12) can be transformed into an autonomous system (i.e., one in
which T'; does not appear explicitly) by letting

vy=0T; - 8 (4.1.14)
The result is

' 1 k .
@ =-pat 5 ——siny
Wo
(4.1.15)
, o k
ay =oa-3—a*+L —cosy
Wo Wo
The system of equations (4.1.15) have the general form of the equations dis-
cussed in Section 3.2. To determine the character of the solutions, we first locate
the singular points and then examine the motion in their neighborhoods. Because
the amplitude and phase are not changing at a singular point, the response of the
system is said to be a steady-state motion. The nature of the trajectories in the
neighborhoods of singular points shows whether a small perturbation in the
steady-state motion decays or grows; that is, they illustrate the stability of the
steady-state motion.

Steady-State Motions. Steady-state motions occur when ' = v' = 0, which
corresponds to the singular points of (4.1.15); that is, they correspond to the
solutions of

ko
Ma =z ——smvy
Wo
(4.1.16)
a- 225 =~2 —cosy
% wo Wo
Squaring and adding these equations, we obtain
2 k2
24 o—é—q‘—2> 2= 4.1.17
[u ( 8%’ ) 1% T a2 ( )

Equation (4.1.17) is an implicit equation for the amplitude of the response a as
a function of the detuning parameter o (i.e., the frequency of the excitation)
and the amplitude of the excitation k; it is called the frequency-response
equation.

Substituting (4.1.14) and (4.1.3) into (4.1.13), we find that the first approx-
imation to the steady-state solution is given by

u=acos(wotteot-yv)+0()=acos(Q-7v)+0() (4.1.18)



166 FORCED OSCILLATIONS OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS

where @ and vy are constants. Hence the steady-state response is exactly tuned
to the frequency of the excitation. However the phase of the response is shifted,
in general, from that of the excitation by -v.

The plot of @ as a function of o for given u and k is called a frequency-
response curve. Each point on this curve corresponds to a singular point in a
different state plane; there is one state plane for each combination of param-
eters. Later an example of a state plane is presented. To draw such a curve, one
can solve a cubic equation for a? as a function of o, or one can solve for o in
terms of a. The latter approach, which is easier, gives

2 1/2
3 Q@ k
0=3 —a® i<4—w(2);2‘~ ].12) (4.1.19)

Figure 4-1 shows a comparison of the linear (o = 0) and nonlinear (a > 0)
response curves. Equation (4.1.19) indicates that the peak amplitude, which is
given by ap = k/(2wop), is independent of the value of a. The linear results are
symmetric to this order of approximation and represent the solution in a very
narrow band around the resonant frequency (recall that § = w, + €0; so the
frequency scale o is greatly expanded). The effect of the nonlinearity is to bend
the amplitude curve and distort the phase curve. In both cases multivalued

a>0 a=0
15 d =
. 10F t L
LOWER|gRANCH
ol L 1 011 1% T N N R (N N B
4.3 2.1 0 1 2 3 4 5 6 789 —4-3-2-10 1 2 3 4
ag o
(a) ()
LOWERBRANCH
3 L
4
v )
2 L
, 2 ¢ d
e } -
T cH | -
LppER BRAT
o T 1L 1 141y T N N N B B
4.3 210 1 2 3 456 7 8 9 -4-3-2-101 2 34
a o
(c) (d)

Figure 4-1. Comparison of linear and nonlinear response curves: (¢) and (b) amplitudes;
(c¢) and (d) phases.
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(a)

Figure 4-2. Frequency-response curves for primary resonances of the Duffing equation:
(2) effect of nonlinearity; (b) effect of amplitude of excitation.

regions are formed. As we shall discuss later, the multivaluedness is responsible
for a jump phenomenon; arrows indicate the jumps.

Figure 4-2a shows that the nonlinearity bends the frequency-response curve
away from the linear curve (o = 0), to the right for hard springs (i.e., « > 0) and
to the left for soft springs (i.e., « < 0). Figure 4-2b shows the variation of the
frequency-response curves with the amplitude of the excitation for a hard
spring. As the amplitude of the excitation increases, the frequency-response
curves bend away from the o = 0 axis. The locus of the peak amplitudes is the
parabola ¢ = % (a/we)a?, which is shown by a dotted line in Figure 4-2b. It is
often called the backbone curve. We note that, depending on the value of k,
some of the frequency-response curves are multivalued while others are single-
valued.

Figure 4-3 shows the influence of the damping coefficient u on the response
curves. In the absence of damping, the peak amplitude is infinite, and the fre-
quency-response curve consists of two branches having as their asymptote the

Figure 4-3. Effect of damping on the response of
the Duffing equation to a primary-resonance
excitation.




168 FORCED OSCILLATIONS OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS

ol o=6

o=3

o=0

k

Figure 4-4. Amplitude of the response as a function of amplitude of the excitation for
several detunings.

curve 0 = % (afwq)a®. When u = 0, v = nm, where n is an integer according to
(4.1.16). Hence (4.1.18) shows that the response is either in phase or 180° out
of phase with the excitation. However in the presence of damping, the peak
amplitude is finite. Moreover the first of (4.1.16) shows that y = sin”!
(2uaw, k), and hence the damping alters the phase shift of the response.

Figure 4-4 shows the variation of the amplitude of the response with the
amplitude of the excitation for several values of 0. The values of o and y are the
same for all curves. These curves were obtained directly from (4.1.17). We note
that, depending on the value of g, some curves are multivalued while others are
single-valued.

Jump Phenomena. The multivaluedness of the response curves due to the
nonlinearity has a significance from the physical point of view because it leads to
jump phenomena. To explain this, we imagine that an experiment is performed
in which the amplitude of the excitation is held fixed, the frequency of the
excitation (i.e., 0) is very slowly varied up and down through the linear natural
frequency, and the amplitude of the harmonic response is observed. The experi-
ment is started at a frequency corresponding to point 1 on the curve in Figure
4-5a. As the frequency is reduced, ¢ decreases and a slowly increases through
point 2 until point 3 is reached. As o is decreased further, a jump from point 3
to point 4 takes place with an accompanying increase in « and a large shift in
v, after which a decreases slowly with decreasing o. If the experiment is started
at point 5 and o is increased, a increases slowly through point 4 until point 6 is
reached. As o is increased further, a jump from point 6 to point 2 takes place
with an accompanying decrease in a and a large shift in vy, after which a decreases
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(a) v (b)

Figure 4-5. Jump phenomena for primary resonance of the Duffing equation: (@) « > 0;
b)a<0.

slowly with increasing 0. The maximum amplitude corresponding to point 6 is
attainable only when approached from a lower frequency. The portion of the
response curve between points 3 and 6 is unstable and hence cannot be produced
experimentally. The stability is discussed below.

For a soft spring, if the experiment is started at point 1 in Figure 4-5b and o is
slowly decreased, a jump from point 3 to point 4 takes place. On the other hand,
if the experiment is started at point 5 and o is increased, a jump from point 6
to point 2 takes place. Thus the jump phenomenon is a nonlinear phenomenon
which takes place for soft as well as hard springs. As the frequency is decreased,
the response amplitude jumps to a lower amplitude for a soft spring and to a
higher amplitude for a hard spring. As o is increased, the opposite takes place.

If the experiment is performed with the frequency of the excitation £ held
fixed while the amplitude of the excitation is varied slowly, a similar jump
phenomenon can be observed. Suppose that the experiment is started at point 1
in Figure 4-6. As k is increased, a slowly increases through point 2 to point 3. As
k is increased further, a jump takes place from point 3 to point 4, with an
accompanying increase in @ and a large shift in v, after which a increases slowly
with k. If the process is reversed, a decreases slowly as k decreases from point
5 to point 6. As k is decreased further, a jump from point 6 to point 2 takes
place, with an accompanying decrease in @ and a large shift in v, after which a
decreases slowly with decreasing k.

“
4———4"—5'
o= = T
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— /
| 12 e - Fi .
== igure 4-6. Jump phenomena for primary

"k resonance of the Duffing equation.
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a

(b) o

Figure 4-7. Amplitude of the response as a function of amplitude and frequency of the
excitation: (¢) catastrophe surfaces; (b) a schematic of a cusp.

When two stable steady-state solutions exist, the initial conditions determine
which of these represents the actual response of the system. Thus in contrast
with linear systems, the steady-state solution of a nonlinear system can depend
on the initial conditions. This point is illustrated later when we discuss the state
plane for a case in which two stable solutions exist.

Another way of viewing the jump phenomenon involves the use of catastrophe
theory. For a given u one can regard (4.1.17) as the equation of a surface
[ = a(o, k)]. In Figure 4-7a, the intersections of several planes of constant k
with this surface are shown by the solid lines, while the intersections with several
planes of constant ¢ are shown by the broken lines. The former are the curves
shown in Figure 4-2b, and the latter are the lines shown in Figure 4-4. This type
of surface is called a cusp.

In Figure 4-7b a schematic view of a cusp is shown. If a quasi-steady process is
started at point 4 and follows path 1 (only o changes), there will be a spon-
taneous jump from point B to point C (a catastrophe). On the other hand if a
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process is started at point 4 and follows path 2 (requiring both k and o to
change), the amplitude will increase smoothly to its value at point C. If the
process continues from point C to point D, a spontaneous downward jump (a
catastrophe) occurs. With this approach all possible responses and quasi-steady
processes can be represented by a single surface and viewed simultaneously. For
a comprehensive treatment and more references on catastrophe theory, we refer
the reader to the book of Lu (1976).

The jump phenomenon is a result of the nonlinear phase-amplitude interaction
indicated in the second equation of (4.1.16).

Stability of Steady-State Motions. The stability of the different portions of
the response curves can be determined either by investigating the nature of the
singular points of (4.1.15) as in Section 3.2 or by superposing a perturbation
v(?) on the steady-state solution given by (4.1.18). In the latter case one lets
u=qacos (- v)+v(t)in (4.1.1), uses (4.1.2), and obtains

U+ wjv + 2eud + 3eaa?v cos? (Q - y) + [(wd - Q* + 3 eaa?)a cos (U - )

- 2epal) sin (- y) + %eoaﬁ cos (382t - 37) - €k cos Q]

+3eav® cos (- y)+e® =0 (4.1.20)
Neglecting the term cos (3€2¢ - 37), one can easily show that the term in the
square brackets vanishes on account of (4.1.3) and (4.1.16). Then (4.1.20)
becomes

U+ wiv + 2eud + 3eaa® v cos? (2t - ) + 3eav? cos (- y)+ev® =0
(4.1.21)

Thus the stability of the steady-state motion is transformed into the stability
of the solutions of (4.1.21), which is an equation with variable coefficients.
Equations with variable coefficients are discussed in Chapter 5.

In this chapter we determine the stability of the steady-state motion by
investigating the nature of the singular points of (4.1.15). To accomplish this,
we let

=g, +
AT Th (4.1.22)
Y=Yt 11
Substituting (4.1.22) into (4.1.15), expanding for small @, and vy, noting that
aoy and v, satisfy (4.1.16), and keeping linear terms in ¢, and -y, , we obtain

k
a'l = ~Ma, +( Cos ')’o) Y1
2wy

, 3aa, + k k ) )
=- —— COS$ a, - sin
Y1 4eog Zwoa(z) Yo ] a1 2eoods Yo} 71

(4.1.23)
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Thus the stability of the steady-state motions depends on the eigenvalues of the
coefficient matrix on the right-hand sides of (4.1.23).
Using (4.1.16) one can obtain the following eigenvalue equation:

( 3aa%)
_“_x _ao -

1 2
-(0_%&) ue

ag 8(4)0

Expanding this determinant yields

2 2
N2+ 2n+ 2+ [o- 3aa0) (0_ 9aao> =0
8wy 8wy

Hence the steady-state motions are unstable when

3aa? 9aq?
I'=(o- - +u? <0 4.1.24
< 8w0> <0 8wo H ( )

and are otherwise stable. The condition (4.1.24) corresponds to the portion
between points 3 and 6 in Figure 4-5 because points 3 and 6 correspond to
I’ = 0, which is the locus of the vertical tangents to the frequency-response
curves. This can be shown by differentiation of (4.1.17) implicitly with respect
to a2 and setting do/da® = 0.

The preceding analysis determines the linear or local stability of the steady-
state solutions. The stability of motions in the large can be determined the-
oretically by the use of the Liapunov method. This method depends on the
existence of a so-called Liapunov function, which in practice can be found for
very few problems (e.g., LaSalle and Lefschetz, 1961; Szego, 1966; Hahn, 1967).

In the case of linear systems and in the presence of positive damping, the
steady-state forced response is independent of the initial conditions. In nonlinear
systems the initial conditions play a crucial role. When more than one stable
steady-state solution exist the initial conditions determine which steady-state
solution is physically realized by the system. It turns out that there are instances
in which a small change in the initial conditions produces a large change in the
response of the system. To illustrate this point we used (4.1.15) to calculate
several trajectories in the state plane corresponding to o, in Figure 4-1. The
trajectories are plotted in Figure 4-8. Points P; and P; are stable foci, and point
P, is a saddle point. All initial conditions in the shaded area lead to the steady-
state solution on the upper branch P, while all initial conditions in the un-
shaded area lead to the lower branch P;. The arrows indicate the direction of
the motion of the representative point. Thus all the shaded area constitutes the
domain of attraction of point P,, and all the unshaded area constitutes the
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Figure 4-8. State plane for the Duffing equation when three steady-state solutions exist.

domain of attraction of point P;. Domains of attraction were studied by a
number of investigators (e.g., Loud and Sethna, 1966; Sethna, 1967b; Tondl,
1970a, 1973a).

In summary, the question of the stability to small disturbances can be settled
with relative ease as in Section 3.2 because the analysis is linear. However to
find the stability in the large and to determine the effects of changes in the
initial conditions and the system parameters, one has to use a state plane as used
above or formulate some form of integrals of motion or energy levels or Lia-
punov functions (e.g., Struble, 1962; Brauer and Nohel, 1969; Roseau, 1966;
Leipholz, 1970). The use of state planes is most suited to systems governed by
two first-order differential equations as in this section. Although the other
approach is not limited by the degrees of freedom of the systems, it is limited by
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the ability to find an integral of motion or a Liapunov function. For canonical
systems some form of the Hamiltonian can be used, but for general systems the
integrals of motion and Liapunov functions are known for very few problems.

4.1.2. NONRESONANT HARD EXCITATIONS
When £ is away from wy, the effect of the excitation will be small unless its
amplitude is hard; that is, unless K = O(1). Thus we express the excitation as

E(f) =K cos QT, (4.1.25)

As in the case of primary resonances, we seek an approximate solution by using
the method of multiple scales. We express the solution in the form

u(t;e) =uo(To, Ty) + ety (To, Ty) +- - (4.1.26)

Substituting (4.1.26) into (4.1.1), using (4.1.25), and equating the coefficients
of €® and € on both sides, we obtain

D3ug + wiug =K cos QT 4.1.27)
D3u, + wiuy =-2DoDyug - 2uDoutg - ausd (4.1.28)
The general solution of (4.1.27) can be written as
uo =A(T) exp (iwo To) + A exp (iQT,) + cc (4.1.29)
where A =2 K(w3 - Q%)7!. Substituting u, into (4.1.28) yields
Diu; + wiuy =-[2iwy (4" + ud) + 6aAA? +30A4%A ] exp (iweTo)
- a {A? exp (3iwoTo) + A exp (3iQ2T,)
+34%Aexp [i(2wo + Q)To] +342 Aexp [i(2- 2we)To]
+34AA? exp [i(wo +2Q)T,] +34A% exp [i(wo - 2Q)To] }
- A[2iuQ2 + 3aA? + 6a4A4] exp (iQT,) + cc (4.1.30)

In addition to the terms that are proportional to exp (*iw, T ), secular or nearly
secular (small divisor) terms may occur whenever = O(€) or whenever there is
a secondary resonance, that is, whenever wg =~ (mwy + nS2), where m and n are
integers such that |m| + |n| = 3. This occurs whenever Q ~ % Wy or  ~ 3wy,
the first case is called superharmonic resonance, and the second is called sub-
harmonic resonance. Thus in eliminating terms that produce secular terms, we
need to distinghish four cases: (a) 2 is away from 0, % Wy, and 3wy ; (b) 2 =~ 0;
(c) Q= % wo;and (d) © ~ 3w,. The first case is discussed in this section, the
second case is a special case of the problem discussed in Exercise 4.37, the third
case (superharmonic resonance) is discussed in the next section, and the fourth
case (subharmonic resonance) is discussed in Section 4.1.4.
In the nonresonant case secular terms are eliminated if

2iwo(A' + pd) + 6aAA + 30424 =0 (4.1.31)
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Letting 4 = %a exp (iB) in (4.1.31), where a and § are real, and separating real
and imaginary parts, we obtain

a =-ua
) (4.1.32)
woaf =3a(A* +La*)a
Therefore for the first approximation
u=acos (wot + ) +K(wh - 22! cos Qt + O(e) (4.1.33)

where a and ( are given by (4.1.32). The general solution for a is @ = g, exp
(-uT,), where aq is a constant. Thus the free-oscillation (homogeneous) solution
decays with time so that the steady-state response consists of the forced (partic-
ular) solution only, as in the linear case. While the free-oscillation term is de-
caying, however, its frequency is a function of the amplitude of the particular
solution.

4.1.3. SUPERHARMONIC RESONANCES, %—% Wy

Besides the books listed in the preface, there are a number of studies that treat
superharmonic and higher-harmonic resonances in single-degree-of-freedom
systems under the influence of monofrequency excitations (e.g., Atkinson,
1957; Szemplifiska-Stupnicka, 1968; and Maezawa and Furukawa, 1973).

In this case we express the nearness of Q to %wo by introducing the detuning
parameter o according to

3Q=wy teo (4.1.34)

In addition to the terms proportional to exp (*iwoTo) in (4.1.30), there is
another term that produces a secular term in u, . This is ~aA3 exp (3iQ2T,). To
eliminate the secular terms, we express 32T, in terms of wq T according to

3QTO =(C¢)o +€U)T0 =(AJOT0 +0€T0 =OJOT0 +0T1 (41.35)
Using (4.1.35), we find that the secular terms in «, are eliminated if
2iwo (A" + ud) + 6aA’A +3aA%4 + aA® exp (ioT,)=0  (4.1.36)
Letting 4 = %a exp (i) in (4.1.36), where ¢ and § are real, and separating real
and imaginary parts, we have
' A’
a =-ua- a—sin(oTl -B)
Wo

; N (4.1.37)
ap = w_a (A* +%a*)a+ 2 cos (0T, - B)
(V]

Wo
Equations (4.1.37) can be transformed into an autonomous system by setting

y=0oT; -8 (4.1.38)
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and thereby obtaining

, ah®
a =-ua-——sinvy
wWo
(4.1.39)
, ( 3aA2> 3a 5, aA®
ay = \o- a-—a - ——cosYy
wy 8wy Wy

Therefore for the first approximation
u=acos (3Q-v)+K(wd - Q?)7! cos Qt + 0(e) (4.1.40)

where a and 7y are given by (4.1.39).
The steady-state motions correspond to a’ =y’ = 0; that is, they correspond to
the solutions of

aAd |
-pa =——siny
Wo
4.141)
< aA2> 3a , _aA®
0-3 a- a = cos y
wWo 8(00 Wy
Squaring and adding these equations leads to the frequency-response equation
aA2 3 2 2A6
[;ﬁ + <0— 3 < a2) ]a2 =22 (4.1.42)
Wo 8(.00 wWo

Solving this equation for o in terms of a yields
(XA2 3a 0(2 A6 1/2
a* £ ( -u?

0=3 + u

(4.143)
woe 8wy

wia?
Therefore when £ =~ %wo, the free-oscillation term does not decay to zero in
spite of the presence of damping and in contrast with the linear case. Moreover
the nonlinearity adjusts the frequency of the free-oscillation term to exactly
three times the frequency of the excitation so that the response is periodic.
Since the frequency of the generated free-oscillation term is three times the fre-
quency of the excitation, such resonances are called superharmonic resonances,
or overtones. In Figure 4-9 the three curves show how the response is formed
from the particular solution and the free-oscillation term [recall (4.1.40)] .
In this case the peak amplitude of the free-oscillation term is given by
aA®
a, =—
P uew,
In contrast with the case of primary resonance, a, is a function of a, the coeffi-
cient of the nonlinear term. The corresponding value of the detuning is given by

_ 3aA? (1 . o A* )
% wo 8u w3
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Figure 4-9. Synthesis of the response of the Duffing equation to superharmonic excitation:
(@) free-oscillation solution; (b) particular solution; (¢) actual response.

It follows from (4.1.42) that when the amplitude of the free-oscillation term
is small, it is proportional to A3 ;thus the response approaches that of the linear
system as A vanishes.

In Figure 4-10 various frequency-response curves are shown. These curves
show the influences of varying a, A, and u. Here, as in the case of primary reso-
nance, the bending of the frequency-response curves is responsible for a jump
phenomenon. There is symmetry about the ¢ = O line when the sign of «a is
changed [symmetry is indicated by (4.1.43)].

In Figure 4-11 the amplitude of the free-oscillation term is plotted as a func-
tion of the amplitude of the excitation. The broken lines show the unstable
portions of the curve, and the arrows indicate the jumps that occur as the ampli-
tude of the excitation is increased (upward jump) and decreased (downward
jump). By comparing Figures 4-4 and 4-11, we can discover important differ-
ences between the character of the two responses. As the amplitude of the
excitation decreases, the amplitude of the response vanishes much more rapidly
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Figure 4-10. Superharmonic frequency-response curves for the Duffing equation: (a) effect
of nonlinearity; (b) effect of amplitude of the excitation; (c) effect of damping.

in Figure 4-11 than it does in Figure 4-4. This can also be seen by comparing
(4.1.41) with (4.1.16); for primary resonances the amplitude of the excitation
appears in the equations governing the steady-state solution, while for super-
harmonic resonances the cube appears. After the jump in Figure 4-11, the ampli-
tude of the response decreases as the amplitude of the excitation increases until
point E is reached, while in Figure 4-4 the amplitude of the response increases
monotonically. This can also be seen by comparing (4.1.41) with (4.1.16); in
the second equation of (4.1.41) there is an extra term multiplying the amplitude
a, -3aA?/wy. As A is increased for a fixed o, the effect is to decrease the
apparent detuning. The effect of decreasing o can be seen in Figure 4-4. Thus

Figure 4-11. Jump phenomenon in the superharmonic response of the Duffing equation.
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when A increases, there are two influences competing simultaneously: one tends
to increase the amplitude of the response while the other tends to decrease the
amplitude of the response.

4.1.4. SUBHARMONIC RESONANCES, © =~ 3w,

Subharmonic and ultrasubharmonic resonances in conservative systems having
a single degree of freedom were studied by Cartwright and Littlewood (1947);
Reuter (1949); Levenson (1949, 1968); Obi (1950); Stoker (1950); Hayashi
(1953b); Gambill and Hale (1956); Rosenberg (1958); Hsu (1959); Kronauer
and Musa (1966b); Tomds and Tondl (1967); Proskuriakov (1971); Loud (1972);
Fu (1974); Yamamoto, Yasuda, and Nagasaka (1976); and Prosperetti (1976).

To analyze subharmonic resonances for (4.1.1) and (4.1.2), we introduce the
detuning parameter ¢ according to

2 =3wy teo (4.1.44)

In addition to the terms proportional to exp (*iwqTy), the term proportional to
exp [+i(§2 - 2wg) Ty ] produces a secular term in u,. We express (- 2wq) Ty as

(Q - 2(00)T0 = onO + GO'TO = (AJ()TO + UTl (4145)

Therefore to eliminate the terms in (4.1.30) that produce secular terms in u;, we
put

2iwo (A" + uA) + 6aA’A +3aA4%A4 +3aAA? exp (ioT,)=0 (4.1.46)

Letting 4 = %a exp (iB) in (4.1.46), where a and f§ are real, and separating real
and imaginary parts, we obtain

’

3aA
a =-ua- 4a a? sin (0T, - 3P)

Wo
3 3 4.1.47)
, « aA
ap' =—(A* + La*)a + ——a” cos (aT; - 3f)
Wy 40)0
To transform (4.1.47) into an autonomous system, we let
v=0T, - 38 (4.1.48)
and obtain
, 3aA , |
a =-pa-——a”siny
4w,
(4.1.49)

, ( 9aA2> 9a , 9aA
il (1—8

ay =
wo Wy 4w,
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Therefore for the first approximation
u=acos [$(Qt-7)] +K(w§ - Q*) " cos Qt+0(e)  (4.1.50)

where a and vy are given by (4.1.49).
The steady-state motions correspond to the solutions of

3aA

-pa=——a®sinvy
4wy
(4.1.51)
( 9aA2> 9a¢ , 9aA ,
o- a- a = a’ cosy
Wo 8(.00 4(4)0
Eliminating y from these equations leads to the frequency-response equation
9aA? Y 2 81la?A?

ou? + <o— - ———az) =2 —a (4.1.52)

we 8wy 16w;

Equation (4.1.52) shows that eithera =0 or

9aA?  Ya 2 8la?A?
9u* + lo- g a 2> =
H <° 16003

a I (4.1.53)
Wo 80)0

which is quadratic in a*. Its solution is
@2 =pt(p*-'* (4.1.54)

where

8 64w3 9aA?\ 2
p=209_6A2  and  g=—r 9u2+<o— aA) ] (4.1.55)
8la Wo

We note that ¢ is always positive, and thus nontrivial free-oscillation amplitudes
occur only when p >0 and p? > q. These conditions demand that

4wo0 aA? ( 630>
—— and —\o-

A <L
27« Wo

>— wWE=0  (4.1.56)

Wo

It follows that « and ¢ must have the same sign.
It follows from (4.1.56) that, for a given A, nontrivial solutions can exist

only if

2u2 wq N 6302 A?
A? 8wo

ag> (4.1.57)

while for a given o, nontrivial solutions can exist only if

2 12 63aA? 2 1/2
9 ("_2_ 63> < Beh <-‘3+(%- 63> (4.1.58)
ko\p doop  u \u
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Figure 4-12. Regions where subharmonic responses
exist.

In the Ao-plane the boundary of the region where nontrivial solutions can exist
is given by

63 A2 2 1/2
2 =3¢(“—2— 63)
4w p \M

which is shown in Figure 4-12 for a > 0.

When these conditions hold, it is possible for the system to respond in such a
way that the free-oscillation term does not decay to zero in spite of the presence
of damping and in contrast with the linear solution. Moreover in the steady
state, the nonlinearity adjusts the frequency of the free-oscillation term to one
third the frequency of the excitation so that the response is periodic. Since the
frequency of the free-oscillation term is one third that of the excitation, such
resonances are called subharmonic resonances, or frequency demultiplication.
Several frequency-response curves are shown in Figure 4-13q, and the amplitude
of the free-oscillation term is plotted as a function of the amplitude of the
excitation in Figure 4-13b.

We note that although the frequency of the excitation is three times the
natural frequency of the system, the response is quite large. For example, certain
parts of an airplane can be violently excited by an engine running at an angular
speed that is much larger than their natural frequencies (von Kdrmain, 1940).
Lefschetz (1956) described a commercial airplane in which the propellers
induced a subharmonic vibration of order % in the wings which in turn induced
a subharmonic of order % in the rudder. The oscillations were so violent that the
airplane broke up.

We note that there is no jump phenomenon in this case. In the regions where
two stable solutions exist (¢ = 0 and a # 0), the initial conditions determine
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Figure 4-13. Subharmonic response for the Duffing equation; amplitude of the free-
oscillation term versus (¢) detuning and (b) amplitude of the excitation.

which solution represents the response. One could construct a figure similar to
Figure 4-9, showing the synthesis of the response. In this case the high-frequency
component is the particular solution and the low-frequency component is the
free-oscillation term.

A possible state plane for the free-oscillation term is shown in Figure 4-14. The

L

Figure 4-14. State plane for the subharmonic response of the Duffing equation.
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trajectories were calculated by using (4.1.49). Point P, is a saddle point and
point P; is a stable focus. These points correspond to those labeled in Figure
4-13. The initial conditions must fall in the shaded area if the subharmonic is
to appear in the first approximation of the steady-state response. All initial
conditions outside this area lead to the trivial solution for the free-oscillation
term.

4.1.5. COMBINATION RESONANCES FOR TWO-TERM EXCITATIONS
In this section we consider excitations that consist of two terms having the
form

E()=K; cos(Q,t+0,)+K, cos (Q,£+0,) (4.1.59)

where K, 2, and 0,, are constants. Moreover we assume that K,, = O(1), and
we exclude the primary-resonance cases w, ~ §,, for n =1 and 2. We assume
an expansion of the form

u(t;e)=uo(Ty, Ty) + euy (Ty, Ty) + - - (4.1.60)

in (4.1.1), use (4.1.59), equate the coefficients of €® and € on both sides, and
obtain

Duo + wiuo =K, cos (Q; Ty +8,)+K, cos (Q, Ty + 8,) (4.1.61)
Diu, + wduy =~ 2DoDyug - 2uDgug - aud (4.1.62)
The general solution of (4.1.61) can be written in the form
ug =A(Ty) exp (iwoTo) + Ay exp (i To) + A, exp (2, To) + cc (4.1.63)
where
An =3 K@} - Q2) exp (0,,)
Substituting u, into (4.1.62) gives
Diuy + wiuy =-[2iwo(A" + pA) +3a(44 + 20, A, + 2A,A,) A]
- exp (iwoTo) - [2iQ u+ 30244 + A A, +2A,10,)] A,
- exp (i, To) - [2iQ, u+30(244 +2A, Ay + Ay AL)] A,
- exp (i, T,) - ad® exp (3iw,To) - aA} exp (3i2, Tp)
- a3 exp (3if2,Ty) - 3ad?A, exp [i(2w, + ;) T, |
-3ad? A, exp [i(2we + ;) Tyl - 304 A,
“exp [i(2wo - 1) To] - 3ad?A, exp [i(2w, - Q,)To]
- 30 AA? exp [i(wo +2,;) To] - 30 AN
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- exp [i(wo +22,) To] - 3aAA? exp [i(wo - 292,) T, ]
- 30 AN exp [i(wo - 29,) To] - 60 AA; A,
- exp [i(wo + 2, + ;) To]- 604, A,
- exp [i(wo = 4 - 2,)To] - 60AA; A,
- exp [i(wo - 2y + Q) To] - 6aAA, A,
- exp [i(wo + 2y - Q,)To] - 3aA2 A, exp [((22, +2,) Ty ]
= 3aAlA, exp [i(2Q - Q) Tol - 3aA, A2
- exp [1(Q2y +29,) To] - 3aA; A2 exp [((29, - ©,) T, ] +cc
(4.1.64)

Equation (4.1.64) exhibits a number of resonant combinations some of which
we encountered earlier in cases of monofrequency excitations and some of
which are characteristic of multifrequency excitations. These combinations are

wy =~ 38, superharmonic resonance
Wy & -g— Q, subharmonic resonance
wo ~ |£28Q,, £8,|  combination resonance

Wy = % 2, £Q2,) combination resonance

where m=1 and 2 and n =1 and 2. For excitations with three or more fre-
quencies, the resonant combination wy ~ | ££2,, * £2,, * Q| might occur.

We note that for a multifrequency excitation, more than one resonant con-
dition might occur simultaneously; that is, both superharmonic and subharmonic
resonances can occur simultaneously or both superharmonic and combination
resonances can occur simultaneously, etc. For a two-frequency excitation, at
most two resonances can occur simultaneously. If these frequencies are de-
noted by ©; and Q,, where £, > Q,, the only secondary resonances that can
occur are

wy =~ 30; or 38,

wo =10, or 19,

Wy ~ Ly 20, or 29, - Q,
wo ~ 20, 82,

wo ~ 5 (2, £Qy)
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Inspection of these resonances shows that more than one of them occur simul-
taneously if

(a) Q, =90, ~ 3w,

(b) Q,~Q,~ 3‘*’0

(C) Q ~ ‘Ql ~ 3 wo

d Q,=50,~ 3 Wy

(e) Q,~70; ~ 7w,

) Q,=20,~ —wo

(& L~ "Ql ~ Tw,

(h) Q,~ %91 ~ 5wy
where we note that cases (b) and (c) in which ©, ~ £, can be best treated by
considering the excitation to be a monofrequency nonstationary excitation, as
discussed at the beginning of this chapter.

Since the individual primary, superharmonic, and subharmonic resonances
were discussed at length in Sections 4.1.1 through 4.1.4, we devote the rest of
this section to individual combination resonances and to a case in which sub-
harmonic and superharmonic resonances occur simultaneously, that is, case (a)
above. Combination resonances in one-degree-of-freedom systems were treated
by Tomds and Tondl (1967); Tondl (1972); Yamamoto, Yasuda, and Nakamura
(1974a, b, c); Efstathiades (1974); Tiwari and Subramanian (1976); and Mojad-
didy, Mook, Nayfeh (1977).

In the remainder of this section we consider the case in which wo =20, +Q,.
We introduce a detuning parameter o according to

W =20, +Q, - €0 (4.1.65)
and express (282, + Q,) T, as
(292 +Q22)Ty = woTy +€0Ty = woTy + 0T, (4.1.66)
Then the secular terms will be eliminated if
2iwg(A' + uA) + a(3AA + 6A Ay +6A,Ay) A +3aA2A, exp (ioT;) =0
(4.1.67)

Letting 4 = a exp (iB) in (4.1.67), where a and B are real, using the definition
of A,,, and separatmg real and imaginary parts, we obtain

a'=-pa-al;siny (4.1.68)

, 3
af =ala+ - 2 B +al, cosy (4.1.69)

Wo
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where
Iy = $K3K w3 (@) - 91)7 (wf - 923
I, =2 wi' [K}(wd - 93)72 +KE(wd - 93)72] (4.1.70)
y=0T,-3+20, +0,
Eliminating § from (4.1.69) and (4.1.70) gives

, 3
ay =(o-aly)a- g * 2- al’; cosy 4.1.71)

Wo
Therefore for the first approximation
u=acos[(2Q2; + Q) t-v+20, +0,] +K (w3 - Q27! cos (Q,£+6,)
+Ky(wd - 22)7 cos (2,14 0,)+0(e) (4.1.72)

For steady-state solutions of (4.1.68) and (4.1.71), @' =v' =0 so that g and y
are the solutions of

-una=al'y siny
4.1.73)

3a
(o-aly)a- 2 a® =al'; cosvy

Wo

Eliminating y from these equations leads to the frequency-response equation

2 3 N ol o
uw+lo-all', - —a a® =o'y 4.1.74)
80)0
It follows that the peak amplitude a,, is given by
ap=la|l'/u (4.1.75)
and occurs when
3aa? 30312
o=all, + =al, + ——
Wo 8(&)0[.1

We note that the peak amplitude is independent of I',, but the frequency at
which it occurs is not. Equation (4.1.72) shows that unless £2, and 2, are com-
mensurable (i.e., unless there exist integers m and » such that mQ,; +nQ, = 0),
the motion cannot become periodic.

In Figure 4-15, several frequency-response curves are shown. These figures il-
lustrate the effects on the amplitude of varying 'y, I',, @, and u, respectively.
The bending of the frequency-response curves produces a jump phenomenon.

Equation (4.1.74) shows that a is always different from zero. Consequently,
in spite of the presence of damping, the free-oscillation term, tuned by the non-
linearity to exactly the combination frequency 29, + £,, is part of the steady-
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p=1.0
I,=4.0
G210 wps10

(a)

Figure 4-15. Amplitude of the free-oscillation term as a function of the detuning for a
combination resonance of the Duffing equation: (a) effect of T'y; (b) effect of T'y; () effect
of a; (d) effect of u.

state motion for all conditions, in contrast with the subharmonic-resonance case
(Section 4.1.4).

The results for the resonant case wqy ~ §, + 28, can be obtained from the
above results by simply interchanging the subscripts 1 and 2. Moreover the
results for the resonant case wy =~ 282, - £, can be obtained from the above by
simply changing the sign of £2,.
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4.1.6. SIMULTANEOUS RESONANCES: THE CASE IN WHICH w, ~ 39,
AND w, =~ % Q,

In this section we consider a case of double resonance in which subhar-

monic and superharmonic resonances exist simultaneously, that is, the case

wo ~ 39, w% 2, . Other cases of simultaneous resonance can be treated in a

similar fashion.
To analyze the case in question, we introduce the two detuning parameters
0, and 0, according to

3Q;, =wy teo; and 2, =3w, t+ €0, (4.1.76)
Then we express 2, T and Q2,7 as
QITO = %ono + %UITI and QzTo =3w0T0 +02T1 (4177)

Using (4.1.77) in eliminating the terms in (4.1.64) that produce secular terms in
u;,we obtain

2iwo(A' + pA) + 3a(AA + 2A1 Ay +2A,A,)A +aAd exp (i0,T,)
+3aA,42 exp (i0,T;) =0 (4.1.78)

Letting A = %a exp (iB), where a and f are real, in (4.1.78) and separating real
and imaginary parts, we have

a'+pa+al'y sin(0,T; +30, - p)+alya? sin (0,T; +0, - 36)=0 (4.1.79)

. 3ad®
-af + t+al'3a+al'y cos (0,7, +30, - B)
Wo
+al,a? cos (0,T; +6, - 36)=0 (4.1.80)
where
K3 3K
r, : r, 2 and

" Buo(wl - Q2)°

r o 3[ Kt . K} ]
P 4w [(w- Q22 (W] - 93)°

" Bwo(wd - 22y

Recalling (4.1.76), one can rewrite these as follows:

729K} 3K,
=——L 40 r,=-
209603 0@ T

+0(e), and

1

I’y

= 81Ki+K2%)+0

25603 ( 1 2)+0(e)
We note that I';, I';, and '3 are not independent. They are functions of K; and
K, only, which are the true independent parameters characterizing the ampli-
tudes of the excitation.
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Inépection of (4.1.79) reveals that steady-state motions (i.e., @' = 0) exist if,
and only if, both 0, T - fand 0, T; - 38 are constants. That is,

0 = B’ and 0, = 36,

Therefore steady-state motions exist only when 0, = 30, = 30. It follows from
(4.1.76) that Q, =9,. That is, steady-state motions occur only when the ex-
citation is periodic.

When steady-state motions occur, (4.1.79) and (4.1.80) show that they cor-
respond to the solutions of

ua + ol sin (y +360,) + al,a? sin(3y +6,)=0 (4.1.81)

3

-ao+t +al3a +al'y cos (y+30;) +ala? cos (3y+0,)=0 (4.1.82)

Wo
where v =0T, - . Letting 4= %a exp (if) in (4.1.63) and substituting the
result into (4.1.60), we obtain

u=K(w?- Q)™ cos (Q,+60;)+acos(3Q2,-7)
+K,(w? - 9Q2)7 cos (99,1 +6,)+0(e) (4.1.83)

Therefore steady-state motions, if they exist, are periodic. The effect of the
nonlinearity is to adjust the frequency of the free-oscillation term to be per-
fectly commensurable with the frequencies of the excitation.

In Figure 4-16a a typical frequency-response graph is shown. The various
solid and dotted branches indicate stable and unstable solutions, respectively.
We note that there are as many as seven branches for a given o and that these
branches do not intersect at some large value of o; that is, the curves do not

(a) )

Figure 4-16. (¢) Amplitude vs. detuning and (b) phase vs. detuning for simultaneous reso-
nances of the Duffing equation.



190 FORCED OSCILLATIONS OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS

close. When two branches are close together in this figure, one must examine
the phases, which are quite different, to recognize the existence of all the
distinct branches, see Figure 4-16b.

Comparing Figure 4-16 with Figures 4-10 and 4-13 shows that the simulta-
neous presence of superharmonic and subharmonic resonances changes the
character of the frequency-response curves in a number of ways. The two
branches 4 and D resemble those for a superharmonic resonance in the absence
of damping. The remaining two curves B and C resemble those for a subhar-
monic resonance. For the subharmonic resonance, there are two possibilities:
either a single trivial solution or three solutions one of which is trivial and an-
other of which is unstable. For the superharmonic resonance there are also two
possibilities: a stable nontrivial solution or three nontrivial solutions one of
which is unstable. In contrast, for the simultaneous resonances there are four
possibilities: (a) a nontrivial stable solution, (b) three nontrivial solutions one
of which is unstable, (c) five nontrivial solutions two of which are unstable,
and (d) seven nontrivial solutions three of which are unstable. In the case of
more than one stable solution the initial conditions determine which one is
physically realized, as illustrated in the state plane shown in Figure 4-17.
The points Py, Ps, Pe, and P; are stable foci, while the points P,, P5, and
P, are saddle points. If the initial conditions fall in the shaded area 5, 6, or 7,
the motion ends up at points Ps, Pg, or P, respectively. Otherwise, the motion
ends up at point P;. Figure 4-17 shows that small changes in the system param-
eters or the initial conditions might drastically change the response of the
system.

Figure 4-18 shows the influence of the relative phase (6, - 6,) of the two
excitations on the response of the system. This relative phase has only a slight

| 'lllt i nrﬂlm.us

lllnlmumllll

=T

Figure 4-17. State plane for the free-oscillation term for simultaneous resonances of the
Duffing equation.
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(c) @
Figure 4-18. Influence of the relative phase of the excitations on the response of the Duff-
ing equaltion to simultaneous asubharmonic and superharmonic excitations: (@) 61 =0;
(B)61=2m;(c) 01 =m;(d) 0y =73

Figure 4-19. Effect of nonlinearity on the response of the Duffing equation to simultaneous
subharmonic and superharmonic excitations: (@) @ =1;(b) = 5.

191
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Figure 4-20. Influence of the amplitudes of the excitations on the response of the Duff-
ing equation to simultaneous subharmonic and superharmonic excitations: (@) K;=2;
(b) Ky =1.22.

effect on the superharmonic-resonance type of curves {branches 4 and D), but it
has a significant effect on the subharmonic-resonance type of curves (B and C).
As 0, increases from 0 to 2m, curves B and C are shifted to the right, while curve
C is shifted upward and curve B is shifted downward until they are nested when
0, =m. As 0, increases further, the upward and downward shift of curves B and
C continues; in addition they shift to the left. When 6, — 2, the frequency-
response curves are the same as the case 8, =0, except that curves B and C are
interchanged.

Figure 4-19 shows the influence of the nonlinearity (i.e., the influence of ).
As a increases, all curves bend and shift to the right. The shift to the right is due
to an apparent increase in the natural frequency with increasing nonlinearity.
Moreover an increase in « results in the separation of the various curves.

Figure 4-20 shows the influence of K, the amplitude of the subharmonic
excitation. As K; decreases, the superharmonic-resonance type of curve sepa-
rates into two curves. Figure 4-20b shows that when K; = 1.22, one of these
curves has qualitatively the character of the superharmonic-resonance curves
of Figure 4-10, while the second curve has qualitatively the character of the
subharmonic-resonance curves of Figure 4-13a.

4.1.7. AN EXAMPLE OF A COMBINATION RESONANCE FOR
A THREE-TERM EXCITATION
Here we consider systems governed by equations having the form

3
itwu=e(C-ou®-2ua)+ Y K, cos(Q, +0,) (4.1.84)

n=1
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where the §,, K,,, and 0, are constants. Equations of this type arise in the
study of transverse vibrations of plates and beams. In this context ii represents
the inertia, 2euui represents the damping force, w?u represents the restoring
force due to bending, and the cubic term represents the restoring force due to
stretching of the midplane or neutral axis. For the case above the structure sup-
ports three harmonic loads simultaneously. However we note that the fre-
quencies £2,, are not necessarily commensurable, and hence the load is not
necessarily periodic. Because the equations are cubic, three loads can interact
nonlinearly to produce several interesting resonances (Mojaddidy, Mook, and
Nayfeh, 1977).

There are many possible cases that can produce some sort of resonant re-
sponse. Here we consider the following:

Q,+02,+Q3=w+teo (4.1.85)
We use the method of multiple scales and obtain from (4.1.84)

3
up =A(Ty) exp (wTo)+ > A, exp (i,To +i,)+cc  (4.1.86)

n=1

where
Ap = %Kn((‘)2 - Q?z)

Then one finds, after some manipulation, that secular terms are eliminated
from u, if

2iw(A' + uA) + wal'| A + 30424 + wal', exp [i(oT, +0, +6, +65)] =0

(4.1.87)
where

Fl = 6(0_1 (A% + A% + A%) and FZ = 60.)_1 Al A2A3
The steady state of the homogeneous term corresponds to the solution of

3aa®
8w

pa+alysiny=0 and a(o— Lar, - )— o', cosy=0 (4.1.88)

where
A=Laexp(if) and y=oT,-B+0,+0,+0;  (4.1.89)
The frequency-response equation follows immediately:

i
3aa? . (ofF% ) 2) /2

8w a?

o=%ol + (4.1.90)

Comparing (4.1.90) with (4.1.43), we see the similarity between simple super-
harmonic resonance and the present example.
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6.0

4.5

-25

Figure 4-21. Frequency-response curves for a combination resonance involving three-term
excitation.

Because o must be real, the peak amplitude is given by

T
ay=-2 (4.1.91)
u
and it occurs when
30312
o,=Ltar, + =2 (4.1.92)

In Figure 4-21, a is plotted as a function of 0. Again we note the presence of a
jump phenomenon.

It follows from (4.1.89) that
woTo +B=weTo+ 0Ty - y+0; +0,+05=(2; +Q2; +823) T,
+0,+0, +053-7
Thus for the first approximation
u=acos [(2; +Q, +Q3)t+6, +0, +03 - 7]

+Z 92 cos (Q,2+0,)+0(e) (4.193)

where a and vy are given by (4.1.88). We note again that the £, are not neces-
sarily commensurable, and hence u is not necessarily periodic.

In Figure 4-22, u is plotted as a function of time. In Figure 4-22¢, « is zero
and hence this corresponds to the solution of the linearized problem. In Figure
4-22b, « is unity, the other parameters are the same, and the scales in the two
drawings are the same. We note that when « is nonzero, the maximum a is ap-
proximately four times as large as in the case when « is zero. The presence of a
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Figure 4-22. Response of the Duffing equation to a three-frequency excitation: () linear
case; (b) nonlinear case.

strong high-frequency component in the second case is clearly evident. These
results were verified by integrating (4.1.84) numerically.

Including the cubic term in the equation has the effect of stiffening the re-
storing force and significantly altering the phase. The latter is responsible for
the drastic increase in amplitude; it makes the forces act closely in phase with
the velocity and hence increases the rate at which they do work.

It is the practice in structural design to consider the structure safe from a
resonant response if all the frequencies of the loads are below the fundamental
frequency of the structure. Such a practice is based on linear models of the
structural elements. However as large amplitudes of the response develop, the
midplane stretches. The term which accounts for the stretching is cubic, and
ultimately the equation governing the response can be put in the form of
(4.1.84). Thus the present example clearly illustrates the need to consider non-
linear effects in the models of structural elements.

4.2 Systems with Quadratic and Cubic Nonlinearities

In this section we consider systems governed by equations having the form

E 420X+ wix +tapx® +asx® =E®) 4.2.1)
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The damping is taken to be linear, for simplicity. As in the previous case we as-
sume that the excitation is a linear combination of harmonic functions, that is,

E()= % K; cos (2 +6;) (4.2.2)
j=1

where 1?,., $2;, and 6; are constants. In the next three sections we consider mono-
frequency excitations, while multifrequency excitations are treated in Section
4.2.4.

4.2.1. PRIMARY RESONANCES

We consider E(f) = K cos Q¢ in this and the next two sections. For the pri-
mary resonance to occur, wq ~ §2. To analyze this case we need to order the
damping, the nonlinearity, and the excitation so that they appear at the same
time in the perturbation scheme. If we let x = € cos wq ¢, then the nonlinearity
generates a term proportional to cos wy t at O(€®). Therefore if we let x = eu,
we need to order [ix as e*wt and K cos Qt as €3k cos ¢ so that the governing
equation becomes

U+ wdu=-2e*ui - ea,u® - 2ozu® + €k cos Ot (4.2.3)

In studying the forced response of a spherical bubble to a harmonic excitation,
Lauterborn (1970) solved numerically an equation similar to (4.2.3). He found
large responses when /wo =1, 5,3, 2,175 3>+« - -

We seek an approximate solution to this equation by letting

u(t;e)=uo(To, Ty, Ty) + euy(To, Ty, Ty) + €2uy(To, Ty, To) +- -+ (4.2.4)

Since the excitation is O(e?), £ - w, is assumed to be O(e?) for consistency.
Hence we put

Q=w, + %0 (4.2.5)

Substituting (4.2.4) and (4.2.5) into (4.2.3) and equating the coefficients of
€%, €, and €? on both sides, we obtain

D3ugy + wiuy, =0 (4.2.6)
D3u; + wiu; =-2DoD ugy - 0u3 4.2.7
D3u, + wdu, =-2DyDyuy - 2DoDyug - D2ug - 2uDouy - 20,upu;
- azup + k cos (woTy + 0T,) (4.2.8)
The general solution of (4.2.6) can be written in the form

uo =A(Ty, T,) exp (iwoTo) +/T(T1 , T2) exp (-iwoTo) (4.2.9)
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Substituting u, into (4.2.7) yields
D3u, + wiu, = - 2iweD; A exp (iwoTo) - 0, [A? exp (2iwoTo) + AA] +cc
(4.2.10)
Eliminating the terms in (4.2.10) that produce secular terms in u; yields
D, A =0, or A =A(T,). Hence the solution of (4.2.10) becomes
Uy = z—% [ 247 + 1 A2 exp (2iwoTo) + § A2 exp (- 2iwo To)]  (4.2.11)

Substituting u, and u; into (4.2.8) gives
2 2 : ' 1003\ o+
D3u, + wiuy =~ |2iwe(A" + uAd) + 303 - o A*A
Wo

- % k exp (ioTz)] exp (iwoTo) +cc + NST (4.2.12)

where the prime denotes the derivatives with respect to T, and NST stands for
terms proportional to exp (*3iwoT,). Secular terms will be eliminated from
u, if

10a3
3w}

2iwo (A" + nuA) + (3a3 - >A2;1_— 1kexp(ioT,)=0 (4.2.13)

Letting 4 = %a exp (iB) in (4.2.13) and separating real and imaginary parts,
we have

a=-ua+ sin 7y (4.2.14)
20.30
' 903w = 1005 a® k cos (4.2.15)
a - - ko
243 2c00 27
where
y=oT,- B (4.2.16)
Eliminating 8 from (4.2.15) and (4.2.16) yields
, 903 w3 - 1003 k
ay' =ao- FYP a®+ oo cos ¥ (4.2.17)

Therefore to the second approximation
u=acos (Qt- )+ %ea,wp?a® [-1+ 4 cos [2Q1- 27)] +O(*)  (4.2.18)

where a and 7 are defined by (4.2.14) and (4.2.17).

Since (4.2.14) and (4.2.17) have the same form as (4.1.15), the discus-
sion in Section 4.1.1 applies to this case provided that we identify o with
a3 - L af wp?. When a3 =0, a <0, and the quadratic nonlinearity has a soften-

ing effect which tends to bend the frequency-response curves to lower frequen-
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cies, irrespective of the sign of a,. Thus unless az > %l a2 wy?, the nonlinearity
has a softening effect. When a3 = -2 a3 w3?, the nonlinearity has no effect on
the response to this order because the effects of the quadratic and cubic non-
linearities cancel each other.

Even-power, nonlinear terms are responsible for drift or steady streaming,
as we discussed before. In this case we note the presence of the drift term
- %eaz wg?a?, which indicates that the oscillatory motion is not centered at

u=0.

4.2.2. SUPERHARMONIC RESONANCES

To examine subharmonic and superharmonic resonances, we need to order the
excitation so that it appears at the same time as the free-oscillation part of the
solution; that is, the excitation should appear in the lowest-order perturbation
equation. Thus if x = eu, K = eK. Moreover to analyze subharmonic and super-
harmonic resonances generated by the quadratic nonlinearity, we need to order
the damping so that it appears in the same perturbation equation that generates
these resonances. In this case these are the result of x? = e?u®. Hence we let
[ix = €?ua so that (4.2.1) for a monofrequency excitation becomes

i+ wdu=-2eut - eoayu® - €2 azu® + K cos Qt (4.2.19)

where €2 is assumed to be away from wy in this section.
We seek a first approximation to the solution of (4.2.19) in the form

u=u0(T0,T1)+€u1(T0,T1)+‘" (4.2.20)

Substituting (4.2.20) into (4.2.19) and equating the coefficients of €® and e
on both sides, we obtain

D3ug + wdug =K cos QT (4.2.21)
D3u, + wdu, =-2DgDyug - 2uDouy - 0 uf (4.2.22)
The general solution of (4.2.21) is taken in the form
ug =A(T,) exp (iwoTy) + Aexp (i2Ty) + cc (4.2.23)
where A = 1 K(w§ - ©?)7". Then (4.2.22) becomes
D3u; + wdu, =-2iwe(A' + uAd) exp (iweTo) - 2iuA exp (Q2T,)
-y {A?% exp (QiwoTo) + A? exp (2iQT,) + A4 + A?
+2A A exp [i(Q- wo)To] +24AA exp [i(2+ wo) Tyl } +cc
(4.2.24)

Equation (4.2.24) shows that secondary resonances occur whenever wq ~ 282 or
Wy ~ %Q; the first corresponds to a superharmonic resonance, while the second
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corresponds to a subharmonic resonance. In this section we treat superharmonic
resonances, and in the following section we take up subharmonic resonances.

For superharmonic resonances the particular solution and the homogeneous
solution for u, interact in u;. Thus we introduce the detuning parameter o
defined by

2Q2=woteoc and 20T, =weTy +0T, (4.2.25)
Then eliminating the terms in (4.2.24) that produce secular terms in u,, we have
Qiwe(A' + ud) + a, A% exp (joT,)=0 (4.2.26)

whose solution is

A3

A =aq exp (-uTy)+ —222
% o CHTT 2t i0)

exp (ioTy) (4.2.27)

where a, is a complex constant of integration. As t > o, T'; = o0, and
iy A2 i

————————exp (icT 4.2.28

T 1oy P 69T (4.228)

Therefore to the first approximation the steady-state solution is

a,K?
4wo(w}d - Q2)* (U2 +0?)1/2

K
u= W cos 2t - sin (2Q2 - v)+ 0(e)

(4.2.29)

where v =tan™' (o/u). Thus a steady-state superharmonic term exists for all
conditions and the response is periodic, as in the case of cubic nonlinearity. We
note that the second term is proportional to the square of the amplitude of the
excitation K. Thus the second term vanishes more rapidly than the first term as
K vanishes, and this solution approaches the solution of the linear problem.

4.2.3. SUBHARMONIC RESONANCES

Subharmonic resonances in systems with quadratic nonlinearities were studied
by Eller and Flynn (1969), Neppiras (1969), Lauterborn (1970), Safar (1970),
Nayfeh and Saric (1973), Ashwell and Chauhan (1973), and Eller (1974). To
analyze these subharmonic resonances to first order, we let

Q=2w, teo (4.2.30)
so that
(- wg)Ty=weTy +0T, (4.2.31)
Then eliminating the terms in (4.2.24) that produce secular terms in u,; yields

iwo(A' +uA)+ o, AA exp (ioT;) =0 (4.2.32)
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Welet 4 = B exp (% ioT,) so that (4.2.32) becomes
iwe(B' + 1ioB + uB) + a,BA=0 (4.2.33)

Putting B = B, +iB; in (4.2.33), where B, and B; are real, and separating real and
imaginary parts, we obtain

a A

Wo

a A

B, +uB,- (%o+ )B,-=0 and B;~+uB,-+(%o— )B,=0

Wo
(4.2.34)

These are linear equations having constant coefficients; so the solution can be
expressed in the form

B,=b,exp(AT;) and B;=b;exp(AT) (4.2.35)

where b,, b;, and X are constants. Upon substituting (4.2.35) into (4.2.34), one
finds that in order to have a nontrivial solution
a% A2 ) o2 )1/2

)\z—ui( P

3 (4.2.36)

Hence we find that

1. if 0® > 403 A?/w}, B oscillates and decays
2. if 403 A?/wd > 0® > 4(ajA*/w} - u?), B decays without oscillating
3. if4(a3A?/wd - u*)> 02, B grows without bound (4.2.37)

Actually the motion does not grow without bound. As the amplitude in-
creases, the problem is no longer weakly nonlinear and the present analysis is not
valid. However the present analysis clearly points out the conditions when one
should expect to see a marked change in the solution develop. This is illustrated
in Figure 4-23.

In Figures 4-23 the steady-state results obtained by integrating (4.2.19) nu-
merically are shown for the case 0 =0 and a, and w, are unity. For Figure
4-23a K =5.8, while in Figure 4-23b K = 6.1. It follows from (4.2.37) that, to
within an error of O(e), K = 6 is the boundary between growing and decaying
free- oscillation terms. The presence of a lower harmonic (i.e., the free-oscillation
term) is obvious in Figure 4-23b. We note that the frequency of the free-
oscillation term is adjusted to exactly one half that of the excitation. Also we
note the drift in Figure 4-23b, as one would expect because of the quadratic
term in the equation of motion.
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Figure 4-23. Response of a system having quadratic nonlinearities: (¢) subharmonic re-
sponse not excited; (b) subharmonic response excited.

4.2.4. COMBINATION RESONANCES

In this section we consider multifrequency excitations, using the same order-
ing as in the preceding two sections. Thus we consider first-order approximate
solutions of

U+ wdu=-2eut - eayu® +K; cos (2, 6+0,)+K, cos (,¢+6,) (4.2.38)

where 2, > Q;.
We exclude primary resonances and seek a first approximation to the solution
of (4.2.38) in the form

u(t;e)=uo(To, Ty) +eu (T, Ty) +- -+ (4.2.39)
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Substituting this expansion into (4.2.38) and equating the coefficients of € and
€ on both sides, we obtain

Diuo + wiug =K, cos (2, Ty +60,)+K, cos (2, Ty +0,) (4.2.40)
Djuy + wiuy = -2DgDyug - 2uDouy - cu’ (4.2.41)
The solution of (4.2.40) is written in the form
uo = A(T,) exp (iwoTo) + Ay exp (i2,;Ty) + A, exp (i2,Ty) +cc  (4.2.42)
where A, = 3 K (wd - Q2,)7" exp (i0,,,). Then (4.2.41) becomes
Djuy + wiuy =-2iwe(A" + nd) exp (iweTo) - 2iu2 A, exp (i, T,)
= 2iuQd, A, exp (i2,Ty) - a, {A? exp (2iwoTo)
+ A exp (2i2, To) + A2 exp (2i2,To) +AA4 + Ay A, + A, A,
+2AA; exp [i(wo +Q2,)To] +24A; exp [i(Q; - wo) To]
+2A4A; exp [i(wo +82,) To] +24A, exp [i(Q, - wo) To]
+2A1 A, exp [((Q2, +Q2,)T,]
+2A, A, exp [i((Q2 - 2,) Ty} +cc (4.2.43)

With primary resonance excluded, (4.2.43) shows that the resonances which
might exist to this order are

wy =28, or 29, superharmonic resonance
wo 10 or 1Q, subharmonic resonance
wo =y, +Q; or Q,-Q, combination resonance

We note that for a multifrequency excitation more than one resonance can
occur simultaneously, as in the case of cubic nonlinearity. With a two-frequency
excitation at most two resonances can occur simultaneously. If these frequencies
are denoted by £2; and §2,, where §2, is away from and larger than Q, simulta-
neous resonances occur whenever

(a) 2, =40, = 2w,
(b) Q,~3Q, %%wo
(c) Q,~ %Ql ~ 3wo

As discussed at the beginning of this chapter, the case £, ~ , can best be
treated by considering £(¢) as a monofrequency, nonstationary excitation and
then applying the analysis of Section 4.4. The case £, ~ 0 is discussed in Ex-
ercises 4.37 and 4.38.
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Since the individual primary, subharmonic, and superharmonic resonances
were treated at length, we devote the rest of this section to the combination-
resonance case wy =~ §2, + £; and leave the simultaneous-resonance cases
as exercises for the reader. Yamamoto and Nakao (1963) studied the case
wo =y + Qy, while Yamamoto and Hayashi (1964) studied the case wq =

Q- Q.
We let
Q,+Q, =wy teo (4.2.44)
so that
Q2 +Q,)Ty =woTy + 0T, (4.2.45)

Then eliminating the terms in (4.2.43) that produce secular terms in u,, we
obtain

iwe(A' +pA)+a, A A, exp (ioT;)=0 (4.2.46)
whose solution is
ja, A A
A=aexp(-pTy)+ —22102 oo (i0T)) (4.2.47)
wo(u +io)

where a is a constant. Therefore to the first approximation, the steady-state
motion is given by

KK,
2wo(w§ - Q1) (Wi - Q) Vu® + o

u=- sin [(2; +Qy)1+6, +60, - 7]

+ Z(z)K_l—Q% cos (Q.2+0,)+ —ﬁz—@ cos (2,¢+0,) +0(e) (4.2.48)
where y = tan"" (0/u). Thus steady-state motions exist in this case for all condi-
tions. We note that the nonlinearity adjusts the frequency of the free-oscillation
term so that it is exactly equal to the sum of the frequencies of the excitation. We
note also that the response is periodic only when €2, and £2, are commensurable.

The results for the case in which w, =~ 2, - £; can be obtained from the
above results by simply changing the sign of ;.

4.3. Systems with Self-Sustained Oscillations

In this section we consider systems that have free, self-sustained oscillations.
Thus we consider systems governed by equations having the form

il + wu=e(- i)+ E(r) 4.3.1)
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where E(7) is assumed to consist of a single harmonic in the next four subsec-
tions, and is assumed to consist of two harmonic terms with different fre-
quencies in Section 4.3.5.

4.3.1 PRIMARY RESONANCES

To analyze the effect of primary-resonance excitations, we order the amplitude
of the excitation so that it will appear in the same perturbation equation as the
damping and nonlinear terms. Thus we assume the excitation to be soft and to
have the form

E({f)=€ekcos Qt, Q2=wg+e€0 (4.3.2)
As in the previous section, we seek an approximate solution in the form
u(t;€) =uo(To, Ty) + euy (T, Ty) + -+ - (43.3)

Substituting this expansion into (4.3.1) and (4.3.2) and equating the coefficients
of €® and € on both sides, we obtain

Diug + wdug =0 (4.3.4)
Djuy + whuy =-2DoDyug+ Dottg ~ $(Dotto)® +k cos (woTo + 0Ty)  (4.3.5)
The solution of (4.3.4) is given the form
ug =A(Ty) exp (iwo To) + A(T,) exp (-iwo To) (4.3.6)
Hence (4.3.5) becomes
D}uy + wiuy = [-2iwed' +iweAd - iwdA2A4 + 1k exp (iaT))]
- exp (fwo To) + 2iw3d A® exp (3iwo To) + cc  (4.3.7)
Secular terms will be eliminated from u, if
~2iwoA’ +iwoA - iwiA?A + Lk exp (i0T;) = 0 (4.3.8)

Letting 4 = %a exp (i) in (4.3.8), where an a and f are real, and separating
real and imaginary parts, we obtain

k
d=1(1-1wda®)a+ B sin 7y (4.3.9)
0
k
ap'=-——cos vy (4.3.10)
2(,00

where

y=oT; -8B (4.3.11)
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Eliminating  from (4.3.10) and (4.3.11) gives

ay' =ac+ S, 008y (4.3.12)

Wo
Therefore for the first approximation
u=acos (Q2t-vy)+0(e) (4.3.13)

where @ and v are defined by (4.3.9) and (4.3.12).
Forasteady-state motion, @’ = y' = 0. Then it follows from (4.3.9) and (4.3.12)
that

101 - 2 wda®a=- Z_wo sin 7y
(4.3.14)

ao =--——cos
20)0 v
Moreover it follows from (4.3.13) that the steady-state motion is periodic, with
a frequency equal to that of the excitation. Thus the response is synchronized at
the frequency of the excitation. Squaring and adding equations (4.3.14) yields
the frequency-response equation

p(1-p) +40%p=%k* p=1wia? (4.3.15)

In the po-plane, the frequency-response equation provides a one-parameter
family of response curves that are symmetric with respect to the p-axis. For
k =0, the curves of the family degenerate into the line p = 0 and the point (0, 1),
in agreement with the free-oscillation solution. As k increases, the curves first
consist of two branches—a branch running near the o-axis and a branch consist-
ing of a closed curve (an oval) which can be approximated by an ellipse having
its center at the point (0, 1). As k increases further, the ovals expand, and the
branch near the o-axis moves away from this axis. When &2 reaches the critical
value l%, the two branches coalesce, and the resultant curve has a double point
at (0, 3) as shown in Figure 4-24. As k increases beyond this critical value, the
response curves are open curves. However p is still not a single-valued function
for all o until k2 exceeds the second critical value k2 = 32 Beyond this critical
value the response curves are single-valued functions for all 0. The heavy broken
line is the locus of vertical tangents and separates the stable from the unstable
solutions. The stability of these solutions is discussed later.

The following discussion is based on Figure 4-24. For 0 < k2 < —;—2, there are
three periodic solutions for a given o when |o| is small, and there is only one
periodic solution when |o| is large. When three solutions exist, only the one
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p=wiay/4
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Figure 4-24. Frequency-response curves for primary resonances of the van der Pol oscillator.

having the largest amplitude is stable and hence corresponds to a realizable
motion. When only one solution exists, it is unstable.

For %% < k%<1 there is a region of small |oj where only one periodic solution
exists, followed by a region of larger |o| where three exist, and finally followed
by a region of even larger |o| where only one exists. In the first region the only
periodic solution is stable; in the second region only the solution having the
largest amplitude is stable; and in the third region the only solution is unstable.

For 1<k2<% one can again identify three regions as in the discussion
directly above. However for this case, in the second, or middle, region there are
two stable periodic solutions corresponding to the largest and smallest ampli-
tudes. Here the initial conditions determine which of the solutions represents
the actual motion.

For k2 > %% there is only one periodic solution for a given o. If |g| is small, the
solution is stable; while if || is large, the solution is unstable.

To determine the stability of these periodic motions, we use the method of
Andronov and Vitt (1930) and let

a=ayta
(4.3.16)

Y=Yt M
where a, and 7, are solutions of (4.3.14). Substituting (4.3.16) into (4.3.9) and
(4.3.12), using (4.3.14), and keeping only the linear terms in @; and 7,, we
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obtain

k
G =401~ Fofada + 5 os 1),
0

(4.3.17)
N= s (cos vo)ay - Yoouda (sin 7o) 71
If weleta, = a0 exp (AT}) and y; = 10 exp (AT)), then
k

% - %(U%a(z) -Napt 5‘0‘;"(005 Y0) Y10 =0
. ° (4.3.18)

+ i +2A =0

2ol (cos 7o) @10 (20-3000 sin Yo >')’1o

For a nontrivial solution the determinant of the coefficient matrix must vanish.
Using (4.3.14), we write this condition as

A -(1-20)A+A=0 (4.3.19)
where
=1(1-4p+3p2)+0? (4.3.20)

When A <0, the roots of (4.3.19) are real and have different signs; hence
the predicted periodic motions correspond to saddle points and are unrealiz-
able. These are shown as the interior points of the ellipse A = 0 in Figure 4-25.
It follows from differentiating (4.3.15) with respect to p that this ellipse is
the locus of vertical tangents forming part of the boundary between stable
and unstable solutions in Figure 4-24. Since the discriminant of (4.3.19) is
D=p?- 40?2, periodic motions corresponding to D < 0 are focal points, while
those corresponding to D >0 are nodal points. These motions are stable or
unstable depending on whether p is greater or less than % A summary follows:

stable nodes if p > %
unstable nodes if p < %
A0 saddle points

stable if p > %
unstable if p < 3

(a) p%>40? A>0

(b) p?2=40> nodes {

stable focal points if p > %
(c) p*<40? unstable focal points if p <2
centers if p = %

This classification is shown in Figure 4-25 together with a hashed curve separat-
ing stable from unstable motions.
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having nearly the same frequencies. Thus we expect the response to exhibit a
strong beating behavior, as the numerical integration shows. Finally we note that
the amplitude of the response is very close to the value predicted by the per-
turbation solution.

When the two terms combine to yield a single-frequency response, the particu-
lar solution is said to entrain the homogeneous solution, or the homogeneous
solution is said to lock onto the particular solution. When the two solutions
separate to yield an aperiodic response, they are said to unlock. Associated with
this separation is a pull-out frequency. There is a similar phenomenon associated
with varying the amplitude of the excitation at a constant frequency. In this
case one can identify a pull-out amplitude, below which the solution is aperiodic.

As the discussion above indicates, when the amplitude of the excitation is
small [recall (4.3.2)], stable periodic solutions exist for only a narrow band of
frequencies of the excitation around the natural frequency of the system. The
width of this band increases as the amplitude of the excitation increases. In
the next section we analyze the response of the system outside this region of
resonance.

4.3.2. NONRESONANT EXCITATIONS

For a nonresonant excitation €2 must be away from w,, and to first order, as
we shall show, 2 must be away from %wo and 3w,. Since 2 is away from w,
the excitation is assumed to be hard, and it is written as

E(f) = K cos Qt 4.3.21)

Substituting (4.3.3) into (4.3.1), using (4.3.21), and equating the coefficients of
€° and e on both sides, we have

D3ug + wiuy =K cos QT, (4.3.22)
D3u, + wiuy = -2DoDyuq + Doug - 5 (Dolto)? (4.3.23)

The solution of (4.3.22) is written as
ug=A(Ty) exp (iwoTo) + A exp (i2Ty) + cc (4.3.24)

where A = 1 K(w} - ©?)~!. Hence (4.3.23) becomes
D3u, + wiu, = [-2iwe A" +iwe(1 - 2Q2A?) A - iwd A2A] exp (iwo To)
+ 3 i{wd A3 exp (3iwy Tp) + Q3 A® exp (3iQ27T,)
+3QA(1 - Q2A? - 2wd AA) exp (IT,) + 3wiQAA?
exp [i(Q +2wg) Tol + 3wEQAA% exp [i(S2 - 2wo) To)
+ 30 Q2A2A exp [i(2Q + wg) To] - 3wo Q2 A4
~exp [I(22 - wg) Tol} +cc (4.3.25)
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Equation (4.3.25) shows that in addition to the primary resonances there might
exist secondary resonances: superharmonic resonances (when ) =~ %wo) and
subharmonic resonances (when 2 = 3w,). In this section we treat the case of
nonresonant excitations (i.e., £ is away from wy, %wo, and 3wg). Superhar-
monic resonances are treated in the next section, while subharmonic resonances
are treated in Section 4.3 4.

For nonresonant excitations secular terms will be eliminated from u, if

24"+ (1-29%A%) A4 - w3A%4=0 (4.3.26)
Letting A = %a exp (iB) and separating real and imaginary parts, we have
d=1m-1wia®a, F=0 (4.3.27)
where n=1- 1 Q*K?(w3 - %)% The solutions of (4.3.27) are § = constant
and
g = 4n (4.3.28)

4
o+ (-t e (a2

0
where a, is the initial amplitude. Therefore to the first approximation
u=a(t)cos (wot+P)+ K(wd - 2?)7! cos Qt + O(e) (4.3.29)

where § is a constant and a is defined by (4.3.28).

Equation (4.3.28) shows that the steady-state motion depends on the sign of
n. When >0 (ie., K<+/2 Qw2 - Q2), a=> 2wy /0 as T; =, and the
steady-state motion consists of a combination of the forced (particular) and free
(homogeneous) solutions according to (4.3.29). In general © and w, are not
commensurable, and hence the motion is not periodic. However when n <0,
a—>0as T, -0 and the steady state is periodic, consisting of the forced solution
only. These results for self-sustaining systems are at variance with those obtained
for the response of a nonlinear spring in Section 4.1.2. Here a large force causes
the free-oscillation term to decay, while a small force permits it to approach a
nonzero value. An examination of (4.3.26) shows that the particular and homo-
geneous solutions of (4.3.22) interact in the cubic (positive) damping term,
essentially causing the coefficient of the linear (negative) damping term to
change. The process of increasing the amplitude of the excitation to cause the
free-oscillation term to decay is called quenching. The problem of quenching was
studied by Struble (1962), Pengilley and Milner (1967), Minorsky (1967), Fjeld
(1968), Nayfeh (1968), Dewan and Lashinsky (1969), Mansour (1972), and
Tondl (1975a, b, 1976b, d). When the amplitude of the excitation exceeds a cer-
tain critical value, the coefficient of the linear term changes sign and the free-
oscillation term decays.
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Figure 4-27. Forced response of the van
der Pol oscillator illustrating the phe-
nomenon of quenching: () unquenched
(b) response; (b) quenched response.

As an example we let wo=1 and Q =+/2. Then the critical value of K is
unity. Using (4.3.21), we integrated (4.3.1) numerically for K =0.9 and K = 1.1.
According to the perturbation analysis, the free-oscillation term does not decay
for the former and decays for the latter. The numerical results are shown in Fig-
ure 4-27; they agree with the analysis.

Finally we note how these results are consistent with the trend predicted in
the previous section. Here the amplitude of the excitation is O(1) [whereas in
the previous section it was O(e)], and we find that it must exceed a certain
critical value, which is proportional to |w3 - £2], in order to suppress the homo-
geneous solution and produce a periodic response.

4.3.3. SUPERHARMONIC RESONANCES
To analyze these resonances we let

3Q2=wqt+ €0 (4.3.30)
and express the resonant term involving exp (3iQ2T,) as exp [i(woTo + 0Ty)].
Then eliminating the terms that produce secular terms in (4.3.25) yields

2w A+ wend - wy A?A4 + 1 Q3 A3 exp (i0T;) = 0 (4.3.31)
Letting 4 = 3 a exp [i(oT; - v)] and separating real and imaginary parts, we
obtain

11 1,22

Wod =5 (M- 3 w§a*) wea+I' cosy
e (4.3.32)

weay =owpa- I'siny
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where I' = § Q3 A3. Therefore to the first approximation
u=acos (32t - 7))+ K(w? - 22)7! cos Qt + O(e) (4.3.33)

where @ and 7y are defined by (4.3.32).
The steady-state motions correspond to the solutions of

1 (- % wia®) wea=-Tcosy

(4.3.34)
oweoa=I"siny

Eliminating y from these equations yields the frequency-response equation
p(n-p)?+4p0?=T2 p=1wiad (4.3.35)

Equation (4.3.35) has the same form as (4.3.15), which was obtained for the
case of primary resonance. However there is a significant difference; here the
amplitude of the excitation appears in two places rather than one (both n and T’
are functions of K). Recalling thatn =1 - 3 Q2K ?(w} - £2)~2, we note that, as
K increases, n decreases and can become negative. Referring to (4.3.32), we see
that the effect of decreasing 7 is one of decreasing the linear-, or negative-, damp-
ing coefficient. Thus in this case, as in the case of nonresonant excitations
treated in the previous section, the nonlinear interaction between the particular
and homogeneous solutions leads to an apparent change in the linear-damping
coefficient. One should compare (4.3.32) and (4.3.27) with (4.3.9).

For a given value of &, wy, and K, one can calculate £ = QA = 1 QK (w3 - Q%)
n=1-2Q%A% and T'=3Q3A% Therefore for each harmonic excitation,
(4.3.35) furnishes p and hence the amplitude of the response. In the po-plane
the frequency-response equation provides a one-parameter family of curves with
QA as the parameter, as shown in Figure 4-28. These curves are symmetric
with respect to the p-axis. For £ =0, the curves of the family degenerate into
the o-axis and the point (0, 1). As £ increases, the curves first consist of two
branches—a branch running near the o-axis and a branch consisting of a closed
curve (an oval) which can be approximated by an ellipse having its center at the
point (0, n).

Because n is a function of the amplitude of the excitation (¢ essentially), all
these ovals are not centered on the same point, or nested, as in the case of pri-
mary resonance. As £ decreases, the ovals become smaller and are centered
higher on the p-axis, and the branch near the g-axis moves closer to this axis.
Finally the branches collapse onto the point (0, 1) and the o-axis. As £ increases,
the ovals expand, and the branch near the g-axis moves away from this axis.
When £ reaches the critical value [2 + (3)'/2]~Y/2 ~ 0.586, the branches coalesce
and the curves have a double point at (0, 37). Beyond this critical value, the
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Figure 4-28. Response of the van der Pol oscillator to a superharmonic excitation.

response curves are open curves. The broken lines indicate the unstable portions
of the frequency-response curves.

To study the stability of the steady-state solutions, we need to classify the
singularities of the system (4.3.32). To do this, we let

a=ag+a,
(4.3.36)
Y=Y tm

Noting that ao and 7y, are the solution of (4.3.34), we can write the following
linear variational equations:

, r .
ay=3(n- 3wia)a; - o (sin v0) 71
0
(4.3.37)

(sin yo) @, - (cos Yo) 11

! —_
71 = 2
Wodp Wolo



214 FORCED OSCILLATIONS OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS

According to Section 3.2.1, the character of the singular points depends on
the determinant of the coefficient matrix of the right-hand sides of (4.3.37).
Using (4.3.34) we can write this condition as

X -(m-20)A+A=0 (4.3.38)
where
A=4(n*-4np +3p?)+o?
The discriminant of (4.3.38) is
A=p?-40°

Using arguments similar to those used in Section 4.3.1, one can summarize the
stability of the steady-state solutions as

AS stable nodes if p > %n
(a) p*>40? unstable nodes if p <47
A<O saddle points

stable if p > % n

2_ 4.2
(b) p*=40" nodes { unstable if p <17

stable focal points if p > %n
() p?<40? unstable focal points if p <37
centers if p = —%n

We note that when n <0 (ie., K>+/2 Q !|w - Q2|), the steady-state solu-

tion is always stable.

4.3.4. SUBHARMONIC RESONANCES

Subharmonic resonances were studied by Cohen (1955); Matkowsky, Rogers,
and Rubenfeld (1971); and Korolev and Postnikov (1973). To analyze these
resonances we let

Q=3wyt+eo (4.3.39)

and express the resonant term involving (2 - 2wg) Ty as (weTo + 0T;). Then
eliminating the terms in (4.3.25) that produce secular terms in u, gives

-24" +nA - WEA%A + woEA? exp (ioT;) =0 (4.3.40)
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where £=QA and n=1- 2§ Letting A = Jaexp [3i(cT; - 7)] in (4.3.40)
with real @ and vy and separating real and i 1mag1nary parts, we obtain

d=1m-3wla?)a+fwota® cosy @341
ay' =ao—zwoéa sin 7y o
Thus to the first approximation

u=acos (3Qr-37)+K(wi- Q%" cos Qt+0(e) (4.3.42)

where a and v are defined by (4.3.41).
Steady-state motions are periodic and correspond to the solutions of

Lin-Lwia?)a=-1weta® cosy
204 N (4.3.43)
ac =3 woga sin y
Eliminating v from these equations leads to the frequency-response equation
202+ (n-p)?lp=p¢ (4.3.44)

where p =1 w3a® Equation (4.3.44) shows that there are two possibilities:
either p = Oor

p=1-2g25- 14 - 2o7)12 (4.3.45)

Equation (4.3.45) shows that nontrivial solutions exist only when certain
restrictive conditions on o and § are satisfied. Because p is real,

£2-78-50220 (4.3.46)

Thus in the £o0-plane, the boundary of the region where a subharmonic response
can exist is defined by the equality in (4.3.46). This region is shown in Figure
4-29a.

It follows from (4.3.46) that

lol <351 - ZH)12

and hence that

0<i(<— and O<|o|<

3
V7 247
The maximum value of o occurs when & = v/2/7. Some representative frequency-
response curves are shown in Figure 4-29b. The curves are symmetric with

(4.3.47)
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Figure 4-29. Response of the van der Pol oscillator to a subharmonic excitation: () region
where subharmonic resonances exist; (b) frequency-response curves.

respect to the p-axis. As £ increases from v/2/7, the ovals become smaller and
finally collapse on the point (0, 0.143) when & =2/+/7. For £ >2//7, p=0
according to (4.3.44). As & decreases from +/2/7, the ovals become smaller and
finally collapse on the point (0, 1) when £ = 0.

4.3.5. COMBINATION RESONANCES
In this case the excitation has multifrequencies. For simplicity, we assume that
it contains two frequencies only so that we can express it as

E(f)=K,;cos (2,t+0,)+K, cos (2,2+8,) (4.3.48)

Substituting the ¢xpansion (4.3.3) into (4.3.1), using (4.3.48), and equating the
coefficients of €® and € on both sides, we obtain

Diug+ wiug=K; cos (2, To+0,)+K,cos (2, Ty+0,) (4.3.49)
D3uy + wiu, = -2DgDyuq + Doug - 3 (Douo)? (4.3.50)
The solution of (4.3.49) can be expressed in the form
uo=A(Ty) exp (iwoTo) + Ay Q71 exp (2, Tp) + Ay Q51 exp (i2, Tp) + cc
(4.3.51)
where Ay, = 3 Ky Qp (w0} - Q%)™ exp (i0,,,). Then (4.3.50) becomes

D3uy + wdu; =iwe[-24" + (1 - 2A1 Ay - 2A3A0) A - w2 A2A) exp (iwo To)

+i{A2 A, exp [i(292; + Q,) Ty - A2A, exp [i(29, - Q) Tl

+ Ay A exp [i(2; +29,) To] - Ay A2 exp [i(- + 29,) Tyl

+ 2w0A1A2A exXp [l(Ql + Qz + (.00) To] - 2w0A1A2A
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cexp [i(Q + 2y - wo) Tol +2woAr Ay A exp [i(-2; +Q,

- wo) Tol + 200 Ay Ay A exp (i(Q - Q3 ~ wo) Tol} +ec

+ [terms with frequencies 82y, £8,, £3Q;, £382,, £3w,,

+8Q, * 200, 20y + 200, £2 % W, 2282, * wo] (4.3.52)

In addition to the primary, superharmonic, and subharmonic resonances, (4.3.52)
shows the possibility of the existance to this order of the combination resonances
wo =28, 8, and wy = % (@, * ,). We note that more than one resonance
can occur simultaneously for any multifrequency excitation as discussed in detail
in Sections 4.1.5 and 4.2.4.

The Case wo =~ 282, + £,. To analyze this case we let
0o =20, + Q-0 (4.3.53)
and express the term involving this combination resonance in (4.3.52) as
exp [1(2Q2; + Q,) To] = exp [i(woTo + 0T)]

Then eliminating the terms that produce secular terms in (4.3.52) gives

24" +nA - w3 A%A + wi AT A, exp (ioT;)=0 (4.3.54)
where

n=1-2MA - 2A5A,

Letting 4 = -é—a exp [i(6Ty - y+20, + 6,)] in (4.3.54) with real a and ¥ and
separating real and imaginary parts, we obtain

d=31(n-%Lwla®)a+ ws'Tcosy 4355
ay =ao - wy'T'siny
where
- LKTKa 0100} - 212 (F - 23
Therefore to the first approximation
u=acos [(292; + Q) t-vy+20, +0,)] + K, (w3 - Q3) ' cos (,2+0,)
+ Ky (wd - Q3)7 cos (Qy2+0,) + 0(e) (4.3.56)

where @ and v are given by (4.3.55).
The steady-state motions correspond to the solutions of
(- Fwia?)a=-Tws' cosy

(4.3.57)
ao =T'wy!siny
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Eliminating y from these equations leads to the frequency-response equation
402p+(m-p)2p=T? (4.3.58)

which is the same as (4.3.35) obtained for the superharmonic-resonant case
except for the definitions of n and I'; instead of depending on a single amplitude
and a single frequency, they depend on two amplitudes and two frequencies.
We note that the steady-state motions are not periodic unless the frequencies
€2, and 2, are commensurable. However these combination resonances exist
under all conditions.

The results for the case wq ~ §2; + 282, can be obtained from the above results
by simply interchanging the subscripts 1 and 2, while the results for the com-
bination resonance wq &~ 28, - £, can be obtained from the above results by
simply changing the sign of £2,.

The Case wo ~ % (S2; + Q,). To analyze this case we let
Q+8Q,=2w, +e0 (4.3.59)

and express the resonant term exp [{(£2; + 2, - wy) To] as
exp [1(2; + Q5 - wo) Tol =exp [i(wo + 0Ty)] (4.3.60)
Then eliminating the terms from (4.3.52) that produce secular terms in u; gives
-2A4"+nA - WIA*A - 2A, Ay A exp (ioT;) =0 (4.3.61)

Letting A =1aexp [1i(oT, - v+0, +0,)] in (4.3.61), where @ and v are
real, and separating real and imaginary parts, we obtain

d=tm-Lta*wd)a-Tacosy
200 am e (4.3.62)
ay' =oa+ 2Tasiny
where I' = 1K, K,Q,Q,(w3 - Q) 1(w? - Q3)"!. Therefore to the first
approximation
u=acos {3[(Q+Q)t-v+0,+0,]} +K,(wd- Q) cos (2,¢+6,)
+ K, (wd - 22)7 ! cos (Q,2+0,)+0(e) (4.3.63)

The steady-state motions correspond to @' =v'=0. Hence it follows from
(4.3.62) that the frequency-response equation is

o2p+(n-p)Pp=4T"%p (4.3.64)
Equation (4.3.64) shows that there are two possibilities—either p = 0 or
p=nt(@4Ir?- g2 (4.3.65)

For the latter case to exist, 0> <4I'? and n > -(4I'? - 6?)!/2. Therefore steady-
state motions in which the free-oscillation term does not vanish exist for very
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special conditions as in all subharmonic resonances. Equation (4.3.63) shows
that if these combination resonances exist, the response is not periodic unless
€2, and €2, are commensurable.

4.4. Nonstationary Oscillations

So far we have considered excitations having constant frequencies and ampli-
tudes. In this section we consider excitations that have time-dependent fre-
quencies and amplitudes. Such excitations must lead to nonstationary (i.e.,
nonperiodic) resonances. Nonstationary studies are concerned with the deviation
of the response of the system from the stationary response. It is expected that
the most significant deviation occurs near the resonance conditions. When the
frequency of the excitation is time dependent, the problem of the modification
of the response near the resonance conditions is usually referred to as passage
through resonance. Passage through resonance for single-degree-of-freedom
systems was studied by Lewis (1932), Filippov (1956), Bogoliubov and Mitro-
polsky (1961, Section 8), Mitropolsky (1965), Hirano and Matsukura (1968),
and Kevorkian (1971). Passage through resonance for multiple-degree-of-freedom
systems was studied by Filippov (1956), Mitropolsky (1965), Agrawal and
Evan-Iwanowski (1973), and Evan-Iwanowski (1976). Agrawal and Evan-
Iwanowski (1973) demonstrated the existence of a “drag-out” phenomenon
when the frequency of the external excitation passes through a combination
resonance of the additive type. Passage of rotors, blades, and shafts through
critical speeds was studied by Lewis (1932), Marples (1965), Mitropolsky
(1965), Moseenkov (1957), Bodger (1967), and Quazi and McFarlane (1967).
For more references we refer the reader to the review article of Evan-Iwanowski
(1969).

For simplicity we restrict our attention to systems having constant parameters.
However systems having slowly varying parameters can be treated as in Section
3.4. For a comprehensive treatment of nonstationary oscillations the reader is
referred to the book of Mitropolsky (1965). Thus we consider

U+ wdu=ef(u, i)+ 2ek(et) cos [0(t, er)] (4.4.1)

where 6 = Q, the frequency of the excitation, is close to the natural frequency
w, during the time interval of interest.

Using the method of multiple scales, we seek an approximate solution in the
form

u=uo(To, Ty) + €uy(To, Ty) +- - (4.4.2)

Substituting (4.4.2) into (4.4.1), transforming the derivatives, and equating the
coefficients of like powers of €, we obtain

D3ug + wiuy =0 (4.4.3)
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Dju, + wguy =-2DgDyuqg + f(ug, Dug) + 2k(T}) cos [0(To, T1)]
4.44)
We express the solution of (4.4.3) in the form
ug =A(Ty) exp (iwo Ty) + cc (4.4.5)
Hence (4.4.4) becomes
Diuy + whuy =-2iweA" exp (iwo Ty) + k exp (i0) + cc
+[[A4 exp (i Ty) + cc, iwod exp (iwoTo) +cc] (4.4.6)

Because we are concerned with values of 6 near w, and because 6 is slowly
varying, we put

0 =woTy +v(T,) 4.4.7)
so that
6 =wo+er(T))=wo + ea(T,)

where the dot indicates the derivative with respect to ¢ and the prime indicates
the derivative with respect to T;. Then eliminating the terms in (4.4.6) that
produce secular terms in u; requires

2iweA' - kexp (iv)- f1(4,4)=0 (4.4.8)
Here we expanded f(uy, Dotto) in a Fourier series according to

F(to Dottg) = 3" [fa(A, A) exp (incso To) + cc]

n=0

Thus

27 W,
fi(4,4)= %f J A exp (iwo To) + cc, iwo A exp (iwo To) + cc]
0

T exp (_ iwo To) dT() (449)

Expressing A in the polar form %a exp (i8), where both a and 8 are real func-
tions of T, we obtain

iwo(d' +iaf') - kexp [iv(Ty)] - f1(4,A) exp (-if)=0  (4.4.10)
where

v(T) =v(T1) - B(T1) (4.4.11)
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Letting ¢ = wo Ty + B(Ty) so that dy = [wy + O(€)] dT), one finds from (4.4.9)
that

2 m+f
f1exp (-if) = i[ , f(a cos Y, -wea sin Y)(cos Y - i sin Y) dy + O(e)
0+,

Separating (4.4.10) into real and imaginary parts leads to

k . 1 2T
F="T - f F(acos ¥, -awe sin Y)sin Y Ay (4.4.12)
wWo 277(00 0
and
k 1 2m
7'=a+—0(§1+——— f(a cos Y, —aw, sin ) cos Y dy
wea  2mwoaJ,
(4.4.13)
Thus the response is given by
ug=acos(®-1vy)+0(e) (4.4.14)

where a and vy are given by (4.4.12) and (4.4.13). Next we specialize these results
to the case of a system having a cubic nonlinearity.
We consider a system having a cubic nonlinearity and slight viscous damping.
Thus
fu, &) =-2ut - ou® (4.4.15)

Then (4.4.12) and (4.4.13) become

, ksinvy
a= - ua
w
° (4.4.16)

, 3aa®>  kcosy
Y =0~ +

8wy woda

These equations have the same form as those obtained for the stationary case.
However in the nonstationary case, steady-state solutions do not exist because
k and v are functions of T;. Therefore the response of the system is aperiodic.
In the remainder of this section, we discuss the passage of the system through
resonance when the amplitude of the excitation is constant and the variation of
the response for a fixed frequency when the amplitude of the excitation is
varied.
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o(T)
Figure 4-30. Comparison of nonstationary and stationary response curves: (—)
stationary results; (-————-—————— ) nonstationary results for several rates of changing o.

As discussed in Section 4.1.1, the frequency-response curve for the stationary
case is obtained by setting a' = 4" = 0 in (4.4.16) and eliminating y from the
resulting equations. The result is

3 2\2 k2
u?a? +(0— a‘jo) a? =;E (4.4.17)

A representative frequency-response curve is represented by the solid curve in
Figures 4-30. We refer to this as the stationary curve.

To determine the effects of varying the frequency of the excitation, we put,
as an example,

o(Ty)) =0y +rT, (4.4.18)

where 0, and r are constants. Then (4.4.16) are integrated numerically. The
detuning is varied from g, to o;. These solutions of (4.4.16) are represented by
the dotted curves in Figure 4-30. We note that these curves show the results of
sweeping through resonance by both increasing and decreasing the detuning as
well as the effect of varying the rate r.

First we consider increasing o through resonance. The peak amplitude of the
response decreases, and the frequency where this peak occurs increases as the
rate of increasing the frequency of the excitation increases. The sharpness of
the frequency-response curve decreases. After this peak is passed, a beat phe-
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nomenon develops in the response and then decays. The faster the rate is, the
easier it is to distinguish the subsequent lesser peaks.

Next we consider decreasing o through resonance. The peak amplitude and the
frequency where it occurs both decrease as the rate of decreasing o increases.
A beat phenomenon also develops after this peak is reached, and it also decays.

The smaller a becomes (the smaller the effect of the nonlinearity), the closer
the frequency-response curves for increasing and decreasing o come to being
symmetric. The asymmetry is a nonlinear effect. Moreover the faster the rate
of changing o is, the closer the curves come to being symmetric. Thus the slower
the passage through resonance is, the more apparent the nonlinear effects
become.

To determine the effects of varying the amplitude of the excitation, we put,
as an example,

k= ko + rTl (4419)

where both ko and r are constants. Then (4.4.16) are integrated numerically for
a fixed value of 0. These solutions are represented by the dotted curves in Figure
4-31, while the solution of (4.4.17) is represented by the solid curve.

The faster the amplitude of the excitation k is increased, the greater is the
peak amplitude of the response. Generally the sharpness of the curve is de-
creased as the rate of changing k is increased. We note that when r = 1.0, k

r-00
a |of
i
r=10; i
8r i
§r=0| g,
6 ; i P
a4t i
oL
0 1 1
0O 1 2 3 4 5 6 T 8 § 1o 11 iz
k
Figure 4-31. Comparison of nonstationary and stationary response curves: —)

stationary results; (-——-———————- ) nonstationary results for several rates of changing k.



224 FORCED OSCILLATIONS OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS

reaches zero well ahead of the amplitude of the response. Here beat phenomena
also develop.

4.5. Nonideal Systems

In the previous sections we considered the amplitude and the frequency of the
excitation to be parameters of the systems (i.e., constants or prescribed func-
tions of time), not state variables obtained as part of the solution. We did not
consider the influence of the motion on the excitation. For many systems this is
an acceptable simplification, but for many others it is not.

When the excitation is not influenced by the response, it is said to be an ideal
excitation, or an ideal source of energy. On the other hand, when the excitation
is influenced by the response, it is said to be nonideal. Depending on the excita-
tion, one refers to systems as ideal or nonideal. Nonideal systems are classified
as linear or nonlinear in the usual way, without regard to the excitation. Gener-
ally nonideal systems are those for which the power supply is limited. The be-
havior of the system departs farther from the ideal as the power supply becomes
more limited. For nonideal systems one must add an equation that describes the
motor to the equations that govern the corresponding ideal system. And the
frequency of the response is unknown. Thus nonideal systems have one more
degree of freedom than their ideal counterparts.

Examples of nonideal systems abound: Sommerfeld (1904) mounted an
unbalanced electric motor on an elastically supported table and monitored the
power input as well as the frequency and amplitude of the response. Here we
briefly discuss a more recent experiment by Kononenko and Korablev (1959),
who also compared their experimental results with theoretical results.

Kononenko and Korablev conducted tests using the experimental apparatus
represented in Figure 4-32. The support for the cantilever beam was a massive
slab, and the axis of the motor was vertical. The rotor was unbalanced by drilling
the two holes indicated in the figure. There was no force due to gravity in the
direction of the motion, which was perpendicular to the page.

7,
MASSIVE
PLATE
o o‘I
o | CANTILEVER ELECTRIC
/V | BEAM MOTOR
o o!
ROTOR
FASTENERS SHAFT
FLY WHEEL HOLE

Figure 4-32. Experimental apparatus of Konoenko and Korablev for a nonideal system.
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Figure 4-33. Data of Kononenko and
, Hz Korablev: characteristics of the motor.

To account for the influence of the motion on the performance of the motor,
one needs to know the characteristics of the motor, which are the net driving
torques developed by the motor. Generally they are determined experimentally.
In Figure 4-33 the data of Kononenko and Korablev are shown, giving the
torque L as a function of the frequency or speed 2 of the rotor. Along each
curve (labeled 0, 1, 2, ..., 10) the control or regulator is constant. For each
point on the characteristic curves the motor was running at a constant speed;
thus these are the so-called static characteristics.

The net mechanical power available at the shaft of the motor is 2L. The
difference between the electrical power supplied to the motor and QL is the
total loss in the motor—ohmic losses in the stator and the rotor, core losses due
to eddy currents and hysteresis, mechanical losses due to friction in the bearings
and windage on the rotor, and stray losses.

In Figure 4-34 the amplitude of the motion is plotted as a function of .
These curves were obtained by allowing the system to achieve a steady-state
motion while the control was fixed. Then the amplitude of the steady-state
response was measured. The control was then changed very slightly and held in
the new position until a new steady state was achieved. These data are the small
circles in the figures. The solid lines show the response predicted by the theory,
which is discussed below. Figure 4-34a shows the results for increasing £2, while
Figure 4-34b shows the results for decreasing 2. We note that there are gaps
where no steady-state response exists. The gaps are not the same in the two
figures, but there is some overlap.
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Figure 4-34. Comparison of experimental and theoretical frequency-response curves for a
nonideal system from Kononenko and Korablev: (g) for increasing ; (b) for decreasing Q.

In Figure 4-35 the solid line shows a typical frequency-response curve for an
ideal linear system. The points labeled P, R, T, and H correspond to those in
Figure 4-34. The arrows indicate the changes brought about by slowly increasing
or decreasing the control setting in a nonideal system. We note that the nonideal
system cannot be made to respond at a frequency between Q7 and Qg by
simply increasing the control setting from a low value. In contrast, an ideal
system can respond at frequencies between €27 and Q. When the control
setting is continually decreased, the system cannot be made to respond between
{2g and Qp. In other words, the right side of the resonance spike between Q.
and g cannot be reached by either continually increasing or continually de-

Figure 4-35. Frequency-response curves, comparing ideal and nonideal systems: (=) non-
ideal; (——————— ) ideal.
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Figure 4-36. Sommerfeld’s data.

creasing the control setting. Though the system is linear, the nonideal source
causes a jump phenomenon to occur.

At the left-hand extremity of the frequency-response curve shown in Figure
4-35, the input power is relatively low. As the input power increases, the ampli-
tude of the response increases noticeably while the frequency changes only
slightly, especially along the portion of the curve between P and T. Here a
relatively large increase in power causes a relatively large increase in the ampli-
tude and practically no change in the frequency.

At T the character of the motion suddenly changes. An increase in the input
power now causes the amplitude to decrease considerably and the frequency to
increase considerably. This phenomenon, in all its manifestations, is called the
Sommerfeld effect. Figure 4-36 shows Sommerfeld’s data for a motor running
on an elastically supported table. We shaded part of Sommerfeld’s figure to show
the region under consideration in the discussion of the theoretical model of such
a system. The theoretical model is explained next by means of an example.

For a comprehensive treatment of nonideal systems we refer the reader to the
book of Kononenko (1969), which is devoted to this topic and contains more
references to his work as well as to that of other Russian scientists. Kononenko
and Koval’chuk (1973a) studied the interaction of mechanisms generating
oscillations in nonlinear systems. The passage through a critical speed of a motor
with limited power was studied by Hiibner (1965); Goeoskokov (1966); Kono-
nenko (1969, Section 22); and Iwatsubo, Kanki, and Kawai (1972). Rajac and
Evan-Iwanowski (1976) studied the interaction of a motor having a limited
power supply with a dissipative hysteretic foundation.

The motion of a missile with slight asymmetries is another example of a
system with a nonideal power source. The problem reduces mathematically to
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the analysis of equations of the form

£- ipk+ wiE=eK exp (i0) + (5, & £, F)
b=p, p=e(p, %)

where f and g are known functions and §; is the imaginary part of &. There exist
conditions under which a primary resonance takes place, and the problem is
usually referred to as the roll-resonance problem. When g =0, p is a constant and
the excitation is ideal. This case was studied by Murphy (1957, 1963, 1965,
1968, 1971a, b, 1973), Clare (1971), Nayfeh and Saric (1971b, 1972a), and
Murphy and Bradley (1975). When g # 0, p is a function of time. This latter case
was studied by Platus (1969), Barbera (1969), Price and Ericsson (1970), and
Nayfeh and Saric (1972a). A model of this problem was analyzed by Kevorkian
(1974). For a body descending through the atmosphere, the parameters appear-
ing in the equations are slowly varying functions of time. Nayfeh and Saric
(1972a) used the method of multiple scales to study the nonideal case when
the parameters are slowly varying with time.

An example of a nonideal linear system is shown in Figure 4-37, a dynamic
system which is nearly equivalent to that of Kononenko and Korablev. The
motion occurs in a horizontal plane and is constrained so that the motor exe-
cutes a rectilinear motion along the x-axis.

The potential and kinetic energies are

= % kx?
=1 22 4 1732 4 1 . 3 241 3 i 2 (4.5.1)
T=73mex* + 319> + 3m (X - r¢ cos §)* + 5 m,(r¢ sin ¢)
where m, is the mass of the motor, m, is the unbalanced rotating mass, I is the
moment of inertia of the rotor and other rotating parts except m,, r is the
distance between m; and the center of the motor, and % is the spring constant.
Lagrange’s equations have the form

d oL\ oL .
—|—=)-—=-cx
dt \ox/ ox

dfoL\ ac_ . .
Z(;é)_ég_]“(‘p) H(¢)

(4.5.2)

Figure 4-37. Example of a nonideal system.
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where £ = T - V is the Lagrangian, c is the coefficient for the dashpot, L is the
characteristic of the motor, and H is the resisting moment due primarily to
windage on the rotating parts outside the motor. Substituting (4.5.1) into
(4.5.2) leads to

(mo +m;)¥%~ myr(¢cos ¢~ ¢ sin ¢) + kx = -cx

. . . . (4.5.3)
(I +myr*)¢ - myrx cos ¢ = L(¢) - H(¢)
We note that equations (4.5.3) are autonomous and nonlinear.
It is convenient to rewrite (4.5.3) in terms of dimensionless variables as
x"+x=e(¢" cos p- ¢'? sin ¢ - 2ux")
“4.54)

0" =e[bx" cos ¢ + M(¢")]
where

ez ——————
X(mo +my)

c
26U=—"—""775
W k(g +m)] P2

mrX
eh=———

I+mr
n_ L(§)- H(@) mo +m,

M =
@) I+myr? k

Here X is a length characteristic of the amplitude of the motion of the motor
and the dimensionless independent variable is

k 1/2
T=\—""T"—" t
(mo +m1>

The primes denote derivatives with respect to 7 while the dots denote derivatives
with respect to z.

We seek approximate solutions which are uniformly valid for small e. Thus we
are considering the case in which m; is small compared with m,. As we have
done before, we consider the damping force to be small compared with the
restoring force and make the damping term appear at the same order as the
nonlinearity and the excitation. And we are concerned with a relatively narrow
band of frequencies which encloses the natural frequency of the system (unity
in the dimensionless variables).

In this case the method of averaging (Section 2.3.5) is more convenient to use
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than the method of multiple scales. Accordingly we let
x=acos(¢+0) (4.5.5)

where g, ¢, and § are functions of 7. Generally one cannot expect the frequency
of the rectilinear motion (¢’ + ') to be the same as the angular speed of the
rotor (¢'); hence @ is included in the argument.

We are considering motions near resonance, and it is convenient to introduce
a detuning parameter A as follows:

¢=1+A (4.5.6)

Hence § is used to distinguish between the speed of the rotor and the actual
frequency of the rectilinear motion, while A is used to distinguish between the
speed of the rotor and the natural frequency of the rectilinear motion.

Using the method of variation of parameters, we put

a cos (¢ +B)-a(A+B)sin(p+p)=0 4.5.7)
so that
x'=-asin (¢ +B) (4.5.8)
and
x"=-d sin (¢ +)- a(l+A+8")cos(¢+p) 4.5.9)

Substituting (4.5.6), (4.5.8), and (4.5.9) into (4.5.4) leads to
-a' sin (¢ + ) - a(A+B") cos (¢ +f)
=¢[A' cos ¢- (1 + A)? sin ¢ + 2ua sin (¢ + )] (4.5.10)
and
A=e{-bldsin(p+p)+a(l+A+8)cos(¢p+p)] cosp+M} (4.5.11)
Solving (4.5.7) and (4.5.10) for a’ and ' produces
d =-€e[A' cos ¢~ (1 +A)?sin ¢+ 2uasin (p+p)] sin(p+ph) (4.5.12)

ﬁ'=—A—-Z—[A' cos ¢~ (1 + A)? sin ¢ + 2ua sin (¢ + )] cos (¢ +0)

(4.5.13)

Equations (4.5.11) through (4.5.13) are equivalent to (4.5.4); no approxima-
tions have been made yet. These equations show that A" and 4’ are O(€). If we
restrict our attention to a narrow band of frequencies around the natural fre-
quency (see Figure 4-35), then we may write

A=¢o 4.5.14)
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Both A and A’ are O(€), and it follows from (4.5.13) that § is also O(e).
As a first simplification we neglect all terms O(e?) appearing in (4.5.11)
through (4.5.13) and obtain

A'=¢e[M- ab cos (¢ + ) cos ¢] (4.5.15)
d' = e[sin ¢ - 2ua sin (¢ + B)] sin (¢ + B) (4.5.16)

g =—e{o+% [2ua sin (¢ + @) - sin ¢] cos (¢+6)} 4.5.17)

As a second simplification we can consider a, o, and 8 to be constant over one
cycle and integrate (average) the equations over one cycle. The result is

A'=e(M— %ab cos B) (4.5.18)
(1

a= E(E cos 3 - ua) (4.5.19)
g=-€ (o + —;a sin B) (4.5.20)

We note the difference between ideal and nonideal systems. For the ideal
system, (4.5.18) is not one of the governing equations, ¢ is specified, and
(4.5.19) and (4.5.20) are solved for 4 and 8. For the nonideal system, the control
setting is specified (this is effected by means of M, as we discuss below), and
(4.5.14) and (4.5.18) through (4.5.20) are solved for o, a, A, and .

For steady-state responses, A', @', and §' are zero. Then combining (4.5.19)
and (4.5.20) yields

a=4u? +0%)7/2 (4.5.21)
while combining (4.5.18) and (4.5.19) yields
M= ua*b (4.5.22)
The phase is given by
B=sin"! (-20a) = cos™! (2ua) (4.5.23)

Recalling the definitions of the dimensionless variables, we can rewrite these
results in terms of the original physical variables as

(Xa) = physical amplitude of the motion

_ wm;r
[¢* +4(w- 4.3)2("10 +my)2] 12

(4.5.24)
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2(mq + - ¢
8= tan™! [— (mq mcl ICH) ] (4.5.25)
where, from (4.5.23), -7/2 <3 <0 and
. . cwkmrX

L(¢p)- H(p) = . 4.5.26
O O e a9 g v my 7] (#3529

where w is the natural frequency of the system:

k

w?=— (4.5.27)

my +m,

Now the procedure is to solve (4.5.26) for ¢ and then to determine the ampli-
tude and phase from (4.5.24) and (4.5.25). This was the procedure followed by
Kononenko and Korablev to determine the “theoretical’” curve in Figure 4-34.

Generally L(¢) and H(¢) are only known in graphic form, having been deter-
mined experimentally. Consequently it is convenient to rewrite (4.5.26) as
follows:

L($) = R($) (4.5.28)
where
R(§) = H(9) + 5(9) (4.5.29)
and
cwkmrX

S(¢) = (4.5.30)

2[c* +4(w - ¢)*(mo +m,)?]
Then in the same graph one can construct the curve R versus ¢ and the family
of curves L versus d) Each member of the latter corresponds to a constant setting
of the control.

One can readily determine the nature of the curve R versus ¢ as follows.
Recalling that consideration is limited to a narrow band of frequencies around
the natural frequency w, we can represent H by a two-term expansion:

H($) = H(w) + [H'(@)] ($- w)

where both H(w) and H'(w) are positive. A graph of S($) given by (4.5.30) has
the familiar shape associated with an ideal system. Both curves are shown in
Figure 4-38, and the curve R versus ¢ is shown in Figure 4-39. Also shown in
Figure 4-39 is the famlly of characteristics of the motor. The corresponding
curve of Xa versus ¢ is shown in Figure 4-40 (see also Figures 4-34 and 4-35).
The corresponding points in Figures 4-35 and 4-40 have the same label.
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L
L2

Ls

La

H Ls R

Figure 4-38. Functions H and S. See equa- Figure 4-39. Characteristics of the motor
tion (4.5.30). and the function R. See equation (4.5.29).

For a given setting of the control there can be one, two, or three steady-state
solutions. In the first approximation these solutions have the form

x =(Xa) cos (¢ + ) (4.5.31)

where ¢ is determined from (4.5 .28) and Xa and f are determined from (4.5.24)
and (4.5.25), respectively. To determine which of these steady-state solutions

actually corresponds to a realizable motion, we need to consider the stability
of the solutions.

As we have done before, we determine the stability of the steady-state solu-
tions by determining the nature of the singular points of (4.5.18) through
(4.5.20) as in Section 3.2. To accomplish this, we let

a=agtay, =B+, A=AgtA (4.5.32)
Substituting (4.5.32) into (4.5.18) through (4.5.20) and neglecting all but the
linear terms in a4, 8;, and A,, we obtain

! dM U .
Ay = GZZET ($6)A; - (3b cosfo)a; + (3 aob sin By)B,

ay = e(- % By sin Bo - pa,) (4.5.33)

, cos f3 sin S,
B ='€< oy B, ‘—2(12_0”1 +01>
0 1]
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4) Figure 4-40. Frequency-response curve.

where eo; = A;. Equations (4.5.33) are a system of linear equations having a
solution in the form

(@1, B1, A1) = (@10, B10, A1o) eM

where A is an eigenvalue of the coefficient matrix and a0, 810, and A, are
constants. The solutions are stable, and hence the corresponding motions realiz-
able, if the real part of each eigenvalue is negative or zero.

It turns out that the solutions between T and R are unstable while all those
outside this region are stable (Figure 4-40). As the first equation of (4.5.33)
indicates, the parameter that gives the influence of the motor on the stability
is the slope of the characteristic.

Exercises

4.1. Consider the arrangement shown in Figure 3-1 with dry friction. When a
harmonic excitation acts on the system, the equation of motion has the form

mx +kix =d+F cos wt - kpx>
where

g= |"meu ifx>0
mgu if x <0

(a) Show that this equation can be put in the following convenient dimen-
sionless form:

iitu=e(f- oau®)+ 2k cos t

where
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(b) For £ near unity show that

u=acos [Ty +P(T;)] + O(e)

where

’

2 .
a =-—+ksiny
m

3

ay =a0- +kcosy

Yy=0T, -8
e0=0-1 and ek=K
(c) Obtain the frequency-response equation. Plot the amplitude ¢ and the
phase 7 as functions of 0 for k = 2/m and k > 2/m. What is the significance of k =

2/m? For ¢ > 0, plot the amplitude as a function of k. Is there a jump phenome-
non associated with this motion?

4.2. For the arrangement shown in Figure 3-1 with square damping, the
equation of motion can be put in the following convenient dimensionless form:

utu=-e(i|a+au)+ 2K cos
(a) For £2 near unity, show that
u=acos [Ty +B(Ty)] + O(e)
where

2
d'=-—+ksiny
3w

, 30’
ay =alo - 5 +k cosy

Y=06T1-f and ec=0-1

(b) Obtain the frequency-response equation. Plot ¢ as a function of ¢ for
constant k. Plot ¢ as a function of k for o > 0.

4.3. Consider the arrangement shown in Figure 3-2. The behavior of the
bottom element is described by Figure 3-2b and (3.3.41). This is an example of
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bilinear hysteresis. When a harmonic excitation acts on this system (Caughey,

1960a; Iwan, 1965; Drew, 1974) the governing equation can be put in the fol-
lowing convenient dimensionless form:

X +x=¢€f+K cos Qt

(a) For £ near unity, show that

x=a(Ty) cos [Ty +B(Ty)] + OC(e)
where

1 _ “Xs .
a=—(xg-a)+ksiny
am

, 1 a- 2x 2x x\ 21 Y2 &
')’-‘-CT‘_{%COS—l S—(l——s> [xs_< S)] +— cos ¥y
T a a a a

a

Yy=0T,;-B, e6=Q-1, and 2ek =K

(b) Obtain the frequency-response equation. What is the significance of k =
2xg/m? Explain why the present analysis only applies for % + (k/xg) >0 >% -
(k/xg).

(c) Plot a versus ¢ (for k <2xg/m and k > 2x4/7m) and a versus k. Is there a
jump phenomenon?

4.4. Consider the system governed by the following equation of motion:
X+x=€ef+ U sgnx +K cos Qt
where fis described by Figure 3-2b and equation (3.3.41).
(a) For £ near unity, show that

x=a(Ty) cos [To +P(T1)] + OC(e)
where

, 2x 2
a =—s(xs—a)—ﬂ+ksin'y
m g

, 1 - 2x 2 2]k
7=0-;{%cos'l (‘ITS>— <1—%> [—);—S—<XS> ] +— cosy

a a
7=\0T1—B, eoc=8-1, 2¢k=K
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(b) Obtain the frequency-response equation. What is the significance of
k =kt = 2(xg + Mo )/m. For what range of o0 is the present analysis valid?

(c) Plot a versus ¢ for k > k¢pyp and k < k4. Is there a jump phenomenon
associated with this motion?

4.5. Consider the system governed by the following equation of motion:
x +x =¢f - 2eux + K cos Ut
where fis described by Figure 3-2b and (3.3.41).
(a) For Q near unity, show that
x =a(Ty) cos [To +B(T1)] + O(e)
where

!

2xg .
a=—"(xg-a)-pa+ksiny
amn

, 1 _ - 2x 2 271/2 k
7=o——{lcosl<€-——§)*<1—$>[ﬁ—(ﬁ)] + = cosy
m a a a a a

Yy=0T; -0, e6=-1, and 2¢k=K

(8]

(b) Obtain the frequency-response equation. What is the minimum value of k
for which a steady-state motion with @ 2 x; is possible? Is it possible for a finite-
amplitude force to produce an unbounded motion? What is the range of o for
which the present analysis is valid?

(c) Plota versus 0 and a versus k. Is there a jump phenomenon?

4.6. Consider the system governed by the following equation of motion:
Xx+x=ef~ eux |%|+K cos Q
where fis described by Figure 3-2b and (3.3.45).
(a) For £2 near unity, show that
x =a(Ty) cos [To +B(T1)] + O(e)
where

,_ 2xglxg—a) Au )
@ =——""- "¢
a

, 1 _fa- 2x 2x X xg 212 k
7=0"—{%cosl<——s)—<l— s)[—s—<—1)] +— cosy
m a a a a a

Yy=0T;-f, e6= -1, and 2¢k=K

+ k sin 7y
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(b) Obtain the frequency-response equation. For what range of o0 is the
present analysis valid? Explain why k must be = 4uxS2/31r for the present anal-
ysis to be valid.

(c) Plota versus 0 and a versus k. Is there a jump phenomenon?

4.7. Consider a system for which the spring force is given by f(x)=-kx -
k,x |x | and the damping force is given by c(x) =-c;x - ¢, |x |. The equation
of motion is

mx +c1X +cyX | X | +kyx +k,x |x|=K cos Qt

(a) Show that this equation can be written in the following convenient di-
mensionless form:

X + 26U % + €uaX | % |+ x +eax | x| = 2ek cos Qt

where
c k
_ _ 2 %1
2epy = , €My =——, wp =

0 m
2 w
€= 2, 2€k= 2, and Q=—
(OF) 0 Wo

(b) For 2 near unity, show that
x =a(T;) cos ¢ + O(¢)
where
¢=To +B(T1)
,

4
a =-wa- —&a2 + k siny
3w

r

4o k
Y =0- _—a+—cosvy
37 a

Y=0T1 -8, ea=02-1

(c) Using the approximate expression for x above, sketch x |x | and x | x |
as functions of ¢. Plot a versus ¢ and a versus k for stationary motion. Show

that
3m 16ku,\ Y2
amax=i|:—l + <l + ———ﬁ})
8#2 3muy

(d) Assuming the expansion for x has the form
X =xo t+e€x, +62x2 +-

explain why the effect of x |x | can be determined from the expression for x,
while the effect of x2 can only be determined from x, (see Section 4.2).
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4.8. Consider the system governed by
6 +sin 0 +2u62é=Kcoth

(a) When £ is near unity, show that for small but finite amplitudes of the
response

0 = €a(T,) cos [Ty +P(T)] + O(e*)

where
-%mf + k siny

k
Y =0+{a®+=cosy
a

y=0T, -8, €26=0- 1, and 2’k =K

Here € is a measure of the amplitude of the response. Obtain the frequency-
response equation. Show that ap,,, = (4k/,u)1 /3. How does this value of max
compare with that for the case of linear viscous damping? Plot « versus ¢ and @
versus k. Is there a jump phenomenon associated with this motion?

(b) When £ is near one third (superharmonic resonance), show that

0 = €a(T,) cos [Ty +P(T2)] + 3K cos (QT,) + O(e?)

where
22
a' =-2u <A2 +8->a— A*(Gpcosy- Lsiny)
2 3
, a A
¥ =o+%(/\2 +—8—>+7(%usin7+%— cos )
where

y=0T, -8, €26=3Q-1, and A= -2

Obtain the frequency-response equation. Plot @ versus ¢ and a versus A. Is there
a jump phenomenon associated with this motion?
(c) When  is near 3 (subharmonic resonance), show that

0 = €a(T,) cos [Ty +P(T2)] - $K cos (QT,) + O(e?)

where

2
, a
a =-2u <A2 +8—>a+Aa2(% sin y - %u cos y)

2
Y=0+32 (Az +—8—)+Aa(8 cosy + 3 usiny)
where

K
y=0T, - 38, €20=Q- 3, andA=—l-6—
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Obtain the frequency-response equation for the nontrivial solution. Plot a versus
o and a versus A. Is there a jump phenomenon associated with this motion?

4.9. Consider the system governed by
u+2eusinu +u=K cos Qt
where 1 = O(1) and € << 1. When £ is near unity, show that
X =qacos¢@
where
p=1t+p(t)

@ = 2€ sin (-a sin ¢) sin ¢ - 2€k (cos 7y cos ¢ - sin 7 sin @) sin ¢

. Zep . 2ek . .

¥ =€0 - —sin (~a sin @) cos @ + —(cos y cos ¢ - sin 7y sin @) cos ¢
a a

Yy=€ot-f, ec=~-1, and 2¢k=K

After averaging over one cycle, show that approximately

a=-€[2uJ;(a) - k sin y]

. ( k )
Y=€ |0+ —cosYy
a

Hint:

sin (a sin ¢) = 2 i Jon+1(a)sin [(2n + 1)¢]

n=0

where J,, is the Bessel function of the first kind of order m. Obtain the
frequency-response equation. Plot @ versus 0. Is there a jump phenomenon
associated with this motion? For a given k, is it possible to obtain any ampli-
tude e by simply adjusting the frequency? For small ¢, expand sin (-« sin ¢) and
retain only the first two or three terms. Then after averaging over one cycle,
show that approximately

as
é=—e[u(a— %a3+E)+ksin'y

. k
Y=€\0+—cosy
a
Obtain the frequency-response equation. Plot a versus ¢ and a versus k.

4.10. Consider the system governed by the following equation of motion:

u- %(u-u3)=Kcoth
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Determine the frist term in a uniformly valid expansion of u describing the
response near the center at u = 1 for

(a) & near unity

(b) £ near?

(¢) & near %

(d) £2 near three

(e) £2 near one-third

4.11. Consider the system governed by the following equation of motion:
u+u+ou’ =K cos Qt - 2ui

(a) Determine the frequency-response equation when £ is near unity. Make
plots of the amplitude of the response as a function of the frequency and the
amplitude of the excitation.

(b) Show that to first order, secondary resonances exist when 2 =5, 3, 2,
%, %, and %

(¢) Determine the equations governing the phases and the amplitudes for the
one-term expansions for each case of secondary resonance.

4.12. Consider the system governed by the following equation of motion:
u+f(u)=K cos Qt
where u(0) = u, and 2(0) = 0.

(a) Show that, when K = 0, u is given implicitly by

t=+fu du = (u)
")y, o) = Fa1 2~

where %F'(u) =f(u).
(b) Use the above as the starting solution in an iteration scheme. Thus the
second iteration is governed by

u+fiw)=0

Determine f; (1) as a function of f(u) and g1 (). Then show that for the second
approximation the solution can be expressed as (Rauscher, 1938)

fu du
t=1%
iy [F1(u0) = F1()]'?

4.13. Consider the system governed by the following equation of motion:
U +u + 2ept + eou® = ek cos Qi

Using the method of harmonic balance, obtain the frequency response equation
for £ near unity. Compare your results with (4.1.17).
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4.14. Consider the system governed by the following equation of motion:
u+u’ =K cos Q¢

Using the method of harmonic balance, obtain the frequency-response equation.

4.15. Consider a system governed by an equation having the form

U+ wiu+eui+oud)=K, cos(Qyt+0,)+K, cos (2,1 +03)
where
Q, +Q, = 2wy

(a) Using the method of multiple scales to obtain a one-term, uniformly

valid expansion for small €, show that secular terms are eliminated from u; if
2iwo(A' +pd) + a(344 + 6A A, + 6A2A2)A + 601 Ay A exp (i0T1) =0

where

K, exp (i0,)
" 2(wh - Q)

n , €0=QI+Q2—2(.00

(b) Letting 4 = %a exp (i), show that the solvability conditions are equiva-
lent to

’ .
a =-pa-aljasiny
3

, 3aa
ay =(0- 2al)a - 2

- 2al’a cos 7y
Wo

where

3K,K,

" 4aso(wd - QF) (wh - Q)

r, = 3 [ K? . K% ]
4o [ (wf - Q1) (Wi - Q3)°

7=0T1“ 23+01 +02

I'y

(c) Show that the steady-state amplitudes are given by
a=0

2\1/2
2_8 o 2 _H
=8 o, elme-E
¢ 3w0[2a ? (1 az) ]

(d) Determine which of the possible steady-state amplitudes are stable. (Be
sure to consider the trivial solution.)

(e) Use your results to explain Figure 4-41.

or
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Figure 4-41. Response curves for the sys-
tem described in Exercise 4.15.

4.16. Consider the system governed by the following equation of motion:
U+ut2eud+eom® =K, cos(Qt+0;)+K, cos (Qyt+85)
where 2, is near unity and €2, is near 3.

(a) Using the method of multiple scales to obtain a one-term, uniformly valid
expansion for small €, show that secular terms are eliminated from u, if

a'=-pa+31kysin(o, Ty~ B+01)- FaAasin (0, Ty - 3+0,)
af =3a(A3 +3a®)a- ki cos (01T - B+0,)+ 3 aA,a® cos (0, Ty - 36+0,)
where

€k =K, €07 =Q; -1, €0,=Q, -3, and Ay =- 5K,

(b) Show that stationary solutions exist only when ' =0, = %02 and hence
that they correspond to periodic responses.
(c) Plota versus 0, and indicate the stable portions of the curves.

4.17. Consider the system governed by the following equation of motion:
. - 3
utu+ et + e’ =" K, cos(Q,t+0,)
n=1

where 2 ~ 1and 20, + Q3 =~ 1.
(a) Using the method of multiple scales, show that

u=a(Ty)cos [Ty +B(T{)] +2 i A, cos (82, Ty +8,) + O(e)

n=2
where
K
A - n
201~ Q7))
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a'=-pa+ %k, siny, - ol sin 7y,
af' =Ty, +3a*)a- Lk; cosy; +aly cosy,
where
€k1 =Ky, €01 =821 -1, €0, =28, +Q3-1
Y1=01Ty - B+0y, v2=0,T - B+20, +03

and I'y and I', are constants. Determine I’y and I'; .

(b) Show that a stationary solution can exist only if 8’ = 0; = 0. Do station-
ary solutions correspond to periodic responses?

(c) Plota versus 0; and indicate the stable portions of the curves.

4.18. Consider the system governed by the following equation of motion:
. ° 3
u+u+2eut +eau’ = Y K, cos (2,1 +6,)
n=1

where 2, = 1,8, = %,and Q5 =~3.
(a) Using the method of multiple scales, show that
3 .
u=a(Ty)cos [Ty +B(T{)] +2 Z A, cos (2,,T¢ +0,) + 0(e)
n=2
where
K
Ap ="
2(1-2;)
a'=ua+ %kl siny; - «AS siny, - %a/\3a2 sin y3
af' = 30((%;12 +A2+Aa- %kl cosy; +aA3 cosy, + %ozA3a2 cos Y3
€k, =K., €0, =Ql -1, €0, =3Q2 -1
€03=Q3-3,v1=0,T;-B+0,
Y2 =0Ty - B+30,, v3=03T, - 36+03

(b) Show that a stationary solution can exist only if 8’ =0; = 0, = 5. Do

3
stationary solutions correspond to periodic responses?
(c) Plota versus 0; and indicate the stable portions of the curves.

4.19. Consider the system governed by the following equation of motion:
. . 4
U+u+2eun +eau’ = Z K, cos (Q,t+6,)
n=1

where 2; = 1 and 2, + 823 + Q4 = 1.
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(1) Using the method of multiple scales, show that
4
u=a(Ty) cos [Ty +B(T{)] +2 Z A, cos (82,1 +0,) + 0(e)
n=2

where

K
Ap=7——"=5 forn=2,3,and 4
21-Q})

a'=-pa+3ikysiny, - ol siny,

af'=a(3a® +Ty)a- Lk cosys +al'y cos v,
€01 =81 -1, €0 =50 +Q3+Q,4-1
Y1=01T1=B+0y, v2=0,T1-f+0,+03+0,

and I'; and I'; are constants. Determine I'y and I', .

(b) Show that stationary solutions can exist only if 8’ = 0; = 0,. Do station-
ary solutions correspond to periodic responses?

(c) Plot a versus 0, for several values of I'; and I', and indicate the stable

portions of the curves.

4.20. Consider the system governed by the following equation of motion:
.. . 3
utu+ e+ e’ =Y K, cos (Qpt +0,)
n=1

where ; = 1 and &, + Q; =~ 2.
(a) Using the method of multiple scales, show that
3
u=a(Ty) cos [To +B(T1)] +2 3~ A, cos (2,To +6,)+ O0(e)
n=2
where

K
A, =—70
"21-Q2)

a'=~1.uz+%k1 sin y; - al';a sin 7y,
aB'=a(%a2 +1')a - %kl cosy; +al'y cos 7y,
€k1=K1, 601=Ql_], 602=Q2+Q3_2
Y1=01Ty - B+0;, v2=0,T1-20+0, +03

and I'; and I'; are constants. Determine I'y and ', .
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(b) Show that stationary solutions can exist only if ' =0y = %02. Do sta-
tionary solutions correspond to periodic responses?
(c) Plot a versus 0; and indicate the unstable portions of the curves.

4.21. The response of a system to a harmonic excitation is governed by the
following equation:

u+u+lsgna+ou® =K cos Qt

where £~ 1. Assume all the coefficients are small. Introduce the parameter
€ which is a measure of the smallness of these coefficients. Then introduce new
coefficients, which are explicit functions of €, recalling that the nonlinear,
damping, and forcing terms must interact at the same order.

(a) Show that
u=acos (Q - 7)+ 1 ea®[Lcos (2Q1 - 27) - 1] + O(€?)
where

a'=-2ﬂ+ %k sin 7y
m
ay' =a0+ %azcﬁ + %k cos 'y
ea=0-1
(b) Obtain the frequency-response equation. Plot a versus o for several values

of k. Is there a jump phenomenon associated with this motion? Is this motion
bounded?

4.22. The response of a system to a harmonic excitation is governed by the
following equation:

u+u+falal+au? =K cos Qt
where S~ 1. Assume all the coefficients are small. Introduce the parameter €
which is a measure of the smallness of these coefficients. Then introduce new co-

efficients, which are explicit functions of €, recalling that the nonlinear, damping,
and forcing terms must interact at the same order.

(a) Show that
u=acos (Q +7) + Feaa® [ cos (2t - 2y) - 1] + O(€?)
where

. Aud®
a =- + 5 k sin
3m 2 v

a')"=a0+1—520£2a3 +—;—k cos vy

eoc=8-1
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(b) Obtain the frequency-response equation. Plot ¢ versus ¢ for several values
of k. Is there a jump phenomenon associated with this motion? Is this motion
bounded?

4.23. Consider the system governed by the following equation of motion:

.. 3

u+u+ 2eu + eau’ = > Ky cos (2,1 +0),)

n=1
where 2, - Q; =~ 1land Q3 - Q, =~ 1.
(a) Using the method of multiple scales, show that
3
u=A(Ty) exp (iTy) +cc + 22 A, cos (82, Ty +0,,) + O(e)
n=1
where
K
A - n
"1- Q2
i(4"+pA) + Ay Ay exp (i71) + @My Az exp (i72) = 0
€04 =Q2—Ql_ 1, 502=Q3‘Qz" 1
Y1=01Ty+0,-04, v2=0,T, +03-0,
(b) Show that
iaAlAz . iaA2A3 .
A=Cexp (-uT)+———exp (iy1) +——— exp (i12)
Mtiog M +io,

where C is a constant of integration.
(c) Determine the steady-state response. Is it periodic?

4.24. Consider the system governed by the following equation of motion:

2
u+u+2eul +eou? = Z K, cos (Q,t+80,)
n=1

where Q; =~ % and 2, = 2.

(a) Using the method of multiple scales, show that

2
u=A(Ty) exp (iTo) +cc + 2" A, cos (22, T +0,) + 0(e)

n=1
where
K
A -—n
"1 - Q2)
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2i(A" +ud) + aA} exp (iy;) + 2aA, 4 exp (i7,) =0
€0, =28,-1, €0, =85 -2
Y1 =0Ty +201, v2=0,T; +0,
(b) Let
A = (B, +iB;) exp (3172)

where B, and B; are real functions of T, separate the solvability condition into
real and imaginary parts, and obtain the equations governing B, and B;. Deter-
mine the conditions for which the solution becomes unbounded. Does the super-
harmonic resonance affect this condition?

4.25. The response of a system to a three-frequency excitation is governed by
. . 3
Ut u+2eul +eaw’® = Y Ky, cos (1 +0,)
n=1
(a) Show that

3
u=A(Ty) exp (iTy) + cc + 22 A, cos (2, Ty +0,) + 0(e)

n=1
where
A”=2(1I—<nsz,2,)
i(A"+ud) +adA; exp (iv1) + Ay As exp (i7,) =0
€01 =1-2, €0, =8, +Q3-1
Y1 =0Ty +0y, v2=0,T +0, +0;
(b) Let

A = (B, +iB;) exp (%i’yl)

where B, and B; are real functions of T, separate the solvability condition into
real and imaginary parts, and obtain the equations governing B, and B;. Deter-
mine the conditions for an unbounded solution.

4.26. The response of a system to a three-frequency excitation is governed by
the following equation of motion:

.. 3
u+u+ 2eut + eau’® = > Ky cos (2,2 +6,)
n=1
where

le% and QZ +Q3%1,
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(a) Show that

u=A(Ty) exp (iTy) + cc + 223: Ay, cos (2, Ty +0,) + O(e)
n=1
where
= Kn
201- Q})
2i(A" +pA) + aA? exp (i71) + 20A; Az exp (i7,) = 0
€01 =201 -1, €0, =0, +Q3-1

n

Y1=0:1T1 +201, 72 =0,T, +60, +0;
(b) Solve for 4 and determine the steady-state response. Is it periodic?
4.27. The response of a system to a five-frequency excitation is governed by
u+u+ 2eut + eou? = ZS K, cos (82,t+6,)
n=1
where
Q3 B2 Q-Q 1 Q-
(a) Show that

5
u=A(Ty) exp (iTo) +cc + 2" A, cos (2, To +6,) + O(e)

n=1
where
K
A,,=2(—1:—;25
21(A" + pA) + 20 A, exp (iv,) + @A? exp (iy;) + 20A3 A4 exp (i73)
+2aA4As exp (iv4) =0
€0, =201~ 1, €0, =Q,-2, €03=Q,-Q3-1
€04=0s5-Q4-1, v, =0,T, +20,
Y2 =0Ty +0,, v3=03T, +04- 04
Y4 =04T; +05 -0,

(b) Solve for A and determine the condition for an unbounded solution.
What is the effect of the superharmonic and combination resonances on this
condition?
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"'f‘/4,28, The response of a self-sustaining oscillator to a two-frequency excita-
tion is governed by

2
utu=e(- %d3)+z K, cos (2,r+0,)
n=1

where {2, is near unity and €2, is near %
(a) Show that
u=a(Ty)cos [Ty +B(T1)] +2A cos (2, Ty +0,) + O(e)
where
A=EK,
a'= (% - Q3A% - %az)a +ky sinyy +ky cosy,
af' =-ky cosy, +ky siny,
2¢ky =Ky, 3Q3A =k,y, v1 =0T -B+06,
Y2=0,T1 - B+30,, eo, =8 -1
€0, =382, - 1

(b) Show that stationary solutions exist only if 8 =0, =0,. Is the cor-
responding response periodic? '
(c) Obtain the frequency-response equation:

k3 + 2k, k, sin Y + k3 12
U:i[ ! ! 22 4 2—(%—Q§A2-%a2)2]

a

where Y =0, - 36,. Plot several fre,quency:rtes‘fic;nse curves, indicating the
stable and unstable portions.

E4.29. The response of a self-sustaining system to a two-frequency excitation
is governed by

2
utu=e(@d- 3u°)+ > Ky, cos (2,2 +0,)
n=1

where £, is near unity and 2, is near 3.
(a) Show that
u=a(Ty)cos [Ty +P(T1)] +2A cos [§2, Ty + 0,1

where
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26k =Ky, ky =3QA, v1=0,T, - B+06,
Y2=0,T1 - 36+0,, €0, =Q; -1, €0, =8, -3

(b) Show that stationary solutions exist only if §' =0, = %02. Is the cor-
responding response periodic?

h) .. e s
'/ 4.30. The response of a self-sustaining system to a two-frequency excitation
is governed by

2
utu=e@- $i°)+ 3 K, cos (Rt +0,)
n=1

where 2 is near 3 and §2, is near %

(a) Show that

u=a(Ty)cos [Ty +B(Ty)] + 222 Ay, cos (2, Ty +0,) + O(e)

n=1

where

Ay =-F%Ki, A=5K,
a'=(% - Q3A]- 16K} - 1a*)a +kya* cos v, +3Q3A3 cos v,
aB' =kqa? siny; + %QgAg sin 7,
ki =5QA, v1=01T1-38+0;, 72=0,Ty - f+30,
€0, =0, -3, €0, =30,-1

(b) Show that stationary solutions exist only if 8’ = %01 =0,. Is the cor-
responding response periodic?

4.31. The response of a self-sustaining system to a three-frequency excitation
is governed by

3
utu=e@- )+ Y K, cos (Qut +6,)
n=1

where £ and 282, + 3 are near unity.

(a) Show that

3
u=a(T;)cos [Ty +B(Ty)] + 22 A, cos (82,,Ty +0,,) + O(e)

n=2
where
K
A - n
21~ Q2)
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i 1. S o2z 1.2 .
a'={3-> QA - ga*) a+kysiny; +k; cosy,
n=2

aB' =-ky cosy; +k, siny,

2Ek1 =K1, ko =Q%Q3A%A3
Y1 =0Ty =B+0;, v2=0,T,-f+20, +0;
€0, =Ql - 1, €0, =292 +Q3_ 1

(b) Show that stationary solutions exist only if o; =0, =f'. Is the cor-
responding response periodic?
(c) Obtain the frequency-response equation:

k2 + 2k 1k, sin Y + k3 3 \2]1/2
a:i[ 1+ 2hks sin ¥ 2-<%-ZQ:A,2,-§<12)]

2
n=2

a

where Y =0; - 20, - 03. Plot several frequency-response curves, indicating the
stable and unstable portions.

4.32. The response of a self-sustaining system to a three-frequency excitation
is governed by

3
u+tu=e(- %,;3)+ > Ky cos (82,To +0,) + O(e)
n=1
where 2, is near unity and 2, + 25 is near 2.

(a) Show that

3
u=a(Ty) cos [To +B(T1)] + 2 A, cos (2,To +6,) + O(e)

n=2
where
K
A —-__n
2192
, 3
a=(%—ZQf,A,2,—%a2 a+kqsinyy - ky cos ¥,
n=2
aB' =-k; cosy; - ko sin Y2
26k1=K1, k2=Q2Q3A2A3
Y1=01Ty1-B+0y, v2=0,T,-28+0, +0;
60'1:91_ 1, 602=QI+Q3_2

(b) Show that a stationary solution exists only if f' =0, =%02. Is the
corresponding response periodic?
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4.33. The response of a self-sustaining system to a three-frequency excitation
is governed by

3
u+tu=e(l- %123)’1‘ Z K, cos(Q,t+86,)
n=1

where £, + £, + Q3 is near unity.

(a) Show that

3
u=a(Ty) cos [To +P(T1)] +23 Ay cos (,To +0,)+ 0(e)

n=1
where
K
a'=(%— i Q2A2 - %az) at+kcosy
n=1
af' =k siny
k=20,Q,Q3A A A3, y=0,T1-0+0;+0, +0,
€0, =0+, +Q53-1
(b) Obtain the frequency-response equation:

k2

3 271/2
o=t 7-(%-29,3/\,3— a2)
a n=1

(c) Plot several frequency-response curves, indicating the stable and un-
stable portions.

00|

4.34. The response of a self-sustaining system to a three-frequency excitation
is governed by

3
utu=e(- %ﬁ3)+ Z K, cos (Q,t+0x)
n=1

where £, is near unity, £, is near %—, and 3 is near 3.

(a) Show that

3
u =d(T1) cos [TO +B(T1)] + 22 A}’Z cosS (QnTO +6n)+0(6)
n=2
where
K
A - n
21~ Q%)
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a'= (%— Za: Q2A2 - %a2) a+kysiny;, +k; cosy, +kza® cosy;
n=2

af' =k, sin 7y, + kya® siny; - k; cos vy,

2eky =K1, ks =3Q3A3, k3 =3Q3A,s
Y1=01Ty-B+0y, v2=0,T - f+30,
Y3 =037y - 38+03, €o; +Q4 -1
€0, =38, -1, €03=03-3

(b) Show that stationary solutions exist only if

[ |
B =01 =02 =303

Is the corresponding response periodic?

4.35. The response of a self-sustaining system to a four-frequency excitation
is governed by

ii+u=e(u~§u )+ZK cos (QnT+8,)

where £, and Q4 - Q3 - £, are near unity.

(a) Show that

u=a(Ty)cos [Ty +B(Ty)] + 224 Ay, cos (2, Ty +6,) + 0(e)
n=2

where
K
A - n
"2(1-Q2)

4
a' = (%— 3 Q2A2 - %a2>a+k1 sin vy +ky cos v,

n=2
aB’ =-kq cosy; +k, sin 7y,

2ek1 =K1, ko =2804823Q, A4 A3\,
Y1=01T1-B+0y, v2=0,T1-B+0,-05-0,
€0, =01-1, €0,=04-Q3-8, -

(b) Show that for a stationary solution to exist, 8’ =0; = 0,. Is the cor-
responding response periodic?

(c) Obtain the frequency-response equation. Plot several frequency-response
curves, indicating the stable and unstable portions.
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4.36. The response of a van der Pol oscillator with delayed amplitude limit-
ing to a sinusoidal excitation is governed by (Golay, 1964)

U+ wiu=2e[(1-z)a- zul - 2K sin Q¢ o)

TE+z=u?

where Wy, €, K, §2, and T are constants.

(a) For the case of primary resonance, let £ = wo + €0 and K = €k. Use the
method of multiple scales and obtain (Nayfeh, 1968)

u=a cos (wet + ) + 0(e)
....t — -

z=b exp<—>+ %az + %az(l +4w3r?) U2 cos (2wt + 28 - tan™ 2woT)
T

+0(e) (2)
where

=€e(l - %a,.a2)a + €k cos (eat - B)

Qs

3
! sin (eot - B).

B=-1eaja® +eka”
where @, and @; are known functions of wyt. Determine the stationary oscilla-
tions and their stability.

Forced oscillations of other third-order systems were studied by Srirangarajan
and Srinivasan (1973, 1974) and Tondl (1974, 1976a).

(b) For the case of hard nonresonant excitations [i.e., K = O(1), £ - wqo >
0O(e)], show that

u=a cos (wot +P) - 2KQUw3 - £2)7! sin Q¢ + O(e) 4)
where
a=m- La,a?)a
ST A% (5)
B=-7d®

and n=1- 2K2Q%(w3 - Q2?)™2. Solve for a and B. What are the stationary
oscillations when nn > 0,7 < 0, and 7 = 0. What is the significance of n = 0?
(c) Determine a first-order solution for the subharmonic case (i.e., £ = 3wg).
(d) Determine a first-order solution for the superharmonic case (i.e., Q =~

1
30.)0).

4.37. The forced response of a single-degree-of-freedom system is governed
by (Arya, Bojadziev, and Farooqui, 1975)

U+ wdu=-eom® - 2eun + WA(T1)

where f(Ty) = O(1) and Ty = €t.
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(a) Show that

u=A(T;) exp (iwoTo) + cc + f(Ty) + O(e)
where
2iwo(A' +pA) +3a(44 +f2)4A =0
(b) Express 4 in the polar form %a exp (iB) and obtain
a'=-pa
woB' =3 a(za® +1?)

4.38. The forced response of a self-excited system to a slowly varying exter-
nal excitation is governed by

u+wiu=e(l-u®)a+wif(Ty)
where £ = 0(1).
(a) Show that
u=A(T,) exp (iwoTo) + cc +f(T1) + O(e)
where
24'=(1-A4- )4

(b) Express A in polar form and determine the equations describing the
amplitude and the phase.

4.39. The forced response of a self-excited system is governed by
u+wiu=e(l-u?)i+K cosQt
where K = O(1) and £ is away from wgq. Show that
u=A(T;) exp (iwgTo) + A exp (i2Ty) + cc
where A = %K(w% - Q)7 and

(a) 24'=4-2A%4 - A*4 when Q is away from 0, 3w, and %wo

(b) 24'=4-2A%4- A%4 - Qwy' A3 exp (-ioTy) when wq = 3Q + €0

(c) 24 =A-2A%-A%4+(2- QJwe)A%A exp (i6T;) when Q = 3w, + €0

(d) 24'=A4-2A%4- A%4 - 24A? cos 20T; when § =eo. Compare this
result with that of Exercise 4.38.

4.40. The forced response of a single-degree-of-freedom system is governed
by

U+ wiu + 2eui + eu* = 2K cos it
(a) Show that
u=A(Ty) exp (iwoTo) + A exp (if2Ty) + cc
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where

(1) 2iwe(A' +pd)+ A* exp (i0T1) = 0 when 482 = wy + €0

(i) 2iwe(4' +ud) +4AA43 exp (ioT;) = 0 when = 4w, + €0

(iii) 2iwo(A4’ +pA) +4A34 exp (i0T;) = 0 when 3 = 2w, + €0

(iv) 2iwo(A' +pd) + 6A%4? exp (ioT,) = 0 when 2 = 3w, + €0

(v) 2iwe(A'+ud)+ 12(A34 + A42A4) exp (i0Ty) = 0 when Q = 2w, + €0
(vi) 2iwe(4'+uA) +(12A%44 + 4A*) exp (i0T1) = 0 when 20 = w, + €0

(b) Determine the steady-state responses for each of the cases in (a).

4.41. The forced response of a single-degree-of-freedom system is given by
(Proskuriakov, 1971)
N
U+ wiu=-2eui+ey au’ +2K cos Qt
5=2

where £ is away from wy.

(a) Determine all possible resonances for general V.
(b) When N =5, determine the equations describing the amplitudes and the
phases for all possible resonances.

4.42. The equation of motion of a gravity-stabilized, rigid satellite in an
elliptic orbit around a spherical planet is

(1+ecos0)Y" - 2ey'sin 0 + 3 K sin 24 = 2e sin §

Hablani and Shrivastava (1977) determined a third-order expansion for Y(0; e)
for small e for wo away from % and 1, where w3 = 3K. Determine all possible
resonances to second order and determine uniform expansions for these cases

(Alfriend, 1977).



CHAPTER 5

Parametrically Excited Systems

In this chapter, as in the preceding chapter, we consider motions that are the
result of time-dependent excitations (actions) on the system. In contrast with
the preceding and the following chapter, in which the excitations appear as in-
homogeneities in the governing differential equations, in this chapter the ex-
citations appear as coefficients in the governing differential equations. Thus
mathematically one is led to differential equations with time-varying coefficients.
In some branches of mechanics, one is led to the solution of partial differential
equations with constant coefficients but spatially and/or temporally varying
boundary conditions. Except for Exercises 5.27 and 5.28, we do not discuss
problems with varying boundary conditions, and we refer the reader to the book
of Brillouin (1956) and the detailed review article of Elachi (1976). Since the ex-
citations when they are time independent appear as parameters in the governing
equations, these excitations are called parametric excitations. Moreover in con-
trast with the case of external excitations in which a small excitation cannot
produce a large response unless the frequency of the excitation is close to one of
the natural frequencies of the system (primary resonance), a small parametric
excitation can produce a large response when the frequency of the excitation is
close to one half of one of the natural frequencies of the system (principal
parametric resonance).

Faraday (1831) seems to be the first to observe the phenomenon of parametric
resonance. He noted that surface waves in a fluid-filled cylinder under vertical
excitation exhibited twice the period of the excitation itself. Melde (1859) tied
a string between a rigid support and the extremity of the prong of a massive
tuning fork of low pitch. He observed that the string could be made to oscillate
laterally, although the exciting force is longitudinal, at one half the frequency of
the fork under a number of critical conditions of string mass and tension and
fork frequency and loudness. Strutt (1887) provided a theoretical basis for these
observations and performed further experiments with a string attached to one
end of the prong of a tuning fork. Stephenson (1906) amplified the results of
Strutt (1887) and observed the possibility of exciting vibrations when the fre-
quency of the applied axial excitation is a rational multiple of the fundamental

258
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frequency of the lateral vibration of the string. Raman (1912) presented a
lengthy investigation which is beautifully and profusely illustrated with photo-
graphs of vibrating strings.

The problem of parametric resonance arises in many branches of physics and
engineering. Examples are given in the next section. One of the important prob-
lems is that of dynamic instability which is the response of mechanical and elas-
tic systems to time-varying loads, especially periodic loads. There are cases in
which the introduction of a small vibrational loading can stabilize a system
which is statically unstable or destabilize a system which is statically stable.
Stephenson (1908) seems to be the first to point out that a column under the in-
fluence of a periodic load may be stable even though the steady value of the load
is twice that of the Euler load. Beliaev (1924) analyzed the response of a straight
elastic hinged-hinged column to an axial periodic load of the form p(¥) =
Do + 1 cos §2t. He obtained a Mathieu equation for the dynamic response of
the column and determined the principal parametric resonance frequency of the
column. The results show that a column can be made to oscillate with the fre-
quency %Q if it is close to one of the natural frequencies of the lateral motion
even though the axial load may be below the static buckling load of the column.
Beliaev’s investigation was completed by Andronov and Leontovich (1927).
Krylov and Bogoliubov (1935) used the Galérkin procedure to determine the
dynamic response of a column with arbitrary boundary conditions to an axial
periodic load, Chelomei (1939) studied the parametric resonance of a column,
Kochin (1934) examined the mathematically related problem of the vibrations
of a crankshaft, and Timoshenko (1955) and Bondarenko (1936) treated another
mathematically related problem in connection with the vibrations of the driving
system of an electric locomotive. Two basic references on the dynamic stability
of elastic systems are the books of Bolotin (1963, 1964).

In spite of the relatively new history of the problem of parametric excitations,
there are a number of books devoted to the analysis and applications of this
problem. McLachlan (1947) discussed the theory and applications of the
Mathieu functions, while Bondarenko (1936) and Magnus and Winkler (1966)
discussed Hill’s equation and its applications in engineering vibration problems.
Bolotin (1964) discussed the influence of parametric resonances on the dynamic
stability of elastic systems. Shtokalo (1961) discussed linear differential equa-
tions with variable coefficients; Arscott (1964), Erugin (1966), and Yakubovich
and Starzhinskii (1975) discussed differential equations with periodic coeffi-
cients; and Schmidt (1974) discussed parametric resonances. In addition there
are a number of books which deal with parametric excitations including those of
Whittaker and Watson (1962); Den Hartog (1947); Minorsky (1947, 1962);
Stoker (1950); Bellman (1953); Hayashi (1953a, 1964); Coddington and Levin-
son (1955); Malkin (1956); Cunningham (1958); Kauderer (1958); Bogoliubov
and Mitropolsky (1961); Struble (1962); Hale (1963); McLachlan (1950);
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Andronov, Vitt, and Khaikin (1966); Blaquiére (1966); Kononenko (1969);
Meirovitch (1970); Cesari (1971); Nayfeh (1973b); and Evan-Iwanowski (1976).
The problem of parametric resonance and its associated problem of dynamic
stability were reviewed by Beilin and Dzhanelidze (1952), Mettler (1962, 1967),
and Evan-Iwanowski (1965).

First we consider some examples of parametrically excitated systems; then we
consider the Floquet theory to obtain some characteristics that are common to
all linear, parametrically excited systems, and we develop approximate solutions
of linear systems having a single degree of freedom. In Section 5.4 we extend
the analysis to linear systems having many degrees of freedom and distinct
eigenfrequencies, while in Section 5.5 we consider systems having repeated
eigenfrequencies. In Section 5.6 we consider linear, gyroscopic, parametrically
excited systems. In the last section we consider nonlinear, parametrically ex-
cited systems.

5.1. Examples

5.1.1 A PENDULUM WITH A MOVING SUPPORT

As a first example we consider the motion of a particle of mass m attached to
one end of a massless rod of length /, while the other end of the rod is attached
to a point under the influence of a prescribed acceleration as shown in Figure
5-1. Applying Newton’s second law of motion in the direction perpendicular to
the rod leads to

mlb =-m[g- Y(£)] sin 6 + mX(¢) cos 0
F(t)

/ y(t)
|
(]

F(t)

x(t)

COMPONENTS OF
F(t)

mg

Figure 5-1. Pendulum with a moving support.
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Hence

e+[5l' Ygt)] s1n0—)—(§—t—)cost9=0 (5.1.1)

which is an equation with variable coefficients. For small oscillations about
6 =0,(5.1.1) can be linearized to yield
g_ YO, _X@®
0+[l ] ]0 ] (5.1.2)
Stephenson (1908) seems to be the first to predict the possibility of converting
the unstable equilibrium of a rigid rod standing on an end by applying a vertical
periodic force at the bottom. Sethna (1973) showed that a pendulum can have
stable motions in the neighborhood of the vertical up position for arbitrary
vertical support motions provided that they are fast and the time average of the
square of the velocity of the support motions is greater than the square of the
time average of the velocity of these motions by a constant that depends on the
system parameters. Consequently linear and nonlinear parametric excitations of
a pendulum with a moving point of suspension were studied by many investi-
gators including Hirsch (1930), Stoker (1950, pp. 189-213), Haacke (1951),
Kapitza (1951), Malkin (1956, pp. 163-165), Kauderer (1958, pp. 524-536),
Skalak and Yarymovych (1960), Bogoliubov and Mitropolsky (1961, pp. 404-
408), Struble (1963), Phelps and Hunter (1965, 1966), Bogdanoff and Citron
(1965), Ness (1967), Dugundji and Chhatpar (1970), Cheshankov (1971), Troger
(1975), and Chester (1975). Tso and Asmis (1970) studied the parametric ex-
citation of a pendulum with bilinear hystersis, Ryland and Meirovitch (1977)
studied the stability boundaries of a swinging spring with an oscillating support,
Hemp and Sethna (1964) studied the effect of high-frequency support oscilla-
tions on the motion of a spherical pendulum, and Sethna and Hemp (1965)
studied the nonlinear oscillations of a gyroscopic pendulum with an oscillating
support.

5.1.2. A MECHANICAL-ELECTRICAL SYSTEM

As a second example we consider the mechanical-electrical system shown in
Figure 5-2. It consists of an L-C circuit containing a constant inductor L con-
nected in series with a capacitor whose plates can be moved mechanically in a

Lé — %dm

Figure 5-2. A mechanical-electrical system.
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prescribed manner. If the charge on the capacitor is g, then the current i in the
circuit is ¢. The potential across the inductance is Ldi/dt = L§, while the po-
tential across the condenser is q/C(¢). The capacitance C(¢) =eS/d(¢) in the
MKS system, where € is the dielectric permeativity of the material, S is the sur-
face area of the plates, and d(¢) is the variable distance between the plates.
Since the total potential across the two elements is zero, g is governed by

i+20,

=0 5.1.3
eSL ( )

which is an equation with variable coefficients.

Brillouin (1897) studied parametric resonances in electric circuits. Similar ex-
periments were performed by Mandelstam and Papalexi (1934) with a specially
designed oscillating circuit which they called a parametric generator. They found
out that if the circuit of the parametric generator is linear, the amplitude of the
oscillation grows indefinitely until the insulation is destroyed by an excessive
voltage. On the other hand, they found out that a stable stationary condition is
reached if the circuit is nonlinear. For more references and applications to elec-
tric circuits, we refer the reader to the books of Minorsky (1962); Andronov,
Vitt, and Khaikin (1966); and Blaquiére (1966). Moreover for a history of
parametric transducers, we refer the reader to Mumford (1960).

5.1.3. A DOUBLE PENDULUM

The two examples described above are systems having a single degree of
freedom. In this section we describe a double pendulum, which has two degrees
of freedom, and in the following section we consider a column experiencing
transverse oscillations. The latter is an example of a system having infinite de-
grees of freedom.

We consider the motion of a double pendulum attached to a platform that has
a prescribed vertical motion relative to an inertial frame as shown in Figure 5-3.
Two particles of masses m; and m, are connected to massless rods of lengths
1, and [, suspended from a platform that has a prescribed vertical motion y(¢)
with respect to the inertial frame 0. The motion of the particles is constrained
by springs that are initially horizontal and have the constants k; and k,. The
springs are unstretched when the particles lie vertically below the platform.

To derive the equations of motion, we form the Lagrangian and then write the
Euler-Lagrange equations. To this end we observe that the velocities of m; and
m, are

vi =1,0, cos 0,i+ (1,6, sin 0, - 7)j (5.1.4)

vV, =(llé1 CoSs 01 +l20.2 COS@z)i'i'(ll@.l sin 01 +12é2 sin 02 - _).))j (515)
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C

MOVING PLATFORM
$v(t)

my

ko
my

Figure 5-3. Double pendulum with a moving support.

The kinetic energy T and the potential energy V of the system are
T=ymyv} + 3myv3 = L(m, +my)1360% - (my +my) 1,96,0,+ 1m, 1363
+myl1,0,0, - my1, 50,6, + $(my +my) p* + 0(0,?) (5.1.6)
V=-mg(y+1 cos0;)- myg(y+1; cos 0, +1, cos 6,)
+ 2,130 + 2k,(116, +1,0,)* +0(07) (5.1.7)

The cubic and higher-order terms in T and V are not needed in the linear prob-
lem. Expanding (5.1.7) for small 6 and neglecting cubic and higher-order terms,
we have

V=c(t)+imgl0} + 1m,g(l,0% +1,03) + 1k, 136}
+ 3ky (110, +1,0,)* +0(6}) (5.1.8)
Then it follows that the equations of motion are
(my +my) 118y + mylyb ~ (my +my) 90, + [(my +my) g
+(ky +ky)11] 0y +kyl0, =0 (5.1.9)
Mylaly + myl 0 - maj0, +kyli0y + (mag + ky1)0,=0  (5.1.10)
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which are two linear equations having variable coefficients. Thus this is an ex-
ample of a system having two degrees of freedom. Hsu and Cheng (1973) studied
the effect of an axial impact load on a double pendulum.

5.1.4. DYNAMIC STABILITY OF ELASTIC SYSTEMS

As a fourth example we consider the transverse motion of a straight rod with a
uniform cross section loaded by an axial time-varying force P(¢). We consider
four typical boundary conditions as shown in Figure 5-4. We assume that plane
sections remain plane, and we neglect transverse shear and rotary inertia. As-
suming linear elasticity, one finds that the longitudinal inertia terms are negligible.
Hence the axial force in the beam is uniform and equal to P(f). Referring to Fig-
ure 5-5 one can write the pertinent equations of motion as

y-Momentum
a6 aQ 02w
-P—+—=pA—- 5.1.11
ax oax PO or (5.1.11)
Moment of momentum
oM
-—+0=0 5.1.12
0 (5.1.12)
where p is the density per unit length and 4 is the cross-sectional area. Using
M=-EI % and 0O~ dw
ox ox

P(t) P(t) P(t)
P(t)

s 7
Case A Case B Case C Case D

Figure 5-4. Dynamic stability of elastic columns.
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o

X |ll dx—)‘

Figure 5-5. An element of a beam.

We can combine (5.1.11) and (5.1.12) to obtain

0*w 2w o*w
+ P(t —+E1

a 2 () a

In the following we assume that P(f) = Py + P, (f), where P, is constant. We
follow Nayfeh and Mook (1977) and express the solution of (5.1.13) as an ex-
pansion in terms of the linear free-oscillation modes. That is,

WX, 1) = 5" Uy (t) Gy (x) (5.1.14)

pA —- - =0 (5.1.13)

where the ¢,, are the eigenfunctions of the problem
¢ +pod” - k*9=0 (5.1.15)

where p, =Py /EI, k* = pAw?|EI, and w is an eigenvalue (called a natural fre-
quency), subject to one of the following sets of boundary conditions:

¢=¢"=0 at x=0 and x=1I (5.1.16)
for case (a),
¢=¢'=0 at x=0 and x=I (5.1.17)
for case (b),
¢p=¢'=0 at x=0 and ¢=¢"=0 at x=I (51.18)
for case (c), and
¢p=¢'=0 at x=0" and ¢"=¢"=0 at x=1 (5.1.19)

for case (d). One can easily show that the resulting eigenfunctions are orthogonal.
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Substituting (5.1.14) into (5.1.13) yields

3 [ + @ity S + P b ] = 0 (5.1.20)
m
where
EIk? Pi(¥)
2 = n )= —+ 5.1.21
Wh= PO (5.1.21)

Multiplying (5.1.20) by ¢,,, integrating the result from x =0 to x =/, and using
the orthogonality property of the ¢,,,, we obtain

Uy + Wity +p(0) Y frumm =0, n=1,2,3,... (5.1.22)
m

where

Jam = [f ¢n¢mdx][f ¢3,dx]_1 (5.1.23)

Equations (5.1.22) are an infinite set of coupled linear equations having variable
coefficients. Thus this is an example of a parametrically excited system having
infinite degrees of freedom.

We note that for a hinged-hinged column ¢,,, = sin (mnx/l), and hence f,,,,, =0
unless n =m. Consequently the system of equations (5.1.22) is uncoupled.
However for the other boundary conditions, the system of equations is coupled.
For general dynamic systems, Chelomei (1939) showed that the problem can be
reduced to a system of coupled differential equations with variable coefficients.
Brachkovskii (1942) and Bolotin (1953), using respectively the Galérkin pro-
cedure and the method of integral equations, discovered a class of problems that
can be reduced exactly to a single second-order equation (i.e., the system of
equations is uncoupled). This result was generalized by Dzhanelidze (1953, 1955)
to the case of dissipative systems. In addition to the expansion in terms of the
unperturbed natural modes mentioned above, a number of alternate approaches
have been employed including the Galérkin procedure (Krylov and Bogoliubov,
1935; Iwatsubo, Sugiyama, and Ogino, 1974), analog and digital simulations
(Moody, 1967; Sugiyama, Fujiwara, and Sekiya, 1970; Iwatsubo, Sugiyama, and
Ishihara, 1972) and finite differences (Sugiyama, Katayama, and Sekiya, 1971;
Iwatsubo, Saigo, and Sugiyama, 1973).

The problem of the transverse vibrations of a column with a time-dependent
follower force is a part of the problem of dynamic stability. Mettler (1949,
1951} laid the foundation for analysing parametric responses of mechanical sys-
tems. Bernstein (1947) presented a formulation of the problem of dynamic sta-
bility, while Smirnov (1947) and Bolotin (1963, 1964) provided extensive
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studies of problems of elastic stability of various structures including columns,
arches, rings, plates, and shells. Mettler (1962, 1967) and Evan-Iwanowski (1965,
1976) presented surveys of the state of the art.

As mentioned in the introduction, Stephenson (1908) pointed out that a
column under the influence of an axial periodic load can be stable even though
the steady value of the load is twice the Euler buckling load. Beliaev (1924) de-
termined the principal parametric resonance for a hinged-hinged beam, Andronov
and Leontovich (1927) completed Beliaev’s analysis, and Lubkin and Stoker
(1943) and Mettler (1940) presented detailed analyses of this problem. These re-
sults were verified experimentally by Gol’denblat (1947), Bolotin (1951), and
Somerset and Evan-Iwanowski (1965). Krylov and Bogoliubov (1935) studied
columns with various boundary conditions under the influence of multiharmonic
axial forces. Mettler (1947) studied analytically while Burnashev (1954) and
Sobolev (1954) studied experimentally the dynamic stability of the plane bend-
ing of a beam. Weidenhammer (1951) studied the stability of a clamped-clamped
column, and Elmaraghy and Tabarrok (1975) studied the stability of an axially
oscillating column. As mentioned earlier, the dynamic response of a column with
boundary conditions other than hinged-hinged leads to a system of coupled
equations with periodic coefficients. In addition to the usual resonances involv-
ing one degree of freedom, there exist combination and simultaneous resonances.
These were studied analytically by Mettler (1949, 1967); Weidenhammer (1951);
Sugiyama, Fugiwara, and Sekiya (1970); Sugiyama, Katayama, and Sekiya
(1971); Iwatsubo, Sugiyama, and Ishihara (1972); Iwatsubo, Sugiyama, and
Ogino (1974); and Nayfeh and Mook (1977) and were demonstrated experi-
mentally by Iwatsubo, Saigo, and Sugiyama (1973) and Dugundji and Muk-
hopadhyay (1973).

Chelomei (1939) treated the case of time-varying loads distributed along the
length of a column, Bondarenko (1936) and Schmidt (1964) examined the com-
bined effect of longitudinal and lateral forces, Mettler and Weidenhammer
(1956) studied the effect of an end mass, and Evensen and Evan-Iwanowski
(1966) studied analytically and experimentally the effect of concentrated and
distributed masses. Makushin (1947) treated the case of piecewise constant
periodic loadings, Gastev (1949) treated the case of periodically repeated pulses,
Finizio (1974) treated the case of periodic forces of the impulsive type, Infante
and Plaut (1969) treated the case of a general time-dependent axial load, and
Caughey and Gray (1964) treated the case of a random loading. Moody (1967)
treated the case of imperfect columns, while Ahuja and Duffield (1975) treated
the case of a column having a variable cross section and resting on an elastic
foundation. Gol’denblat (1947), Bolotin (1964, pp. 291-304), Ghobarah and
Tso (1972), Popelar (1972), and Ali Hasan and Barr (1974) treated columns of
thin-walled sections.

The influence of damping on the boundaries of the instability was discussed by
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Mettler (1941), Naumov (1946), Weidenhammer (1951), Grammel (1952),
Schmidt and Weidenhammer (1961), Schmidt (1961a, b, 1974), Piszczek (1961),
Bolotin (1964), Stevens (1966), Stevens and Evan-Iwanowski (1969), Mozer and
Evan-Iwanowski (1972), and Evan-Iwanowski(1976). In most cases the damping
forces are stabilizing. However Schmidt and Weidenhammer (1961), Piszczek
(1961), and Valeev (1963) showed that for certain combination resonances the
damping forces may alter a stable state into an unstable one. Moreover Stevens
(1966) showed that some viscoelastic materials are destabilizing.

The linear theory is capable of determining the regions in which a small motion
becomes dynamically unstable, and it predicts that the unstable motions grow
without bound. However as the amplitude of the motion grows, the nonlinear
effects come into play and limit the growth. Gol’denblat (1947) seems to be the
first to point out the inadequacy of the linear theory for predicting the ampli-
tudes in the unstable regions. Bolotin (1951, 1964), Weidenhammer (1952,
1956), Piszczek (1955), Tso and Caughey (1965), Sethna (1965), Mettler and
Weidenhammer (1956), and Evan-Iwanowski, Sanford, and Kehagioglou (1970)
treated the nonlinear dynamic problem of compressed columns. Tso (1968)
studied the problem of longitudinal-torsional stability, while Mettler (1955) and
Ghobarah and Tso (1972) studied the problem of bending-torsional stability of
thin-walled beams. Evensen and Evan-Iwanowski (1966) studied analytically and
experimentally the effect of midplane stretching, Evan-Iwanowski (1976) studied
in detail columns as well as other elastic systems, and Tezak, Mook, and Nayfeh
(1977) studied analytically the effect of midplane stretching, taking into account
the effect of internal resonances. Hsu (1975b) analyzed the response of a para-
metrically excited string hanging in a fluid.

Schmidt (1961c) studied the lateral vibrations of a slightly curved bar under
the influence of periodic eccentric loads. Malkina (1953) studied the dynamic
stability of arches under the influence of longitudinal periodic loads, while
Bolotin (1964, pp. 316-332) studied analytically and experimentally the linear
and nonlinear dynamic stability of arches loaded by compression and bending.
Salion (1956) studied arches under the influence of periodic moments, Bondar
(1953) treated parabolic arches, and Dzhanelidze and Radstig (1940) and
Woinowsky-Krieger (1942) studied the parametric resonance of rings. Schmidt
(1963) and Bolotin (1964, pp. 358-381) studied the dynamic stability of trusses.

Einaudi (1936) seems to be the first to treat the response of a plate to periodic
in-plane loads. Subsequently Chelomei (1939), Bodner (1938), Khalilov (1942),
Kucharski (1950), Berezovskii and Shulezhko (1963), Bolotin (1964, Chapter
21), Somerset (1967), Somerset and Evan-Iwanowski (1967), Simons and Leissa
(1971), and King and Lin (1974) studied the dynamic stability of isotropic
plates under the influence of in-plane periodic loads. Ambartsumyan and
Khachaturian (1960) treated anisotropic plates, while Duffield and Willems
(1972) treated stiffened rectangular plates. Dzygadlo (1965), Dzygadlo and
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Krzyanowski (1972), and Dzygadlo and Wielgus (1974) studied aeroelastic sys-
tems in supersonic flow.

Oniashvili (1951) presented a broad discussion of the dynamic stability of
shells, Bolotin (1964, Chapter 22) gave an extensive treatment of the dynamic
stability of shallow, cylindrical, and spherical shells, while Hsu (1974b) gave a
review of the parametric excitation and snap-through instability phenomenon of
shells. Ghobarah (1972) treated the nonlinear dynamic stability of monosym-
metrical thin-walled structures. Bublik and Merkulov (1960) and Kana and Craig
(1968) studied the dynamic stability of thin elastic shells filled with fluid, while
Markov (1949) studied the dynamic stability of anisotropic shells. Federhofer
(1954); Wenzke (1963); Yao (1963, 1965); Bieniek, Fan, and Lackman (1966);
Vijayaraghavan and Evan-Iwanowski (1967); Adamsand Evan-Iwanowski (1973);
Popov, Antipov, and Krzhechkovskii (1973); and Vol’mir and Ponomarev (1973)
studied cylindrical shells. Tani (1974, 1976) studied the dynamic stability of
conical shells.

A number of physical systems contain pipes conveying fluid. The fluid velocity
often has an unsteady component induced by the pumps. Thus parametric and
combination instabilities might occur in such pipes. These were studied theo-
retically by Chen (1971), Ginsberg (1973), Paidoussis and Issid (1974), Bohn
and Herrmann (1974), and Paidoussis and Sundararajan (1975) and experi-
mentally by Paidoussis and Issid (1976). Beal (1965) studied the dynamic sta-
bility of a flexible missile under the influence of a pulsating thrust, while Ibrahim
and Barr (1975a, b) studied autoparamteric resonances in structures contain-
ing liquids.

The coupled flap-lag and coupled flap-lag-torsional aeroelastic problems of
rotary-wing systems were reviewed by Friedmann (1977) and studied by Horvay
and Yuan (1947); Sissingh (1968); Sissingh and Kuczynski (1970); Peters and
Hohenemser (1971); Hohenemser and Yin (1972); Friedmann and Tong (1973);
Hammond (1974); Friedmann and Silverthorn (1974, 1975); Huber and
Strehlow (1976); and Friedmann, Hammond, and Woo (1977). A detailed treat-
ment of machinery and their parts is contained in the monograph of Tondl
(1965). Wehrli (1963) studied parametric resonances in torsional and rotary
motions. Ehrich (1971) observed combinational resonances in machinery.
Naguleswaran and Williams (1968) and Rhodes (1971) treated belts, Mote
(1968) treated an axially moving band, and Benedetti (1974) studied the dy-
namic stability of a beam loaded by a sequence of moving mass particles.
Davydov (1970), Ho and Lai (1970), and Grybos (1972) treated gears, while
Houben (1970) treated piston engines. Messal and Bonthron (1972) analytically
and experimentally found combinational resonances in an asymmetric shaft.
Rotating shafts were studied also by Smith (1933); Kellenberger (1955); Hull
(1961); Dimentberg (1961); Bishop and Parkinson (1965); Black and McTernan
(1968); and Iwatsubo, Tomito, and Kawai (1973).
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5.1.5 STABILITY OF STEADY-STATE SOLUTIONS

The techniques available for determining the steady-state behavior of free and
forced oscillations of dynamic and elastic systems can be divided into two
groups. The first group includes the methods of averaging and multiple scales.
With this group one determines first the equations describing the amplitudes and
the phases. These equations are transformed into an autonomous system. Then
the steady-state solutions correspond to the singular points of this autonomous
system and the stability of these solutions corresponds to the stability of the
singular points. The second group includes the Linstedt-Poincaré technique, the
method of harmonic balance and the Galérkin procedure. With this group one
determines directly the steady-state solutions and one investigates their stability
by analyzing the solutions of the variational equations. Next we explain these
points by using the forced Duffing equation as an example.

We consider the superharmonic response of a single-degree-of-freedom system
that is governed by

U+ wiu=-2euit - eau® +K cos Q¢ (5.1.24)

where 30 = wq + €0. Using the method of multiple scales we find, as in Section
4.1.3, the following equations describing the response:
u=acos (wot+P)+2A cos Qt + O(e) (5.1.25)
where A= 2K(wj - ©%)7" and
A3
a'=-ua- *2 sin (oT; - B)
Wo
3 It (5.1.26)
ap' = 2% (A* +1a%)a+ 22 cos (oT; - B)
Wo Wo

To determine the steady-state response we first transform (5.1.26) from a non-
autonomous system to an autonomous system by introducing the new variable

y=0oT, - B (5.1.27)
Eliminating 8 from (5.1.25) through (5.1.27) gives
u=acos (3 - v)+2Acos Qt + 0(e) (5.1.28)

) ah’
a =-pg- —sinvy
Wo

, ( 3aA2> 3a ; aA’
ay' ={o- a-—a -
Wo

(5.1.29)

cos 7y
8wy wo
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Then the steady-state responses correspond to the singular (stationary) points of
the system (5.1.29); that is, they correspond to the solutions of

alAd
~May - —sin 7, =0
Wo

5 (5.1.30)

( 3aA2> 3¢ 5, aA

0- Qg - — Q- —Ccos Y, =0
Wo 80.)0 Wo
Eliminating 7y, from (5.1.30) leads to the frequency-response equation
3aA? 3 N
u2a3+a3[o— ¢ ——o—‘ag] =22 (5.1.31)
Wo 8(.00 Wo

The stability of the steady-state solutions corresponds to the stability of the
singular points. As in Chapter 3, the types of the singular points and hence their
stability can be determined by superposing small perturbations on the singular-
point solutions, that is, by letting

a=apgta;, Y=Y 'tTn (5.1.32)

where a; and vy, are small compared with @, and vy,. Substituting (5.1.32) into
(5.1.29) and linearizing the resulting equations in 4, and vy, , we obtain

, an?
@y =-day - — 71 €08 7o
Wo
(5.1.33)
, 3a aAd aAd )
YiT- gty t 5 a;cosygt —— vy 8iny,
8(00 Wody Wody
We seek a solution for (5.1.33) in the form
a; =ap eXp (ATI) and Y1 = Y10 €Xp (>\T1) (5134)
where a0, Y10 and A are constants. Hence
a3
(Atwagp+ (——COS ’)’0> Y10 =0
Wo
(5.1.35)

3, aAl alAd
- 5 COS Yo Jazo +| A~ sin Yo} Y10 = 0
8wg woedp wWolo

For a nontrivial solution the determinant of the coefficient matrix must vanish.
Using the first of (5.1.30), we write this condition as

A3 al? 3a
A+ w)?=- aw cos 'yo<——~— COS Yo ~ a0> (5.1.36)

0 wWodj 8wy
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Then the stability of the singular points and hence the steady-state solutions de-
pends on the real parts of the roots of (5.1.36). If the real part of each root is
negative or zero, the corresponding steady-state solution is stable. If the real
part of at least one of the roots is positive definite, the corresponding steady-
state solution is unstable.

The stability of the steady-state solutions in the large can also be studied using
equations such as (5.1.29) in conjunction with a phase diagram in the case of a
low dimensional problem or a Liapunov function if it can be found (Malkin,
1944; Sethna, 1973). These are not pursued further in this section.

As a representative of the second group, we discuss the method of harmonic
balance. Thus we substitute a steady-state solution in the form

u=ug=A, cos Qt+ By sin Qt+ A5 cos 3Q¢ + B3 sin 32t (5.1.37)
into (5.1.24) and obtain
(- Q%) A, cos Qt + (w3 - Q¥)B; sin Q1+ (w3 - 992)A4; cos 30t
+ (w3 - 9Q%)B; sin 3Q¢=2euQ A, sin Q- 2euB; cos Q¢
+ 6euldA; sin 32 - 6eu§2B; cos 32t - ea[A, cos 2t + B, sin ¢
+ A cos 3Q¢ + B sin 3Q1] 3 + K cos Q¢ (5.1.38)

Expanding the term in the square brackets and equating the coefficients of each
of cos Qt, sin Qt, cos 3Q2¢, and sin 3¢ on both sides of (5.1.38), we obtain

(w3 - Q)A4, =K - 2euQB, - 3ea[A] + 4,B}
+ (A3 - BY)A; +24,B,B; +2(43 + B)A4,] (5.1.39)
(w3 - Q%)B, =2euQ4, - 3ea[B; + A1B, + (A} - B})B;
- 24,B A5 +2(45 +BY)B,] (5.1.40)
(w3-99%) A3 =-6euS2Bs - Lea[A} - 34,B7+6(A% +B})A;5 +343 + 343 B3]
(5.1.41)
(wd- 9Q%)B; = 6euQ2d; - +ea[-B} +343B, + 6(A% + B})B; + 3B} + 343}B;]
(5.1.42)

One usually solves (5.1.39) through (5.1.42) approximately for small € or nu-
merically to determine the 4,,, and B,,, .

Once the steady-state solution (5.1.37) is calculated, its stability is usually in-
vestigated by superposing a small perturbation u, on uy, that is, by letting

u=uy +u, (5.1.43)
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Substituting (5.1.43) into (5.1.24), using the fact that u, satisfies (5.1.24), and
linearizing the resulting equation in u«, , we obtain

Uy + wduy =-2eumil; - 3eaA; cos Qt+B, sin Qt+ Az cos 3Qt + By sin 3Q¢] 2u,
(5.1.44)

which is an equation with variable coefficients. Then the stability of the steady-
state solutions corresponds to the stability of the solutions of (5.1.44). The
stability in the large can be determined by keeping the nonlinear terms in
(5.1.44) and using a Liapunov function if it can be found.

5.2. The Floquet Theory

Next we determine the behavior of systems governed by linear ordinary-
differential equations with periodic coefficients. Single-degree-of-freedom sys-
tems are treated in Section 5.2.1, while multidegree-of-freedom systems are
treated in Section 5.2.2. We describe the Floquet theory for characterizing the
functional behavior of such systems (Floquet, 1883). Bloch (1928) generalized
the results of Floquet to the case of partial-differential equations with periodic
coefficients. The solutions of these equations are usually called Bloch waves,
and they form the basis of the theory of electrons in crystals.

5.2.1. SINGLE-DEGREE-OF-FREEDOM SYSTEMS
In this section we consider systems governed by equations of the form

utp,(Hi+p,Ou=0 (5.2.1)

where the p,, are periodic functions with a period 7.
By introducing the transformation

u=Xxexp [—%fp,(t)dt]

we rewrite (5.2.1) in the standard form
X+p(®)x=0 (5.2.2)
where
p(t)=py - 3p% - 3P,
Thus for this transformation to be valid, p, must be differentiable. Equation

(5.2.2) was discussed first by Hill (1886) in his determination of the motion
of the lunar perigee, and it is called Hill’s equation. When

p(t) =6 + 2e cos 2t
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equation (5.2.2) reduces to
X+ (8 +2ecos2)x=0 (5.2.3)

which was discussed by Mathieu (1868) in connection with the problem of
vibrations of an elliptic membrane and it is called Mathieu’s equation.

Since (5.2.1) is a linear, second-order homogeneous differential equation,
there exist two linear, nonvanishing independent solutions of this equation,
uy(t) and u,(¢). They are usually referred to as a fundamental set of solutions
because every solution of (5.2.1) is a linear combination of these two solutions,
that is,

u(t) = cyuy(2) + couy (2) (5.2.4)
where ¢, and ¢, are constants. Since p;(¢) = p;(t + T),
Ut +T)=-pt+T)a(t+T)- p(t + Du(t+T)=
-p1(@uE+T)- p,(Du(@+T) (5.2.5)

from which it follows that, if u,(¢) and u, (¢) are a fundamental set of solutions
of (5.2.1), then u, (¢ + T) and u,(¢ + T) are also a fundamental set of solutions
of the same equation. Hence
uy(t+T)=anu,(t) +a,uy(?) (52.6)
Uy (t+T) = ay uy(b) + azu, (1)
where the a,,, are the elements of a constant nonsingular matrix [4]. This
matrix is not unique; it depends on the fundamental set being used.

As shown below, there exist fundamental sets of solutions having the property
v+ T)=N\v,(0)

' ” (5.2.7)
v2(t+T)=N0,(2)

where A is a constant which may be complex. Such solutions are called normal
or Floguet solutions. To show this, we note that any other fundamental set of
solutions v;(#) and v,(7) is related to u;(¢) and u,(¢) by a nonsingular 2 X 2
constant matrix [P] according to

u(z) = [P] v(2) (5.2.8)
where u(r) and v(z) are column vectors whose elements are u,(f), u,(¢) and
v1 (%), v, (2), respectively. Introducing (5.2.8) into (5.2.6) leads to

v(t+T)= [P [A] [P] v(©) = [B] v(®) (5.2.9)

Since [B] = [P]' [A] [P], [B] is similar to [A4], and they have the same eigen-
values (see Section 3.2). Moreover one can choose a matrix [P] such that [B]
assumes its simplest possible form, the Jordan canonical form. The Jordan
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canonical form depends on the eigenvalues of [A4], that is, the solution of

I[A] - N[I]I1=0 (5.2.10)
If the roots of (5.2.10) are different, then [B] has the form
[B] = [k‘ 0 ] (5.2.11)
0 A\,
and (5.2.9) can be rewritten as
v;(t+T)=Nv;(¢), i=1land2 (5.2.12)
It follows from (5.2.12) that
v; (¢ +nT) =2} v;(¢) (5.2.13)
where 7 is an integer. Consequently, as ¢ = o (i.e., n > ),
0(6) {0 if [\1<1
oo if N|>1

When A; = 1, v; is periodic with the period 7, and, when A; = -1, v; is periodic
with the period 27.
Multiplying (5.2.12) by exp [-7;(¢z + T)] yields
exp [~y (¢ + D] vi(t + T) = N exp (-7, T) exp (-v; ) v;(t)  (5.2.14)

Hence if we choose v; such that \; = exp (y;T), it follows from (5.2.14) that
¢;(2) = exp (-7;t) v;(¢) is a periodic function with the period 7. Thus the funda-
mental set of solutions v, () and v, () can be expressed in the normal form

vi () =exp (1) ¢1(2)

v2(2) = exp (y21) $2(0) (5.2.15)
where ¢;(¢ + T') = ¢;(2).
When A; = A,, the Jordan canonical form is either the form
8] = [7\ ’ (5.2.16)
0 Al
or the form
8] = [A °] (5.2.17)
I Al

Corresponding to (5.2.16), the fundamental set of solutions can be expressed as
in (5.2.15). When [B] has the form (5.2.17),

v, (2 + T) = N0y (2) (5.2.182)
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vt + T) = Aop(8) + 0, () (5.2.18b)

Using arguments similar to those above, one can show that v,(¢) can be ex-
pressed in the normal form

v, (2) =exp (v2) ¢, (2) (5.2.19)

.where X = exp (vT) and ¢,(¢t + T) = ¢,(¢). Multiplying (5.2.18b) by exp
[~v(¢ + T)] and using (5.2.19), we obtain

exp [-y(t+ D)oy (r+ T )- exp (-’yt)vz(t) tT ¢1(t) (5:2.20)

Hence

v2(2) = exp (v1) [¢z(t) a7 h (t)] (5.2.21)

where ¢, (¢ + T) = ¢,(2).

The above results show that the motion is bounded when the real parts of 7y,
and vy, are not positive definite if [B] has either of the forms (5.2.11) or
(5.2.16), and the motion is also bounded when the real part of v is negative if
[B] has the form (5.2.17). The parameter v is usually referred to as the char-
acteristic exponent and is related to A by

=%ln(?\)

Thus v is unique to within a multiple of 2innT ™", where 7 is an integer.
To show how the characteristic exponents can be determined, let us choose
uy(#) and u,(7) to be the fundamental set of solutions of (5.2.1) that satisfy

u, (0)=1, 4,(0)=0
u,(0)=0, u,(0)=1
Setting ¢ = 0 in (5.2.6) and using (5.2.22) yields
u=u(T) and ay =uy(7)

(5.2.22)

Differentiating (5.2.6) once with respect to ¢, setting ¢ = 0 in the resulting
equations, and using (5.2.22), we obtain

2=, (T) and  ay =d,(T)
It follows from (5.2.10) that
A2 -200+A=0 (5.2.23)
where

=g @M +i (1)),  A=ui ()i, (T) - &y (T)ua(T)  (5.2.24)
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The parameter A is called the Wronskian determinant of u,(T) and u,(T).
Solving (5.2.23) one can determine the \’s, and then

y=7 i

In the case of Hill’s equation, the Wronskian is unity as shown below. Since u,
and u, are solutions of (5.2.2), it follows that
iy +p(Hu; =0
o 1 (5.2.25)
u, +p(u, =0
Substracting u, times the first of these equations from u, times the second
yields

u, 1:22 - il‘l U, = 0
which can be integrated to yield
A(t) = uy ()i, (2) - 1, (£)u,(¢) = constant (5.2.26)

Evaluating (5.2.26) at t =0 leads to A(¥) = 1.
With A = 1, the roots of (5.2.23) are

A2 =atyo? -1 (5.2.27)
and these roots are related by
M, =1 (5.2.28)

When [a| > 1, the absolute value of one root is larger than unity while that of
the other root is less than unity. Hence one of the normal solutions is un-
bounded and the other is bounded according to (5.2.28). When |a| < 1, the
roots are complex conjugates; and since A\; A\, = 1, they have unit moduli. Con-
sequently both normal solutions are bounded. It follows that the transition from
stability to instability occurs for |a| = 1, which corresponds to the repeated
roots A\; = A, = 1. The case \; = A\, = 1 corresponds to the existence of a
periodic normal solution of period 7, while the case A; = A, = -1 corresponds
to the existence of a periodic normal solution of period 27.

In the case of the Mathieu equation, a = a(8, €). The values of § and € for
which |a| > 1 are called unstable values, while those for which |a| = 1 are
called transition values. The locus of transition values separates the ed-plane
into regions of stability and instability as shown in Figure 5-6. Along these
curves at least one of the normal solutions is periodic, with the period 7 or 2.
Figure 5-6 is called the Strutt diagram, after Strutt (1928) and van der Pol and
Strutt (1928).

The unbounded solutions can be divided qualitatively into two different
types (Cunningham, 1958) as shown in Figure 5-7. The first type is oscillatory
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Figure 5-6. Stable and unstable (shaded) regions in the parameter plane for the Mathieu
equation.

but with an amplitude that increases exponentially with time, while the second
type is nonoscillatory and also increases exponentially with time. The bounded
solutions are aperiodic varying with two frequencies—the imaginary part of 7y
and the frequency of the excitation 2. Depending on the ratio of these fre-
quencies, the solution may exhibit many shapes besides the transition periodic
shapes. Three of these shapes are shown in Figure 5-8. When the ratio is very
small, the solution is almost periodic, with an amplitude and a phase having
a high-frequency modulation. When the ratio is the same order, the shape of the
solution is complicated.

The characteristic exponents for (5.2.1) can be obtained by numerically cal-
culating two linear independent solutions of this equation having the initial
conditions (5.2.22) during the first period of oscillation. Using the values and
first derivatives of these solutions at ¢+ = T, one can calculate a and A from
(5.2.24). Solving (5.2.23) one can then determine the \’s, which in turn yield
the ¥’s since ¥ = (1/T) In A. Using a Newton-Raphson procedure, one can deter-
mine the system parameters corresponding to A = %1, that is, the boundaries
separating stability from instability. However this procedure may lead to serious
computational difficulties, necessitating the use of approximate techniques to
determine the characteristic exponents and hence the boundaries separating
stability from instability. Some approximate techniques for determining the

X

Figure 5-7. Unbounded solutions of the
t Mathieu equation.
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Figure 5-8. Bounded solutions of the Mathieu equation.

behavior of single-degree-of-freedom systems are discussed in Section 5.3, and
those for determining the behavior of multidegree-of-freedom systems are dis-
cussed in Section 5.4.

5.2.2. MULTIDEGREE-OF-FREEDOM SYSTEMS .

In this section we generalize the results of the previous section to multidegree-
of-freedom systems described by equations of the form

%+ }If Fam()Xm =0 (5.2.29)
m=1

where fi,;,(t + T) = fum(2). It is convenient to express (5.2.29) as a system of
2N first-order differential equations by defining

u,=x, n=1,2,...,N
(5.2.30)
U, =%x,, n=N+1,N+2 ...,2N
so that (5.2.29) becomes
Uy =tUynens, n=1,2,...,N
N (5.2.31)
aN+n=_Z fnm(t)uma n=1’29"-’N
m=1
These equations can be written in the compact form
u=[F()]u (5.2.32)
where u is a column vector with the components uy, u,, . . ., Uy while [F(?)]

is an 2V X 2N matrix such that [F(¢ + T)] = [F(¢)]. In what follows, we discuss
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the behavior of solutions of general equations having the form (5.2.32) but with
a general, periodic matrix [F].
For the system (5.2.32), one can define a fundamental set of solutions
Uik, Usks - - - 5 UMK k=1,2,...,M (5.233)

where M = 2N. This fundamental set can be expressed in the form of an M X M
matrix [U] called a fundamental matrix solution as

Uy Ugy ...uMq

Uy Uy ... U

wi=| - - - (5.2.34)

LYim Upr - - - uMM_
Clearly [U] satisfies the matrix equation
[0] = [F(0)] [U] (5.2.35)

Since [F(¢t + T)] = [F(®)], [U(r + T)] is also a fundamental matrix solution.
Hence it is related to [U(¢)] by

[U@+1)] =[4]11U()] (5.2.36)

where [A4] is a nonsingular constant M X M matrix. Introducing the transforma-
tion [U®®)] = [P][V(¢)], where [P] is a nonsingular constant M X M matrix,
we express (5.2.36) as

[V(z+ D)l = [P [A] [P [V(D] = [B] [V (D] (5.2.37)

As in the single-degree-of-freedom case we choose [P] so that [B] has a Jordan
canonical form. Again this form depends on the eigenvalues of [4] ; they are the
M roots of

|t4l -1 ]=0 (5.2.38)
When the roots \; of (5.2.38) are distinct, [B] has the diagonal form
[\ 0 0 0 ...0 7

0 % 0 0...0
0 0 % 0...0
B1={% 0 0 A...0 (5.2.39)

(000 0 0 Ay
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Consequently (5.2.37) can be rewritten in component form as
Vi(f+T)=)\iVi(t) fori= 1,2, e ,M (5240)

where v; is the column solution whose elements are Vi1, Via,s - - ., Uyy. It follows
from (5.2.40) that

v;(t +nT) =N} v;(1)

where 7 is an integer. Consequently as 7 — oo (i.e., n - ),

0 if NI
vi() >
oo if |N|>1
If A; = 1, v; is periodic with the period 7, while if A; = -1, v; is periodic with the
period 2T.
Multiplying (5.2.40) with exp [-v;(z + T)] and letting \; = exp (viT), we
obtain
exp [-v;(t + )] vi(t + T) = exp (-7;1)v; (1) (5.241)
It follows from (5.2.41) that exp (=v;£)v;(¢) is a periodic vector with the period
T. Hence v; can be expressed in the normal form
vi(2) = exp (v;2)¢;(2) (5242
where ¢;(z + T) = ¢; ()
When the roots of (5.2.39) are not distinct, [B] cannot be reduced in general
to a diagonal form, but it can be reduced to the Jordan form

[Bol] 0 O.............. 0
0 [Bi] Ol
[B] = (5.2.43a)
....................... 0 [B,]
where
AN OO0
0 N 0.,
[Bo] = (5.2.43b)
...................... Aq
and

[Bz] = 0 1 )\q+i .................. (52430)
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Thus [B,] contains the ¢ distinct characteristic roots, while [B;] (i = 1, 2,
, n) contains the repeated roots. The number of rows s; in each of [Bj]
equals the number of times the characteristic root A,,; is repeated. Hence
(5.2.37) can be decoupled into n + 1 groups. Associated with each group are sg
solutions, where sq is the number of distinct roots (g) and si for £ > 0 is the
number of times that the (g + k)th root is repeated. Thus sy +s; + - +5, =M.
It follows that

vi(t+T)=2vi(2) (5.2.442)

Vet + T)=2gvg(D) (5.2.44b)

VYg+1 (t + T) = )\q+1 Vg+1 (t) (52440)

Vars, (01 T) = Nguy Vaus, (B) + Vgus, 1 (1) (5.2.444)

Vq+s1 +1 (t T T) = )\q+2Vq+sl+1 (t) (52448)
Vausr2(E+ T) = NgaaVaus 42 (8) + Vgus 1 (7) (5.2.441)

Vaus, (E+ T) = NguaVgus, () + Vgrs2-1 () (5.2.449)

Hence
Vi (2) = exp (Yx ) 9 (2) (5.2.45a)
r
Ve () = exp (Y& 1) ¢k+1 ® e ¢k (t)] (5.2.45b)

Vieao (2) = exp (v&b) ¢k+2(t)+ qskﬂ(t) 2( 7’2>\2)¢k(t)] (5.2.45¢)

w-1)

2T2)\2 ¢'k+n 2(t)

Vian(?) = exp (Vi 1) ¢k+n(t) + ¢k+n 1)+

t(t— T)...¢+T-nT)
n! T" N}

Pr (t)] (5.2.45d)
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forn=1,2,...,s;, where
Grrj@+T) = pj(0), 7=1,2,...,5
Since v = (1/T) In N, the solutions Vi, Viss, - . - s Viss;, are bounded for all

t when || <1 and unbounded as ¢ > o if | N\ | > 1.

To determine the eigenvalues and hence the characteristic exponents of
(5.2.32), one can numerically calculate a fundamental set of solutions of
(5.2.35) by using the initial conditions [U(0)] = [I] during a period of oscilla-
tion. Then [4] = [U(T)] according to (5.2.36). Then solving the characteristic
equation (5.2.38) yields the N’s. With modern computers, numerical methods
for the implementation of Floquet theory have been widely used (e.g., Kane and
Sobala, 1963; Mingori, 1969b; Brockett, 1970; Peters and Hohenemser, 1971;
Friedmann and Silverthorn, 1974). However the main deficiency of this method
has been the computational effort required for evaluating the fundamental
matrix for large systems. This computational effort necessitates n passes for the
calculation of n linearly independent solutions over the period T of the system
(5.2.35). To overcome this deficiency, Hsu (1972, 1974a) and Hsu and Cheng
(1973) developed various methods for approximating the fundamental matrix
during one period. The most efficient method seems to consist of approximating
the periodic matrix [F(f)] by a series of step functions. Friedmann, Hammond,
and Woo (1977) developed a numerical scheme that yields the fundamental
matrix in one pass rather than in n passes.

The results of the preceding numerical calculations yield information about
the stability of the system for a given set of the system parameters, and the
numerical calculations need to be repeated if any parameter in the set is
changed. In practical problems one is not interested in the behavior of a given
system with specified system parameters but in the behavior of a class of systems
with parameters ranging over some domain. To determine the transition curves
and surfaces separating the stable and unstable motions in the parameter space
with the implementation of the Floquet theory, one is forced to use a Newton-
Raphson procedure (e.g., Thurston, 1973) or establish a gridwork in the param-
eter space and separately assess the stability at each of the nodal points of the
gridwork (e.g., Kane and Sobala, 1973; Mingori, 1969). As mentioned in the pre-
ceding section, such a procedure is expensive, time consuming, and may lead to
serious computational difficulties. In Sections 5.3 and 5.4 we discuss alternate
analytic approaches to the determination of the characteristic exponents and the
boundaries separating stability from instability.

5.3. Single-Degree-of-Freedom Systems

Parametric excitations of single-degree-of-freedom systems have been studied
extensively. As a result there exist a number of books devoted to such studies
such as Bondarenko (1936), McLachlan (1947), and Magnus and Winkler (1966).
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There exist also a number of books that treat such systems as discussed in the
introduction of this chapter.

There are a number of analytic techniques available for the determination of
the stability, characteristic exponents, and boundaries separating stability from
instability. These techniques can be divided broadly into three classes. The first
class uses Hill’s method of infinite determinants (Hill, 1886). This technique was
used extensively for single-degree-of-freedom systems, and recently it has been
applied to multidegree-of-freedom systems (e.g., Proskuriakov, 1946; Valeev,
1960a, 1961; Bolotin, 1964; Meirovitch and Wallace, 1967; Lindh and Likins
1970; Brockett, 1970; Fu and Nemat-Nasser, 1972a, b; Yakubovich and Star-
zhinskii, 1975; Lee, 1976). The second class consists of perturbation methods
that are based on the assumption that the variable-coefficient terms are small in
some sense (e.g., Nayfeh, 1973b). The third class uses Liapunov’s theory (La-
Salle and Lefschetz, 1961; Hahn, 1963; Liapunov, 1966). The latter approach
is limited by the ability to find a suitable Liapunov function. For canonical
systems one might be able to use the Hamiltonian, but for other systems one
might not be able to find such a function. With this approach one determines
qualitatively the stability of the system in the large, but one cannot determine
quantitatively the system response. This method was used by a number of
investigators including Caughey and Gray (1964), Meirovitch and Wallace
(1967), Dickerson and Gray (1969), Hsu and Lee (1971), and Lee and Hsu
(1972). In this book we do not discuss the Liapunov method.

In Sections 5.3.1 through 5.3.3 we use the Mathieu equation to describe Hill’s
(1886) determinant, the Lindstedt-Poincaré technique, and the method of
multiple scales. We treat Hill’s equation in Section 5.3.4, effects of viscous
damping in Section 5.3.5, and nonstationary excitations in Section 5.3.6.

5.3.1. HILL’S INFINITE DETERMINANT

In this section we use Hill’s infinite determinant to obtain the stability
boundaries of the Mathieu equation (Mathieu, 1868; Whittaker and Watson,
1962, pp. 413-416):

u+(5+2cos2t)u=0 (5.3.1)

According to the Floquet theory (see Section 5.2.1), (5.3.1) has normal solu-
tions of the form

u =exp (yt)o(t) (5.3.2)

where ¢(7) = (¢ + m). Expressing ¢(¢) in a Fourier series, we rewrite (5.3.2) as

u= i ¢, exp [(y +2in)t] (5.3.3)

n=-oo
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where the ¢,, are constants. Substituting (5.3.3) into (5.3.1) yields

S {[(y + 2in)? +8] 6, exp [(y + 2im)e] }

n=-

te Y o, {exp [yr+2i(n+1)t] +exp [yt +2i(n- 1)¢]}=0 (5.3.4)
n=-o0
Equating each of the coefficients of the exponential functions to zero yields the
following infinite set of linear, algebraic, homogeneous equations for the ¢, :

[(y +2im)? + 8] ¢ + €(bm-1 + Dms1) =0 (5.3.5)

For a nontrivial solution the determinant of the coefficient matrix in (5.3.5)
must vanish. Since the determinant is infinite, we divide the mth row by
8§ - 4m? for convergence considerations and obtain the following Hill’s
determinant:

€ 5+(y- 402 €
— s — 0 0 0 0 ...
05 @ a4 5-42 0
€ 5+ (y- 2i)? €
) = = 0 0 0 ...
0 5-22 5-22  6-2° 0
5+9°
AM=|...0 0 0 < ki £ 0 0 0 ..|=0
5 5
e S+(y+2i)? €
0 0 — 0 0 ...
0 0 5-22  5-2° 5-22
€ 8+ (y +4i)? €
. — =T 9.
o0 0 0 0 5 - 42 5-4>  5-42

HILL'S INFINITE DETERMINANT

(5.3.6)

This determinant can be rewritten as (Whittaker and Watson, 1962, pp. 415-
416)

sin? (%imy)
Al(v)=A0)- ——2—~
M=20 -G 1 7vs)
Since the characteristic exponents are the solutions of A(y) = 0, they are given
by

(5.3.7)

y=1 2?1 sin™! [A(0) sin? (3 mv/8)]*/2 (5.3.8)

Once 7 is known, the ¢, for n # 0 can be related to ¢, from (5.3.5). However
the expression for 7 involves the determination of an infinite determinant, which
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is not a trivial matter. When e is small, approximate solutions can be obtained by
considering only the central rows and columns (i.e., the rows and columns
centered around the one corresponding to m = 0) of Hill’s determinant (Bolotin,
1964).

Considering the central three rows and columns, we have the following approx-
imate characteristic equation:

§+(y-2i)° e 0
€ 5+ 2 € =0
0 e 8+ (y+20)

or
[6+(y+20)°1( +7*)[6 + (v - 2)*]

-6+ (v+20)?] - [ +(y-20)%] =0 (53.9)
The transition curves separating stability from instability correspond to y = 0
(i.e., periodic motions with the period 7) or v = #i (i.e., periodic motions with

the period 2m).
When v =0, (5.3.9) leads to the transition curves

8=—%€2 (5.3.10)
and
8 =4+%e2 (5.3.11)
When y =1, (5.3.9) leads to the curves
6=1%¢ (5.3.12)
and
5=9+%€2 (5.3.13)

To determine better approximations to the above transition curves and to deter-
mine approximations to the other transition curves, one needs to consider
higher-order determinants. It is clear that this approach is not systematic, and
one does not know to what order the obtained expansions for the transition
curves are valid. In fact, it is shown in the next section that the correct coeffi-
cient for €* in (5.3.11) is 75 and not 4. Moreover the correct coefficient for e?
in (5.2.13) is ¢ and not .

5.3.2. THE METHOD OF STRAINED PARAMETERS
In this section we consider an alternative of Hill’s method, the method of
strained parameters. As we shall see, this method is well suited for the deter-
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mination of the transition curves when e is small. Following this method one
assumes, based on the Floquet theory, that the characteristic exponent is O or i
(i.e., the solutions have periods of 7 or 27) and then determines the values of
the parameters for which the assumption is true. Thus this method does not
yield a solution that is valid in a small neighborhood of a transition curve; rather
it yields a solution that is valid right on a transition curve. In the next section
the method of multiple scales is used to obtain solutions that are valid in small
neighborhoods of transition curves.

We seek the solutions of (5.3.1) having periods of  and 27 and the equations
for the transition curves § = §(e) in the form of the following perturbation
expansions:

u(t; €) =uo(t) +euy (t) + 2uy (1) + - - - (5.3.14)
§=8g+eb, +e28,+--- (5.3.15)

Substituting (5.3.14) and (5.3.15) into (5.3.1) and equating coefficients of like
powers of ¢, we obtain

o + 8ot =0 (5.3.16)
Uy +8ouy =-8,uy - 2uqg cos 2t (5.3.17)
1}2 +80u2 =“52u0 - 81u1 - 2u1 cos 2t (53.18)

The periodic solutions of (5.3.16) with period 7 are
Up=acos2nt+bsin2nt, n=0,1,2,... (5.3.19)
while the periodic solutions of (5.3.16) with period 2 are
Up=acos(2n- t+bsin(2n-1)r, n=1,2,3,... (53.20)
where @ and b are constants. Here we treat the cases §, =0, 1, and 4.
The Case 65 =0. In this case uy = a and (5.3.17) becomes
Uy =-ad, - 2acos 2t (5.3.21)
In order that u; be periodic, §, = 0. Then the solution of (5.321)is
uy =41acos 2t (5.3.22)

In this example we are able to determine a periodic solution without considering
the complementary solutions of the u,, for n > 1. However this is not the case
in general, as we shall see when we consider Hill’s equation.

Substituting for u, and u, into (5.3.18) yields

Uy =-8,a- Fa(l +cos 4t) (5.3.23)
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To ensure that u, is periodic, we let 6, = -%. Hence the transition curve
emanating from the origin is given by
§=-1e2+0() (5.3.24) —

and along this curve,
u=a[l +%ecos2t+0(e?)] (5.3.25)
This result is in agreement with (5.3.10).
The Case 6, = 1. In this case
Up=acost+bsint (5.3.26)
Then (5.3.17) becomes
U, tuy, =-a(8; +1)cost-b(8; - 1)sin t- a cos 3¢ - b sin 3¢
(5.3.27)

In order that u; be periodic, the terms in (5.3.27) which lead to secular terms in
u; must vanish. That is,

a6, +1)=0 (5.3.28)
and
b(®4,-1)=0 (5.3.29)
For a nontrivial solution it follows from (5.3.28) and (5.3.29) that either
6;=-1 and b=0 (5.3.30)
or
6;=1 and a=0 (5.3.31)
When 6, =-1 and b = 0, the particular solution of (5.3.27) is
u; =5acos3t (5.3.32)

Substituting for ug, u;, and §, into (5.3.18) yields
iy tuy; =-a(8, +§)cost+gacos3t- LacosS5t (5.3.33)

The periodicity of the solution demands that the terms in (5.3.33) which lead
to secular terms in u, vanish. Thus

§,=-% (5.3.34)

Hence one of the transition curves emanating from 6 = 1 is given by

§=1-e- 1€ +0() (5.3.35)
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On this curve

u=alcost+gecos3t+0(e?)] (5.3.36)
When & = 1 and a = 0, the particular solution of (5.3.27) is
u, =Lbsin3¢ (5.3.37)
Substituting for ug, #;, and &, into (5.3.18) yields
il +u, =-b(8, +%)sint- L bsin 3t~ §bsin 5¢ (5.3.38)
The periodicity of the solution requires that
§,=-1% (5.3.39)
Hence the other transition curve emanating from é = 1 is given by
§=1+te-1e>+0() (5.3.40)
On this curve
u=b[sint+%esin 3t + 0(e?)] (5.3.41)
The Case 6, =4. In this case
ug =acos 2t +bsin 2t (5.3.42)

Then (5.3.17) becomes
i, +4u; =-6,(a cos 2t + b sin 2¢) - a(l + cos 4t) - bsin4r (5.3.43)

The periodicity condition demands that §; =0. Then the particular solution of
(5.3.43) becomes

u, =- ya+ 45 acos4t+ {5 bsin 4t (5.3.44)
Substituting for uy and u; into (5.3.18) and recalling that 6, =0, we obtain
ity +4uy =-a(8, - £5) cos 2t - b(5, + {5) sin 2t
- Lacos6t- {5 bsin6r (5.3.45)
The periodicity condition demands that
a(d,- 5)=0 (5.3.46)
and
b5, +5)=0 (5.3.47)
For a nontrivial solution it follows from (5.3.46) and (5.3.47) that either
8,=75 and b=0 (5.3.48)
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or
§,=-7 and a=0 (5.3.49)
Hence the transition curves emanating from 6 =4 are
§=4+ 3 +0() (5.3.50a)
and
§=4-Le*+0() (5.3.50b)
on which
u=acos2t- fea(l - % cosdr)+0(e?) (5.3.51a)
and
u=bsin2t+ %5 eb sin4r+ 0(e?) (5.3.51b)

respectively. These results are not in agreement with (5.3.11).

5.3.3. THE METHOD OF MULTIPLE SCALES

In this section we consider another alternative of Hill’s method, the method of
multiple scales. Three cases are taken up: 6 away from zero, unity, and four;
& near four; and § near unity.

We seek a second-order uniform expansion for (5.3.1) in the form

u(t;e)=uo(To, Ty, T2) + €uy(To, T1, T2) + € uy(To, T, Tp) + - -
(5.3.52)

where T,, + ¢"¢. Here we do not choose to expand 6 as in (5.3.15); rather we
effect the straining by introducing a detuning parameter. Substituting (5.3.52)
into (5.3.1) and equating coefficients of like powers of €, we obtain

D2ugy + Sug =0 (5.3.53)
D(Z)ul + 51,41 = _2DOD1u0 - 2“0 Ccos 2T0 (5.3.54)
D%u2 + 6”2 = —2D0D2u0 - D%UO - 2D0D1u1 - 2u1 Ccos 2T0 (5.3.55)

where D, = 3/9T,,. In deriving (5.3.53) through (5.3.55), we assumed that § is
away from zero. The case & ~ 0 can be handled by letting & = €25, in (5.3.1)
before equating the coefficients of like powers of e.

The solution of (5.2.53) can be written as

uo =A(Ty, Ty) exp (iwTo) + A(Ty, T,) exp (-iwTo) (5.3.56)
where 6 = w?. Hence (5.3.54) becomes
Diuy + w?uy =-2iwD A exp (iwTy) - A exp [i(2 + w) Ty
-Aexp [i(2- W) To] +cc (5.3.57)
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In analyzing the particular solution of (5.3.57) we need to distinguish between
two cases: w away from 1 and w ~ 1.

The Case w away from 1. Eliminating the terms that produce secular terms in
(5.3.57) leads to D; A = 0 so that A = A(T,). Hence the particular solution of
(53.57)is

exp [i(2+w) To] - 7

EA_—I)exp [i2- w) Ty] +cc

" = A
! 4(wtl)
(5.3.58)
Substituting for uy and u, into (5.3.55) yields

A
D3u, + w?u, = [—2iwD2A + m]exp (iwTy)

A
4+ w)Ty] +——=
exp [i(4+ ) To] + =5
In determing the particular solution of (5.3.59) we need to distinguish between
two cases: w away from 2 and w =~ 2.

When w is away from 2, elimination of terms that produce secular terms in
(5.3.59) yields

————A .
- 4(w+1) exp [i(4 - w)] To +cc (5.3.59)

A
2iwD)A - ———— = 3.
iwD, 2w~ 1) 0 (5.3.60)
Hence
i .
A= %a exp [— m T, +lB] (5.3.61)

where 4 and 8 are constants. Substituting for %, and u; from (5.3.56) and
(5.3.58) into (5.3.52), making use of (5.3.61), and replacing T,, by €"t, we
obtain the following approximate solution when w is away from 1 and 2:

u=acosp+tea[(w+1)" cos (2t +¢) - (w- 1)7" cos (22 - ¢)] +O(e?)

(5.3.62)
where
62
¢=[w—m_—1)] t+8 (5.3.63)
When w =~ 2, we introduce a detuning parameter ¢ defined by
2=w+elo (5.3.64)

and express (4 - w) Ty in (5.3.59) as
(4 - (IJ) To = (.OTQ + 252 UT() = COTO + 2UT2 (5365)
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Then elimination of the terms that produce secular terms in (5.3.59) gives

A A
+
2w?-1) 4(w-1)
To obtain the solution of (5.3.66) we let
A(T) = B(T?) exp (i0T>)

-2iwD, A + exp (2i0T,) =0 (5.3.66)

and find

~2iwD, B + [20.)0 + (5.3.67)

1 B
(@2 - 1)]B+4(w— H -0

Putting B = B, + iB; with real B, and B; in (5.3.67) and separating the real and
imaginary parts, we have

1
-2wD,B, + [2w0 - ——]Bi =0

4(w+1)
(5.3.68)
w3
2wD,B; + [Zwo + m] B =0
The solution of (5.3.68) can be expressed as
B,=b,exp (vT;), B;=b;exp (yT2) (5.3.69)

where b, and b; are constants and

1 1 3
v =- e [2w0 o 1)] [2@0 +ﬁ%5] (5.3.70)

The motion is unstable when 42 is positive definite. Thus the motion is unstable
when

w+3 <6< 1
- o
8w(w? - 1) 8w(w+1)

(5.3.71)

and otherwise is stable. Because w = 2, the transition curves correspond to

~ L -
0~ gzg and O a8
Therefore the transition curves emanating from w = 2 are given by
—n_ 1 24... = S 24,
wW=2-zg€ + and w=2+gge +
Since 8 = w?, the transition curves emanating from § = 4 are

6=4-Le+--- and §=4+F e+ - (5.3.72)
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in agreement with those obtained earlier by using the Lindstedt-Poincaré
technique.

The Case w =~ 1. In this case we introduce a detuning parameter o according
to

l=w+eo (5.3.73)
and we express (2 - w) T, as
(2- w) Ty =wTy +2e0Ty = wTy +20T, (5.3.74)
Then in (5.3.57) secular terms in u; are eliminated if
2iwD A + A exp (2i0T;) =0 (5.3.75)
Consequently the particular solution of (5.3.57) becomes
u; = %A(w + D Vexp [i(2+ w) To] +cc (5.3.76)
Substituting for u, and u, from (5.3.56) and (5.3.76) into (5.3.55) yields
Djuy + w?uy =~ [2iwD, A + DIA + H(w + 1)1 4] exp (iwT,)
- 2A(w+ 1) exp [i(4+ w) To]
-Li2+ w)(w+ 1)'Dy A exp [i(2 + w) Tol +cc
(5.3.77)

Eliminating the terms that produce secular terms from (5.3.77) and keeping in
mind that w =~ 1, we obtain

2iwD, A+ DA+ F(w+1)'4=0 (5.3.78)
To determine 4, we combine (5.3.75) and (5.3.78) as follows. From (5.3.75),
DiA = Liw™ [2ioA + D, A] exp (2i0T;) = - ow™ 4 exp (2i0T;) + F w°A

(5.3.79)
Eliminating D?A4 from (5.3.78) and (5.3.79) gives
) Wtwtl 0— )
2iwDy A +m A- ;A exp (2i0T;) =0 (5.3.80)

It can be easily shown that (5.3.75) and (5.3.80) result from a multiple-scales
expansion of
wWwtwtl

dA €0\ —
it _¢o ; g W TWFL
2iw ate (1 w> A exp (2ieot) + € 2P (@t 1) A=0 (53.81)
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We seek a solution for (5.3.81) in the form 4 = (B, +iB;) exp (ieot) with real
B, and B;, separate real and imaginary parts, and obtain

dB o Ztwtl
2w dtr —[e+2eow—e—— €’ —w—w——]Bi=0

w 40w (w+1)
(5.3.82)
dB; o, wtwtl]
2w ar [e 2eow 5 +e€ 1@t ]) B,=0
Equation (5.3.82) admit a solution in the form
(B, B;) = (b, b;) exp (v2) (5.3.83)

with constant b, and b;, provided that

+1+ 2 + 2
4wyt =¢ 1+2oco—£?--——————6((*)2 w)],l_zaw_fg.,_e(w 1+w%)
w 4w (wtl) w  dwi(w+1)

(5.3.84)

The motion is unstable when v? is positive definite. Therefore the motion is
unstable when

1 {_He(whwl)} 1 [l+e(w2_w—1)

2w 40 (w+1) 726 40 (w+1)

] (5.3.85)

and otherwise is stable. Because w = 1 - €0, the transition curves emanating
from § =1 correspond to

0=-1+32e+0(?) (5.3.86)
and
o=1+ et 0(?) (5.3.87)
Hence the transition curves are given by
§=w?=1+e- %ez +0(€) (5.3.88)
and
§=w?=1-€e- £ +0(e) (5.3.89)

in agreement with those obtained earlier by the Lindstedt-Poincaré technique.

We note that one cannot expand (5.3.84) for small € in the neighborhood of a
transition curve where 1 + 20w is the same order as e{(0/w) + (w* + w + 1)/
[4w?(w + 1)]}. This is the reason that equations (5.3.75) and (5.3.78) were
combined into the single equation (5.3.81), which was used to determine the
transition curves.
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5.34. HILL’S EQUATION
In this section we consider a somewhat general form of the equation of motion
for a parametrically excited system, namely Hill’s equation (Hill, 1886)

i+ [a+ 5 emfm(t)] u=0 (5.3.90)

m=1

where f,, (t + 7) = f,, (£).
Without loss of generality we may assume that

fﬂfm (H)dt=0 (5.3.91)

and hence that each function f,, can be represented by a Fourier series having
the form

Jm = 2 (Cymp 08 2nt + By, sin 2n1) (5.3.92)
n=1

Approximate solutions of this problem were obtained by Bondarenko (1936),
Klotter and Kotowski (1943a, b), Struble and Fletcher (1962), Magnus and
Winkler (1966), Yang and Rosenberg (1967), Rand (1969), Rand and Tseng
(1969), Mostaghel and Sackman (1970), Hamer and Smith (1972), Nayfeh
(1972), Rubenfeld (1973), and Karpasiuk (1973).

Here we limit our analysis to the determination of the transition curves for
the system governed by (5.3.90) when € is small. Thus it is most convenient
to use the method of strained parameters. Accordingly we assume expansions
of the form

u(t;e) =up(H)+ eu, (H+ Euy () +- - - (5.3.93)
6(€)=50+€61+6282+"' (5394)

Substituting (5.3.92) through (5.3.94) into (5.3.90) and equating coefficients
of like powers of e, we obtain

iio + 60”0 =0 (5395)
Uy +8ouy =-(81 +f1) uo (5.3.96)
Uy + 80Uy =By +f1)uy - (52 + f2) uo (5.397)

According to the Floquet theory, u has either the period 7 or 27 along a tran-
sition curve. Thus we write the solution of (5.3.95) in the form

Uy =ag cos nt+ by sin nt (5.3.98)
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where 7 is a nonzero integer (the special case of n equals zero is considered later)
related to 6, by

n* =8, (5.3.99)

and a, and b are arbitrary constants at this point.
Substituting for u, into (5.3.96) leads to

Uy +8ouy =-[(8, + %aln) ap + %ﬁlnbo] cos nt

-8y - %aln) bo + %Blnao] sin nt

-4 3 [(@0%m = boBim) cos (2m +n) ¢
m=1

+ (@oBim T oy, ) sin 2m + n) ¢]

-3 i [(@o01m +boBim) cos (2m - n) ¢t

m=1
m#*n

+ (@oB1m — boQim) sin 2m - n) t] (5.3.100)
To eliminate secular terms from u, , we must put
(81 + 3 a1p) a0t 4B1nbo =0 (5.3.101)
and
1Binao + (81 - 3 @1,) bo =0 (5.3.102)
For a nontrivial solution to exist,
8, =+1(ad, +p2,)Y? (5.3.103)

It follows from (5.3.101) and (5.3.102) that in general ¢, and b, are related
by

Bin

do=—T——
261 +O(1n

bo (5.3.104)

Only when 8, is zero (i.e., oy, = f1,, = 0) are ao and b not related at this level
of approximation.
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The solution for u; has the form

=

1
Uy = Zl 8m(m +n) [(@0Q1m ~ boBim) cos 2m +n) ¢

+(aoBim + boQy,) sin 2m +n) t] +a, cosnt+ b, sin nt

+ 3

[(aoalm +boBim) cos (2m - n) t

o1 8m(m
m+n
+(@oBim — booum) sin 2m - n) ¢t] (5.3.105)

where a; and b, are arbitrary constants. We note that #,; must contain the com-
plementary solution if 8, is not zero, but not if §, is zero. The reason will
become obvious later.

Substituting (5.3.98) and (5.3.105) into (5.3.97) leads to

Uy +8ouy =-[(8, + lOlln)al + %Blnbl = Y1ao - Y2bo] cosnt
[ 61,,(11 +(51 - aln)bl Yaag _y3b0] sin nt + NST (53.106)

where NST denotes the terms which cannot lead to secular terms in u, , and

o 2 2
1 U t Bim t+ 27(0‘1m QUmen t BimBim+n)
3%n " D

=-5,-1
71 ? met 16m(m + n)
2 2 -
= Al t+ Blm "l p-m Uim ~ ﬁln—m ﬁlm
- (5.3.107)
mz=:1 16m(m - n) mz=1 16m(m - n)
m¥#n
Y, =- %ﬁzn _ i A1 Binem ~ Bim Xn+m

gl 16m(m + n)

i %UmBim+n = Bim Yman _ i Bim @in-m t %mBin-m

i 16m(m+ n) 16m(m - n)
m#*n
(5.3.108)
=-8, + 20‘2n B i O‘%m + ﬁ%m B 2(Blm31m+n tay, X1m+n)
m=1 16m(m + n)
2 2 -
~ %m t Bim "l Bin-m Bim - Qn-m%m
—_— - 5.3.109
mz=:1 l6m(m - n) mz=1 l6m(m - n) ( )

m¥+n
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Thus to eliminate secular terms from u,, we must put
(6, +%0‘1n)(11 + 2 Binb1 =¥1a0 + ¥2bo (5.3.110)
3Binar + (81 - 1) by =yaa0 + y3bo (5.3.111)

In determining 8, from (5.3.110) and (5.3.111), we need to consider two cases:
6, is zero and §, is nonzero.

The Case &; = 0. Referring to (5.3.103), we see that 6, oy,, and B, are
zero. Thus (5.3.110) and (5.3.111) reduce to

Yiao t y2bo =0 (5.3.112)
Y2a0 t y3bo =0 (5.3.113)

Recalling that the elimination of secular terms from u; does not impose a
relationship between a, and b, when &, is zero, we see that secular terms can
be eliminated from u,, and a nontrivial solution exists if, and only if,

Y1y3-y3=0 (53.114)
Equation (5.3.114) can be solved for §,.

The Case 6, # 0. Considering a; and b, as the unknowns, we note that the
determinant of the coefficient matrix is zero and that it is possible to obtain a
solution only if

6, + %aln) (¥2a0ty3bo) - %31;.(}’100 +y,b0) =0  (5.3.115)

In this case ao and b, are not independent, being related by (5.3.104). Thus
(5.3.115) can be written as

B1n (281 + @1,) 2 ~ Biny1] - (281 + a1y) [(261 + 01) ¥3 ~ B1ny2]1 =0
(5.3.116)
Equation (5.3.116) can be solved for &,.

The Case 6o =~ 0. In this case we do not know a priori the order of §. Thus
we write

S5=€by + €28, 4" (5.3.117)

Then instead of (5.3.95) through (5.3.97) we obtain
=0 (5.3.118)
uy == (81 +f1) uo (5.3.119)

Uy =-(81 +f2)uy - (82 + f2) uo (5.3.120)



5.3. SINGLE-DEGREE-OF-FREEDOM SYSTEMS 299
The periodic solution of (5.3.118) is
Up =ag (5.3.121)
where a is an arbitrary constant. Then (5.3.119) becomes
Uy =-81a0 - ap Y (1 cos2mt + By, sin 2mz) (5.3.122)
m=1
Thus to eliminate secular terms from u, , we must put

6, =0 (53.123)
It follows that

= 1
u; =a;, + %ao Z ’-n—z(alm cos 2mt + 1, sin 2mt)
m=1

(5.3.124)

where a, is an arbitrary constant.
Substituting (5.3.121), (5.3.123), and (5.3.124) into (5.3.120) lead to

. ks a%m + ﬁ%m
Uy =-ag |5 Y. —5— T+ 8, +NST (5.3.125)
m=1 ™M
Thus to eliminate secular terms we must put
o o + B2
by=-1 3 Gim*Fim (5.3.126)
m=1 m
Example. We consider
u+t@+3ecos® 20u=0 (5.3.127)
which can be written as
U+ (8+2ecos2t+2ecos6r)u=0 (5.3.128)
Thus
a3 = 2, 013 ='23‘ (53129)
and all other o, and §;,, are zero. It follows that
§=-H e +0() (5.3.130)
6=1ie~1—%62+0(e3) (5.3.131)
=4+ L +0(e) (5.3.132)

§=4- Tg‘o e+ 0(63) (5.3.133)
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5.3.5. EFFECTS OF VISCOUS DAMPING
In this section we consider the effect of small viscous damping on the response

of the parametrically excited system of the preceding section. Thus we modify
(5.3.90) to

o

ii+2uz’¢+[8+ > emfm(t)]u=0 (5.3.134)
m=1

where u > 0. Gunderson, Rigas, and van Vleck (1974) proposed a technique for

determining the stability regions of the damped Mathieu equation. Introducing

the transformation u = v exp (- ur), we rewrite (5.3.134) as

v+ [5 -prt Y emfm(t)] v=0 (5.3.135)
m=1

which has the same form as (5.3.90). Therefore the effects of the viscous

damping are to decrease the growth rate by u and to modify the natural fre-

quency of the system from 8Y2 to (6 - u?)Y2. Both of these effects are

stabilizing.

To analyze the response of systems including the effects of viscous damping,
one can either use the methods of the preceding sections directly on (5.3.134)
or use the method of multiple scales or the method of averaging to determine
a uniform expansion for v. In the remainder of this section let us use the
Lindstedt-Poincaré technique directly on (5.3.134) and determine the transi-
tion curves for the principal-resonance case. To accomplish this, we set u = €il.

Substituting (5.3.93) and (5.3.94) into (5.3.134) and equating the coefficients
of €° and € to zero, we obtain

d0+50u0 =0 (5.3136)
iil + 50u1 =_(6l +f1)u0 - 2[/1.\120 (5.3137)

The solution of (5.3.136) is given by (5.3.98) where 6, = n?. Then (5.3.137)
becomes

iy +n*uy =-[(81 + 3 up) ao +(3B1n + 2n) bo] cos nt
- [(61 - 3 a1,) bo + (5 B1n ~ 21n) ao] sin nt + NST (5.3.138)
Eliminating the terms that lead to secular terms yields
(61 + 3@1n)a0 + (3810 + 201) bo =0 (5.3.139)
(%Bm - 2un)ae + (8, - %aln)bo =0
Hence

8% = L(ad, + Bl - 4071 (5.3.140)
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Figure 5-9. Effect of viscous damping on the stability of the solutions of the Mathieu equa-
tion. Shaded areas are unstable.

and the transition curves separating stability from instability are given by
§=n®tL[(ad, +p2,) € - 16202 Y2+ (5.3.141)

Therefore the motion is completely stabilized to first order by the viscous
damping if u > p, = (4n)™ (a3, + B2,)Y? e. Otherwise there is still a region of
instability. However the viscous damping decreases this unstable region by lifting
it from the §-axis and narrowing its boundaries in the ed-plane as shown in
Figure 5-9. This figure shows the transition curves to second order for the
Mathieu equation. They are given by

5 =___%€2 FR (5.3‘142)
S=1x(2-4p?)?-Le+--- (5.3.143)
§=4+le?t(Let - 16u2) 2+ (5.3.144)

In deriving (5.3.144) we assumed that u = O(e?); if u is bigger the motion near
& = 4 will be completely stabilized. We note that the viscous damping does not
affect the transition curves near § = 0.
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5.3.6. NONSTATIONARY EXCITATIONS

In the examples discussed so far the natural frequency of the system is con-
stant and the amplitude and frequency of the excitation are constant; that is,
the oscillations are stationary. Bogdanoff (1962) generalized the results of
Lowenstern (1932) on the effect of high-frequency, small-amplitude parametric
excitations to the case of small, rapid, quasi-periodic excitations. Hemp and
Sethna (1968) generalized the results of Bogdanoff to include the effects of ex-
ternal forces, simultaneous occurrence of slow and fast excitations, and occur-
rence of several fast excitations with frequency values close to each other. Moran
(1970) studied transient motions in dynamic systems with high-frequency
parametric excitations. Their results show that a parametric excitation having
two frequencies that are close to each other in magnitude may destabilize an
inverted pendulum that would otherwise be stable if it were not for the close-
ness of the two frequencies, in agreement with the experimental results of
Bogdanoff and Citron (1965). In this section we consider nonstationary oscilla-
tions. For simplicity, we consider nonstationary excitations whose amplitude
and frequency are slowly varying functions of time. Thus we consider

u+ [w*+2ek(et)cos 8] u=0 (5.3.145)
where
0 =Q(er) = 2w + ea(et) (5.3.146)
We seek a first-order uniform solution to (5.3.145) in the form
u=ug(To, T1)+ euy(Ty, T{)+ - (5.3.147)
where
T,=€"t

Substituting (5.3.147) into (5.3.145) and equating coefficients of like powers of
€ yield

D3ug + w?up =0 (5.3.148)
D3uy + w?uy =-2DogDyug - 2uek(T;) cos 6 (5.3.149)
The solution of (5.3.148) can be expressed as
ug =A(Ty) exp (iwTy) + cc (5.3.150)
Hence (5.3.149) becomes
Diuy + w?uy =-2iwA' exp (iwT,) - kA exp [i(wT, +0)]
- kA exp [i(0 - wT,)] +cc (5.3.151)

Since 6 ~ 2w, 0 - 2wT, is a slowly varying function of ¢, that is, it can be
considered a function of 7. Then eliminating the terms that produce secular
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terms in u, yields
2iwA’ + kA exp [i(6 - 2wT,)] =0 (5.3.152)
Letting
A= Zaexp [2i(y+0-2wT,)]
with real 2 and y in (5.3.152) and separating real and imaginary parts, we obtain

/=k(T1) S

2w
, (T (53.153)
v =-0(Ty)+ ((ul) cos 7y

Alternatively we let 4 = (x +iy) exp (%i f0dT;) in (5.3.152) with real x and y,
separate real and imaginary parts, and obtain

k
x'—%(a+;—)y=0

k (5.3.155)
'+ %(o— —>x=0
W
For constant o and %, the general solution of (5.3.155) is
x=cyexp (yT1)+c, exp (4T
1 exp (YT1) + ¢, exp (-9T1) (5.3.156)

¥ =2wy(k +0w)™" [e; exp (vT1) - ¢; exp (-vT1)]

(a)

AVAVAVAVYs

(6)

Figure 5-10. Nonstationary parametric excitation of the

(c) ’ Mathieu equation: (a) u = 0.01; (b) = 0.015;(c) u = 0.2.
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where v = 1(k2w™ - ¢%)Y2. When o and k are time varying, the solution
deviates from (5.3.156); the deviation increases with the rate of variation of o
and k.

Croll (1975) considered a system for which ¢ is a constant while k = exp-
(- eut). For this case Figure 5-10 shows the variation of x with T; forw=1,0=
0.8, and three values of u and for the initial conditions x(0) = 1 and y(0) = 0.
We note that the three curves are drawn to the same scale. It is clear that x and
y become periodic in all cases because the excitation causing the nonstationary
behavior decays with time. An analysis of the stationary case shows that the
motion is unbounded for k > ¢ and bounded for £ < o. Since x and y grow in-
itially and then decay, the growth depends on the rate at which k decays, that is
on the value of u. The smaller the value of u is, the larger the growth is and
hence the amplitude of the resulting periodic motion as shown in Figure 5-10.

5.4. Linear Systems Having Distinct Frequencies

In this section we determine approximate solutions to multidegree-of-freedom
systems that are parametrically excited. Since combination as well as simple
resonances might occur in these systems, the method of multiple scales is more
suited for these problems than the method of strained parameters.

We consider nongyroscopic systems in this section and in Section 5.5;in Sec-
tion 5.6 we consider a gyroscopic system. Thus we consider systems governed by

X+ [A] x+2e[B(¥)] x=0 (5.4.1)

where x is a column vector having N components, [4] is an N X N constant
matrix, and [B(#)] is an N X N matrix whose elements are periodic functions
of t. Theorems of boundedness and criteria for unboundedness of the solutions
of (5.4.1) were given by Cesari (1940), Cesari and Hale (1954), Gambill (1954,
1955), and Hale (1954, 1957) when the eigenvalues of [A4] are all different
from zero, distinct, and purely imaginary. Hale (1958) treated systems for which
[A] also has a number of zero eigenvalues, while Bailey and Cesari (1958)
treated systems for which some of the eigenvalues of [A4] are distinct and purely
imaginary and only one possibly zero and the remaining eigenvalues are real or
complex with negative real parts. For comprehensive mathematical treatments
of these systems and more references, we refer the reader to the books of Hale
(1963) and Cesari (1971). In this section we consider only the case in which the
eigenvalues of [A] are different from zero and purely imaginary.

We introduce the linear transformation x = [P]u in (5.4.1), where [P] is a
nonsingular constant matrix such that [P]™! [4] [P] is a Jordan canonical form.
Multiplying the result by [P]™! we obtain

N
Uy + W2, +2€ Y. &y, =0 (5.4.2)

m=1
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for n=1,2,..., N when the eigenvalues of [4] are distinct and positive. The
&.m are the elements of the matrix [G] = [P]™! [B] P. In general (5.4.2) repre-
sents a system of n coupled Hill’s equations. However there is a restricted class
of (5.4.1) for which [G] is diagonal (i.e., g, =0 if n #m) and (5.4.2) repre-
sents a system of n uncoupled Hill’s equations. Hsu (1961) treated this restricted
class and applied his results to two identical compound pendulums, double
pendulums, masses on a noncircular shaft, and masses on a noncircular rotating
shaft. We will not pursue the restricted class any further because its analy-
sis involves the analysis of the individual Hill’s equations as already done in
Section 5.3.

In Section 5.5 we treat a case in which all the eigenvalues of [4] are distinct
except one, which has a multiplicity of 2. In what follows we consider the case

&nm(8) = fum cos wit (5.4.3)

where the f,,,,, are constants. Thus we consider the system

N
Uy + Wity +2€cos W Y frumlly =0 (5.4.9)
m=1

We exhibit the different resonant conditions by developing a straightforward
expansion in the next section; we use the method of multiple scales to obtain
first-and second-order uniform expansions in Sections 5.4.2 and 5.4.3, respec-
tively. In Section 5.4.4 we apply the results to the analysis of the lateral deflec-
tions of columns subjected to periodic follower forces. This is the problem of
dynamic buckling. The effects of viscous damping are discussed in Section 5.4.5.

5.4.1. THE STRAIGHTFORWARD EXPANSION
We seek an expansion of the form

Uy (t;€) = tpo(2) + €Uy, (1) + ezunz te (5.4.5)

Substituting (5.4.5) into (5.4.4) and equating coefficients of like powers of €
yields

ling + Wptng =0 (5.4.6)

Uy + Whttyy == 3 farltyo [exp (iwt) + cc] (5.4.7)
r

finy + Wty == 3 Frrlhyy [exp (iwr) + cc] (5.4.8)
r

where cc represents the complex conjugate of the preceding terms.
The general solution of (5.4.6) can be written in the form

Upo = Ay, exp (Iwy,t) + cc (5.4.9)
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where 4, is a complex constant. Substituting (5.4.9) into (5.4.7) yields
mt Wity == Z frrAr{exp [i(w, + w)t] +exp [i(w, - w)t]} +cc (5.4.10)
r

A particular solution of (5.4.10) can be written in the form

oS A {exp lieo, + )] | exp i, - w)i]

(wr + w)z - wrzz (wr - (’~))2 - w?l

} tcc (5.4.11)

Substituting (5.4.11) into (5.4.8) yields
iin2 + wﬁunz = —Z Z Tor FrsAs
14 S

exp [i(wg+2w)t] +exp (iwgt) 4 &P [i(wg - 2w)t] + exp (iwgt)
+cc
(s + W)? - Wk (g - w)* - w?
(5.4.12)
A particular solution of (5.4.12) can be written in the form

n2 = Z anrfrsAs {

exp [i(wg +2w)t]
[(ws +2w)? - wi] [(ws + w)? - f]

exp [i(w; - 2w)t]
@ 20)? - 2] [(ws- @)t - ]} 2 2 Sutrsd

s=#n
1 1 Ay exp (iwg 1) 1
: B +1 4
[(w+ W) - W (w- wy)? - oof] w?- Wk 2 ;f"’fm

) [ 1 1 ] texp (iw, 1) N (5.4.13)

+
(Wt w,)’ - wp (W= w,)* - W] Wn

It follows from (5.4.9) and (5.4.13) that the expansion (5.4.5) is only valid for
short times because lim; —, w(Uy5 [thyg) = °°; this is the result of the secular terms
in u,, which contain the factors ¢ exp (*iw, t). It follows from (5.4.11) and
(5.4.13) that the expansion (5.4.5) is not valid if

pw = w, tw, (54.14)

where p, n, and m are integers because, when such resonant combinations of
frequencies exist, some terms in u,,, u,,, etc. may contain small divisors. The
existence of such combination resonances has been demonstrated both by experi-
ment and by analog simulation (Yamamoto and Saito, 1970; Sugiyama, Fugi-
wara, and Sekiya, 1970; Iwatsubo, Saigo, and Sugiyama, 1973; Dugund;ji and
Mukhopadhyay, 1973).
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In order to eliminate the troublesome secular and small-divisor terms, one
must modify the straightforward procedure. In the next section the modifica-
tion is accomplished by using the method of multiple scales.

5.4.2. FIRST-ORDER EXPANSIONS
Following the method of multiple scales, one seeks a uniformly valid expan-
sion having the form

Up(t5€) =ttno(To, Ty, T) + €Uy (To, Ty, T2) + €y (To, Ty, Tp) ++ - -
(5.4.15)

Substituting (5.4.15) into (5.4.4) and equating coefficients of like powers
of e yields

D3ty + wpttyo =0 (5.4.16)
D(‘—;unl + Wity ==2Do Dyt - Z Turttro [exp (iwTo) + cc] (5.4.17)
7

and
2 2 _ 2
Diuyy + Wy, ==2DgDyuyg =~ Ditpg = 2D Dy tty,

= > fartin [exp (iwTo) +cc] (5.4.18)

The general solution of (5.4.16) can be written in the form
Upo =A,(Ty, T,) exp (iw, Ty) +cc (5.4.19)
Substituting (5.4.19) into (5.4.17) yields
D3ty + Wty =210, Dy Ay exp (10, To) = 3 fr A,
r

- {exp [i(w, + w)To] texp [i(w,~ w)Tol}tee (5.4.20)

Now A4, is to be chosen in such a way as to eliminate the troublesome terms
from u,,. This choice depends on the resonant combinations of frequencies;
five different cases are considered.

The Case w Away from wq * wp. When w is away from wg * w, for all
possible values of g and p, small divisors cannot appear, and the troublesome
terms will be eliminated from u,, if

D, A,=0 o A,=A4,(T,) foralln (5.4.21)
Consequently a particular solution of (5.4.20) can be written in the form

- exp [i(w, + w) Tyl  exp [i(w, -~ w)To]
Upy = Zr: Jnr Ay { (w, + w)z B w?, + (@, - w)2 - wf, }-l-cc (5.4.22)




308 PARAMETRICALLY EXCITED SYSTEMS

The Case w Near wp + wg. When w is near w, + wy, we speak of a combina-
tion resonance of the summed type. The possibility of the existence of such
combination resonances was discussed by Lazarev (1937) and Simanov (1952).
They were analyzed by using different techniques by a number of investigators
including Mettler (1949, 1967), Yakubovich (1958), Iakubovich (1959), Valeev
(1960a, b, 1961, 1963), Schmidt and Weidenhammer (1961), Piszczek (1961),
Hsu (1963, 1965), Lion (1966), Stevens (1966), Yamamoto and Saito (1970),
Grybos (1972), and van Dao (1973).

We express the nearness of w to w, + wy by introducing the detuning param-
eter 0, that is defined by

W=w,twy teo (5.4.23)
Then we can write
(w-wg) Ty =wpTy + 0T,y (5.4.24)
and
(w- wp)Ty =wyTy + 0T, (5.4.25)

Then it follows from (5.4.20) that the troublesome terms are eliminated from
up, if

2iw,Dy Ay + frg Aq exp (i6T;) =0 (5.4.26)
from ug, if

2iwg Dy Ay * fypAp exp (i0T1) =0 (5.4.27)

and from u,, when n # p and q if (5.4.21) is satisfied. In this case up,, Uq;,
and u,, for n# p and g are given by (5.4.22), with the troublesome terms
being deleted from the expressions for u,, and ug; .

Equations (5.4.26) and (5.4.27) admit nontrivial solutions having the form

Ap=apexp(-iAT;) and Ag=agexp[i N+0)T,] (5.4.28)

where a,, and a, are complex functions of T, A is the complex conjugate of A,

A=-1[ox(0® - Ap)'?] (5.4.29)
and
Apg = Tvatra (5.4.30)
Wp Wq

It follows from (5.4.28) and (5.4.29) that A, and 4, are bounded if, and
only if, '

0t = A (5.4.31)

pq
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It follows that the motion is always bounded when f,, and f,, have different
signs. When the signs of f,, and f,, are the same, the transition curves in the
€w-plane that separate stable from unstable solutions are defined by

_ Jfoa fap 2 2
w=w,twgte|— +0(€?%) (5.4.32)
Wp Wq
When p = g, (5.4.32) reduces to
w=2w, te Too 0(e?) (5.4.33)
Wp

which is the known result for the Mathieu equation (Section 5.3).

The Case w Near wg - wp. When w is near w, - wp, we speak of a combina-
tion resonance of the difference type. When there are no other resonances to this
order, the results can be obtained from those above by simply changing the sign
of w,. For this case unstable solutions occur only when Jpq and fg, have dif-
ferent signs.

The Case w Near wp, + wq and wg - w,. In this case w is simultaneously near
wp t wy and w; - wy, there are no other resonances to this order. To express the
nearness of w to w, + w, and wy - wg, one introduces the detuning parameters
defined by

w=w,twgteo; and w=ws- wg teo, (5.4.34)

Then it follows that the troublesome terms are eliminated if

2iwp Dy Ap + fqAq exp (i0,T1) =0 (5.4.35)
2iwg Dy Agq * fupAp exp (i0,Ty) + fusAg exp (-io, T;) =0 (5.4.36)
2iwgD  Agt fsqAq exp (i0,T;) =0 (5.4.37)

and for n#p, q, or s, the A,, satisfy (5.4.21). In this case up,, Ug1, Ug , and
up, for n # p, q, and s are given by (5.4.22), with the troublesome terms being
deleted.

Equations (5.4.35) through (5.4.37) admit nontrivial solutions having the form

Ap=ayexp [-i(A- 0,)T,], Ag=a,exp(NTy), Ag=azexp [i(A+0,)T;]
(5.4.38)

where a,,, a4, and a; are complex functions of T, and
A3 Apg(N=01) = ANt o)™ =0 (5.4.39)

Equation (5.4.39) is a cubic equation for A and has closed-form solutions. It was
obtained first by Hsu (1965) by using the method of averaging and later by
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Nayfeh and Mook (1977) by using the method of multiple scales. The transition
curves correspond to the value of w for which A has two real roots.

We note that as e > 0 only one resonance can exist. When € > 0 and o, re-
mains bounded, 0, = . In this case (5.4.39) reduces to (5.4.29). On the other
hand, when € - 0 and o0, remains bounded, (5.4.39) yields the expression for A
when w is near w; - w, and no other resonances exist to this order.

The Case w Near wq ~ wy, and wg~ wq. In this case w is simultaneously near
wq ~ wp and wg - wg, and there are no other resonances to this order. The re-
sults can be obtained from those directly above by simply changing the sign
of w

p-

5.4.3. SECOND-ORDER EXPANSIONS
Substituting (5.4.19) and (5.4.22) into (5.4.18) yields
D(z)unz + w%un2 =-(Q2iw,D,4, +D%An) exp (iw, To)
) exp [i(w; +20) To ] +exp (i, To)
; g fnrfrsAs { (ws+ w)z _ w%

N exp [i(wg - 2w) To] +exp (iwgTy)

3 2 +cc+NTT (5.4.40)
(ws- w)* - wy

where NTT stands for terms which do not produce troublesome terms in u,,
under any of the resonant conditions being considered. As in the previous sec-
tion different cases need to be considered.

The Case w Away From wg t w,. Here three subcases are considered: 2w
away from w; * wy, 2w near w; + wy, and 2w near w; - wy. Other resonances,
such as 2w simultaneously near w; - wy and w,, - wy, can be treated in the
same manner as the cases being considered, but the results are not presented
here. In this case A, is a function of T, only [recall (5.4.21)].

When 2w is away from w; * wy, for all possible values of / and k, the trouble-
some terms are eliminated if

iDA, +x,4,=0 (5.4.41)
where
20, X, = Z Jorfon [(w " (i)z T (o - oi)z - w2] (5.4.42)
v n ¥ n ¥
The solution of (5.4.41) can be written in the form
A, =a, exp(ix,T,) (5.4.43)

where a,, is a complex constant. Consequently to second order every mode is
bounded for all times.
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When 2wisnear w; + wy, we speak of a combination resonance of the summed
type of second order. Such resonances were analyzed by Yamamoto and Saito
(1970) using the method of averaging and by Nayfeh and Mook (1977) using the
method of multiple scales. It is convenient to introduce a detuning parameter
defined by

2w=wtw telo (5.4.44)
Then the troublesome terms are eliminated if
iDy Ay + XAy + g A, exp (i0T,)=0 (5.4.45)
iDy Ay + X, A, + uy Ay exp (i0T,) =0 (5.4.46)
and forn # 1 or k the A,, satisfy (5.4.41). In (5.4.45) and (5.4.46)

(0= w)? - W}

1 1
O S s (5.4.47)

Equations (5.4.45) and (5.4.46) admit nontrivial solutions having the form
Ag=agexp (iINT,) and A;=agyexp [-i(A- 0)T,] (5.4.48)
where a; and q; are complex constants and
A= N0 X+ X)) + X (07 X))+ Mg = O (5.4.49)

Hence the transition curves correspond to the vanishing of the discriminant of
(5.4.49); they correspond to

0= X +X; % 2(tg )2 (5.4.50)

Combining (5.4.44) and (5.4.50) leads to the following definition of the transi-
tion curves in the ecw-plane:

w= 3w+ @)+ e [$ 00+ %)+ (g i) ?] (5.4.51)

Unstable solutions occur only when uy; and yy, have the same sign.

The case 2w near w; - wy is called a combination resonance of the difference
type of second order. It can be obtained from the above results by simply
changing the sign of .

The Case w Near wp + wy. In this case w is near wp * wy, and there are no
other resonances. Moreover A, and A, are functions of T; and T,; conse-
quently the troublesome terms are eliminated from (5.4.40) if

2iwpDy Ay + DI Ap +20pXpAp =0 (5.4.52)
2iwgDyAg +DiAg +2weXqAy =0 (5.4.53)
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and forn #p or q the A4, satisfy (5.4.41). In (5.4.52)

2wp5(\p = Z fprfrp[(wp + QJ)2 - w?]—l + Z fprfrp [(wp - w)z - w?]—l
r r¥*q

(5.4.54)

Comparing (5.4.42) with (5.4.54), one sees that Qp is formed by removing the
terms containing small divisors from x -

It is convenient, for reasons that are given below, to combine (5.4.26) and
(5.4.52) as well as (5.4.27) and (5.4.53) into a single equation in terms of the
original time scale. To accomplish this, one may use equations (5.4.26) and
(5.4.27) to obtain

Upg —
DA, =1Ap4,- 5:—;’,4(1 exp (ioT)) (5.4.55)
and
Ofgp — .
D}Ag =14 Aped, - ﬁ Ay exp (ioT) (5.4.56)

Substituting (5.4.55) and (5.4.56) into (5.4.52) and (5.4.53) yields
. 1 A Oqu - .
2iwpDrAp + (3 Apg + 2w, Xp)Ap - e Ag exp (iocT;)=0 (5.4.57)
1]

and
. 1 A fap — .
2iwgDy Ag + (5 Apg + 2w, Xq)Aq - B Ap exp (ioT,)=0 (5.4.58)
q

It can easily be verified that (5.4.26) and (5.4.57) are the first two terms in a
multiple-scales expansion of

) d4, €0 \ — . 2,1 o

2iw, —— tefpg (1 - —— Aq exp (ieat) + € (5 Apg + 20w,Xp)Ap =0
dt 2w,

(5.4.59)

Similarly (5.4.27) and (5.4.58) are the first two terms in a multiple-scales
expansion of

. qu €0 — . 2,1 A
2iwg I tefgp (1- e Ap exp (ieot) + €* (4 Apg t2weXq)A4=0
q

(5.4.60)
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Equations (5.4.59) and (5.4.60) admit a nontrivial solution having the form
Ap=apexp [ie(A+o)t] and Ay =a,exp(-iekt) (5.4.61)

where a,, and a, are complex constants and

N +(otey;)+ Ay, teoy;, =0 (5.4.62)
In (5.4.62)
Y1 =% Mpg <L - i) +Xq~ Xp (5.4.63)
Wq Wp
and
Y2=Xq" % % (5.4.64)
p

Solving (5.4.62) gives
N=-L{otey t[(0+er,)? - Apg - deo7, ]2} (5.4.65)

The transition curves correspond to the vanishing of the radical in (5.4.65).
That is

otey; =*(Apg)"? (1 +2A > +0(e?) (5.4.66)

pq
Eliminating o from (5.4.23) and (5.4.66) yields

1 1
W= 0wyt wy Te(Ay,) 2 - 1e? {%qu <w_ + co_)
p q

-y w Arg + Arp
" (wp +2we)? - Wl (Qup t wy)? - Wi

r

ap> -2 wzri\:iz} +0(e%) (5.4.67)

r#p “’p" w? r#+q “q

This result was obtained first by Valeev (1960, 1961) using the Floquet theory.
When p =g, (5.4.67) reduces to
T 2 w, A w, A
w=dwpte P gl s Crlm s —;%] +0(e)
wp 4wy T 9wy - wy rEp Wp o~ W

(5.4.68)
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If f,, = 0 for r # p, then (5.4.68) reduces to

- oo 2 / 31’ 3
w=2wpte—— - € ——=5 +0(e) (5.4.69)
wp 8wy
which is the known result for the Mathieu equation (see Section 5.3.2).

Note that one cannot expand (5.4.65) for small € in the neighborhood of the
transition curves because ¢? - Apq is the same order as 2€07y, - 4€0y, . This is
the reason (5.4.26), (5.4.27), (5.4.52), and (5.4.53) were combined into (5.4.59)
and (5.4.60), which were then used to determine an expansion valid on and near
the transition curves. Thus one cannot determine a uniform expansion near the
transition curves by expanding the characteristic exponents as well as the de-
pendent variables.

The Case w Near Wq =~ wp. In this case w is near wq ~ Wy, and there are no
other resonances. The results can be obtained from those above by simply
changing the sign of w,.

The Case w Near wy, + wq and 2w Near wg- wgy. It is convenient to define
two detuning parameters, o, and 0,; 0, is defined according to (5.4.23) while
0, is defined according to the following equation:

20 = ws- wy t+€%0,. (5.4.70)

Then the troublesome terms are eliminated if

2ics,Dy A, + DA, + 20y Rp Ap = 0 (5.4.71)
2iwgDyAg + DI Ag + 2weXqAg + 2w ugeAs exp (-i0,T,) =0 (5.4.72)
Dy Ag+ XA+ fgqAq exp (io, T,) =0 (5.4.73)
where
~ 1

Msq = 20

Z fsrfrq [(wq + (‘))2 -]

and for n #p, q, or s the A, satisfy (5.4.41).
Substituting (5.4.55) and (5.4.56) into (5.4.71) and (5.4.72) yields

A 01 f —_ .
2wy Dy Ay + (5 Apg + 20, %) A4, - 2qu Agexp (io; T)=0 (5.4.74)

and
. A 01f - .
2iwgDy Ag + (%qu +2wgXq)Aq - -ﬁAP exp (io; Ty)
q

+2wq ugsAs exp (-i0, T,) =0 (5.4.75)
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It can readily be verified that (5.4.26) and (5.4.74) result from a multiple-
scale expansion of

dA €01\ _ A
2iwp d_tp t€fpq <l - a:)—) Ag exp (ieot) + e’(%qu +2wpXp)Ap =0

p
(5.4.76)
that equations (5.4.27) and (5.4.75) result from

dA
2w, — =+ €fyp <1 -

01\ — ~
= >Ap exp (i€o, 1)+ €2(§ Apg + 2weXq)Aq

-t
2wy

+2€*wqHgsAs exp (-i€?0,8) =0 (5.4.77)
and that (5.4.21) and (5.4.73) result from

dA A~
id—ts +e?xs A5t € ligqAq exp (i€ 0,1)=0 (5.4.78)

Equations (5.4.76) through (5.4.78) admit a solution having the form
Ap=ayexp [ie(A\+0,)t], A,=a, exp(-ieNr), Ag=azexp [-ie(X- €0y)1]
(5.4.79)
where ap, a4, and a; are complex constants and
N+t tr)N (e 1 2 % - )M
+93% - Y275 =0 (5.4.80)

A A A N
71=e<-—‘1+xq>, 72=01—6< £ +xp>, s = (X5~ 0)

8wy, 8wy,
1 €0, €0 _ A
Y4 = 3 qu <1 - 2‘-’-’p 1- 2wq , ¥s =€ Msq Mgs

Equations (5.4.23) and (5.4.70) give o; and o, in terms of € and w. The transi-
tion curves are the loci of points in the ew-plane for which A has two equal
roots.

The case w simultaneously near w, + w, and 2w near wy + wg cannot be
obtained from the results in this section by changing the sign of w, because
there is an extra resonance (w near wg - wp) at first order. A similar case is
considered below.

The Case w Near wp, + wq and wg- wq. In this case w is simultaneously
near w, + w,; and wg- w, and thus 2w is near wp, *+ wy; there are no
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other resonances to this order. The troublesome terms are eliminated from
(5.4.40) if

2iwpDy A +D%Ap + 2w, 5(\pAp + 2wpﬁpszs exp [i(0y +02)T,] =0
(5.4.81)
2iwgDy Ay + DA, + 2w XqA4 =0 (5.4.82)
2iwgDy Ag+ DA+ 20X Ag + 2w iy Ay exp [i(oy +0,)Ty] =0 (5.4.83)

where 0, and o, are defined by (5.4.34) and {i, and fsq are obtained from
Ups and pgq by deleting the troublesome terms. Using (5.4.35) through (5.4.37),
one finds that

01fpg — _
DiA,=- lwpq Ag exp (ioy Ty) + 4 Apg A, +4]:zqqu Agexp [i(oy +0,)T,]

2wp p ¥q
(5.4.84)
01 fap — . 02 f,
D} A, =%(qu - Ag)Ag - 2wzp Ap exp (io; Ty) + o = A sexp(-ioy Ty)
(5.4.85)
D34 =- 2fsq Ag exp (io,Ty) - A sAg - fsalap A exp [i(o, +02)T1]
2w dwg wy
(5.4.86)

Using (5.4.84) through (5.4.86) in (5.4.81) through (5.4.83), one finds that
the resulting equations together with (5.4.35) through (5.4.37) are the first two
terms in a multiple-scales expansion of

. d4p €0 \ -+ : 2,1 5
2iw, % t€fpg | 1- T Aq exp (ieay 1) + € (g3 Apg + 200pXp) Ap
p

~ Joafas \ — .
+e? <2wp Hps + 4::; :):)As exp [ie(o; + 0,)t] =0 (5.4.87)

dA, €0, €0,

2iwg i F fap <1 e >A exp (ieoy 1) + €fgs (1 + — Yo Agexp (-i€oy 1)
q q

+ € (4 Apg~ 5 Ags + 204 Xg)Aq =0 (5.4.88)

Wq Wy

€0, . 2 ~
Z;) Ag exp (ieoy ) + € <2wsusp -

X exp [ie(oy +05)1] +€*QugXs~ §Ags)As =0 (5.4.89)

. dA
iy —d_ts + €efyq <1 -
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Equations (5.4.87) through (5.4.89) admit a solution of the form
A, =ap exp [ie(N+ 01)t], Ag=agexp(- ie\t), A,=agzexp [-ie(A- 0,)1]
(5.4.90)
where a,, a4, and a, are complex constants and
Nt (0p -0y tey )N+ [5(Apg— Ags)~ 0102 +e(0172 +0273)] A

= 3(01 Agst 02 Apg) + €(010274 +75) =0 (5.4.91)

where
Y1 =5 | Apq E—E - Ags Zs_+; = Xp tXq* Xs
A A A
W, Wy W
A A A A
73=%< sq P9 PQ>+Xp_xq
Wy  wp W,
o =1 qu+Aqs _ 2
4738 w, Wy q
and

wp W

1
- 1 A A
= Lo * AR o (
Ys =3 ( qs Xp pq Xs) 4coq
The transition curves correspond to the value of w and € for which X has two
equal roots.
Next the results of Sections 5.4.2 and 5.4.3 are applied to the dynamic buck-

ling of a beam under the influence of a periodic follower force.

5.4.4. LATERAL VIBRATIONS OF A COLUMN PRODUCED
BY A FOLLOWER FORCE
As a numerical example we consider the linearly elastic, uniform column
shown in Figure 5-4. The partial-differential equation governing the small trans-
verse motion without damping is
*w 0%w 92

w .
EI‘ax—4+m—5;5—+PCOS Qt a2 =0 (5.4.92)

where E is the elastic (Young’s) modulus, [ is the moment of inertia of the
cross-sectional area about the centroidal axis, and m is the mass per unit of
length.
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It is convenient to introduce dimensionless variables (denoted with an aster-
isk). Here we put

scX oy pel JE
x¥=- an r*=7 -
Then (5.4.92) becomes
tw*  9iw* 2w
T + 2€ cos w*t* P =0 (5.4.93)
where
PP
2= and w*=QI /-
EI ET

To complete the statement of the problem, we need to specify the boundary
conditions. At x* =0, there is a clamp; thus both the deflection and the slope
are zero there, and hence

w*0,£)=0 and

(5.4.94)

At x* =1, the end is free; thus both the moment and the shear force are zero
there, and hence

02w 3w
pyors (1,£)=0 and Py

(1,H=0 (5.4.95)

We shall drop the asterisk in what follows.
We express the deflection as an expansion in terms of the free-oscillation
modes. That is, we put

w(x, 1) = i Up (1) 9, (x) (5.4.96)
where
S (X) = N, 9 (x) = 0 (5.4.97)
$,(0) = ¢,,(0)=0 (5.4.98)
and
$n(1)=0, ¢,(1)=0 (5.4.99)

The solution of the eigenvalue problem defined by (5.4.97) through (5.4.99)
can be written in the form
cosh A,, + cos A

¢, = cosh X\,,x = cos \,,x ~ ———+———" (sinh A,,x - sin \,,x) (5.4.100)
sinh A, +sin A,
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where the \,, are solutions of
sinh? A, - sin? A,, - (cosh A,, + cos A,,)*> =0 (5.4.101)

We note that the ¢,, are orthogonal. The ¢,, are called the free-oscillation modes,
or simply modes, and the A% are called the natural frequencies of the system.
Next we shall obtain the equations governing the time-dependent coefficients u,,.

Substituting (5.4.96) into (5.4.93), multiplying by ¢,,,(x), and then integrating

the result from x =0 to x = 1, we obtain

U + Wity +2€COS WE D frantty =0 (5.4.102)
n=1
where
1
f $n Om dx
foan = (5.4.103)
f O dx
(
and
(5.4.104)

2 —)\4
Wy = Ny

Figure 5-11, from Nayfeh and Mook (1977), shows the transition curves. The
results for w near 2w; and w, - w; were computed by using (5.4.67), which

0.2
2 T T T T T T
% I
/,"‘
i
m
7 Il

W= wy — Wy w=2w, !
I
]
W=w;3 — Wy w—w4—w3','
I
!
!
N |
g 0.1 w=2w1 " —
P % |
w=w; + w47
!
1 | 1 | | | 1 1 |
1 2 3 4 5 6 7 8 9 10

w/2w,

Figure 5-11. Transition curves for the dynamic buckling of a free-fixed column under the

influence of a sinusoidal follower force.
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applies when there is a single resonance. The results for w simultaneously near
w3 - w, and 2w, were computed by using both (5.4.67) (these are shown by
dotted lines) and (5.4.80) (these are shown by solid lines); the latter applies
when multiresonances occur simultaneously. Moreover the results for w simul-
taneously near w, - w3 and w,; + w3 were computed by using both (5.4.67)
and (5.4.91); the solid lines account for the effect of simultaneous resonances.
For the present results 20 terms were used to compute pq, Hgs, Xp» Xq, 204 Xs-

For the case when w is near 2w, and wj3 -~ w, simultaneously, the results
obtained from (5.4.80) show a rounded merger lower than the intersection
obtained from (5.4.67). For the case when w is near wy — w3 and w; + w;
simultaneously, the results obtained from (5.4.91) do not intersect, in con-
trast with the results obtained from (5.4.67).

We note that there is no discernible difference between the two sets of results
when e is less than 0.1.

5.4.5. EFFECTS OF VISCOUS DAMPING

It was shown in Section 5.3.5 that viscous damping is stabilizing. However
Schmidt and Weidenhammer (1961), Piszczek (1961), and Valeev (1963)
showed that viscous damping may have a destabilizing effect on combination
resonances. Thus we restrict our attention in this section to exhibiting this
destabilizing effect.

We modify (5.4.4) by the addition of viscous damping and obtain

N
Uy + 2€,tl, + Wplly +2€COS WE Y frmiy =0 (5.4.105)
m=1

We only consider the resonant case w ~ wp, + wg and let w = w, + w, + €0.
Using the method of multiple scales as in Section 5.3.5, we find that

U, = A, (Ty) exp (iw, Ty) + cc + O(€) (5.5.106)
where A4,, + 4, A, =0 for n # p and q and
2iwp(Ap + upAp) t fpq A q exp (i0T;) =0
2iwg(Ag +ugAg) + fqpAp exp (ioT) =0
We seek a solution for (5.4.107) in the form (5.4.28) and obtain

(5.4.107)

A= —%0— ’%i(ﬂp +“q) 1% [02 - qu - (Nq - Np)2 + 2i0(ﬂq - :up)] 12

(5.4.108)

It follows from (5.4.108) that the motion is stable if w, + u, =y and unstable if
Mp T g <y, where y is the imaginary part of the radical in (5.4.108). The transi-
tion curve separating stability from instability corresponds to u, + y, = y. In
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this case the radical in (5.4.108) is x +i(u, + ug). Hence
[x +i(l~‘p +l-lq)]2 =0° - qu - (I-lq - Np)2 + 2i0(#q - up)

(5.4.109)
Equating real and imaginary parts in (5.4.109) leads to

x? - (up +:uq)2 =0%- Apg = (kg - #p)2
(kp + ug)x = 0(kg = 1p)

Eliminating x from (5.4.110) and solving the resulting equation for o, we
obtain

(5.4.110)

A
0% = (u, +uy)? (——Eq—— 1> (5.4.111)
(ko * ) 4uip g

Hence the transition curves separating stability from instability emanating
from w = wp, + wq are given by

w=wp twg Te(Ug +ip) [Apg(dtpug)™ - 112 +-- - (5.4.112)

As in the case of no damping, the motion is completely stable if Ap; < 0. When
Apq > 0, there exists a region in the §w-plane in which the motion is unstable.
Since 02 = Apq in the absence of damping, viscous damping increases the un-
stable region when 6®> > A,, and decreases the unstable region when 0 < Apq.
When u, = ug, o? = Npq - 4,u,2, and viscous damping is stabilizing. As u, > 0
while w, is fixed, 0% = oo and viscous damping is destabilizing. For general values
of yp, and g, viscous damping is destabilizing if

A
Apg < (1 +n)2( & -1>
Pq q 14 4“17#(1

or

Apg > Aipiig (g + 1p)* (g — 1p)™° (5.4.113)
Certainly (5.4.113) is satisfied if u, - 0 while y, is fixed, and it cannot be satis-
fied if ug = up.

5.5. Linear Systems Having Repeated Frequencies

In contrast with the previous section, here we consider systems having re-
peated frequencies. We can expose the principal features of the analysis and limit
the algebra to a minimum by considering a linear system having three degrees of
freedom, with two of the frequencies being equal. Thus we consider

3
X1 + wix, + 2e cos wt > finX, =0 (5.5.1)

n=1



322 PARAMETRICALLY EXCITED SYSTEMS

3
Xy +wixy +x1 +2ecoswt Y fonX, =0 (5.5.2)
n=1

.. 3
X3 + wixs +2ecos Wt Y fi3,%, =0 (5.5.3)
n=1

where w; is away from w; and € is small. Fu and Nemat-Nasser (1972 a, b,
1975) were the first to analyze such systems.

In the absence of the parametric excitation, the system is unstable (the system
is said to be in flutter) because x, contains a secular or resonant term of the
form ¢ sin (w,t + ), where § is a constant. We wish to determine if the para-
metric excitation can stabilize the system. To do this, we assume that all three
modes are bounded and then, if possible, determine the values of the parameters
which are consistent with this assumption, particularly those values at the
boundaries of the region where the assumption is valid.

Although the parametric excitation might stabilize the motion, we still expect
the amplitude of the x,-mode to be much larger than that of the x,-mode. We
do not have any indication of the amplitude of the x3-mode. To express our
expectations systematically, we scale the dependent variables. Without loss of
generality we put

Xy =uy, Xp,=€Mu,, andx;=eMus (5.5.4)

where the u, are O(1) and the )\, are positive constants to be determined in
the solution. Substituting (5.5.4) into (5.5.1) through (5.5.3) leads to

Uy +wluy +2(efyuy + €M flouy + €N fsus) coswr =0 (5.5.5)
iy + wluy +eMuy + 26" fouy +efnu, + '™ fr3u3) cos wt =0
(5.5.6)
s + wlug +2(e™™ fu, + €N foun + efsaus) cos wt =0
(5.5.7)

Here we are concerned with various combinations of the frequencies which
can lead to a resonant response. Thus we use the method of multiple scales to
determine a uniformly valid approximate solution which exhibits the effects
of the repeated frequency and the resonant combinations of frequencies. We
write the various time scales as

To=t, Ty=¢¢t, andT, =e*M¢ (5.5.8)
where )\, is another constant to be determined. In terms of these scales,
d2

772 = D8 +26MDoD, + &N (2DoD; + DY) + - (5.5.9)
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And we assume expansions in the form
Un(t; €) = tno(To, Try T5) + €™ty (To, Ty, To) + €™ sy (To, T, To) + -+ -
(5.5.10)
Substituting (5.5.8) through (5.5.10) into (5.5.5) through (5.5.7) leads to
D3uyo + whuyg + €™ (Dfuyy + wluyy +2DoD;uy)
+ €M (D3uy + wiugy +2DoDautyg + Diugg + 2DoDyuyy)
+2(efi1ttio + €7 frattyg + €M flouy,
+ el ™ flaus + €N faug ) cos wTp + 00 - =0 (5.5.11)
D3usg + wlig + €™ (D3usy + wliyg +2DoD; i)
+ €M (D3uz + wlttyy +2DoDyttyy +D3ttzg + 2D Dsttz)
+eMugg + 2™ frugg + efrtng + € fryuy
el fopag el NNy Yeos wTp =0 (5.5.12)
Djuso + wluse + €™ (Djus, + wius, +2DoDyus)
+ €2 (D3uy, + wluzy + 2DgDyuzy +D3usg +2DeDyus0)
+ 2(51”\3f311410 + 51—}\2”\3](32“ 20 F 61_}\2*-}\3”\“]?32'421
t+ €faztise + €M fizusy) cos wlp +- =0 (5.5.13)

Next we consider the following resonant combinations: w near 2w, w near
wq + w3, and w near w.

5.5.1. THE CASE OF w NEAR 2w
In this case the resonant combination is
w-w; =w; +2eM0 (5.5.14)

where As is another constant to be determined and ¢ is a familiar detuning
parameter. To determine the effects of the resonant combination and the
repeated frequency, we must at least include the effect of fi,u40 in (5.5.11) and
the effect of u,o in (5.5.12). Thus we put

>\2 =)\4=% (55.15)
And because the resonant term appears in the equation for u;;, we put
As = (5.5.16)

In this case A; cannot be determined unless initial conditions are taken into
account. It can be easily shown that the stability of the motion is independent
of the value of A;. For simplicity we set A3 = 0.
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Equating coefficients of like powers of €!/2 in (5.5.11) through (5.5.13)leads to

Order €°

Djuyo + wiuyy =0 (5.5.17)
Djugg + wityy =0 (5.5.18)
Djuzo + wiuz =0 (5.5.19)

Order €'/?
D3uyy + w3y +2DoDyuqy + 2f12Ug cos wTy =0 (5.5.20)
D3uyy + w3ty +2DgDytigg + 1o =0 (5.5.21)
D3uzy + wiusy +2DgD1usg + 2fspttyg cos wT =0 (5.5.22)

For a first approximation that includes the effects of the repeated frequency
and the resonant combination, we do not need to determine the dependence
of the result on the scale 7,. Thus we write the solutions of (5.5.17) through
(5.5.19) as follows:

Uy =A(Ty) exp (iw, Ty) + cc (5.5.23)
Uy = A,(Ty) exp (iw, Ty) + cc (5.5.24)
usg =Az(Ty) exp (iwsTy) + cc (5.5.25)

Substituting (5.5.14) and (5.5.23) through (5.5.25) into (5.5.20) through
(5.5.22) leads to the following conditions for the elimination of secular terms
from uyq, Uy, and usz; :

2iw, A + f1,A4, exp (2i0T;) =0 (5.5.26)
i, Ay + A, =0 (5.5.27)
2icss Ay =0 (5.5.28)

where the prime indicates the derivative with respect to 7. In this case there
is no strong interaction between all the modes. Rather the system responds as
two independent smaller systems—one having two degrees of freedom and the
other having a single degree of freedom.

Eliminating 4 ; from (5.5.26) and (5.5.27) leads to

fia

As +
402

A, exp (2i0T;)=0 (5.5.29)

Letting
A2 = (Br + ZBI) exp (lO'Tl) (5530)
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where B, and B; are real functions of T leads to

n ! f
B} - 20B}+ (4;2% -0?| B,=0 (5.5.31)
Bl +208,- (L2 4 62) B,=0 5.5.32
i 05y 402 Y i (5.5.32)
1
Equations (5.5.31) and (5.5.32) admit nontrivial solutions having the form
(By, B;) = (by, b;) exp (vT1) (5.5.33)
where b,, b;, and v are constants provided that
vi-o%+ f;z -20y
4w1
=0 (5.5.34)
f12
207 2 - 0% - 2ol
or
f12
P=-g? s = 5.5.35
Ve ( )

The motion is stable if  is imaginary. Thus the motion is stable if

/12|
1> 5.5.36
e 4¢? ( )
and unstable if
|f12
= 5.5.3
¢ 40?2 ( D
The transition curves correspond to
1
=t — 1/2 5.5.38
Y 2w, (1112 ( )
and hence the transition curves emanating from w ~ 2w, are
ell2
w=2w; +2V?0=2w, i-;——(lfn DY2 + 0(e) (5.5.39)
1

Thus the parametric excitation can be stabilizing when w is near 2w, .

5.5.2. THE CASE OF w NEAR w; + w3
In this case the resonant combinations are written as

W= W = W3 +eMdo  and  w- W3 = Wy +ehsg (5.5.40)
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where A5 is to be determined. To determine the effects of the repeated fre-
quency and the resonant combination, we must at least include 2f;3u39 cos w7,
in (5.5.11), uyo in (5.5.12), and 2f5u4 cos wT, in (5.5.13). Initially it may
appear that we have two choices:

LL1-A=N, N=h, andl-N+23=0g (5.541)
2.1-N03=2N, N =2N, and 1- 20 25 =20 (5.5.42)
The first choice leads to
N=M=% and A =1 (5.5.43)
while the second leads to
=% and A=) =1 (5.5.44)

We note that the order of the second terms in expansion (5.5.10) is higher
for the first choice than it is for the second choice. Thus it appears that one may
exclude or miss a term with the first choice, and hence the resulting expansion
may be inconsistent or incomplete. In this case we note that for the first choice
the order of the term containing 2f},u,5 cos (wTy) is €'/3. Thus equating co-
efficients of like powers of € leads to the impossible condition

frattz =0 (5.545)

Here we proceed using the second choice (5.5.42). This is an example in which
we must consider the first three terms in expansion (5.5.10) in order to obtain a
first approximation which includes the effects of the repeated frequency and the
resonant combination.

Equating coefficients of like powers of e leads to

Order €°

D3uy + wiuyy =0 (5.5.46)
D3ty + gy =0 (5.5.47)
Diusg + iz =0 (5.5.48)

Order €'/3
Duyy + wiuyy +2DgDyuyg + 2f15Usz0 cos wTy =0 (5.5.49)
D}uy + wiuyy +2DoDyugg =0 (5.5.50)
Djuszy + w3uz, +2DyD uszp =0 (5.5.51)

Order €*/3

Djuy, + wiuy, +2DgDyuy; + 2DoD,uq + Diuyg

+ 2f1pUs; cos wTo + 2f13us0 cos wTp =0 (5.5.52)
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Djus, + wiuz, +2DoDyus, + 2DoDyuzg + Diusg + 2f syt cos wTy =0

(5.5.54)
The solutions of (5.5.46) to (5.5.48) can be written as
Uy =A(Ty, Ty) exp (iw, Ty) + cc (5.5.55)
Uz = Ao(Ty, Ty) exp (iw, Ty) + cc (5.5.56)
Uzg = A3(Ty, Ty) exp (iws Ty) + cc (5.5.57)

Substituting into (5.5.49) through (5.5.51), one finds that secular terms are
eliminated from u,;, u,;, and ug; if

DA, =DA4,=D4;=0 (5.5.58)
Thus the solution is independent of T, and hence we put
As =20 =3 (5.5.59)
It follows that

w =g {A2 exp [i(w + w))To] | 4, exp [i(w = 1)To] }+CC
o w(w +2w;) w(w - 2w;)
(5.5.60)
Uy U3, =0 (5.5.61)

Substituting all these results into (5.5.52) through (5.5.54), one finds that
secular terms are eliminated from u,,, u,,, and us, if

21(&)1A’] +f1323 eXp (i0T2)=0 (5.5.62)
Qi Ay + 4, =0 (5.5.63)
21(0314;) +f3222 €xXp (lO'Tz) =0 (55.64)

where the prime indicates the derivative with respect to T,.
Eliminating A, and A5 yields

A i - iﬁézf_sz_Al =0 (5.5.65)
8wiws

Equation (5.5.65) admits solutions having the form

Ay =aexp (ivT,) (5.5.66)
where o and vy are constants, provided that
Y- oyt + —f‘—{%"’—= 0 (5.5.67)
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Equation (5.5.67) has either three real roots or one real root and two complex
roots that are conjugates. It follows from (5.5.66) that the motion is stable if,
and only if, all the roots are real. Thus the transition from stable to unstable
motion occurs when two of the roots are equal.

We denote the roots corresponding to transition as v;, 7y, and 3. Then

2y tys=0 (5.5.68)
Y1(y1 +273)=0 (5.5.69)
f13f5
tva=-5— 5.5.70
Y173 800% g ( )

Equation (5.5.69) shows that either y; = 0 or y; + 2y3 = 0. We consider these
possibilities next. When y; = 0, it follows that f5f3, = 0 and that y3 = ¢. Thus
there are three real roots, two of which are zero, for all values of 0. When
Y1 =—27s, it follows from (5.5.63) and (5.5.70) that

1/3
_3 f13f32
=gl 5.5.71
772 (460%(03) ( )
Combining (5.5.40) and (5.5.71) yields the following transition curve:
1/3
w=w; +w; +%<&2£3—2—> et (5.5.72)
4wiws

Thus the parametric excitation can be stabilizing when w is near w; + ws.

5.5.3. THE CASE OF w NEAR w;
In this case the resonant combination is

20-w, =w; tetg (5.5.73)

Thus we must include the terms containing fi,u,; cos wT, in (5.5.1 1) and u,,
in (5.5.12). The resonant terms first appear in the equations governing u,,;.
Consequently we put

A =N =As =1 (5.5.74)

It follows that A3 must be either zero or unity. It can be shown that the value
of vv3 does not affect the stability of the solution, so we set it equal to zero.
Equating coefficients of like powers of € leads to

Order €°

D%Ulo + w%ulo + 2f12u20 Ccos COTO =0 (5575)
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Dz + witiyg =0 (5.5.76)
D3usg + wiusg + 2fsptz0 cos wTy =0 (5.5.77)
Order €!
Diuyy + wiuy +2DoDyutyg + 2(frittio + fratiay + fiathag) cos wTo =0
(5.5.78)
Dy + Wity +2DoDytizg +tyg + 2 ppthze cos WTo =0 (5.5.79)

2 -
Djusy + wiusy +2DoDyuse + 2(fartho + faua + fa3tzg) cos wTy =0

(5.5.80)
It follows that u,, is given by (5.5.24). Then
. A, exp [i(w+w,)Tp)
= T +
uso = A3(Ty) exp (iw3To) fsz{ (w+wy)? - wd
A j(w - T
+ 22 OXP [l(w2 w1)2 ol +cc (5.5.81)
(w-w)? - w3
. A, exp [i(w+ wy)T
uw=A1(T1)exp(zw1T0)+f12{ 2 exp [i( 1)7o]
w(w+2w1)
+ A2 eXp [l(w_ wl)TO] tee (5582)
w(w - 2w;)

Substituting these results into (5.5.79), one finds that secular terms are elim-
inated from u,, if

2icw, Ay + 4, =0 (5.5.83)
and that
- A2 f12 .
Uz " (ot 200) [fzz +w(w+2w1)]exP [i(w +w;)T,]
ZZ f12 .
— 2| et - tee (5584
o o | | i@ eTal e (5580

Moreover it follows from (5.5.80) that secular terms are eliminated from w3, if
Ay =0 (5.5.85)

Substituting (5.5.81), (5.5.82), and (5.5.84) into (5.5.78), we find that secular
terms are eliminated from u,; if

A} + 2w 0,4, + 2w, 0,4, exp (i0T;) =0 (5.5.86)
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where
2
4ta, =2f12§f11 +]:22) +f_1; 1 ~ 1 .
w* - 4w w’ [(w-2w)? (w+2wy)
1 1
+ +
f”f”[(wmm—w% (w—wl)z—w%]
212 (fu1 + 1)  10f%, 1 1
~- + - —
367 9t Tl | At G ae
(5.5.87)
4w%a2=f12(f“ + 1) r— I 4 f13f322 .
ww-2w) wW(w-2w)? (- w)? - wl
2 +
wf*lj_ f12(f112 f2) f13]:32 (5.5.88)
Wi w1 w3
Eliminating 4, from (5.5.83) and (5.5.86) yields
Ay + a4, + 0,4, exp (i0T;)=0 (5.5.89)
Letting
A, = (B, +iB;) exp (L ioT,) (5.5.90)
where B, and B; are real functions of T}, leads to
B! - oBj+(ay +ay - $0*)B,=0
r i (1 2 4 ) v (5'5'91)

B + 0B, +(a; - 0 - 0%)B; =0
Equations (5.5.91) admit a solution having the form
(B, B;) = (byb;) exp (vT1) (5.5.92)

where b,, b;, and v are constants, provided that

Ve g0t te LT =0 (5.5.93)
ay v to; - 207~y
or
(Y to-10*)?-dd+0%y2 =0 (5.5.94)
Hence

7 =-(y +§0%) F (g0 +ad)/? (5.5.95)
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Equations (5.5.90) and (5.5.92) show that 4, is unbounded, and hence the
motion is unstable if the real part of any of the v’s is positive definite. The
transition curves separating stability from instability correspond to

(v -10*) =0 or 0=£2y tay)? (5.5.96)
Hence the transition curves emanating from w = w, are given by
w=w; Fela ta,)2 4 (5.597)

Thus the parametric excitation can stabilize an otherwise unstable motion.

5.6. Gyroscopic Systems

In this section we consider linear systems governed by equations having the
form

[M]ii + [G]a+ [A]u=0 (5.6.1)

where u is a column vector having n components, [M] is an n X n symmetric
matrix, [G] is an n X n antisymmetric matrix, and [4] is an n X r matrix. In
this system [M]u + [G]1 represents the inertia and [G] 1 represents the portion
that is due to gyroscopic effects. Systems governed by equations containing
inertial terms such as [G]u are called gyroscopic systems because their behavior
is characteristic of the gyroscope.

Systems of this type were analyzed by a number of investigators. Smith
(1933), Tondl (1965), Black and McTernan (1968), and Iwatsubo, Tomita, and
Kawai (1973) studied the vibrations of asymmetric shafts and rotors supported
by asymmetric bearings. Fedorchenko (1958, 1961) analyzed the motion of
gyroscopes resting on vibrating supports. Danby (1964), Grebenikov (1964),
Alfriend and Rand (1969), Luk’ianov (1969), Markeev (1970), Nayfeh and
Kamel (1970a), and Nayfeh (1970a) analyzed the stability of the triangular
points in the elliptic restricted problem of three bodies. Kane and Sobala (1963)
and Nishikawa and Willems (1969) analyzed satellite attitude stability. Kane and
Mingori (1965) investigated the effect of a rotor on the attitude of a satellite in
a circular orbit, Mingori (1969) determined the effect of internal damping on the
stability of dual-spin satellites, and Lindh and Likins (1970) used an infinite
determinant method to analyze the problem studied by Mingori (1969). The
stability of spinning asymmetric satellites in circular orbits was studied by Kane
and Shippy (1963) and Meirovitch and Wallace (1967), while the stability of
spinning symmetric satellites in elliptic orbits was studied by Kane and Barba
(1966), Wallace and Meirovitch (1967), and Markeev (1967b).

For simplicity we consider a system having two degrees of freedom in order to
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illustrate the basic method of analysis and obtain the characteristics of the
solution. Specifically we consider

Uy + N, +aguy +2e(friuy tfiaup) cos wi=0
i (5.6.2)
Uy — }\21:!1 +a2u2 + 2€(f21u1 +f22U2) Cos Wt = 0

where €, w, A;, &;, and f;; are constants.

We seek a first-order uniform expansion of the solution of (5.6.2) for small €
in the form

U = Upmo(To, T1) + €U (To, Ty) +- -+ (5.6.3)

where T, = e"t. Substituting (5.6.3) into (5.6.2), transforming the derivatives,
and equating coefficients of like powers of €, we obtain

Order €°
D3uyo + Ny Dottgo + i1 =0 (5.6.4)
D3z - MoDothyo + agitzg = 0 (5.6.5)
Order €
Djuqy + N Dotiyy + aqttyy ==2DoDyttso = My Dy
=2(futtso t fiatiao) cos wTy (5.6.6)
Diuyy - MDottyy + 0oy =-2DgDyty + 0Dty
~2(farthro + frathzo) cos wWTy (5.6.7)

We write the solutions of (5.6.4) and (5.6.5) in the form

uyo = Ay(Ty) exp (iw; To) + A5(Ty) exp (iw, To) + cc (5.6.8)

Uy = E%;)—t—ﬁlAl exp (iw,Ty) + L(%il——j:—%)A2 exp (iw,Ty) + cc
(5.6.9)
where w? and w? are the solutions of
W= (o oy T AN e, =0 (5.6.10)

Here we assume that w, and w, are real and positive, and we make w, > w;.
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Substituting (5.6.8) and (5.6.9) into (5.5.6) and (5.6.7) leads to

D3uyy + Ny Doy +ayuyy =~i(ﬂ2:—@A'l exp (iw, Ty)
1
_ Mo i) w%)A'Z exp (iw, To)
(5]
- :fu +i£gl—;\j%§lléz]Al exp [i(w+ w;)To]
- —f“ - im—l);—Z?ﬁ; A exp [i(w- wy)To]
- rfu +i(i>:—l—:0—)%)—ﬁ—2j A, exp [i(w+ wy)T,]
- Ffll —i(a——l—)—:l—:)—?él- A, exp [i(w- wy)To] +cc
(5.6.11)
D3uy, - MyDoutyy + apuiyy = 2o M}z\2 ~ 204 A exp (iw, To)
1
. 20 + M A, - 2003 A, exp (i To)
Ay
- -fn JEI}%E)ﬂq Ay exp [i(w + w)To]
- -f21 ‘Kgl-):—l%?—fﬁ. Ay exp [i(w- w1)To]

. 9
i(oy - w%)fzz

“|fat

Aj exp [i(w + wy)To]
L AWy J
r . 2 R
il - w _ .
- |fa BC L)) A, exp [i(w - wy)] T

L AW, J

(5.6.12)

To this order there are several possible resonant combinations of w, w;, and

w,. These include (a) w =~ 2w;, (b) W = 2w,, (¢) W = w; + w,, and (d) w =

w, - w;. In the following subsections we consider the case when none of these
resonant combinations exists as well as several resonant cases.



334 PARAMETRICALLY EXCITED SYSTEMS

5.6.1. THE NONRESONANT CASE

Because (5.6.11) and (5.6.12) are linear equations, we can obtain particular
solutions for each of the terms on the right-hand sides independently. To deter-
mine the solvability conditions, we seek particular solutions corresponding to
the terms containing the factors exp (iw,, T, ) in the form

uy =Py(Ty) exp (iw; To) + Q1(Ty) exp (iw, To)
Uz = Py(Ty) exp (iw To) + Q2 (T1) exp (iw, Tp)

Substituting (5.6.13) into (5.6.11) and (5.6.12) and equating the coefficients
of exp (iw,, Ty) on both sides, we obtain

(5.6.13)

(01 - w})Py +iw NP, =R,

(5.6.14)
—iw M Py + (ay - wi)P, =R,
where
] +w?) 200 + N\, - 2003
Ry =G g 2t 30L (6
(O Ay
and
(o - w%)Ql tiw M@, =5y
) ) (5.6.16)
“iwa M 04 H (- w3)0, =8,
where
(0 +w3) 200 + N A, - 2w
s, = ate) oo 2t 20, (5.6.17)
Wy A

Because the coefficient matrices for (5.6.14) and (5.6.16) are singular accord-
ing to (5.6.10), solutions of (5.6.14) and (5.6.16) do not exist unless

a - w? Ry
=0 (5.6.184a)
“iwl)\z R2
and
a - wi S,
=0 (5.6.18b)
—iwz)\2 S2
It follows that
(al - (O%)R2 +iw1>\2R1 =0 (56.193)

and

(al - w%)Sz +iw2)\2S1 =0 (5619b)
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Substituting (5.6.15) into (5.6.19a) leads to
A1 =0 (5.6.20)
while substituting (5.6.17) into (5.6.19b) leads to
A45,=0 (5.6.21)

Hence 4, and A4, are independent of 7, and one has to continue the expansion
to second order to determine the dependence of 4; and A, on T,.

5.6.2. THE CASE OF w NEAR 2w,
Here we consider only the case of w =~ 2w;. The case of w =~ 2w, can be
treated in a similar fashion. Thus we set

w=2w; teo (5.6.22)
and then write
exp [i(w- w,)To] =exp [iw, Ty +ioT,] (5.6.23)

In this case we also seek particular solutions which correspond to the terms
containing the factors exp (iw,T,) and have the form of (5.6.13). But now,
instead of (5.6.15), we obtain

i tw i(a; - wi _ )
% [ 11 _Ll_.—l—)fﬂ]Al exp (ioTy)
1

R, =
! A w,y

2 = 2t 7\;\)1\2 - 2o A} ‘[le - &ﬁilfzz] Ay exp (ioT)
(5.6.24)

Then it follows from (5.6.19a) that

Ay - T4, exp [i(cT; +7)] =0 (5.6.25)

where I' and 7 are real constants such that

o 2 -1 (o - w?)?
I"exp (ir) = %l:( 1 N i) "'0‘17\2] [iw1)\2f11 “%:ull—)fzz
1

(o - w%))\z
A\

+

Jiz (g - w%)le] (5.6.26)

We substitute

Ay = (B, +iB;) exp [3i(oT; +1)] (5.6.27)
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where B, and B; are real into (5.6.25), separate real and imaginary parts, and
obtain

B,-410B,-TB,=0

(5.6.28)
B; +30B,+TB;=0
The solution of (5.6.28) has the form
(B, B;) = (by, b;) exp (vT1) (5.6.29)
where b,, b;, and vy are constants. It follows that a solution exists only if
y=+(I?%- 10?12 (5.6.30)

The results for A, are the same as in the nonresonant case. Hence 4, is inde-
pendent of 7.
Combining (5.6.30), (5.6.29), and (5.6.27) yields

Ay = (b, +ib;) exp [YTy + i(oTy +1)] (5.6.31)

It follows that 4, is bounded, and hence the motion is bounded if, and only if,
o = 2|T"|. Consequently the transition from stability to instability corresponds
to 0 = *2I", and the transition curves are given by

w = 2w, * 2l +0(e?) (5.6.32)

In contrast with the nongyroscopic case, the transition curves are in general
functions of fi,, f21, and f5, in addition to f;;.

5.6.3. THE CASE OF w NEAR w, - w,
We let
W=wy - Wy teo (5.6.33)
Hence we can write
exp [i(w+w)Ty] =exp (iw, Ty +ioTy)
exp [i(w, - w)Ty] =exp (iw, - ioTy) (5.6.34)

We continue to seek particular solutions having the form of (5.6.13). This
leads to equations having the form of (5.6.14) and (5.6.16). But now, instead of
(5.6.15) and (5.6.17), we find that

o + o2 e — o2
R, =_l(011 (‘Ol)All _[f“ +l(041 wz)f12:|A2 exp (~ioT))
wq >\le
20, + M\, - 201 i(ay - w3
L= g 172 7 2] A - | +1(a1 w3)fn A, exp (-ioT})
A\ AWy

(5.6.35)
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i(a; +w3) |, i(a; - w? .
Sy = “(‘L“z_)Az - [fu +(*1—12f12] Ay exp (ioT)
(OP) AWy
200 + NN, - 20035, i(og - w? .
2 = : 2 2-42“ f21+Li——12f22 A, exp (ioTy)
A Ay wy
(5.6.36)
Then it follows from (5.6.19a) that
A’l = F1A2 exXp (—iGTl) (56.37)
and from (5.6.19b) that
A’2 = F2A1 exXp (lUT]) (56.38)
where
4232 -1 2 - w?
Fl :%[((Xl—wl_)_+al7\2] {(al _w%)fll +l(0€1 C‘;\2)(C¥1 1)f22
1 1W2
. Wi (o - w3)
tiwhfu-—""FT—""ln (5.6.39)
wWalg
— (y2)2 -1 2 _ 2
I = %I:(al <2) +0‘17\2:l {(041 - wi)fa +l(a1 i) wZ)fzz
Ay Wiy
)\ - 2
tiwy N f1y - Mfu } (5.6.40)
w1l
The solution of (5.6.37) and (5.6.38) has the form
Ay =a, exp (vyT)), Ay =a, exp [(y +io)T,] (5.6.41)
provided that
’)/2 +ioy-1; F; =0 (5642)
and
Y
a, = Fl_al (5.6.43)

The solution of (5.6.42) is
7=_%ig;m (5.6.44)

Since I'; T, is complex, in general, the real part of one of the roots of v is always
positive definite, and the motion is unstable. In special cases I'; I, is real (such
as f11 = fx =0, orfi, =f,; =0), and the motion is stable only when o> >4T"; T',.
The transition from stable to unstable motions corresponds to o = #24/I'; 5.
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Hence the transition curve is given by
W=w, - w; £2e/T T, +0(e?) (5.6.45)

Note that unstable motions occur only when I'; and I', have the same sign.
Moreover in contrast with the nongyroscopic case, the transition curves are func-
tions of f;; and f,, in addition to fy, and f5;.

The case w =~ w, *+ w,; can be obtained from the above results by simply
changing the sign of w; .

5.7 Effects of Nonlinearities

In the previous sections we found that parametrically excited linear, un-
damped systems possess solutions that grow indefinitely with time. However
actual systems possess some degree of damping which has a stabilizing effect,
except that in some cases viscous damping may destabilize a system having a
combination resonance (see Section 5.4.5). If the system is truly linear, the
amplitude grows until the system is destroyed as happened to the specially
designed linear oscillating circuit of Mandelstam and Papalexi (1934) whose
amplitude of oscillation grew until the insulation was destroyed by an exces-
sive voltage. However most systems possess some degree of nonlinearity which
comes into play as soon as the amplitude of the motion becomes appreciable,
and it modifies the response. In some instances, as the amplitude grows, the
nonlinearity limits the growth, resulting in a limit cycle, as happened in the
specially designed nonlinear oscillating circuit of Mandelstam and Papalexi
(1934). Thus although the linear theory is useful in determining the initial
growth or decay, it may be inadequate if the system possesses any nonlinearity.
In this section and in Section 6.7 we discuss the effect of nonlinearities on
systems having single- and multidegree-of-freedoms, respectively .

In addition to those mentioned in Section 5.1.4 that deal with the effects of
nonlinearities on the parametric response of elastic systems, there are a number
of investigations that deal with various dynamic systems. Pendulums with
oscillating points of support were studied by Hirsch (1930), Kauderer (1958),
Skalak and Yarymovych (1960), Struble (1963), Ness (1967), Dugundji and
Chhatpar (1970), Troger (1975), and Chester (1975). The nonlinear motion
of a gyroscopic pendulum with a moving point of support was studied by
Sethna and Hemp (1965). Kauderer (1958), Bolotin (1964), Weidenhammer
(1956), and Boston (1971) studied Mathieu’s equation with cubic nonlin-
earities, while Tso and Caughey (1965) studied an equation of the form

1 1

u+8u+ e u™ +ea,u™ ! - eazu™ ! coswt=0

Hsu (1974c) determined exact solutions for a nonlinear Hill’s equation when the
parametric excitation is given in terms of a Jacobian elliptic function, while
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Schwartz (1970) and Pun (1973) analyzed periodic solutions of a second-order
nonlinear conservative differential equation with periodic coefficients, while
Schneider (1972) analyzed periodic solutions of nonlinear differential equations
with periodic coefficients. Tso and Asmis (1974) studied nonlinear parametric
resonances in a system having two degrees of freedom. Effects of nonlinear
damping were treated by Bogoliubov and Mitropolsky (1961), Bolotin (1964),
Hagedorn (1968, 1969, 1970a, b), Hsu (1975a), Nguyen (1976a), and Tondl
(1976¢). Jong (1969) and Tso and Asmis (1970) studied parametric excitations
of a circulatory system and a pendulum, respectively, with bilinear hysteretic
damping. The combined influence of parametric and external excitations was
investigated by Ness (1971), Hsu and Cheng (1974), Nguyen (1975b), and
Troger and Hsu (1977).

To exhibit the influence of nonlinearities, we consider the behavior of solu-
tions of

u+(5+2ecos2t) u=ef(u,i) (5.7.1)

which is a modified Mathieu equation. In what follows we restrict our treatment
to the case of principal resonance (i.e., 6 ~ 1) and obtain a first approximation
only.

To determine the combined effect of nonlinearities and parametric excitations
on the amplitude and phase, we use the method of multiple scales and let

u(tse)=uo(To, Ty) + euy(To, Ty) + - - - (5.7.2)

where Ty = ¢ and T; = et. Substituting (5.7.2) into (5.7.1) and equating the co-
efficients of €® and e on both sides, we obtain

D3ug +8ug =0 (57.3)
Dju; +8uy =-2DogDyug - 2uqg cos 2T + f(uo, Doto) (5.74)
The general solution of (5.7.3) is
uo = A(Ty) exp (iwT,) + A(T;) exp (-iwTy) (5.7.5)
where § = w?. Hence (5.7.4) becomes
D3uq + w?uy = -2iwA exp (iwTy) - A exp [i(-w+2) To]
- Aexp [-i(w+2)To] +cc

+f{A exp (iwT,) + A exp (-iwTy),

iw[A4 exp (iwTy) - A exp (-iwTy)] } (5.7.6)

where the primes indicate differentiation with respect to T’ . To express the near-
ness of § to 1, we let

l=w+eo (5.7.7)
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so that we can express (2 - w) T, as
(2-w)Ty=wly+2e0Ty = wTy + 20T, (5.7.8)

Using (5.7.8) in eliminating the terms from (5.7.6) that produce secular terms
in u;, we have

27w
2iwA'=-A exp (2ioT;) + 563 f fexp (miwTy)dTy, (5.79)
T Jo

Letting 4 = %a exp (if) in (5.7.9) with real a and B and separating real and im-
aginary parts, we have

, 1 2m
a =——a—sin (20T, - 28) - — f sin ¢ f(a cos ¢, ~wa sin ¢) d¢
2w 2mw Jy

(5.7.10)

27
aB'=-a—cos (20T, - 2p8) - Lf cos ¢ f(a cos ¢, —wa sin ¢) do
2w 2mw Jy

(5.7.11)
where ¢ = wT, + . Therefore to the first approximation
u=acos(wTy + L)+ 0(e) 5.7.12)

where a and § are given by (5.7.10) and (5.7.11), which can be transformed into
the autononous system

' a

2m
a=——sin\//-—1—f sin ¢ f(a cos ¢, ~wasin ¢) dp (5.7.13)
2w 2w Jy

, 1 2T
ay =2oa~£cosw+-—- f cos ¢ f(a cos ¢, - wa sin ¢) do
w W Jo

(5.7.14)
where
¥ =20T, - 28 (5.7.15)
Eliminating § from (5.7.12) and (5.7.15) yields
u=acos (- 3¥)+0(e) (5.7.16)

Next we use (5.7.13) and (5.7.14) to ascertain the influence of nonlinearities.
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5.7.1. THE CASE OF QUADRATIC DAMPING
In this case f(u, ) = - |i|, and (5.7.13) and (5.7.14) become

! g gn ¥ 4 2
a = - — — —
2w 37 peoa
(5.7.17)

a
ay' =20a- —cos Y
w

In the absence of the nonlinearity, the system is stable (i.e., no energy is pumped
into the system) if |o| > 1/2w =~ %, and the system is unstable (i.e., energy is
pumped into the system) if |0 <1/2w ~ 1.

When the system is linearly stable, the phase y is such that no energy is being
pumped into the system by the parametric excitation; that is, sin ¥ > 0. Since
the damping term in the equation for &' is always negative, the motion dies out
no matter how large the initial amplitude is. On the other hand, when the system
is linearly unstable, energy is being pumped into the system by the parametric
excitation (i.e., sin Y < 0) causing @ to increase. But as a increases, the dissipa-
tion due to viscosity restricts the increase of a. Thus steady-state motions occur
when the rate at which energy is being pumped into the system is exactly equal
to the rate at which energy is being dissipated. When this occurs, a’ = ¢' =0, and
the steady-state motions correspond to

8
a<sin \,b+——uw2a)=0 (5.7.18)
37

a(cos Y - 2w0)=0 (5.7.19)

Equation (5.7.19) shows that a necessary condition for the existence of non-
trivial steady-state amplitudes is || < 1/2w or approximately |o| < % because
w~ 1. Thus as anticipated above, steady-state motions exist only if the linear
motion is unstable. That is, the phasing is such that energy is pumped into the
system by the parametric excitation. When a # 0, the solution of (5.7.18) and
(5.7.19) is

¥ =cos™ (2wo)
(5.7.20)

37
80co? (1 - 4w?o?)Y?

a=

Since the steady-state motion corresponds to ¥ = constant, (5.7.16) shows that
the effect of the nonlinear damping is to limit the unstable linear motion to a
finite-amplitude motion whose frequency is one half the frequency of the
excitation. In other words, a subharmonic is generated by the system.
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5.7.2 THE RAYLEIGH OSCILLATOR
For the Rayleigh oscillator, f = - 43, and (5.7.13) and (5.7.14) become

a |
¢=-Lsin g+ a(l - Jota?) (5.7.21)

ay' =20a - gcos v (5.7.22)

Also in this case parametrically unstable linear motions do not grow indefinitely
with time because the damping tends to limit the growth. Thus if the phasing is
such that energy is being pumped into the system by the parametric excitation,
a steady-state motion occurs whenever the rate at which energy is being pumped
into the system is exactly equal to the rate at which energy is being dissipated.
This occurs when @’ = ' = 0. The steady-state motion corresponds to

asin Y =aw(l - 3 w?a?) (5.7.23)
acos Y =20wa (5.7.29)

Equation (5.7. 24) shows that finite-amplitude steady-state motions exist only
if lo] < 1/2w =~ 1, that is, if the linear motion is unstable. In this case elim-
inating Y from (5.7.23) and (5.7.24) leads to the frequency-response equation

40> +(1- 3p)? = w2 (5.7.25)

where p = w?a® ~ a*. This response curve is shown in Figure 5-12. Note that
finite-amplitude motions do not exist when |o| > %, that is, when the linear
motion is stable. Since for steady-state motions  is a constant, the nonlinearity
limits the unstable linear motions to finite-amplitude motions whose frequency

[T1ES
1
T

-05 05 Figure §5-12. Frequency-response curves of a para-

metrically excited Rayleigh oscillator.

Qo
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is exactly one half the frequency of the excitation; that is, a subharmonic is
generated.

5.7.3. THE DUFFING EQUATION WITH SMALL DAMPING

Among other places, equations of the Duffing type arise in the study of the
lateral vibrations of pin-ended columns subjected to periodic loads. In this
context the second derivative represents the inertia, the linear term represents
the restoring force due to bending, and the cubic term represents the restoring
force due to stretching of the neutral axis.

For the Duffing equation with a small amount of viscous damping, = - au® -
2u and (5.7.13) and (5.7.14) become

a'=—isin\b—pa (5.7.26)
, a 3a
ay =20a-—cosy - —a (5.7.27)
w 4w

In this case the nonlinearity does not affect the amplitude directly, as in the pre-
vious two examples, but it affects the amplitude indirectly through changing the
phase V.

In the absence of the nonlinearity, the motion is unstable if the parameters &
and € correspond to a point above the curve in Figure 5-9; otherwise it is stable.
If the parameters correspond to a point above the curve, sin Y < -2uw initially;
and no matter how small a is initially, provided it is different from zero, energy
will be pumped into the system by the parametric excitation leading to an in-
crease in a. However this increase will be accompanied by a change in the phase
Y according to (5.7.27) and hence a change in the rate of energy being pumped
into the system. When the rate at which energy is being pumped into the system
is exactly balanced by the rate at which energy is being dissipated by viscous
effects, the system achieves a steady-state motion, thereby the amplitude will be
limited by the nonlinearity to a finite value. The steady-state motions occur
when @’ = y' = 0, which for the nontrivial case corresponds to the solutions of

sin Y = -2wu

(5.7.28)
cos ¥ = 20w - 3 aa?

Hence, recalling that w = 1 + €0, one finds that in the first approximation the

steady-state amplitudes are given by

1/2
a= [2—" (1 - ;ﬁ)lﬂ] (5.7.29)
(6%
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For a steady-state solution to exist, 2> must be positive. Thus 2u must be less
than unity (i.e., the amplitude of the excitation must be greater than the
damping coefficient to produce a sustained motion). Moreover we note that if
the above conditions are satisfied, only one steady-state solution is possible if
lol <1(1 - 4u2)"/? while two are possible if 0 > 1(1 - 4u)"/2 when a>0. If
these steady-state solutions are also stable, then one should be able to observe
them in an experiment. Next we consider the stability of these various possible
solutions.

We note that (5.7.26) and (5.7.27) have the form of equation (3.2.3) and that
what we are calling a steady-state solution here is a singluar point or an equi-
librium state in the discussion of Chapter 3. Thus determining the stability of
the steady-state solution is precisely the problem of determining the nature of
the singular points, as described in Section 3.2.1.

In this case the coefficient matrix [see (3.2.16)] is

1
[4] = [ 0 240 €08 w"] (5.7.30)

- %aao -2u
where the subscript 0 denotes steady-state values. The eigenvalues of [A4], as
given by (3.2.23), are

N2 =t (U + 3aaf cos Yo)!/? (57.31)

Thus if cos Y, is negative, the equilibrium point is a stable node or focal point;
and if cos Y is positive, the equilibrium point is a saddle point.

We note from equations (5.7.28) and (5.7.29) that, when there are two steady-
state solutions, cos Y, is positive for the solution having the smaller amplitude,
and thus it is unstable; while cos Y is negative for the solution having the larger
amplitude, and thus it is stable. When there is only one solution, cos ¥, is nega-
tive, and thus it is stable.

For further discussion of these results, it is more direct to rewrite (5.7.29) as

2 _ ﬁ i 2 _ an2\1/2

a Py + % (e* - 4u*) (5.7.32)
where we introduced the new notation G = eo, @ = ea, and eu = 4. We recall that
w is the natural frequency of the linear system (1 - w = €0 = §), 2 is the fre-
quency and e is the amplitude of the excitation, @ is the coefficient of the non-
linear term, and 2 is the coefficient of the damping term. Here we express the
amplitude of the response as a function of the natural frequency and consider
the frequency of the excitation to be unchangeable. By introducing a new in-
dependent variable, one can readily reorient the problem so that the response
appears as a function of the frequency of the excitation.
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Figure 5-13. The various regions in parameter space for the classifications of the steady-
state solutions of a parametrically excited Duffing equation.

In Figure 5-13, for a given { and &, the eo-plane is divided into three regions
by the three curves & = +1(e? - 4[i?)"/? and € = 2{i. We note that the bound-
aries of these regions are independent of @, the coefficient of the nonlinear
term. However the behavior of the solution in regions II and III is certainly
dependent on &.

It appears that the responses to all initial disturbances, regardless of how large
the amplitude, decay in region I. In region II, the response of the linear system
to any initial disturbance grows without bound while the response of the non-
linear system is bounded. In region III, the response of the nonlinear system to
an initial disturbance may either decay or achieve a sustained periodic motion,
while the response of the linear system always decays. This behavior can be ex-
plained as follows: It appears that regardless of how large the initial amplitude is
in region I, the phasing never becomes such that the rate at which work is being
done is as large as the rate at which energy is being dissipated. Thus we conclude
that, for the linear as well as the nonlinear system, the phasing is such that the
force actually does negative work and thus contributes to the decay. In region
I for a linear system the phasing is such that work is being done at a faster rate
than energy is being dissipated, and thus the response to any initial disturbance
grows without bound. For the nonlinear system the phasing for large amplitudes



346 PARAMETRICALLY EXCITED SYSTEMS

differs from the phasing in the linear system due to the presence of the nonlinear
term in (5.7.27). The effect is to limit the rate at which work is being done to
the rate at which energy is being dissipated and thereby to produce a bounded
harmonic response. If the initial amplitude is very large, the response will decay
until the steady-state solution is reached. On the other hand, if the initial distur-
bance is very small, the response will grow (the system being governed by the
linear equations when the amplitude is small) until the nonlinear term in
(5.7.27) becomes large enough to cause the phase shift. Thus in region II all
initial disturbances produce the same steady-state response (i.e., a limit cycle
exists).

In region III the response of the linear system to an initial disturbance always
decays. The mechanism causing the decay is the same as in region I. The results
for the nonlinear system show that only the larger of the two possible steady-
state responses is stable. Thus it appears that for some initial disturbances, the
nonlinear term in (5.2.27) does not have a strong influence on the resulting
motion and the system behaves essentially as a linear system; the motion decays.
On the other hand, for other initial disturbances the nonlinear term has a strong
influence; phase changes such as those described for region II occur, and a non-
trivial steady-state solution exists. Thus in region III there is the possibility of
producing motions which have characteristics that are similar to those of the
motions in region I as well as region II. The boundary separating the two regions
is the unstable limit cycle corresponding to the smaller amplitude. The type of
motion is determined by the amplitude of the initial disturbance. This is a rare
example in which a nontrivial, steady-state response of the nonlinear system
exists in a region where the response of the linear system decays.

Let us suppose that 0 is increased while € is held constant. This process is rep-
resented by the line through points A;,4,, and A;. Between points 4; and 4,
only the trivial solution exists, and it is stable. Between points 4, and 43 the
trivial solution is unstable, and the only realizable solution is given by (5.7.32).
Beyond point A5 the trivial solution is again stable and so is the larger solution
given by (5.7.32); hence two solutions are realizable.

Finally let us suppose € is increased while & is held constant. This process is
represented by the line through points B;, B,, and B;. Between points B,
and B, only the trivial solution exists, and it is stable. Between points B, and
B, two steady-state solutions are realizable—the trivial solution, which is still
stable, and the larger one given by (5.7.32). Beyond point B the trivial solution
is unstable, and only the solution given by (5.7.32) is realizable.

For the first process, 4 is plotted as a function of g in Figure 5-14. If the fre-
quency decreases from a large value, we note that upon reaching point 43,
where the trivial solution becomes unstable, there can be a jump up to point 45.
This process is indicated by the arrows.

For the second process, 4 is plotted as a function of € in Figure 5-15. Using
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N\

a

Figure 5-16. State plane for a parametrically excited Duffing equation.

Figure 5-15 we can trace the history of a as € is slowly increased from zero and
then decreased. Initially « is zero, and it remains zero until point B; is reached.
At point Bj the trivial solution becomes unstable, and hence a slight increase in
€ at this point causes  to jump up to point B3. Then further increases cause a
to follow curve CB3D toward point D. When e is decreased, a follows curve
DB, C past point B3, without jumping down to point Bj, until it reaches point
C. At this point a slight decrease in € causes a to jump back to zero at point B,.
The arrows indicate this path. Figure 5-15 corresponds to 0 greater than zero.
As 0 decreases, point C approaches point B; and the multivalued region, and
hence the jump phenomenon, vanishes.

To illustrate these results further, we used (5.7.26) and (5.7.27) to calculate
several trajectories in the state plane for values of € and & falling in region III
of Figure 5-13. These trajectories are plotted in Figure 5-16. Point P, corres-
ponds to the unstable, nontrivial steady-state solution and is a saddle point.
Point P; corresponds to the stable, nontrivial steady-state solution when more
than one steady-state solution exist. The initial conditions determine which one
is reached. All initial conditions in the shaded area lead to the nontrivial solu-
tion, while all those in the unshaded area lead to the trivial solution. The arrows
indicate the direction of the motion of the representative point.

Exercises

5.1. Inanalyzingthe propagation of elastic waves in a harmonic inhomogeneous
medium, Nayfeh and Nemat-Nasser (1972) encountered the following equation:

u" + %(l - ecosx)2a?[2(1- ecosx)(2- €a® cosx) +€*a® sin? x]u=0
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where @ and € are constants. Show that three of the transition curves are
a=2%*%e+0(?)
a=1+%e*+0(e"

5.2. The response of an LRC circuit with sinusoidally varying resistance is
governed by (Batchelor, 1976)

LI+R@OI+R+CcHI=0

where I is the current, L is the inductance, C is the capacitance, and R = Ro(1 +
o sin £2¢) is the resistance.

(a) Let
t
I=w() exp [—%L‘lf R(¥) dg]
0

and show that the governing equation can be put in the form
w" + [6 + € cos 27 - %6201‘1 sin 27 + %62 cosd47]l w=0

where primes denote differentiation with respect to 7 = %Qt and

20R, 4 [1 R3
c=

= — s [ p— ———1+_1_a2)

L a7 |zc a2 t2

(b) Determine two terms for the transition curves separating stability from
instability when

@ 6=~1
(i) 6~2

5.3. Consider a pendulum with a vertically moving support (Figure 5-1). The
governing equation is

. Y
B+g sinf =0

(a) When Y =0, show that the equilibrium positions are 8 = nm, where n is an
integer. Show that n = 0 corresponds to a center while 6 = 7 corresponds to a
saddle point.

(b) If Y =eg cos ¢, determine the values of €, g/l, and § for which the
stable position § = 0 becomes unstable.

(c) Let 0 =m+u, Y=agcos {2, linearize the resulting equation, and obtain

ﬁ—f—(l—acosﬂz‘)u=0

Determine the values of g/, o, and €2 for which the unstable position 6 =7 be-
comes stable.
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Figure 5-17. Simple pendulum attached to rotating base.

5.4. Consider the system shown in Figure 5-17.

(a) Show that the governing equation is
s 8 . 102 .-
0+l—sm0—59 sin 260 =0

(b) Let Q=4 (1+ €cos wt), where € << 1, linearize the governing equa-
tion, and obtain

6+ <§— Q32 - 2Q3€ cos wt - N3€? cos? wt> =0
(c) Determine second-order expansions for the transition curves separating
stability from instability when
gt - Q3 ~0, tw?, w?

(@ If 6= 0(61/2), determine the influence of the nonlinear terms to first
order when

g - Of ~ o
5.5. Consider the system shown in Figure 5-18 when the tension T =
To (1 + € sin wi).
(a) Show that the governing equation is
mx + 2Ty (1 + € sin wt)x (12 +x2) 2 =0
(b) Linearize the governing equation to obtain
. 2 . 2, _To
x+2wg(l+esinwt)x=0, w§ =_l
m
(c) Determine second-order expansions for the transition curves separating
stability from instability when

w = 2Wwg, Wo

2 1
4 k Figure 5-18. Particle attached to stretched string.
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mg Figure 5-19. Pendulum with varying length.

(d If x= 0(61/2), determine the influence of the nonlinearity to first order
when w = 2wy.

5.6. Consider the system shown in Figure 5-19 when [ = r(¢) + y(¢) = constant
(a) Show that the governing equation is
(-»)8+gsin0-290- ysin6=0
(b) Linearize the governing equation to obtain
256
o 20 _
-y -y
(c) If y=¢€lcos 2, determine second-order expansions for the transition
curves separating stability from instability when gi~! ~ —12—9, 2.

(@ 1f 0= 0(61/2), determine the nonlinear influence to first order on the
transition curves when gI ™' ~ 2Q.

. g-y

0+ 0

5.7. Consider the system shown in Figure 2-14 when
Q2=8Q4(1 + € cos wt)
(a) Show that the governing equation is
(1+4p%xH) % +4p2%2x + wix - Q3 (2e cos wr + €2 cos? wr)x=0

where w3 = 2gp - Q3.

(b) Determine the linearized transition curves separating stability from in-
stability when wgy =~ 0, %w, w.

(c) When x = O(e'/?), determine the influence of the nonlinearity to first
order on the transition curves for the case wo ~ 3 w.

5.8. The cylinder rolls without slip on the circular surface as in Figure 5-20.
The displacement of the block is prescribed as x (¢) and y (¢); it does not rotate.

ty(t) _x(L)

Figure 5-20. Cylinder rolling without slip on circular surface.
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(a) Show that the governing equation is
+2(R-1"(g+y)sin0+2(R-r) "X cos0=0

(b) When ¥ = €K cos Sz, ¥ = 0, and 6 = O(e'/?), determine first-order uniform
expansions for the cases

(1) 2~ wg, w§=3%g(R-1r""
(iii) Q~ Fwo
(c) When X = €K cos Q;t,7 =€ cos ¢, and 6 =0(e'/?), determine first-
order uniform expansions for the cases
@) Ql ~ wp and Qz ~ 2wy
(i) Q, - Q; =wy
(lil) Ql =~ 30)0 and 92 ~ 20)0
5.9. Consider Duffing’s equation
U+ wdu+au® =K cos wr

where wy, @, K, and w are constants.

(a) Let ug(t) =a cos wt, use the method of harmonic balance, and show that
the frequency-response equation is

(W3 - w)a+3ad® =K

(b) Let u=ug(r) +x(r) be a new solution to the same problem subject to
slightly different initial conditions. Assume that x << ug, substitute the new
solution into the governing equation, use the fact that u is a solution of the
governing equation, and obtain the following so-called linearized variational
equation for x:

X+ (wd +3aud)x=0

(c) Substitute for uy in the variational equation to show that the stability of
the periodic solution is transformed into determining the stability of the solu-
tions of the Mathieu equation

X+ (wh + 30a® + 2aa? cos 2w1)x =0

(d) Use the results of Section 5.2.1 to analyze the stability of the periodic so-
lution in the aw-plane. Compare your results with those of Section 4.1.1.

5.10. Consider the stability of the periodic solutions of
u+u3 =K cos wt

(a) Let ug=acos wt+b cos 3wt and use the method of harmonic balance
to determine two algebraic equations for ¢ and b.

(b) Let u=ug(t)+x(z), where x << ug, and determine the following
variational equation for x:

x + % [a? + b2 + (a® + 2ab) cos 2wt + 2ab cos 4wt + b? cos 6wt x =0
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(c) Analyze the stability of the solutions of the variational equation and re-
late the results to the stability of the periodic solutions of the original equation.

5.11. The nonlinear parametric excitation of a system is governed by
U+ wdu+2eutt +2eu? cos 2t =0, e<<1
(a) Show that
u=a cos (wot +B)+ 0(e)
where

(i) a'=-ua,f =0
when Wy is away from 2 and 2

(i) @' =-pa+%a®siny
af’ -éa cos Yy
Y= 0T1 +B

when wqg =2 + €0, and
(i) @' =-pa+3a*siny
af' = ga2 cos Y
Yy=0T; +38
when 3wgy =2 +€0.
(b) Determine the steady-state oscillations and their stability.
5.12. The nonlinear parametric excitation of a system is governed by
U+ wiu + 2eun + 2eu® cos 2t=0, e<<1
(a) Show that
=g cos (wot +B) + 0(¢)
where

() a'=-pa,f'=0
when Wy is away from 1 and l,

(i) a =-pa + 4a sin y
af' = %a cos 7y
Y=20T, + 2
when wo =1+ €0, and

(ili) ¢ =-Ma + 4(13 sin 7y
aB = la3 COos Y
Y= 20T1 + 44

when 2wg =1 + €0.
(b) Determine the steady-state oscillations and their stability.
5.13. The nonlinear parametric excitation of a system is governed by
U+ wdu + 2eun + 2eu" cos 2t =0

where € << 1 and 7 is an integer.
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(a) Show that parametric resonances occur to first order in € when

2
2 2 2
wo~1,7,%,% o for odd n
~ 2 2 2 2 fe
w0~2,§,—§,—7-,...,’~1—+T or even n

(b) When (n + 1)wg = 2 + €0, show that
=g cos (wet +B) + O(€)
where

d'=-pa+(n+1)2" @07 gin
af =(n+1)2" " cosy
Y=0Ty +(n+1)8

Determine the steady-state oscillations and their stability.
(c) When (n - 1) wg =2 + €0, show that
u=a cos (wot+P)+ 0(e)
where

d =-pa+m- 122" @ D" g 0%
af = (n? - 1)2- 1" o5y
7=UT1 +(n— I)B

Determine the steady-state oscillations and their stability. Tso and Caughey
(1965) treated this case by using the method of averaging.

5.14. The parametric excitation of a system under the influence of a non-
linear damping is governed by

U+ wiu+euli ™+ 2eucos2t=0
where € << 1.

(a) Show that, to first order, parametric excitations occur only when wq =~ 1.
(b) When wy is away from 1, show that

u =a cos (wot + ) + 0(e)
where
a' =-pwiba™t, =0

2m
b=51—f sin® ¢ |sing " dp =T[3(n +3)] /7T [1(n +4)]
0

m

with I' being the gamma function. Solve for ¢ and indicate its decay with time.
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(¢) When wg =1 + €0, show that
u=acos (wot+h)+0(e)
a' =-uwlba*! + -%a sin y
af = %acosy
y=20T; +28
Determine the steady-state oscillations and their stability.
5.15. The parametric excitation of a system is governed by
U+ wiu + 2euii + ea u™ + 2e0,u cos 2t =0
where € <<'1 and » is an odd integer.
(a) Show that
u=acos(wot+L)+0(e)
where

Q) & =-ua

g = baya™! A _ n B n!
wo2"’ 7+ Df S+ DS - 1!
when wy is away from 1.
(i) o' =-pa+lazasiny
B'=0,627""" +La, cosy
Y=20T; + 2e0
when wqg =1 + €0.
(b) Determine the steady-state oscillations and their stability.

5.16. The response of a system to a parametric excitation is governed by
U+ eyt + ey |11 "0 + (w3 + € cos 2f) (u + eau®) =0
where € << 1.
(a) When wgy =1 + €0, show that
u=acos (wot+P)+0(e)
where

a' =-pya- uyba™tt + %a sin 74
B'=32aa® + 1 cos
Y1 = 20T1 + 26

Determine the constant b.
(b) Determine the steady-state oscillations and their stability.

5.17. The response of a system which is parametrically excited is governed by
u+wdu+euld "i+ea;u™ + 2ea,u” cos 2t =0

where € << 1, k is an integer, and m is an odd integer.
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(a) Determine all values of wg for which parametric resonances exist to
order €.
(b) Show that

u=a cos (wet+P)+ 0(€)
where

(i) a =-uwlb ! +oy (k- 1)22-F*DK gin
B =byaywg'a™ ™ +ap (k2 - 1) 27 Rkl o5y
y=0T, +(k-1)8
when (k- 1)wg =2 +e€0

(i) @' =-pwiba™ +ay(k+ 1) 27 F* gk gin
B =byoywgla™ ! +ay(k+1)2"F+H)k1 cog
y=0T; +(k+ 1)
when (k + 1)wg=2+e€0

Determine the constants b; and b,.

(c) Determine the steady-state solutions and their stability.

(d) Write down the equations describing ¢ and 3 when w, is away from those
corresponding to parametric resonances.

5.18. The response of a system under the combined influence of parametric
and external excitations is governed by

U+ wdu + 2ept + ogu’ + 2eayu cos 2¢ = K cos 0t

where € << 1. Such problems were studied by Hsu and Cheng (1974), Nguyen
(1975b), and Dimentberg (1976).

(a) When =1+ €0, and wg = 1 + €0,, show that
u=a cos (wot +P)+ 0(e)
where
a'=-pa+Sksiny; + fopasiny,
af' =3 a® - Lk cosy, +Lazacosy,
K=¢€k, 7v1=(01-0)T-0, 72=20,T;+28
(b) When wgo =1 + €0, and §2 is away from 1, show that
u=a cos (wot+P)+ 2A cos 2t + 0(e)

where

() o =-ua+ —%aza sin 7,
af' =3a;(A? + $a*)a+ Laza cos v,
when §2 is away from % and 3.
(i) @' =-pa- oA’ siny;, +3opasiny,
ap' =30, (A* + Fa®)a+ o A’ cosyy + opacosy,
when 382 =1+ €0;.
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(iii) o' =-pa- 3a;Ad®siny, + Lagasiny, - ayAsinys
B’ =3a;(A* + 1a*)a + 2y Aa® cos v, + Laya cosy, +ayAcosy,
Y1=(01-30)T1 - 38, 7y3=0,T, - 17,
when £ =3 + e0;.

(c) Determine the steady-state responses and their stability.
(d) When wq is away from 1, show that combination resonances occur if
QF2~wp, 2- Q=~wy. Let =2+ wq + €0; and show that

u=acos (wet +P)+2A cos Qr + O(e)
where

a' =-ua - Aaywg' sin v,
woaf =3, (A% + —é—a2)a + Aa, cos vy
Y1=0:T; -8
5.19. The response of a system under the combined effect of parametric
excitation and a multifrequency excitation is governed by

3
U+ wiu + 2eui + a;u® + 2eq,u cos 2t = 3> K, cos (Q,1+6,)
n=1

where € << 1.

(a) When wgy =1 + €0,, show that

3
u=acos(wyt+f)+ Z 2A,, cos (Q,t+6,) + 0(e)

n=1
where

a'=-pa- 3a;AIA, siny, + Layasiny,

3
!
af’ = 3a, [ S OAL+ %—az] a+3a;ATA; cosy, +Laya cosy,

n=1
Y1 =017y ~B+20,+0;, v,=20,T, +28

when 282y + Q, = 1 + €0, and no other external resonances occur.

(b) Determine the steady-state oscillations and their stability.

(c) When wg = 1 + €0,, determine the equations describing the amplitude and
the phase for the following resonant cases:

G Q,+Q,+Q3=1+¢€0,

(i) 2,+8,=2+e¢0,

(iii) 3Qy=1+€0,,2, +Q3=2+e€0;

@iv) 30, =1+e€0,,2, =3 +e€0;

) 2y =1+e€0y,30,=1+e€03, Q3 =3+¢0,
i) Qy=1+€e0;,Q, +Q5 =2+ €0,
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5.20. The response of a system under the combined influence of parametric
and external excitations is governed by

U+ 2eu u + ey 0|4+ (wh + € cos 21) (u + eau) = K cos (2 - 0)
where € << 1 and wqg = 1 + €0,.
(a) Show that
u=a cos (wot + L)+ 0(e)
where

' 4u .

d =-ua- —jaz +3ksiny; + Zasiny,

af' = 3aa® - Lk cosy, + Lacosy,

K=ek, 7v1=(01-0)T1-B-0, 17v,=20,T,+20

when Q =1 + €0;.
(b) When wq = 1 + €0, and 2 = 2, show that (Troger and Hsu, 1977)

u=acos (wot+f)+2Acos(2t- 0)+ O(e)

where

27
. M2 . .
a'=*u1a+%asm72 +2—f |4 |2 sgn i sin ¢ dt
T
0

o
M2 . .
af = oz3(A? +%a2)a+%a COS Y, +;f |4 * sgn & cos t dt
0

il = -woa sin (£ + 5 72) = 4A sin (2 - 0)

Show that stationary oscillations correspond to a'=7"=0.In this case, the
frequency-response equation is complicated because the integrals cannot be
evaluated a priori.

5.21. Consider the double pendulum shown in Figure 5-3.

(a) Show that (5.1.9) and (5.1.10) reduce to the following equations when
ll =12 =l,m1 =m, =m,andk1 =k2 =0:

N
6, +g_ly_(201 -0,)=0

i, +2‘-g'fl—y(@2 - 6,)=0

(b) When y =0, determine the linear natural frequencies w; and w;.
(c) When y =€l cos §2t, where € << 1, determine first-order uniform expan-
sions for 6; and 0, and hence determine the transition curves separating stability
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from instabiiity for the cases
(11) Q~ w,y + Wy
(i) L=w; - w;
(d) When y =e€l[y; cos (217 +0;) +y, cos (51 +60,)], where the y, and
0, are constants, determine first-order uniform expansions for §; and 0,, and

hence determine the transition curves separating stability from instability
for the cases

(1) Ql Wy T Wy and Qz %2(,01
() Q) 2w, - wyand Q, ®w, +w;

5.22. A two-frequency parametric excitation of a multidegree-of-freedom
system is governed by

N
Up + Wity +2€ 3" [frum €08 Q1+ gpm 08 (1 +0)] tp, =0
m=1

where the w,, are distinct. Determine first-order uniform expansions and hence
the transition curves separating stability from instability when

(a) Ql Wy T Wy andﬂz W3 T Wy
(b) Ql %2(01,92 ~ w1 +0.)2,Qz W3 T Wy

5.23. Consider the system governed by (5.5.1) to (5.5.3). Determine first-
order uniform expansions for the cases

(a) w=2w; and w ~ w3 - w; (ie., w3 ~ 3w;)
(b)) w=w; and w= w3 - Wy (ie., w3 = 2w;)

5.24. A two-frequency parametric excitation of a three-degrees-of-freedom
system with repeated frequencies is governed by

.. 3
Xp twix,g +2 > [fin cos Q1 +g;, cos (1 +60)] x, =0
n=1

3
Xp ¥ wixy +x, +2 Z [fan cos 211+ gy, cos (§,£+6)]x,=0
n=1

3
X3+ wixy +2 > [fan cos Qi1 +g3, cos (2y7+0)] x, =0
n=1
where wj is different from w;.
(a) Determine first-order uniform expansions for the cases

(i) Wi %%Ql and Q3 - Wy %Qz

(11) w1 RQ‘I and W3 ~ W %92

(b) What other resonances exist to first order?
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5.25. Show that the equations describing the motion of a swinging spring
with a moving support, Figure 6-2, are

u+wiu-(1+u)02+8(1-cosf)-ycosf=0
(1+u)f +266 + (6 +5)sinf=0

where u = x/I, w? = k/m, and § = g/I.
(a) To determine the stability boundaries for infinitesimal § motions, neglect
the nonlinear  terms and obtain

Uu+wiu=y
(A+wb+200+@+y)0=0
(b) When y = 2€ cos 2¢, show that
U, =acos (wit+Pf)+2e(w?-4)" cos2t, wy #2

where ¢ and § are determined from the initial conditions. Then the equation
for 6 becomes

(1+u,) b+ 20,6 +(5+2ecos26)0 =0

Letting a = 0, analyze the transition curves separating stability from instability
(Ryland and Meirovitch, 1977). What are the limitations imposed by letting
a =0? When w? ~ 48 there is an internal resonance condition, and hence show
that the nonlinear terms cannot be neglected (see Exercise 6.15).

(c) Letf=(1+u)"'yin part (a) and obtain

P+@+y-uw)(+u)'y=0

With u known from part (a), the linearized stability problem reduces to that of
analyzing the solutions of this equation for .
(d) When

N
y=¢€ > In cos (2,t+06,)
n=1

solve for u from part (a), substitute the result into the equation for ¥, and then
analyze the stability of the swinging spring.

5.26. Consider the buckling of the column shown in Figure 5-21 under the
influence of a nonideal energy source.

(a) Neglecting the longitudinal and rotary inertia and the transverse shear,
show that the governing equations for the fundamental mode are (Kononenko,
1969, Section 14)

U+ 2ud +(w? - ay sing) Y +a,¥° =0

2
I¢= M) - k1<u0 +rsin ¢ - Z—ldﬂ) rcosp=0
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Figure 5-21. Buckling of beam under influence
of nonideal energy source.

where
2
. X T,
wix,t)=y()sin—, u=—
(e, ) =y(r) ; 4l v
, T EI kyuol w’rk,
= oy ) =3
l4 my 7T2E.[x ! nmj
a*k,
a =
2 4l3m1

Here m; is the mass per unit length of the beam, F is the modulus of elasticity,
! is the length, k; is the spring constant, I, is the moment of inertia of the cross
section, and u is a damping coefficient.

(b) Determine a uniform first-order expansion and use it to determine the
steady-state periodic motions and their stability.

5.27. Consider the harmonic time variation of sound waves in two-dimensional
ducts with sinusoidal walls. The mathematical statement of the problem is

Vi +w?p=0 6}



362 PARAMETRICALLY EXCITED SYSTEMS
¢y = €pky cosky,x at  y=esink,x 2)
¢y=0 at y=1 3)
where € << 1.

(a) Show that (1) through (3) possess the following straightforward expansion
(Isakovitch, 1957; Samuels, 1959; Salant, 1973; Nayfeh, 1974):

¢ = A4 cos (nmy) exp (ik,x) + Lied {(k,ky, - n*>7*) ®1(y) exp [i(ky, + k) X]
+ (kpky, +n27%) ®,(p) exp [i(k, - ky)x]1}+0(€*) (4)
where k2 = w? - n?n?,
®,, = (Kp, SN Kppy) ™" [SIN Ky SIN Ky p + COSKypy COS Ky y] )
K} == (ki t k), K3 =P - (K ~ k) (6)

Show that this expansion breaks down when k,, - mm = O(€). Show that this
condition is equivalent to

kyw=kp tky +0(€) )

where k,, and k,, are the wavenumbers of two modes in the duct.
(b) When k,, =k, - k,,, + €0, use the method of multiple scales and seek an
expansion in the form (Nayfeh, 1974)

(x,¥) = Po(xo,x1,7) + €p1(x0, X1, ¥)+ ", xo=x, x1=ex (8)
Take ¢ to contain the resonant modes, that is,

Bo = Ay (x1) cos (mmy) exp (iky,xo) + Ap(x1) cos (nmy) exp (ik,xo)  (9)
Then show that ¢, is governed by

02 92
3 ¢21 + i+ Wiy, = —2ikmA'm cos (mmy) exp (ik,,xo)
y

axo

- 2ik, Ay, cos (nmy) exp (ikpxo) (10)

b1y =31 2. Ajlkjky, - j21%) exp [i(kj + ky)Xo]

j=m,n

+3i 3 Ak, +2m) exp [i(kj - ky)xol  aty =0 (11)

j=m,n
$1y=0 aty=1 (12)
Show that the solvability conditions of (10) through (12) are
A'm =%k;,,l(k,,kw+n21r2)An exp (-ioxy) (13)
Ay =11, (kpkeyy - m*1?) Ay, exp (i0x1)
(c) Show that equations (13) possess a solution in the form

A, =a, exp (sx1), Ap=a,exp[(s+i0)x,] (14)
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Determine s. Show that s is pure imaginary when k, and k,, have the same sign
(i.e., the modes propagate in the same direction). When k, and k,, have opposite
signs (i.e., the modes propagate in opposite directions), s may be complex and
the modes are cut off.

5.28. Consider the time harmonic variation of electromagnetic waves propa-
gating in a two-dimensional waveguide. The mathematical statement of the
problem is

VY +w?y=0 (1)
sy + 2P = ~€kyYxy coskyx  at  y =e€sin kyx 2)
\bxx+w2‘l/=o at y=1 3)

where € << 1.
(a) Show that (1) through (3) possess the straightforward expansion (Nayfeh
and Asfar, 1974)

¥ =4 sin nmy exp (ik,x) + %einnA {(n?n? - kpky) ()

exp [i(ky + ky)x]1 = (0?7 + kpky,) W, (») exp [i(ky, - ky)x1}+0(€?) (4)
where k3 = w? - n%n?,
W,y = (K SinKypy) 7' [SIN Ky, COS Kppy ¥ = COS Ky SIN Ky 3] (5)

ki = w? - (ky + k)%, K3 = w2~ (ky - kyp)? (6)

and

Show that this expansion breaks down when
Km-mn=0(€) or ky=k,*k, +0(€ (7

where k, and k,, are the wavenumbers of two modes propagating in the
waveguide.

(b) When k, =k, - k,, + €0, use the method of multiple scales and seek an
expansion in the form (Nayfeh and Asfar, 1974)

Y=Yolro,x1,¥) +eP1(xo,x1, )+ "+, x9=x, x;=ex (8)
Take Yq to contain the two resonating modes; that is,
Yo = Ap, (xy) sin (mmy) exp (ikp,xo) + Ap(xq) sin (nmy) exp (ik,xo)  (9)
Then show that

o’y 9%y, 2 v
-+ 7 tw* Yy =-2ik,,4,, sin (mmy) exp (kp,xo)
axo ay

= 2iky Ay, sin (nmy) exp (ik,xo) (10)

%Y,
ey twiyy =gim Y j(%n? - kjky) Ajexp [i(kj + k) xo]
j=m,n

- 3in 20 j(PM + ki) Ajexp [i(k; - ky)xol  aty=0 (11)

j=m,n
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0y,
ox3

Show that the solvability conditions of (10) through (12) are

+wiY; =0 aty=1 (12)

ro_1_ " 2,2 .
Am =73 (kpky, +n°m") A, exp (-ioxy)
mky,
(13)
r_1_ M 2.2 .
Ap =5 —— (kpky - m*1°) Ay, exp (ioxy)
nk,
(c) Show that equations (13) possess a solution in the form
A, =a,, exp (sx1), A, =a,exp (s +io)x,] (14)

Determine s. Show that s is pure imaginary when k,k,, > 0 and s may be com-
plex depending on ¢ when k,k,, <O.



CHAPTER 6

Systems Having Finite
Degrees of Freedom

In this chapter we discuss discrete nonlinear systems having finite degrees of
freedom. The discussion is limited to weakly nonlinear systems, and solutions
are obtained by using a perturbation technique, the method of multiple scales.
In the case of strongly nonlinear systems perturbation methods can be used in
cases for ‘which a basic ‘exact. “nonlinear solution exists. For the other cases re-
course is often made to geometrlcal methods to obtain a qualitative description
of the behavior of the system including its stability and/or to numerical methods.
Rosenberg (1966) presented a survey of the geometrical methods and results
concerning the vibration of a strongly nonlinear mass-spring system governed

by the following equations in the case of two degrees of freedom:

n n
myiiy + ) ayuf + > Til(uy - u)*=0
k=1 k=1

n n
Myiiy + ) AT > Te(ug - uy) =
k=1 k=1

with k being an odd integer. In particular, he surveyed the “normal mode con-
cept” for such systems. Rosenberg and Atkinson (1959), Rosenberg (1960,
1961), and Atkinson (1962) found “linear” modal solutions (normal modes)
which are related by u, = cu,, where c is a constant. These modal solutions are
not discussed further in this book except in Exercise 6.7. For more depth the
reader is referred to the studies of Rosenberg and Atkinson (1959), Rosenberg
(1960, 1961, 1962, 1964, 1966, 1968), Atkinson (1962), Rosenberg and Kuo
(1964), Anand (1972), Vito (1973), Rand (1974), Mishra and Singh (1974),
and Yen (1974).

In contrast with a single-degree-of-freedom system, which has only a single
linear natural frequency and a single mode of motion, an n-degree-of-freedom
system has #n linear natural frequencies and n corresponding modes. Let us

365
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denote these frequencies by w;, w,, . .., w, and assume that all of them are
real and different from zero. An important case occurs whenever two or more
are commensurable or nearly commensurable. Examples of near-commensur-
ability are

Wy ®2w;y, Wy 3wy, W3 RwW twy,
W32 T Wy, W wsEwtw

Depending on the order of the nonlinearity in the system, these commensurable
relationships of frequencies can cause the corresponding modes to be strongly
coupled, and an internal resonance is said to exist. For example, if the system
has quadratic nonlinearities, then to first order an internal resonance can exist if
Wiy = 2Wg O Wy = Wy * wy,. For a system with cubic nonlinearities, to first
order an internal resonance can exist if w,, ~ 3wy or wg = 2wy = wy,, or
Wq = wp F Wy, F wi. When an internal resonance exists in a free system, energy
imparted initially to one of the modes involved in the internal resonance will be
continuously exchanged among all the modes involved in that internal reso-
nance. If damping is present in the system, then the energy will be continuously
reduced as it is being exchanged.

In a conservative nongyroscopic single-degree-of-freedom system, if the linear
motion is oscillatory, then the nonlinear motion is bounded and hence stable.
For a conservative gyroscopic multidegree-of-freedom system, the nonlinear
motion may be unbounded and hence unstable if an internal resonance exists.

If a harmonic external excitation of frequency £ acts on a multidegree-of-
freedom system, then in addition to all the primary and secondary resonances
(P = quw,,, with p and g being integers) of a single-degree-of-freedom system,
there might exist other resonant combinations of the frequencies in the form

PL=a,wy ta,w, + - taywy

where p and the a,, are integers such that

where M is the order of the nonlinearity plus one and / is the number of degrees
of freedom. The type of combination resonance which might exist in a system
depends on the order of the nonlinearity in the system. For a system having
quadratic nonlinearities, to first order the combination resonances that might
exist involve two frequencies in addition to €. That is, Q =~ w,,, + w; or Q ~
Wy — wi. The first of these is called a summed combination resonance, while the
second is called a difference combination resonance. These types of combina-
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tion resonances were predicted theoretically by Malkin (1956) and found
experimentally by Yamamoto (1957, 1960). For a system having cubic non-
linearities, to first order the combination resonances that might exist involve
either two or three of the natural frequencies in addition to 2. That is,

Q™ wp fwy, tw, Q20,2 Wy, U~ wp 2wy, 20~ w, tw

Under some conditions an external resonance, which might involve one or
more modes, exists in a system that has an internal resonance. For a system
having quadratic nonlinearities in which w, =~ 2w, Nayfeh, Mook, and Marshall
(1973) showed that a saturation phenomenon exists when £ ~ w,. When the
amplitude of the excitation k is small, only the second mode with frequency w,
is excited. As k reaches a critical value k., which depends on the damping
coefficients of the two modes and the detunings, this mode saturates and the
first mode begins to grow. As k increases further, all the additional energy goes
into the first mode (although © =~ w,) due to the internal resonance. For a
system having cubic nonlinearities, the saturation phenomenon does not exist
although there is a tendency for the energy to flow from the higher to the lower
modes involved in the internal resonance.

For a system having quadratic nonlinearities, if £ ~ w; and w,; ~ 2w, , Nay-
feh, Mook, and Marshall (1973) found that under some conditions there exists
no steady-state motion in spite of the presence of damping. In this case the
energy is continuously exchanged between these two modes without being
attenuated. This behavior should be contrasted with that of systems having one
degree of freedom, which always possess steady-state periodic motions when
acted on by periodic excitations in the presence of positive damping.

When the models involved in an internal resonance are also involved in a com-
bination resonance with an external excitation, two or more fractional har-
monics might exist in the response, depending on the order of nonlinearity. For
a system having quadratic nonlinearities, the internal and combination reso-
nances w, =~ 2w; and Q = w, + w might exist. Thus the fractional-harmonic
pair (% Q, %Q) might occur in the response. For a system with cubic nonlineari-
ties, w, = 3w, and Q =~ w, + 2w; or O = %(wz + w1 ) might exist. Then one
of the fractional-harmonic pairs (32, 2Q) or (39, 3 Q) might exist. Such
fractional-harmonic pairs were observed in a variety of physical systems. Dallos
and Linnell (1966a, b) and Dallos (1966) observed fractional-harmonic pairs in
the cochlear microphonics of chinchilla ears that were excited by sound pres-
sure levels above 110 dB (re 0.0002 dyne/cm?). Luukkala (1967) observed
fractional-harmonic pairs in standing waves in quartz transducers. Adler and
Breazeale (1970) observed fractional-harmonic pairs in underwater standing
waves. Eller (1973) observed fractional-harmonic pairs in the response of two
coupled nonlinear electronic oscillators.
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Figure 6-1. Spherical pendulum.

6.1. Examples

6.1.1. THE SPHERICAL PENDULUM

As a first example we consider the motion under gravity of a particle of mass
m attached to a fixed point O by an inextensible, massless rod of length /. The
particle is free to move on a sphere of radius / as shown in Figure 6-1.

Using the angles 6 and ¢ as the generalized coordinates, we find that the
kinetic and potential energies are

T=Lm(126% +1°¢? sin® 0)

(6.1.1)
V=mgl(1 - cos 0)
so that the Lagrangian is given by
L=T-V="L1m*@? +¢?* sin® 0) - mgl(1 - cos 6) (6.1.2)
Hence Lagrange’s equations have the form
a 9£> AL,
dt\ab) o0
(6.1.3)

(oL oL _

dar\o¢) 3¢
Substituting (6.1.2) into (6.1.3) and simplifying the result, we obtain the fol-
lowing set of two coupled equations:

b’+§sme—%¢32 sin 20 = 0 (6.1.4)
$sin @ +2¢6 cos =0 (6.1.5)
We note that (6.1.5) has the integral
¢ sin? 6 =p, a constant (6.1.6)
so that (6.1.4) becomes
. g p? cos 6
f+=sinf -——5—=0 6.1.7
1Y int g (€.1.7)
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Thus the equations goveming the motion of this system can be uncoupled; one
can solve (6.1.7) for 0 and then use the result to solve (6.1.6) for ¢. The original
two-degree-of-freedom system is reduced to two single-degree-of-freedom
systems.

Tissot (1852) obtained a closed-form solution to this problem in terms of the
theta and eta functions of Jacobi. Later Whittaker (1961, Section 55) also ob-
tained a closed-form solution to this problem in terms of the elliptic, sigma, and
zeta functions of Weirstrass. Johansen and Kane (1969) determined a first-order
expansion of the solution of this problem by using the method of averaging with
canonical variables. Miles (1962) analyzed the response of a spherical pendulum
to a harmonic excitation in a plane. He found that the planar motion is unstable
over a major portion of the resonant peak, the nonplanar motion is stable in a
spectral neighborhood above resonance, and no stable harmonic motions are
possible in a finite neighborhood of the natural frequency. Hemp and Sethna
(1964) studied the response of a spherical pendulum whose support moves
vertically.

6.1.2. THE SPRING PENDULUM

As a second example we consider the motion of a mass m attached to a spring
that is swinging in a vertical plane as shown in Figure 6-2.

The equations of motion can be conveniently derived by writing the La-
grangian and then writing the Lagrange equations. The kinetic and potential
energies of the mass m are

T=1m[%* +(+x)*6?] (6.1.8)
V=2%1kx* + mg(l+x)(1 - cos 0) - mgx (6.1.9)
where x is the stretch in the spring beyond its equilibrium. Therefore
L=T-V=1m[#*+(+x)*0%] - Lkx? - mg(I+x) (1 - cos 0) + mgx
(6.1.10)

Figure 6-2. Spring pendulum.
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Hence Lagrange’s equations have the form

a(a) o,
dr \ ox ox

d(ay oL

dt\ab) o0
Substituting (6.1.10) into (6.1.11) and simplifying the results, we obtain the
following two equations:

(6.1.11)

¥twix-(+x)6% -gcos8=0 6.1.12)
..+gsin6+2)2é _ o

6
I+x

where w3 = k/m.

If the nonlinear terms are neglected in (6.1.12), there result two uncoupled
modes of oscillation—a spring mode with frequency w, and a pendulum mode
with frequency w; = (g/l)/2. Thus based on the linear theory, if an experiment
is conducted, one expects to find that the two modes are uncoupled. However
Gorelik and Witt (1933) found experimentally that when w, =~ 2w, the two
modes are coupled. If one starts the motion when § = §,, where 6, # 0 but
very small, by pulling the mass m down, one finds that the mass oscillates up and
down first, and that then a pendulum-type component of motion develops and
grows at the expense of the spring-type motion. After a while the pendulum-
type motion starts to decrease and the spring-type motion starts to grow. Thus
the energy is transferred continuously back and forth between the two modes
of oscillation. Besides Gorelik and Witt (1933), this problem has been studied
by many investigators including Minorsky (1962, Section 7), Heinbockel and
Struble (1963), Mettler (1968, 1975), Kane and Kahn (1968), van der Buirgh
(1968, 1975, 1976), Nayfeh (1973b, Sections 5.53, 5.75, 6.27), Broucke and
Baxa (1973), Srinivasan and Sankar (1974), and Olsson (1976). Crespo da Silva
(1977) examined the motion of a swinging spring with a spinning support, while
Novikov and Kharlamov (1973) and Ryland and Meirovitch (1977) studied a
swinging spring with an oscillatory support. Sethna (1965) treated a pendulum
consisting of two masses connected by a spring, and Sevin (1961) and Struble
and Heinbockel (1963) treated the related problem of a pendulum-type vibra-
tion absorber.

6.1.3. A RESTRICTED SHIP MOTION

As a third problem we consider the motion of a ship restricted to pitch and
roll only. Consistent equations of motion can be conveniently determined by
using a Lagrangian formulation (Lamb, 1932, Chapter 6; Nayfeh, Mook, and
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x|

v R(t)

NI

z

Figure 6-3. Coordinate systems for ship motion.

Marshall, 1974) in which the ship and the sea are regarded as a single dynamic
system. We suppose that the motion of the fluid is entirely due to the motion
of the ship and neglect the effects of viscosity. Then the whole effect of the
fluid might be represented by added inertia and radiation damping. The ship
is assumed to possess lateral symmetry. To avoid lengthy algebra, we derive the
equations neglecting cubic and higher-order terms.

We employ two Cartesian coordinate systems—one fixed in an inertial space
and the other fixed in the ship with its origin at the mass center as shown in
Figure 6-3. Initially the two coordinate systems coincide. The orientation of
the ship is described by the Euler angles associated with the following sequence:
(a) a yawlike rotation about the initial position of the z-axis through the angle
¥, (b) a pitchlike rotation about the new position of the y-axis through the angle
0, and (c) a rolllike rotation about the final position of the x-axis through the
angle ¢. If p, q, and r denote the angular velocities about the final positions of
the x-, y-, and z-axes, then

{1} = [e] {7}, {7}=1[6] {1} (6.1.13)
where
p ¢
{Il}=<qp, {v}=<6 (6.1.19)
r Y
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1 0 -sin 0
[@] =] 0 cos¢ sin¢gcosd (6.1.15)
0 -sin¢ cos ¢ cos@

1 singtanf cos¢tan 6

[B1=]10 cos¢ -sin ¢ (6.1.16)
0 sin ¢ cos ¢
cos 0 cos @

The kinetic energy T and the dissipation function u must be positive definite
for every motion. And because the undisturbed position is a stable equilibrium
position, the potential energy ¥ must increase with every displacement from the
undisturbed position. All of these functions must account for the lateral sym-
metry of the ship. Consequently they have the following form:

T= %(Ixx +1; +1,0)p* + %(Iyy"'la +1,0) g% + %(Izz +15+1s0) r?

+1,0pq - (I, +Ig + 150) pr+ I 10¢qr +hot. (6.1.17)
=LV +7V,0) 0% + (V3 +V,40) 02 +hot. (6.1.18)
p=73 > +1q*) +hot. (6.1.19)

where h.o.t. stands for higher-order terms, Iy, 1, I;;, and I, are the moments
and the product of inertia, and the I, are coefficients for the added inertia. We
note that we kept the terms involving » in T at this stage, although r will be set
identically equal zero if the ship is restricted to pitch and roll only. As will be
evident from the following development, there is a difference between setting
r=01in (6.1.17) and setting r = 0 in the equation of motion.

We note that the energy is a function of true coordinates ¢, 0, and ¢ and
quasi-coordinates p, q, and r. The first are called true coordinates because if
¢, 6, and  are known, an integration with respect to time yields the coordi-
nates. On the other hand, an integration with respect to time of p, ¢, or 7 does
not yield the coordinates. Since T is a function of true and quasi-coordinates,
there are two approaches for writing Lagrange’s equations. In the first approach
one first substitutes for the quasi-coordinates in terms of the true coordinates
from (6.1.13) through (6.1.16) and then writes Lagrange’s equations. Thus one
expresses 7 and u as

T=Y (L + 1, +1,0) (6 - 09)* + 1 (1, + I + 1,0) (0 + J9)?
+ 3 (L + 15 + 160) ( - 09)* + 1,6(6 - 69) (6 + ¥g)
= (bey + 15 +150) (6 - 0Y) (¥ - 69)
+ 1006 + U¢) (y - 6¢) +ho.t. (6.1.20)
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p=2u(6 - 09) + Lu, 6+ 99)® +hot. (6.121)

Substituting for T, V, and u from (6.1.20), (6.1.18), and (6.1.21) into Lagrange’s
equations, we obtain
d <£’> oT v au ~0

0 a¢ a¢ a¢>
(6.1.22)

1(@2)61 oV ou_

dr\ob) 06 06 06

Setting ¥ = 6¢ (i.e., » = 0) and neglecting cubic and higher-order terms, we
obtain

(Lx + 1) $+ V1§ + (@ = 09) + V290 - (p + I +Ig) $6 + 1,68 + [,$6 = 0
(6.1.23)
(Iyy +I3) 6+ V30 + o (6 + ) + 1V,6% + 31,02
t (L + AL+ 1 + 1) 62 + 1 1,0% + 1,0$+ 1,00 =0 (6.1.24)
We note the presence of the terms involving I, + I3 in (6.1.23) and (6.1.24).
These terms would have been absent had we set r = 0 (i.e., no yaw angular
velocity) in (6.1.17) rather than after the derivation of the equations.
In the second approach one keeps the kinetic energy and dissipation function

expressed in mixed true and quasi-coordinates but uses the following modified
form of Lagrange’s equations (Whittaker 1961, Section 30; Meirovitch 1970,

Section 4.12):
<6T> e ]__ " <3T ﬂ’>+ﬂ‘=o (6.125)

oll 0g oq/ ol
where
0 -r ¢
=11 r 0 -p (6.1.26)
g9 p O

Substituting for T, V, and u from (6.1.17) through (6.1.19), letting r = 0, using
(6.1.13) through (6.1.16) in the resulting equations, and neglecting cubic and
higher-order terms, we obtain exactly equations (6.1.23) and (6.1.24).

If the nonlinear terms in (6.1.23) and (6.1.24) are neglected, the pitch and-roll
modes of the oscillations are uncoupled. However the nonlinearity couples the
two modes, especially when the pitch frequency is approximately twice the roll
frequency. In the latter case Froude (1863) observed that such ships have un-
desirable roll characteristics. This phenomenon was explained by Nayfeh,
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Mook, and Marshall (1973), who showed that there exists a saturation phe-
nomenon in the response of such ships. They found that as the amplitude of an
excitation having a frequency equal, or nearly equal, to that of the pitch mode
increases, the pitch amplitude increases until a critical value is reached. At that
point further increases in the amplitude of the excitation cause the roll mode
to develop and do not further affect the pitch mode. The pitch mode is
saturated, and all the additional energy fed into the system by increasing the
amplitude of the excitation goes into rolling motion. Paulling and Rosenberg
(1959) solved the linearized form of (6.1.24), substituded the pitch solution
into (6.1.23), and analyzed the linearized form of the resulting equation. Such
an approach recognizes the similarity to parametric resonance; but because
it basically uncouples the equations, it cannot reveal the essential feature of
the motion—the saturation phenomenon. Mook, Marshall, and Nayfeh (1974)
analyzed the subharmonic, superharmonic, combination, and ultraharmonic
responses of ships that are restrained to pitch and roll only. Marshall and Mor-
row (1975) treated the related problem of wave-induced instabilities of semi-
submersible oil-drilling platforms.

6.14 SELF-SUSTAINING OSCILLATORS

As a fourth example we follow Theodorchik (1948) and consider a circuit
consisting of two RLC oscillators coupled to a vacuum tube as shown in Figure
6-4. The vacuum tube consists of a cathode (filament) F heated by a battery
so that it will emit electrons, a plate P charged positively (anode) so that it will
attract the electrons emitted by the filament, and a grid G that consists of a
coarse mesh for controlling the flow of electrons from the cathode to the anode.
This control is accomplished by maintaining the grid voltage the same as that
across the capacitor C;. The current in the grid is maintained negligibly small by
connecting it with a large resistor R.

The equations describing the motion of the oscillators are

diy 1 di
Ll dr +R111 C fll dt+— f(ll "lg)dt Ml dp (6.127)

-t
s — +

ﬂ’.} M, M.

NV AE Plu Rl R
| o ~
i 0 )

'| V,G —=C, \, —~C ,/ =C,

i Figure 6-4. Coupled self-sustaining
y —  oscillators.
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di . 1. 1. . di
L2 j"‘Rle +aﬁ2 dt+5f(l2 - ll)dt =M2 'j (6128)

1
&

where L is the inductance, R is the resistance, and C is the capacitance. The
mutual inductances M, and M, are positive. We let

1
Xp = C—fin dt (6.1.30)
n

so that Vg = x,. Moreover we assume that the plate current i, is related to the
grid voltage V; = x; by
ip=ayx; - Joaxi (6.1.31)

where o; and a, are positive. Substituting for x,, x, , and i,, from (6.1.30) and
(6.1.31) into (6.1.27) and (6.1.28) yields the following two equations:

. R 1 c c M _
X1 +_1321 + (l +—L>x1 -— : (o - azxi) %,

LY e\ C L.cc, T Lc
(6.1.32)
. Ry, C2> C, M, 2N
+ =%, + 1+—= - = -
X2 L, X2 L2C2< C X2 L,CC, X1 L,C, (g - a3x7) Xy
(6.1.33)

A number of investigators analyzed the so-called mutual synchronized solution
of (6.1.32) and (6.1.33); see Minorsky (1962, Section 6), Butenin (1965, Sec-
tion 4), and Tondl (1970b) for a discussion and additional references. The prob-
lem of mutual synchronization is addressed in Exercise 6-20. Interactions of
self-excited-oscillations were studied by Kononenko and Koval’chuk (1973b)
and Hayashi and Kuramitsu (1974), while interactions between forced and self-
excited oscillations in multidegree-of-freedom systems were studied by Nguyen

(1975a). Quenching of limit cycles was analyzed by Mansour (1972) and Tondl
(1975a, b).

6.1.5. THE STABILITY OF THE TRIANGULAR POINTS IN THE
RESTRICTED PROBLEM OF THREE BODIES
As a last example we consider the planar motion of three bodies of masses m,
m,, and m3 when m3; << m, and m3 << m, so that the motion of m3; does
not affect the motion of the other two masses. The masses m, and m, are as-
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Figure 6-5. Restricted three-body problem.

sumed to move in coplanar circular orbits about their center of mass O with a
constant angular velocity w as shown in Figure 6-5. We introduce a rotating
Cartesian coordinate system xyz centered at O such that the masses m, and m,
are located on the x-axis and the z-axis is normal to the plane of motion.

We first relate the angular velocity w to d, m;, m,, and the gravitational
constant G. The distances of m,; and m, from O are

mzd _ mld

by = » D2 T
my +m, my tm,
Since the mass mj is negligible, the only forces acting on the masses m; and m,
are the mutual attraction forces f;, and f,; along the x-axis, and they are given
by
Gmym,

Ji2 =-Fan =‘—‘72_‘ (6.1.34)

Since w and d are constants, the equation of motion of the mass 7, is

myim, 2 Gm1m2
-_— =-—— 6.1.35
my + iy d2 ( )
Hence
G +
o2 = Gt m) (6.1.36)

d3

To determine the equations describing the motion of mj3, we write the
Lagrangian and then Lagrange’s equations. To do this, we note that the velocity
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of m3 in an inertial frame is given by
v=(X-wy)it (P +wx)j (6.1.37)
where i and j are unit vectors along the x- and y-axes. Hence
T=4ims[(x- wy)® +(F + wx)?] (6.1.38)
The potential energy is given by

Gmym; Gm2m3

V= 6.1.39
d, 4, ( )
where
d% = (bl - x)2 +y2
— (6.1.40)
dy=(by tx)* +y
Hence the Lagrangian is
G G
L=4my[(- wp) + (P +wxp] + 202 T2 (61 41)
d; d,
Therefore Lagrange’s equations have the form
4 (o) oL,
dt \ox/ ox
(6.142)

4 (L) g

dt \ay) oy
Substituting (6.1.41) into (6.1.42) and making lengths and time dimensionless
by using d and w™!, respectively, we obtain the following two dimensionless

equations:
. -1+ 1- +
x—2y—x=—“(x L o ( us)(x )
di d;
a-w (6.1.43)
. Wy WYy
+2x-y=-—=%-
YTETITg d3

where x, y, and ¢ are dimensionless and u = m, [(m; + m,).

Equations (6.1.43) have five equilibrium-point solutions (e.g., Szebehely 1967,
pp- 231-318); they are usually called Lagrange’s points and are denoted by
L,,n=1,2,3,4,5. They correspond to the solutions of

x_u(x- Tt (Q-wGtw
a3 a3

0

(6.1.44)
oy A-py

0
a3 a3
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It can be easily verified that d; =d, =1 satisfies (6.1.44) so that the coordinates
of two of these points (L4 and Ls) are

Xo = ‘;“ M, Yo =——
(6.145)

x0=%‘ﬂ, Yo=—"7"
The other three equilibrium points lie along the x-axis.
Next we consider the motion and stability of these equilibrium points. As an
example we consider L, and we let

3
x=%—/¢+ul, y=§+u2 (6.1.46)

Substituting (6.1.46) into (6.1.43) and expanding for small but finite values of
u, and u, , we obtain

. oU
u1~2u2—zu1—nu2=~&¢—
1

(6.1.47)
L . U
u2+2u1*nu1—zu2=‘a

where 7= (3v/3/4) (1 - 2u) and

343 3
V3 uy (U3 +ud)+ \/-—_nul (33u2 - Tu?)+h.ot. (6.1.48)

U=
16 36

The stability of the points L, and Ls (usually called the triangular points)
received considerable attention. The solution of the linearized equations (6.1.47)
indicates that L, and Ls are stable for all u < u, = 3(1 - & +/69). However
using the nonlinear equations, Leontovich (1962) proved that L, and Ls are
stable for all u < u, except on a set of measure zero. Deprit and Deprit-
Bartholomé (1967) proved that the exceptional set contains at most four values
of u, including the values u, and u3 corresponding to a two-to-one and a three-
to-one internal resonance, respectively. Using a Hamiltonian formulation, Markeev
(1968, 1969a, 1972) proved the instability of L, and L for u &~ u, and uz. The
nonlinear motion near L, and Ls for the case u ~ us was studied by Breakwell
and Pringle (1966b), Deprit (1969), Kamel (1969), Nayfeh and Kamel (1970b),
and Alfriend (1971a). The nonlinear motion near L, and L5 for the case u = u,
was studied by Alfriend (1970), Henrard (1970), and Nayfeh (1971b). These
studies show that although a gyroscopic system is linearly stable it may be non-
linearly unstable if there are internal resonances. The linear stability of the mo-
tion near L, and L in the elliptic restricted problem of three bodies was studied
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by Danby (1964), Grebenikov (1964), Bennett (1966). Alfriend and Rand
(1969), Luk’ianov (1969), Nayfeh and Kamel (1970a), Markeev (1970), and
Nayfeh (1970a).

6.2. Free Oscillations of Systems Having Quadratic Nonlinearities

Governing equations with quadratic nonlinearities are associated with many
physical systems such as betatron oscillations (Blaquiére, 1966, p. 140), the
motion of a swinging spring, the motion of a ship, the motion of a fluid inter-
face, the motion of a rotating shaft, the vibrations of shells and composite
plates, the vibration of a structure about a loaded static equilibrium configura-
tion, and the coupled longitudinal and transverse oscillations of a column. Free
oscillations of nongyroscopic systems having quadratic nonlinearities were
treated by using a variety of methods by Beth (1913); Paulling and Rosenberg
(1959); Sevin (1961); Mettler (1963, 1968, 1975); Struble and Heinbockel
(1963); Heinbockel and Struble (1963); Kane and Kahn (1968); van der Burgh
(1968, 1975, 1976); Markeev (1969a, b); Khazin and Tsel’man (1970); Tsel’man
(1970, 1971); Alfriend (1970, 1971c); Nayfeh (1971b); Habakow (1972); Nay-
feh (1973b, Sections 5.5.3, 5.7.5, and 6.2.7); Broucke and Baxa (1973); Nayfeh,
Mook, and Marshall (1973); Kononenko and Koval’chuk (1973b); Srinivasan
and Sankar (1974); Cheshankov (1974a); Marshall and Morrow (1975); and
Crespo da Silva (1974).

It is shown in this section that the behavior of systems having quadratic non-
linearities is the same as the linear behavior to second order (i.e., the frequencies
are independent of the amplitudes and the modes of oscillation are uncoupled)
unless the frequencies w,, are commensurable or nearly commensurable, that is,
unless w,, =~ 2w, or w, = w,, ¥ w;. When one or more of these conditions are
satisfied, an internal resonance is said to exist.

To describe the main physical features of such systems without involving a
great deal of algebra, we consider a two-degree-of freedom system governed by

iil + w%ul = _2ﬁ1d1 + QiU U,
. ~ . (6.2.1)
Uy + Wiy = =20y, + ayul

In this book we use the method of multiple scales and seek a first-order approxi-

mate solution of (6.2.1) for small but finite amplitudes in the form
uy = euyy (T, T1)+€:U12(T0a Ty)+--- 622)
Uy = €ty (To, T1) + € upy(To, Ty) +- - -

where € is a small dimensionless parameter the order of the amplitudes of
oscillation and T, = €"¢. In order to have the damping and nonlinear terms
appear in the same perturbation equations, we scale the damping coefficients by
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letting ,ﬁj = ep;. Substituting (6.2.2) into (6.2.1) and equating coefficients of like
powers of €, we obtain

Order €
Diuy; + wiuy =0
(6.2.3)
Djuy + wjiuy =0
Order €*
Diuy, + wiuyy =-2Dog(Dyuyy +pyuyy) + oq ity 6.2.4)
Diug, + wiyy =-2Do(D1uy + pating) + 0nuiy -
where D,, = 0/0T,,.
The solutions of (6.2.3) can be written in the form
uy =A,(Ty) exp (iw, To) +cc (6.2.5)

Uy =A,(Ty) exp (iw, Ty) + cc
Substituting (6.2.5) into (6.2.4) leads to
Diu, + wiuy, =-2iw(A] +uA,) exp (iw To)
+ay {A, 4, exp [i(wy +,)To] +Ar Ay exp [i(w; - w1)Tol} +cc (62.6)
Diuy, + Wy, = -2iw, (A% + uyd,) exp (iw, To)
+a, [A2 exp Qiw, To) + A, 4,] +cc (6.2.7)

When 2w, = w, there is an extra link, or term, ¢inecting #; and u,. This is
referred to as an internal resonance. In analyzing the particular solutions of
(6.2.6) and (6.2.7) we need to distinguish between the resonant case in which
w, =~ 2w,; and the nonresonant case in which w, is away from 2w .

6.2.1. THE NONRESONANT CASE
In this case the solvability conditions (the conditions for the elimination of
secular terms) become

Ay +u, 4, =0 and A, +u4,=0 (6.2.8)
where the prime denotes the derivative with respect to 7. It follows that
Ay =a,exp (-1 Ty) and A, =a, exp (-u,T1) (6.2.9)
where a, and a, are complex constants and
u, = eexp (-eu ) [a; exp (iw,t) +ec] + 0(e?)

(6.2.10)
u, = eexp (-euyt)[a, exp (iw,t) +ec] + 0(e?)
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Thus both modes decay, and the steady-state solutions are
Uy =u, =0 (6211)
6.2.2. THE RESONANT CASE (INTERNAL RESONANCE)
In this case we introduce a detuning parameter ¢ according to
W, = 2w, teo (6.2.12)
and set
21Ty =wy Ty - €0Ty = w, Ty - oT, (62.13)
((02 - COI)TO = (JJITO +€OTO = wlTO + UT]

In this case it follows from (6.2.6), (6.2.7), and (6.2.13) that the solvability
conditions are

~2iw (A} + 1 A;) + 04,4, exp (ioT;) =0

, (6.2.14)
20wy (A3 +ppAy) + ay AT exp (-ioT,) =0
It is convenient to introduce polar notation. Thus we put
Am =%ay, exp(i,) form=1and?2 (6.2.15)

where a,, and 6, are real functions of T . Substituting (6.2.15) into (6.2.14)
and separating the result into real and imaginary parts, we obtain

ay =-ma, +—91—ala2 sin y (6.2.16)
4(01
dy =125 - —2- 4% sin (6.2.17)
2 2d2 40, 1 Y L.
! o
a,01 =- ——aja, cosy (6.2.18)
40)1
r [¢23 2
a0, =- ai cosvy (6.2.19)
4&)2
where
v=0,-20, +oT, (6.2.20)

» Eliminating 6, and 6, from (6.2.18) through (6.2.20) yields

2 2
' a3  Qpdi
a =o0a, +{——- — ) cos 6.2.21
27 2 <2w1 4w2> Y ( )
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Thus the problem is reduced to the solution of (6.2.16), (6.2.17), and (6.2.21).
The steady-state response corresponds to

ady=ay,=v'=0 (6.2.22)

Thus it corresponds to the solutions of

«

Uiy +——a,a, siny=0 (6.2.23)
4w,
Mz R —
Mol - aysiny=0 (6.2.24)
4w,

M3 - 22 42 cosy +oay =0 (6.2.25)

2(.01 4602

Eliminating y from (6.2.23) and (6.2.24) leads to

oy (g
2+#2 2 112

aj =0 (6.2.26)
My

Thus, if a; and «, have different signs, ¢, and a, can differ from zero. This can
be seen by manipulating (6.2.23) through (6.2.26) to obtain

Y . Aduy w4
coty=-——"——"—, asiny=———

(6.2.27)
Mo 24, Qy

Equations (6.2.27) can be solved for y and a,; a; can then be found from
(6.2.26). This occurs only if a regenerative element (see Sections 3.1.7 and 6.1.4)
exists in the system.

When there is no internal resonance, the first approximation of the solution is
essentjally the solution of the linear problem, regardless of the signs of a; and
a,. On the other hand, when there is an internal resonance and o; and a, have
opposite signs, the equations admit self-sustained oscillations in spite of the
presence of damping and in contrast with the solution of the linear problem.

In the absence of damping (i.e., u; = u, = 0) the exact solution of (6.2.16),
(6.2.17), and (6.2.21) can be expressed in terms of elliptic functions as follows.
Multiplying (6.2.16) by a, and (6.2.17) by va,, where v = a; w, /o, w;, adding
the resulting equations, and integrating, we obtain

at+vai =E (6.2.28)

where E is a constant of integration proportional to the initial energy in the
system. If @; and a, have the same sign, (6.2.28) shows that a; and a, are
always bounded. However when «; and «, have opposite signs, 2; and @, may
grow with time even though a? - |v|a} is bounded, as shown in Section 6.4. In
what follows we assume that the system does not contain regenerative elements
so that a; and «, have the same sign.
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Changing the independent variable from T, to a, in (6.2.21) by using (6.2.17)
yields
dy 4w,o

-a,a} siny T: o a, +(2va3 - a?) cos y (6.2.29)
a; 2

or
- 4w, 005" a, da, +a,yai d(cosy) - 2va3 cos yda, +a? cosyda, =0
(6.2.30)
But from (6.2.28)
a, da, =-va, da, (6.2.31)
Hence (6.2.30) can be rewritten as
a,a? d(cosy) +a? cos yda, +2a,a, cosyda, - 4w,003"a; da; =0
or
d(a?a, cosy) - 2w, 005" d(@3)=0 (6.2.32)
which can be integrated to yield
a,a% cos Y- 2w,005 a3 =L (6.2.33)

where L is a constant of integration.
To determine a single equation for a,, we let

= Ft (6.2.34)
Hence it follows from (6.2.28) that
va3 =E(1- §) (6.2.35)

Using (6.2.33) to eliminate v from (6.2.16) and expressing a? and 43 in terms of
£, we obtain

et <§>2 =£(1-9- —[L 20 - 5)] =F®- G*®

dT, E3
(6.2.36)
where
1/2
=+t\/1-§ G= i(é%) [L + 2°)2:E( - E)] (6.2.37)
2

The functions F and G are shown schematically in Figure 6-6. For real motions,
F? > G?2. The points where G meets F correspond to the vanishing of £'. In
general, the curve G meets the branches of F at three points corresponding to
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Figure 6-6. Schematic of F and G.

the three roots &, £,, and &; of the right-hand side of (6.2.36). Let &; <§, <&,.
Since £ =a}/E, the motion is confined between £, and ;.

When the three roots are distinct corresponding to a curve such as G, £ is
periodic and oscillates between £, and £3, and the motion is aperiodic. In this
case the solution for £ can be expressed in terms of Jacobi elliptic functions as
follows. First, in terms of the &,, we express (6.2.36) as

4ve?
o*E

d§ 2_ ) ) i
(ﬁ) =(& - DE- E)E-£) (6.2.38)

Introducing the transformation

£3- £=(& - &) sin? (6.2.39)
into (6.2.38) we obtain
4031\/—1’_ dx .
— iy A -4 _ 1 - n? sin2 v)/? 2.4
aE T, V&3 - & (1-n*sin® x) (6.2.40)
where
n=y/ 2% (6.2.41)

& - &
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Separating the variables in (6.2.40), putting T'; = et, and integrating the resulting
equation, we obtain

X
d
K(t- to) = f S S— (6.2.42)
o V1-n%sin?x
or
sin x =sn [k(t - t9); 1] (6.2.43)
where ¢, corresponds to x =0, sn is a Jacobi elliptic function, and
E _ 1/2
_fn [____(53 : 1)] (6.2.44)
4w, v

Combining (6.2.34), (6.2.39), and (6.2.43) yields
2
g= 3 =8~ (52~ f2)sn® [k(t - to)in] (6:2.45)

Thus (6.2.45) and (6.2.35) show that, in the absence of damping and for the
conditions such that the &, are distinct, the energy in the system continues to
be exchanged undamped between the two modes of oscillation as shown in
Figure 6-7 for two different initial conditions.

In the presence of damping, Figure 6-8 shows numerical integrations of
(6.2.16), (6.2.17), and (6.2.21). In this case the energy continues to be ex-
changed between the two modes but it is continuously dissipated.

The internal resonance can be used to adjust the rate at which a given mode

20 20

(il

TIME TIME
(a) (b)

e
T
o

a

MODAL AMPLITUDE
o

MODAL AMPLITUDE
o

o

ay”

Figure 6-7. Free-oscillation amplitudes of a conservative two-degree-of-freedom system
with quadratic nonlinearities; w, = 2wj: (@) 1(0) = 1, @5(0) = 0; (b) a1 (0) =a,(0) = 1.
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20 - 20
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(a) (6)

Figure 6-8. Free-oscillation amplitudes of a damped two-degree-of-freedom system with
quadratic nonlinearities; w, =~ 2w;: (@) @1(0) = 1,a,(0) = 0; (b) a1 (0) = ay(0)=1.

decays. To see this, we first suppose that there is no internal resonance. In the
first approximation a; decays exponentially with time as in the linear case. This
curve is shown in Figure 6-9. Also shown in Figure 6-9 are two curves giving
a, as a function of time in the presence of an internal resonance. One curve
corresponds to u, < uy, while the other corresponds to u, > u;. The corre-
sponding curves for a, are not shown. We note that in all cases only the first
mode is excited initially. These results suggest that one can adjust the rate at
which a given mode decays by coupling it with another mode through an
internal resonance.

When &, = &; corresponding to the curve G, which is tangent to one of the
branches of F, £ = &3 is a constant according to (6.2.45), and hence a; =+/E%,

o e
1

MODAL AMPLITUDE, aq,
o
(¢

Figure 6-9. Effect of internal resonance and
damping coefficients on the rate of decay:
( ) no internal resonance; (——) uy < ujp;
==-) up > uy.
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and @, = [E(1 - £&,)/v]"/%. In this case the motion is periodic. However any
small disturbance would lead to a curve such as G, where the roots are distinct,
and hence the motion is aperiodic as discussed above.

When &, = £, G coincides with the £-axis, and hence L =0 =10 according to
(6.2.37). Consequently it follows from (6.2.36) that &, =&, =0 and &3 = 1. The
solution in this case can be obtained by introducing the transformation

g=sech? ¢ (6.2.46)
into (6.2.36) with L = 0 = 0. The result is
d
f;— =K (6.2.47)
whose solution is
¢p=k(t-ty) (6.2.48)
Therefore
a, =EE =+/E sech [k(t - t,)] (6.2.49)

and it follows from (6.2.35) that

a, = ‘/gtanh [k (- to)] (6.2.50)

We note that L = ¢ = 0 demands that cos y = 0 according to (6.2.33). Hence
it follows from (6.2.18) and (6.2.19) that 87 = 6, = 0; that is, the phases are
constant. Consequently the motion consists of only amplitude-modulated
motions. As ¢ > %, a; = 0 while a, - (E/v)"/?, leading to a motion that is inde-
pendent of the lower mode. Thus the coupling that results from an internal
resonance leads to a complete transfer of energy from the lower mode to the
higher mode. However Figure 6-6 shows that such a motion is unstable because
any small disturbance applied to it would lead to a motion corresponding to a
curve such as G; for which the amplitude and the phase are modulated.

6.3. Free Oscillations of Systems Having Cubic Nonlinearities

Governing equations with cubic nonlinearities are associated with many
physical systems such as the vibration of strings, beams, membranes, and plates
for which stretching is significant (Chapter 7), dynamic vibration-isolation
systems, dynamic vibration absorbers (Section 6.6), the motion of spherical,
centripetal, and double pendulums, and the motion of masses connected by
nonlinear springs. Tobias (1959) discussed the design of nonlinear vibration-
isolation units. The general motion of these units is governed by a system of
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six coupled nonlinear differential equations with cubic nonlinearities. Henry and
Tobias (1959, 1961), Gilchrist (1961), and Henry (1962) determined the modes
of oscillation and their stability for a two-degree-of-freedom model. Grossley
(1952) and Newland (1965) analyzed the motion of a centripetal pendulum.
Other systems with two degrees of freedom were studied by Proskuriakov
(1960b, 1965), Butenin (1965, Section 9), Blaquiére (1966, Chapter 4), Yang
and Rosenberg (1967), Hori (1967), Rand and Vito (1972), Varga and Aks
(1974), Kuroda (1974), and Month and Rand (1977). Systems with several
degrees of freedom were studied by Proskuriakov (1960a, b, 1962, 1965, 1968);
Bogoliubov and Mitropolsky (1961, Sections 20 and 21); Sethna (1963b);
Walker and Ford (1969); Lansdowne and Soudack (1971); Habakow (1972);
Nustrov (1974); Rangacharyulu, Srinivasan, and Dasarathy (1974); Postnikov
(1974); Helleman and Montroll (1974); Ford (1975); Hoogstraten and Kaper
(1975); Montroll and Helleman (1975); and Eminhizer, Helleman, and Montroll
(1976). For a comprehensive review and a discussion of the convergence of avail-
able techniques of determining periodic solutions of nonintegrable systems, we
refer the reader to the book of Moser (1973) and the Proceedings of the AIP
Conference edited by Jorna (1978) and in particular to the articles of Moser
(1978), Helleman (1978), and Berry (1978).

As in the preceding section, we exhibit the main features of the behavior of
systems having cubic nonlinearities by discussing a simple system, namely

. A )
Uy + wiug =-2y0y +ogud +ayudu, +oguud +agud 63.1)
3.1

.. 2 - A )
Uy + Wiy =2yt +asui +aguiuy +aquiud +oagul

We seek an approximate solution of (6.3.1) for small but finite amplitudes in
the form

u, = Gu“(To, T2) + €3u13(T0, T2) 2

(6.3.2)
Uy =€y (To, Ty) + uys(To, To) +- - -

where € is a small, dimensionless parameter the order of the amplitudes and T, =
€"t. Note that the slow scale T, = et as well as the terms e?u,, and €?u,, are
absent from (6.3.2) because the nonlinearity is cubic. Had we kept Ty, u,,, and
Uy, we would have found that the solution is independent of T'; and that u,,
and u,, satisfy exactly the same equations as #,; and u,,. Hence u,, and u,,
can be omitted without loss of generality. Moreover in order for the effect of
the damping to balance the effect of the nonlinearity, the damping coefficients
must be ordered so that the damping terms appear in the same perturbation
equations as the nonlinear terms. Hence we set fi,, = €24,,. Then substituting
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(6.3.2) into (6.3.1) and equating coefficients of like powers of €, we obtain
Order €

Djuyy + wiug =0
(6.3.3)
Diuy + wily =0
Order €
D3uys + wlugs =-2Do(Dyttny + i) + 0quiy + apuiiun
+ogUp Ul Foagudy (6.3.4)
D3ugs + w3tyy =-2Do(Dyttyy +attay) + asuiy + agudiiy
+ aqu U3y +agud, (6.3.5)

where D,, = 0/0T,.
The solutions of (6.3.3) can be written in the form

uy =A(T,) exp (iw, Ty) + cc (63.6)
Uy =A,(T,) exp (iw,Ty) +cc
Substituting (6.3.6) into (6.3.4) and (6.3.5) yields
D2uyy + wiuys = [-2iw (A} +uiAd) + 30434, +2034,4,4,]
cexp (fw To) + (Qay A Ay +3a,4,4,)A, exp (iw,Ty)
+ o, A3 exp (Biw, To) + agd3 exp (3iw,To)
+ 0,434, exp [i(Qw; + wy)To] + 0,424,
exp [i(wsy - 2w, )To] +azA A3 exp [i(w; +2w,)T,]
) +o34,A3 exp [i(w, - 20,)T,] +cc (6.3.7)
Diuyy + wiiyy = [~ 2iw, (A + upAy) + 305434, + 206414, 4,]
exp (iw, To) + (2074,4, +3asA414,)A, exp (iw, Ty)
+asA? exp (3iw, To) + agd3 exp (3iw, To)
+agA34, exp [((2w, + wy)To] +agA2A,
exp [((wy - 2w )To] + as4,A4% exp [i(w; + 2w,)T,]
+ay,A4,A43 exp [i(w; - 2w,)To] +cc (6.3.8)

where primes denote differentiation with respect to T',. In analyzing the partic-
ular solutions of (6.3.7) and (6.3.8), we need to distinguish among three cases:
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W, = 3w, Wy, X 3 w, and w, away from 3w; and %wl (i-e., nonresonance).
If one of the first two cases occurs, an internal resonance is said to exist. In what
follows we treat the internal-resonance case and the nonresonant case, starting
with the latter.

6.3.1. THE NONRESONANT CASE

In this case the only terms that produce secular terms are the terms propor-
tional to exp (*iw; Ty) in (6.3.7) and the terms proportional to exp (tiw,To)
in (6.3.8). Thus eliminating the terms that produce secular terms in (6.3.7) and
(6.3.8) yields

_210)1(14,1 +,UIA1)+3C¥1A%Z1 +2013A2.Z2A1 =0

, _ _ (6.3.9)
"2iw2(A2 +I.l2A2) + 3C¥8A%A2 + 2a6A A A2 = 0
Putting 4,,, = am exp (i0,,) in (6.3.9) and separating real and imaginary
parts we obtain
ay +ua; =0 (6.3.10)
ay + u,a, =0 (6.3.11)
, 3
0 =- <—°“—a§ +-2 a§> (6.3.12)
8w, 4w,
, 3
6, = —( % 342 a%> (6.3.13)
8(4)2 4(4)2
The solutions of (6.3.10) through (6.3.13) are
a; =ay exp (-€2uy 1) (6.3.14)
a, = a9 €Xp (_€2H2t) (63.15)
3, 2 )
0, = '—"_010 exp (-2¢* #1t)+ azo exp (-2, 1) + 09
16w 8w,
(6.3.16)
3
0, = = 30 exp (-2€*u, 1) + = alo exp (-2€*u 1) + 04
16(02[12 Bwa iy
(6.3.17)

where ayq, @3, 010, and 0, are constants of integration. Consequently the
amplitudes and hence the motion decay with time. However while the motion is
decaying, the phases 0, and 6, and hence the frequencies of both modes are
dependent on both amplitudes of oscillation.

In the absence of damping (i.e., u; = u, = 0), (6.3.14) through (6.3.17) reduce
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to a; =y, = dy, and

3
91=_< ! a%() +&'d%0>62t+010

80)1 4601
(6.3.18)

3(18 Qg
0, =- aj +——ajy| €21+ 0y
80)2 4(,02

which show that the phases and hence the frequencies are functions of the
amplitudes. The frequencies increase or decrease with the amplitudes depending
on the signs and relative magnitudes of «;, as, ag, and ag as well as on the ratio
of @y to ayg.

6.3.2. THE RESONANT CASE (INTERNAL RESONANCE)

We consider only one case, namely w, =~ 3w,;. The case w; ~ 3w, can be
treated by following the present procedure.

To express quantitatively the nearness of w, to 3w,, we introduce a detuning
parameter o according to

wy =3w; +€%o (6.3.19)
and write
Wy TO = 30)1 TO + 62 OTO = 3(,01 To + 0T2 (6320)

Inspection of the right-hand sides of (6.3.7) and (6.3.8) reveals that in addition
to the terms proportional to exp (*iw,, To) secular terms are produced by the
terms proportional to exp [+i(w, - 2w;)T,] in (6.3.7) and the terms propor-
tional to exp (*3iw; T,) in (6.3.8). To exhibit this secular behavior we express
these factors as

exp [+i(w, - 2w )To] =exp (Fiw, Ty *ioT,)
(6.3.21)
exp (£3iw, Ty) = exp (xiw, Ty FioT,)
Then the secular terms are eliminated from u,;3 and u,3 if
-2iw (A} + A, ) + 30424, +2034,4,4, + 0,A3A, exp (i0T,) =0
_21(1)2(14,2 + I.l2A2) + 3(1314%;2 + 2a6A 1Z1A2 + asA:;’ EXP (_iUTz) = 0
(6.3.22)

Putting 4,, = %am exp (i0,,,) in (6.3.22) and separating real and imaginary parts
we have

8wy (@) +uay) =0ya2a, siny (6.3.23)

8w, (ay + Maay) = -0sal siny (6.3.24)
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8w,a,07 =-Baja? + 2a3a2)a, - aaia, cosy (6.3.25)
8w,a,0% = - (3agal + 2aa?)a, ~ asai cosy (6.3.26)

where
y=0, - 30, + 0T, (6.3.27)

Eliminating 6, and 8, from (6.3.25) through (6.3.27) yields

' 3&3 3&8 3 9a1 Qg 2
=a,0%t - a; t - aia
ay a, <4QJ1 8(.02> 2 8(«)1 4w2 14,

+ <3—a2—a1a§ -2 a{‘) cosy (6.3.28)
8(01 8&)2
Thus the problem is reduced to one of finding the solutions of (6.3.23), (6.3.24),
and (6.3.28).
Multiplying (6.3.23) by wi'a, and (6.3.24) by w;'va,, where v = (apw,/
a5 wy ), and adding the results, we obtain

a,ay +vaya, = -p at - yyvad (6.3.29)
" For steady-state motions, a; = a3 = 0, and it follows from (6.3.29) that
Hia? + wva? =0 (6.3.30)

Hence, unless v > 0, nontrivial steady-state free oscillations can exist, which is

physically unrealistic unless there is a regenerative element (see Sections 3.1.7

and 6.1.4) in the system. In what follows we assume that such elements do not

exist in the system and hence that » > 0 or a, and a5 have the same sign.
Equation (6.3.29) can be integrated if u; = u, = u. The result is

a? +va3 = E exp (-2 ur) (6.3.31)

where E is a constant of integration proportional to the initial energy of the
system. Thus, as ¢ = o, a2 + va2 - 0. That is, the energy in the system decays
exponentially with time.

If uy; = p, =0 (i.e,, in the absence of damping), a second integral of the
motion can be found as follows. Changing the independent variable in (6.3.28)
from T, to a, and using (6.3.24), we obtain

d 8w, 0
-aia, sin 7—Z-= 2= 4, +Thad + Tala, + (3va,d2 - a3) cos v
da, s
(6.3.32)
where
6az;w, 3a 9a,w, 2«
Fl='—§‘—_2‘——‘§‘, 1—‘2:;2___6_

Q5 Qs Q5 Qs
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Using (6.3.31) with u = 0, we can integrate (6.3.32) to obtain

8
©29, F2E> d+Ler,-T)d=L (6333
5

ala, cosy- %(

where L is a constant of integration.

With (6.3.31) and (6.3.33) one can reduce the problem to a single first-order
equation. To accomplish this we let i = E%. Then it follows from (6.3.31) that
a2 = Ev'(1 - £). Using these expressions for a3 and @} and eliminating y from
(6.3.23) and (6.3.33), we obtain

1602y,
o £ TG0 (6.334)
where
F=+/&(1- §) (6.3.35)
2
GJ—?{L £(8w2°+FzE>(l-s)—%(vrz—n)(l-zﬁ}
E 5 4y

(6.3.36)

In contrast with the case of quadratic nonlinearities, the exact solution of
(6.3.34) through (6.3.36) is not available yet, and so (6.3.34) is solved
numerically.

The functions F(§) and G(£) are shown schematically in Figure 6-10. Since
a; and hence § must be real, F2(£) > G2(£). The points where G meets F corre-

G,

Gz

Gy

Figure 6-10. Schematic of F and G.
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Figure 6-11. Free-oscillation amplitudes of a two-degree-of-freedom system with cubic
nonlinearities; wy =~ 3wy : (@) no damping; (b) uq, uy > 0.

spond to the vanishing of ¢’ and hence to the vanishing of 4} and a3. A curve
such as G, which meets one branch of F' at two different points or a curve G
which meets both branches corresponds to a periodic solution for £ and hence
a, and a,. Consequently the motion is aperiodic. Figure 6-11 shows that in the
absence of damping the energy is continuously exchanged between the two
modes. Numerical integration of (6.3.23), (6.3.24), and (6.3.28) shows the
effect of the damping. The energy in a given mode can be more effectively
damped if that mode is coupled via an internal resonance to another mode
having a large coefficient of damping.

On the other hand, a point such as P where G, touches F represents a sta-
tionary solution for £ and hence @, and a,. Consequently the motion corre-
sponding to such a point is periodic, and the effect of the nonlinearity is to
modulate the phase in such a way that the nonlinear frequencies are commen-
surable. To analyze the stationary solutions of ¢; and a,, we seta; =a5 =v' =0
in (6.3.23), (6.3.24), and (6.3.28). In the absence of damping, the stationary
solutions are given by

siny=0 or y=nn (6.3.37)

3a 3a a a 3a o'
“? +(4w31 ] 8w82>ag +<8w11 ) 4Cjz> aiar * (ﬁa‘ag B a?> cosnm=0
(6.3.38)

where n is an integer. Equation (6.3.38) is a cubic equation for @, in terms of
a, cos nm. Thus for a given ¢ and @, cos nm, (6.3.38) has either one real root or
three real roots. Thus the periodic motion may consist of a unique motion, or it
may be one of three possible motions. Figure 6-10 shows that the periodic
motion is unstable because any small disturbance would lead to a curve G similar
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to G, where it intersects one branch of F in two different points, and hence it
would lead to an aperiodic motion.

To show that the nonlinear motions in the case of stationary solutions for
a, and a, are periodic, we note that the frequencies are given by

Oy =w, +€*0), O, =w, +e20, (6.3.39)

Then

~

Wy ~ 3(:\)1 =Wy 3(01 +€2(6’2 - 39’1)=€20+€2(0,2 - 36’1)':627, =0
(6.3.40)

Thus the nonlinearity adjusts the phases such that the frequencies are exactly in
the ratio of 3 to 1, and hence the motion is periodic.

So far we have discussed phase-modulated motions (periodic motions) and
both amplitude- and phase-modulated motions. The question arises whether pure
amplitude-modulated motions can exist as in the case of quadratic nonlinearities
discussed in the preceding section. If 6, and 6, are constants, then it follows
from (6.3.25) and (6.3.26) that

(Baya? +203a3)a; + ayaia, cosy=0

(6.3.41)
(Baga3 +2aga?)a, + asai cosy=0
Eliminating cos -y from (6.3.41) yields
as(Baya? +2a3a2)a? - a,(3aga3 +2aga})al =0 (6.3.42)
But in the absence of damping ‘
attva3 =E (6.3.43)

Equations (6.3.42) and (6.3.43) can be solved to determine constant values for
a, and a,. Therefore pure amplitude-modulated motions do not exist in the case
of cubic nonlinearities, in contrast with the case of quadratic nonlinearities.

6.4. Free Oscillations of Gyroscopic Systems

A discussion of the motion of coupled rigid bodies is given in the book of
Leimanis (1965), while a discussion of problems of rotor dynamics is given in the
book of Tondl (1965). Kyner (1969) discusses the occurrence of nonlinear
resonances in physical systems such as time-varying torques, coupled pendulums,
and artificial satellites. Sethna and Balachandra (1976) presented a survey of
nonlinear gyroscopic systems. The motion of general gyroscopic systems was
studied by Cherry (1924), Moser (1958), Bert (1961), Arnold (1963), Butenin
(1965, Section 10), Hori (1966), Gustavson (1966), Garfinkel (1966), Markeev
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(1968, 1969a), Deprit (1969), Kamel (1969, 1970, 1971), Henrard (1970),
Alfriend (1971b, c), Tsel’man (1971), Khazin (1971), Alfriend and Richardson
(1973), Balachandra (1973), Sethna and Balachandra (1974b). Rangacharyulu
and Srinivasan (1973), and Bhansali and Thiruvenkatachar (1975). The problem
of the stability of the triangular points and references dealing with it are given in
Section 6.1.5.

Junkins, Jacobson, and Blanton (1973) reduced the motion of any torque-free
rigid body to the solution of three uncoupled Duffing’s equations. Goodstein
(1959) studied the free and forced vibrations of a gyroscope, Thorne (1961)
solved numerically the equations governing the motion of a gyroscope under
constant acceleration and a correcting torque, and Poli and Budynas (1971)
studied the stability of a symmetric gyroscope.

The motion of a satellite about an oblate earth was studied by Liu (1974). The
problem of a symmetric satellite in a nearly circular orbit was studied by Pringle
(1964), Likins (1965), Breakwell and Pringle (1966a), Markeev (1967a), and
Hitzl (1969, 1971). The effect of a rotor on the attitude stability of a satellite
was examined by Kane and Mingori (1965), Kane (1966), and Crespo da Silva
(1972b). Dual-spin satellites were studied by Likins (1967); Mingori (1969);
Pringle (1969, 1973); Likins, Tseng, and Mingori (1971); Mingori, Tseng, and
Likins (1972); Scher and Farrenkopf (1974); Gebman and Mingori (1976); Fujii
(1976); and Cochran (1977). Pringle (1968) suggested the exploitation of non-
linear resonances in damping the librations of a dumbbell satellite, Likins and
Wrout (1969) and Schneider and Likins (1973) suggested the use of internal
resonances as an internal kinetic-energy exchange mechanism to accelerate the
dissipation of the libration energy of a satellite, and Fujii (1976) investigated the
effect of resonances on the attenuation of the librations of a satellite having a
finite mass and connected to an energy damper. The effect of gravity-gradient
perturbations on the attitude motion of satellites was analyzed by Beletskii
(1960, 1968), Kane (1966), Breakwell and Pringle (1966a), White and Likins
(1969), Modi and Brereton (1969a, b), Crespo da Silva (1970, 1972a), Hitzl
and Breakwell (1971), Cochran (1972), and Nishinaga and Likins (1974).

The motion of a rotating shaft with gyroscopic moments and nonlinear restor-
ing springs leads to a system of nonlinear gyroscopic equations. Genin and May-
bee (1969, 1970) and Mingori (1973) analyzed the stability of whirling shafts
with internal and external damping. Using a forced rotating shaft, Yamamoto
(1957, 1960) demonstrated the occurrence of combination resonances of the
summed and difference type. These resonances were studied by Yamamoto
(1961a); Yamamoto and Ishida (1974, 1977); and Yamamoto, Ishida, and
Kawasumi (1975, 1977).

In this section we consider the free oscillations of a conservative system having
gyroscopic forces and simple quadratic nonlinearities. Namely we consider the
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system
l‘l‘l - )\122 + alul + a3u2 = 2”1”2
.. (6.4.1)
Uy + Nty +ozuy +opu, =ul
We seek a first-order solution for small but finite amplitudes in the form
uy =euy (To, Ty) + €2uyy (Ty, Ty) +-
(6.4.2)

Uy = €Uy (To, Ty) + € upy(Ty, Ty) +- - -

where € is a small, dimensionless parameter the order of the amplitudes and
T,, = €"t. Substituting (6.4.2) into (6.4.1) and equating coefficients of like
powers of € we obtain

Order e
Diuyy = NDottyy + 0ty + 0315 =0 (6.4.3)
Diuyy +NDoutyy + a3ty + 0y =0
Order e*
Diuyy - NDouy, + QiUyp t QU = -2DoDyuyy +ADyuy +2uy 0y (6.4.4)
Diuz, + NDotty; + 031ty + 0ty = =2DoDyuy - NDyuyy +ufy
The solution of (6.4.3) can be expressed in the form
Uy =A,(Ty) exp (iw; To) + A (Ty) exp (iw, Ty) + cc (6.4.5)
Uz = A A(Ty) exp (iw; To) + AyA,(Ty) exp (iw, To) + cc
where the w2 are the roots of
- (a; ta, +A)w? oo, -ai =0 (6.4.6)
Ay = - 2R (64.7)
Q = Wy

and the w,, are assumed to be distinct.
Substituting #;; and u,; into (6.4 .4) yields
Djuys = NDotty; + ayuyy + 03ty = -(2icoy - A, ) A"y exp (iw; To)
= (2iw, - NAL) A exp (iw, To) + 2A, A% exp (2iw; To)
+2A,A3 exp (2iw, To) + 2(Ay + Ay)A A, exp [i(w; + w,y)To)
+2(A; + Ay)A A, exp [i(ws - wi)To + 2K, 4,4, +2K,4,4, +cc
(6.4.8)
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Djuzy + NDotty; + zttys + Qaityy = -(2iw; Ay + N)A] exp (iw; Ty)
= (2iwa Ay + N A; exp (iw,To) + A2 exp (2iw, To)
+ A3 exp (2iw,To) + 24,4, exp [i(w; + w2)To]
+24,4, exp [i(w; - wy)To] +A1 A, +A,A4, +cc (6.4.9)

In determining the solvability conditions of (6.4.8) and (6.4.9) and hence the
equations that describe the A,,, we need to distinguish between resonant (i.e.,
w, ~ 2w or 3w, ) and nonresonant (w, is away from 2w, or 3, ) situations.

In the nonresonant case the solvability conditions of (6.4.8) and (6.4.9) yield
A,=00rd,= %a,, exp (i0,,), where a,, and 6,, are real constants.

We analyze only the resonant case w, =~ 2w, because the other resonant case
can be treated in a similar fashion and because the physical features can be ob-
tained by the analysis of one of the two cases. Thus we introduce a detuning
parameter ¢ defined by

wy =2w,; teo (6.4.10)
and express 2w; Ty and (w, - w;) T, as
2w1T0 =(JJ2TO - O'Tl
(6.4.11)
(w2 - w)T=w Ty +0T,

To determine the solvability conditions of (6.4.8) and (6.4.9), we seek a
particular solution in the form

Uiz =Py exp (iw; To) + Py, exp (iw, To)
_ _ (6.4.12)
Uyy = Pay exp (iw; To) + Py exp (iw, To)

Substituting (6.4.12) into (6.4.8) and (6.4.9), using (6.4.11), and equating the
coefficients of exp (iw; Ty) and exp (iw, Ty) on both sides, we obtain

(o - wfl)Pln +(a3 - iw, )Py, =R,

. , (6.4.13)
(a5 + iw, )Py + (0 - wn)Poy =Rsn
where
Ry =-Qiw; - M)A +2(A, + Ay)A,4, exp (ioT,)
, - (6.4.14)
Ry = -(2iw, Ay +N)A] +24,4, exp (ioT)
Ry = -(2iw, - M)A, +2A,A4% exp (-ioT})
(6.4.15)

Ry = -(iw, Ay + M)A, + A% exp (-ioT,)

Thus the problem of determining the solvability conditions of (6.4.8) and
(6.4.9) is reduced to that of determining the solvability conditions of (6.4.13).
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Since the determinant of the coefficient matrix of (6.4.13) is zero according to
(6.4.6), the solvability conditions are

Rln Q3 — l(&)n>\
=0 (6.4.16)
Ron - w?
or
Ryp = -A,Ry, (6.4.17)

on account of (6.4.7).
Substituting (6.4.14) and (6.4.15) into (6.4.17) and rearranging, we obtain
A} =-il 4,4, exp [i(cT; +7)
1 1424, exp [i(oT, ] (6.4.18)
Ay =-1iT, A} exp [Fi(oT; +1)]
where
Tp = 1Ay +2A, 1 (a2 - w})wp' (g + 0 2% - 2007) 7 (6.4.19)
7 = imaginary part of log (A, +2A,) o

Putting A, = 3 a, exp (i0,,) with real a, and 0,, in (6.4.18) and separating the
real and imaginary parts yields

dy =4iTa,a; siny (6.4.20)
ay =-3T,a? siny (6.4.21)
0, = —%l“laz cos y (6.4.22)
a,05 = -4T,a} cosy (6.4.23)
where
y=0,-20, +oT, +71 (6.4.24)

Eliminating 6, and 6, from (6.4.22) through (6.4.24) gives

@Y =a,0- §T,a} cosy + a3 cosy (6.4.25)

Equations (6.4.20) through (6.4.25) have the same form as (6.2.16) through
(6.2.21) derived in Section 6.2 for nongyroscopic systems when u; = u, = 0.

Eliminating vy from (6.4.20) and (6.4.21) yields va,a; +a,a; =0 where
v =(2I';/T';). Hence

va: +a =E (6.4.26)

where E is a constant of integration. As discussed in Section 6.2, the response
will be bounded if » > 0, but it may be unbounded, depending on the detuning
0, as shown below if ¥ < 0. When v > 0, the analysis and behavior of the system
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are exactly as in Section 6.2. Hence we restrict the discussion in this section to
the case v < 0.
It follows from (6.4.19) that

_ _2_&_ 2w (a0 = wi)(oy + oy + 2% - 203)
I, wi(e - wd)e +op +2% - 2wi)

(6.4.27)

Since a; +a; +A? = w?} + w3 from (6.4.6),

2
p= 20202 ” w1) (6.4.28)
wi(a, - wj)
Certainly v < 0 when a, < 0. But if &, < 0, it follows from (6.4.6) that a; < 0
in order that w,; and w, be real. This is exactly the condition that the Hamil-
tonian is not positive definite. To see this, we note that the Hamiltonian corre-
sponding to the linear parts of equations (6.4.1) is

H=3(p, + %7\“2)2 + %(pz - %xul)z + %0‘1“% tozuyu, %0‘2“% (6.4.29)

where p; and p, are the generalized momenta. Substituting H into Hamilton’s
equations

_oH o oH

= — 6.4.30
Uy, o, Pn ou, ( )

yields the linearized parts of (6.4.1). Equation (6.4.29) can be rewritten as

H=75(p1+ 3 \uy)® + 3 (P2 - $huy)?
1 @3 2
t50 <u1 +a U, u; (6.4.31)

2 2
Ocloz - a3
+ 2
1

20,

Since a; o, - @2 >0 in order that w; and w, be real, A is positive definite un-
less &; < 0 and hence a, < 0.

Following an analysis similar to that of Section 6.2, we can write the following
second integral for (6.4.20), (6.4.21), and (6.4.25):

20
a,a3 cosy- F—a% =L (6.4.32)
2
where L is a constant of integration. To determine a single equation for a, we let
a3 =|E|§ (6.4.33)
It follows from (6.4.26) that
a? =|E|(x1 +9%), P=-v>0 (6.4.34)

where the plus and minus signs inside the parentheses correspond to positive and
negative values of E, respectively. Using (6.4.32) to eliminate 7y from (6.4.21)
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Figure 6-12. Schematic of the motion: (2) £ > 0; (b) E < 0.
and expressing a2 and a3 in terms of £ we obtain
dg\?
<——> =F2(5)- G*(%) (6.4.35)
dr
where £= D%,
F=28E=+1), G=0(E+1) (6.4.36)
20 ~ LD,V
7=1i0,VPIEIT,, 6= L L="3 (6.4.37)

T, VPIE] 20|E|

The functions F and G are shown schematically in Figure 6-12. Since a,, and
hence ?, must be real, F2 > G? must hold. The points where G meets F corre-
spond to the vanishing of both a} and a5. A curve such as G, which meets both
branches of F, or meets one branch at two different points, corresponds to a
bounded aperiodic motion. In this case £ and hence % can be expressed in terms
of Jacobi elliptic functions as in Section 6.2.

On the other hand, a curve such as G4, which meets F at one point only, repre-
sents an unbounded motion. However the points P, and P; where G, and G,
touch F' represent equilibrium (periodic motions). A point such as P; corre-
sponds to a stable periodic motion, whereas a point such as P3 corresponds to an
unstable periodic motion.

When o =0 (i.e., the case of perfect resonance), G = constant and the curve G
intersects the curve F in one point only. Consequently the nonlinearity causes
the motion to be unbounded though it is bounded according to the linear theory.

Since » < 0 when a; and a, are negative, the system under consideration is
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unstable linearly if a3 =0 in the absence of the gyroscopic forces. However the
nonlinearity causes the system to be unstable if the two linear frequencies are
commensurable.

6.5. Forced Oscillations of Systems Having Quadratic Nonlinearities

In this section we consider the forced response of a system having quadratic
nonlinearities. For simplicity we consider only the case of a single-frequency
excitation. van Dooren (1971a, b, 1973b) studied the case of a two-frequency
excitation and obtained results for the cases w,, =, * ;, where w,, is one of
the natural frequencies of the system and £2; and §2, are the frequencies of the
excitation. Thus we consider

il.l +w%u1=—2ﬁ1121 +u1u2 +F1 COS(QZ"“T]) (65 1)

il.2 +(.O%u2 ='—2ﬁ2122 +u% +F2 COS(Q!+T2) o
with w, being larger than w,. We follow Nayfeh, Mook, and Marshall (1973)
and seek a first-order uniform expansion by using the method of multiple scales
in the form

uy =euy (To, T1) + €uy(To, Ty) ++ -

] (6.5.2)
Uy =€y (To, T1) + €uypy (T, Ty)+ "+

where € is a small, dimensionless parameter related to the amplitudes and
T, = €"t. We order the damping coefficients so that the effects of the damping
and the nonlinearity appear in the same perturbation equations. Thus we let
u n = €l,. As before, we consider two major categories—primary (2 ~ w,,) and
secondary resonances (£ =~ 2w, , = w; * w,, or 2 =~ %wn). Moreover we con-
sider a number of cases within each category. Primary resonances were analyzed
by Mettler and Weidenhammer (1962); Sethna (1965); Tondl (1966); Nayfeh,
Mook, and Marshall (1973); and Marshall and Morrow (1975). Secondary reso-
nances were analyzed by Kruschul (1960); Yamamoto (1961a, b); Yamamoto
and Nakao (1963); Yamamoto and Hayashi (1963, 1964); van Dooren (1971a,
1973b); Eller (1973); Mook, Marshall, and Nayfeh (1974); Agrawal (1975); and
Evan-Iwanowski (1976).

6.5.1. THE CASE OF Q NEAR w,

To analyze primary resonances, we order the forcing term so that it appears in
the same perturbation equation as the nonlinear terms and the damping. First we
consider the case in which £ ~ w,. Thus we let F; = ¢f; and F, = €%f,. Sub-
stituting (6.5.2) into (6.5.1), recalling that fi = eu,,, and equating coefficients of
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like powers of €, we obtain

Order €
Diuyy + wluy = fi cos(QTo +711) (6.5.3)
D3uy; + wiu,; =0
Order €2
Diuy, + Wiy, = -2Dg(Dyuyy + pytdyy) + Uyt (6.5.4)
D3uyy + whttyy = =2Do(Dythyy + pattyy) +uly +f, cos (T +17,)
The solutions of (6.5.3) can be expressed in the form
i =AiT) exp (i1 To) + Aexp @ +r)] wee o

Uz =A,(Ty) exp (iw, To) + cc

where A; and A4, are arbitrary functions at this level of approximation and
A=f,]2(w} - Q2). Substituting (6.5.5) into (6.5.4) yields

Djusy + wiugy = -2iw; (A7 +pyA,) exp (iw; To) + Ay Ay exp [i(ws + wy)To]

+ A4, exp [i(w, — w)To] + Ad, exp [i(Q + w,)T, +iry]

+ A4, exp [i(Q - wy)To +ity]

- 2iu QA exp [i(QTy +7,)] +cc (6.5.6)
Djuy, + w3y = =2iw, (Ay + taA,) exp (iw,To) + A2 exp (2iw; Tp)

+ A4, + A% + 24, A exp [i(w, + Q) T, + ity ]

+ 24, A exp [i(Q - )T +ity] + A exp [2i(QT, +11)]

+ 37, exp [i(w,To + 0,Ty +1,)] +cc 6.5.7)
where

Q=w, teo (6.5.8)

As in Sections 6.2 and 6.4 we need to distinguish between the case of internal
resonance w, ~ 2w; and the case of no internal resonance (i.e., w, is away
from ;). In the latter case none of the nonlinear terms produces a secular
term, and the solvability conditions are

Ay +ud, =0 (6.5.9)
2iw2(A; + U A4,) = %fz exp [i(0, Ty +73)] (6.5.10)
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whose solutions are

Al = %al exp (“[J.lTl + 101) (6.5.11)
Ay=%a, exp 1Ty +165) - Yifsw3 (uy +ioy) exp [i(0; Ty +7,)] (6.5.12)

where the a,, and 0,, are constants.
Ast—>o T, - o0 and

Ay~ 0,4, > -%if,w3' (uy +iog) P exp [i(0; Ty +75)]  (6.5.13)

Substituting (6.5.13) into (6.5.5) and (6.5.2) and expressing the result in terms
of the original variables, we obtain the following steady-state response:

u; =F(w?- Q)7 cos (Q+71,)+0(e?)
(6.5.14)

Uy = L& Fywi (3 + 01) V2 sin (Q1 47, 70) + O(e?)
where o = arctan (0,/u,). Thus when there is no internal resonance, the first
approximation is not influenced by the nonlinear terms; it is essentially the solu-
tion of the corresponding linear problem. As we shall see next, when there is an

internal resonance the solution can differ drastically from (6.5.14).
When w, ~ 2w, the solvability conditions of (6.5.6) and (6.5.7) are

~2iw (A} + 1 Ay) + A, A, exp (-io,T1) =0

=2iw,(Ay + upd,y) + A% exp (io, Ty) + %fz exp [i(0,T; +7,)] =0 (6.5.15)
where
W, =2wW; ~ €0y (6.5.16)
As before, we introduce polar notation 4, = %an exp (i6,,) and obtain
ay = -pa; + %wflalaz sin 7y, (6.5.17)
@y =~ - Sw3'ad siny, + Fw;'fy sinyy (6.5.18)
4,0 = -Fwi'a,a; cos v, (6.5.19)
2,05 = - 1w3i'al cos v, - 2wilfy cosyy (6.5.20)
where
ol (6.5.21)

Y2 =0, - 20, - 0, T,

For the steady-state response, a,, = ,, = 0. We find two possibilities. The first
is given by (6.5.13), and it is essentially the solution of the linear problem. The
second is

a, .__2[_[11 i(%f;l - F%)1/2]1/2 (6.5.22)
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a; =a} = 2w, [4} + (0, - 0,)*]V? (6.5.23)
where

[y =2w 3w, [04(03 - 01) + 2051, ]
(6.5.24)
[y =2w,w; [2011y - 1y(0, - 04)]
We note here, and discuss later, a very interesting feature of the response: a,, the
amplitude of the only mode that is directly excited by the external excitation, is
independent of f,, the amplitude of the excitation.
It follows from (6.5.5), (6.5.21), (6.5.22), and (6.5.23) that

uy =F(w}- Q%) cos(Q+7,)
+2e[-Ty £ (513 - T2 cos [5(Q + 1, - 71 - 12)] +O(?) (6.5.25)
Uy =2€w; [41F + (0, - 0,)*]1Y2 cos (U + 1, — 71) + O(€?) (6.5.26)

Thus the nonlinearity produces perfect tuning for the primary (external) reso-
nance as well as the internal resonance.

Next we determine when the roots of (6.5.22) and (6.5.23) are real. We begin
by defining two critical values of f,, namely

fo=51=2IT,| and f,=¢, =2(T? +T3)Y/? (6.5.27)

Clearly {, must be greater than ¢, . Then there are two possibilities: I'; > 0 and
I'y < 0. For the former, one real solution exists if

f2>5 (6.5.28)
For the latter, two solutions exist if

2 <$ (6.5.29)
and one solution exists if

Hn>6 (6.5.30)

Consequently when f, <¢§;, the response must be given by (6.5.14). When
I'y <0and §; <f; <¢,, the response is one of the three possibilities predicted
by (6.5.14) and (6.5.25) and (6.5.26). And when f, > ¢, the response is one of
the two possibilities predicted by (6.5.14) and (6.5.25) and (6.5.26).

Next we consider the stability of the various steady-state solutions. The
governing equations for the amplitudes and phases have the form of (3.2.5).
Thus we want to determine the nature of the various singular (or steady-state)
points in the state space. Proceeding as in Chapter 3, we expand the right sides
of (6.5.17) through (6.5.21) about the singular point, obtaining a set of linear
equations having constant coefficients, which govern the components of the
disturbance. If the real part of each eigenvalue of the coefficient matrix is not
positive definite, then the point is stable; otherwise it is unstable.
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Figure 6-13. Amplitudes of the response as functions of the amplitude of the excitation;
r<oo= w3,

In order to illustrate the basic character of the possible responses, Nayfeh,
Mook, and Marshall (1973) arbitrarily chose values for the parameters and
computed the solutions. Moreover to promote confidence in the method of
multiple scales, they integrated (6.5.1) numerically and compared these results
with the approximate, analytic solution.

In Figures 6-13 and 6-14 ¢, and a, are plotted as functions of f,. In Figure
6-13 there is a small detuning of the external resonance, while the internal
resonance is perfectly tuned; this combination renders I'; negative. The values of
§1 and §, defined in (6.5.27) and a% defined in (6.5.23) are indicated. One can
clearly see the different solutions in the regions defined by (6.5.28) through
(6.5.30). For ¢; <f; <&, two of the three solutions are stable according to
the approximate analysis. The initial conditions determine which of these solu-
tions gives the response. In the other regions there is only one stable solution.
These conclusions were verified by the numerical results. In Figure 6-14, both
resonances are perfectly tuned. This combination renders I'; > 0.

Returning to (6.5.1) we see that u, is essentially a parametric excitation for u; .
The internal resonance (i.e., w, being nearly 2w, ) is also a parametric resonance.
Such internal resonances are sometimes referred to as autoparametric resonances.
Typical of parametrically excited linear systems, when the amplitude of the
excitation (u, in this case) exceeds a critical value, the trivial homogeneous solu-
tion becomes unstable. However atypical of linear systems, the phasing between
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Figure 6-14. Amplitudes of the response as functions of the amplitude of the excitation;
01=02=0;Q-"-’w2.

the response and excitation begins to change, as shown by (6.5.20). This change
is significant because it limits the amplitude of the response to a finite value.

In Figures 6-13 and 6-14 one can clearly see a saturation phenomenon. As f,
increases from zero, so does a, until it reaches the value a3, while a, is zero.
This agrees with the solution of the corresponding linear problem. At this point,
however, a, has its maximum value, and further increases in £, will not produce
further increases in @, because the solution given by (6.5.14) is unstable and the
solution given by (6.5.25) and (6.5.26) is stable. The u, mode is saturated. Fur-
ther increases in f, cause @, to increase, as clearly shown in Figure 6-14 and
indicated in (6.5.22).

When there are multiple stable solutions such as the situation illustrated in
Figure 6-13, there is a jump phenomenon associated with varying the amplitude
of the excitation. Referring to Figure 6-13, we note that when f, increases
slowly from zero, a, follows along the line through O and D and a, is zero. As
f> increases beyond {,, @, continues to have the value a3 (saturation) and a,
jumps from §, to C. For further increases in f, , a; follows to the right along the
curve through B, C, and E. When f, decreases slowly from a large value well
beyond ¢, a, has a constant value, following along the line from F through D
to A4, and a, follows along the curve from E through C to B. When f, decreases
below {;, a; jumps down from 4 to G and a; jumps down from B to ¢1. Then
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Figure 6-15. Frequency-response curves; a; = 0, Q = w,.

both a; and a, follow the linear solution back to the origin as f, continues to

decrease.

In Figures 6-15 and 6-16, a, and a, are plotted as a function of o, for o, =0
and o; > 0, respectively. The dotted curves having peaks at g, =0 correspond

STABLE PERTURBATION
———UNSTABL