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Historical overview on dynamics

Dynamics based on classic mechanics, whose fundamental laws are
credited to Newton (1646-1727), ‘standing on giant’s shoulders”...

Greeks: axiomatic reasoning disconnected from experimentation
= Forces were necessarily caused by contact; what about field forces?
= Aristotle (384BC-322BC): a force causes constant velocity?

= Terrestrial mechanics vs celestial mechanics?

Ptolemy (90-168): geocentric system vs Aristarco (310BC-230BC)
heliocentric system (three centuries before)

...Galileo (1564-1642): ‘e pur si muove’

Romans?




Historical overview on dynamics

« Moslems: from VIII to X1V centuries (Alexandria, Iberic Peninsula)

= Barakat (1080-1165) denied Aristotle: force causes velocity to change...
Newton’s second law?

= Alhazen (965-1040): body moves perpetually unless force obliges it to
stop or change direction... Newton’s first law?

=  Avempace (1095-1138): to an action corresponds a reaction... Newton’s
third law?

» Kepler, Copernicus and Galileo: celestial mechanics

 Galileo: terrestrial mechanics (displacement of a falling body
proportional to the square of time)

« Newton: law of universal gravitation and much more...




Historical overview on dynamics
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First law (inertia): there are priviledged observers, called inertial observers, with
respect to whom isolated material points — that is, those subjected to null resultant
force — are at rest or in uniform rectilinear motion.

Lex I: Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in
directum, nisi quatenus a viribus impressis cogitur statum illum mutare




Historical overview on dynamics
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Second law (fundamental): the resultant force of a mass point is proportional to its
acceleration defined with respect to an inertial observer. The proportionality constant is
termed mass, which is positive and it is a property of the material point.

Lex Il: Mutationem motus proportionalem esse vi motrici impressae, et eri secundum
lineam rectam qua vis illa imprimitur
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Third law (action and reaction): to every action of a material point upon another one
corresponds a reaction of same intensity and direction, yet in oposite sense.

Lex I11: Actioni contrariam semper et aequalem esse reactionem: sive corporum
duorum actiones in se mutuo semper esse aequales et in partes contrarias dirigi




Historical overview on dynamics

Newton: differential and integral calculus

Leibniz (1646-1716): independent development of differential
calculus & fundamentals of analytical dynamics

D’Alembert (1717-1783): principle...

Lagrange (1736-1813): Meéecanique Analytique and variational
principles

Hamilton (1805-1865): principle...




Physical space: affine Euclidian space of dimension 3

« N material points m,

 position of m; given by cartesian co-
ordinates: x.1, x:2, x:3

Configuration space: affine Euclidian space of dimension 3N (provided the 3N co-
ordinates of the N material points are independent)

« a “point” in this space caracterizes completely
the configuration of the system of material
points in a given time t (co-ordinates of material
points obtained by “projections™)




If there are ¢ constraint equations relating these co-ordinates, it is possible to
define another configuration space with dimension n = 3N-c , termed “number
of degrees of freedom” of the system

Example: a material point moving along a parabolic curve

x> =0 ¢ = 2 constraint
X2 = B3 (x1)2 equations

Original configuration space of dim 3N = 3

/\

Configuration space of dim n = 3N-c=1




« Generalised coordinates Q,(t), Q,(1), ..., Q,(t), n = number of degrees of freedom,
are scalars conveniently chosen, so that they uniquely define the original 3N
physical coordinates of the system

(Ql,Qz, Q1)
X2 (Q1, Qs Q)

} 3N holonomic constraint equations

=X§ (QI’QZ""’Qn’t)

are finite of class C!

e the functions

e Jacobian of the transformation is non-null




Particular case of holonomic constraint; scleronomic constraint

3 a transformation “matrix’ (of order n = 1)
withdet T=0

Let it be

J=detT=1




Virtual displacements in holonomic constraints

constraint equation in t,

constraint equation in t;

virtual displacement




Virtual displacements are kinematically admissible at a fixed time t, that is, they
satisfy the constraint equations at that time t

The class of real displacements doesn’t necessarily coincide with the class of real
displacements for holonomic constraints

For scleronomic constraints, however, since the constraint equations are independent
of t, the class of real displacements coincides with the class of virtual displacements,
that is, the real displacements are a particular case of virtual displacements

Ideal (constraint) reactions are orthogonal to the virtual displacements at the points
they are applied. Hence, the virtual work of ideal reactions is null.




D’ Alembert’s principle

Newton’s 2" law a=1laN
\
a=1laN the sum of the resultant force
and the inertial force is the null
active non-ideal constraint vector

| J

“closing” of the force
polygon, as in statics

Generalised D’ Alembert’s
principle




e Remark 1 Effective force

« Remark2  System with ideal constraints:

(it Is not necessary to know a priori the reactions to write down the
equations of equilibrium/motion)

« Remark 3  Principle of virtual displacements in statics is a particular case

equilibrium




Hamilton’s principle

Newton’s 2" law 4= D’Alembert’s principle 4=  Hamilton’s principle

§T = virtual variation of kinetic energy

ﬂaT—5V+5W“)M=o

Y

G0 = virtualvariation of potential energy

OW ™ = virtualwork of non-conservative forces

. 1 dR  dR
T = kinetic energy=—)Y m £ —L
0y =72 “[dt it

a=1

N — -+
SW™=Y F.6R, = virtual work of non-conservative forces

@ =l




Lagrange’s equation

Hamilton’s principle = Lagrange’s equation

40T | ot _
dt| 60, | 06Q,

\
N. = generalized non-conservative force = Z F*.

a=1

e Remark

virtual work of the non-
conservative forces




Formulation of equations of motion

Example 1: One-degree-of-freedom linear oscillator

veloc. embolo




Newton’s 29 law: A

p(t)- k0 - ¢Q = n g

D’ Alembert’s principle:

p{1)- kQ - cQ -nQ =1

Generalised D’ Alembert’s principle:

p[t)- K0 - eQ -m Qa0 =000 .
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Hamilton’s principle: j(éT -0V +5W nc)dt =0
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Lagrange’s equation: Ll ﬂ
dt| 09

1 :
T==-mQ°
1
V = =kQ*

W™= N5 = (p(t)-c0 )0 0 [

Substituting... mQ = -kQ + IE 0




Example 2: sistem of rigid rods

AB and BC rigid rods

BC massless rod

Linear dynamics: horizontal displacements of B and C are negligible for small Q
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Lagrange’s equation: — aT.
dt| 0Q




Example 3: Simple pendulum

Lagrange’s equation:

§+ %Q =0 (linear analysis)




Example 4: Simple pendulum subjected to support excitation

-

R = LsenQi+(f-LcosQ)]

§:LQcosQf+(f+LQsenQ)]

T =%m 1’Q%c0s?Q + L’Q%sen’Q + 2Lf QsenQ + f

V:mg[HL(l—cosQ”

T =%mL2Q2+%mf’2+mLstenQ




Lagrange’s equation: L 5T _oT _ Sy
dt{ 90 | Q

- mLf Q cosQ
0Q

mLQQH+mL'f'sinQ+mLfQ'cosQ —mLfQ'cosQ =-mgLsinQ

ou d+%(g + £)sinQ =0 (non-linear analysis)

nL% +ml(g+ f)sinQ =0

0+ %(g +£)Q =0 (linear analysis)




Example 5: Rigid rod with non-linear spring and geometric imperfection, subjected to
static and dynamic loading

® Non-linear “constitutive” law
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SW "= NGQ =P (t)Lsen Q0 IEE N = P (t)L senQ

oT

Lagrange’s equation: —[ .
0Q

dt

m LZQ'+K(Q—3){1—(Q —e)zlz{me(t)}LsinQ




