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1 Introduction

In these notes, we are going to study problems in Statistical Mechanics that involve phase transitions,
the abrupt changes that occur to a system when we reach specific values of certain parameters. Our
main point here is to apply to these problems the Renormalization Group formalism that we learned in
QFT. As we’ll see, the Renormalization Group gives us a powerful tool to study the behavior of a lot of
different systems when they’re close to the phase transition, and shows us why the first approximation
we can think of (the Mean Field Approximation) fails at low dimension.

First of all, we should briefly see why we can trace a parallel between Quantum Field Theory and
Statistical Mechanics. In Quantum Field Theory, the generating functional of the correlation functions
is written as the path integral:

Z[J ] = Z[0]

∫
Dϕ exp

{
i

~

(
S[ϕ] +

∫
d4xJ(x)ϕ(x)

)}
where S is the action and J is an external source.

If we perform a rotation on the complex plane going to imaginary times x4 = ix0, we end up with
the Euclidean generating functional:

Z[J ] = Z[0]

∫
Dϕ exp

{
−1

~

(
SE [ϕ] +

∫
d4xEJ(xE)ϕ(xE)

)}
(1)

with a real euclidean action SE ≥ 0. This result has its convergence guaranteed.
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In classical Statistical Mechanics, the probability distribution of a thermal state is written as

ρthermo(φ) =
e−βE(φ)

Z
, Z =

∑
all states

e−βE(φ) (2)

There is a clear analogy between equations (1) and (2), that will be made more explicit when we
coarse grain the statistical mechanics random variable to write it as a continuous function in section 2.3.

2 Critical Phenomena

We’ll focus on a specific example that’s very instructive: the ferromagnetic Ising Model. Although
it looks too specific, it turns out that the behavior near the phase transition is the same for a lot of
different systems, a phenomenon that looks kind of mysterious by now but will be justified later, known
as universality. In particular, it’s the same for the Ising ferromagnet and for a Van-der-Waals gas. So,
we first introduce this simple model. For this section, our main references are [1] and [2].

2.1 The Ising Model

The model consists of a lattice in d spatial dimensions, with N sites. Each site has a variable that
can take values si = ±1. We are going to refer to this variable as the spin, but the model we consider in
these notes is essentially classical; the si’s are not operators, but just numbers that take discrete values.

The Hamiltonian of the configuration is

H({si}) = −h
N∑
i=1

si − J
∑
〈ij〉

sisj (3)

where 〈ij〉 means that we’re summing over nearest neighbors, and h is an external magnetic field (the
analog to the source J(xE) in equation (1)). Here we’ll assume J > 0, so the spins tend to align: we
have a ferromagnet. As we will see, the Ising model have two types of phase transitions: second order
phase transitions, that happen when we reach a critical temperature, and first order phase transitions,
that happen at zero temperature, when we vary the external field h.

In equilibrium statistical mechanics, our task is to evaluate the partition function

Z(β, h,N) =
∑
{si}

e−βH{si} (4)

If we could separate the Hamiltonian of equation (3) in terms that depend only on the spin si, then
Z would be just the partition function of one spin (that is easy to compute) to the power of N . However,
the interaction term, which coupling is J , spoils this. So, our first try is to make an approximation such
that the spins are independent.

2.2 Mean Field Approximation

In this specific subsection, we follow [3].
The Mean Field Approximation consists of considering that the fluctuations of the spins around the

average are small. The equilibrium magnetization is given by meq = 1
N 〈
∑
i si〉 = 〈si〉, where 〈.〉 means

the average over all the spin configurations in the canonical ensemble. It is independent of i because we
assume translational invariance. The fluctuation is

δsi = si − 〈si〉 = si −m

where we used m to avoid the heavy notation, but we are actually dealing with the equilibrium magne-
tization meq.

We want to decouple the spins in the J term of equation (3). So, we write sisj as:

sisj = (δsi +m)(δsj +m) = m2 +m(δsi + δsj) + δsiδsj (5)
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Here is where the approximation enters: we say that the term δsiδsj is small an can be neglected.
Keeping the other terms, equation (5) becomes:

sisj = m2 +m(si −m+ sj −m) = m(si + sj)−m2∑
〈ij〉

sisj = mν
∑
i

si −
Nν

2
m2

where ν = 2d is the number of first neighbors in our lattice, so Nν/2 is the number of bonds. Using it,
the Hamiltonian in equation (3) becomes:

H({si}) = −(Jνm+ h)

N∑
i=1

si + J
Nν

2
m2 (6)

With that, we can get the partition function of equation (4) by separating the Hamiltonian:

Z =

(∑
s=±1

e
−βJνm2

2 eβ(Jνm+h)s

)N
= e

−βNJνm2

2 (2 coshβ(Jνm+ h))
N

(7)

We can find the equilibrium magnetization using the relations

meq(T, h) = − 1

N

(
∂Feq
∂h

)
T,N

, (8)

Feq(T, h,N) = − 1

β
lnZ (9)

and the result is:
meq(T, h) = tanh (βh+ βJνmeq) (10)

That’s a self-consistent equation whose solutions show phase transition behavior.

2.2.1 Critical Behavior in the MF-Approximation

Setting h = 0 in equation (10), the existence of any non-zero solution for m requires that βJν > 1
(figure 1). So, we can already identify the critical temperature within mean field approximation: TC = Jν.
At this temperature, our system passes through a second-order phase transition: the magnetization m
changes continuously (figure 2), but is derivative changes discontinuously, in the N → ∞ limit. We call
the region T > TC the disordered phase, and the region T < TC the ordered phase.

Figure 1: Examples of the comparison between the functions x and tanh ax for values of a smaller and
greater than zero. Figure made with Mathematica.

If we are in the vicinity of the fixed point, we can use the expansion tanh−1 x ≈ x+ x3/3 to see that
the approximate solution of (10) is either meq = 0 or

meq = ±
√

3(TC − T )

T
∼ |T − TC |1/2 (11)
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Figure 2: Second order phase
transition at temperature T =
TC , with h = 0. Figure taken
from [1].

This 1/2 is the first mean-field critical exponent that we encounter. Still
at h = 0, we can calculate the heat capacity:

C = β2 ∂2

∂β2
logZ (12)

Performing the calculation with the partition function given by equation
(7) and using the magnetization given by (11) for T < TC , the result
in the limit T → TC is:

c =
C

N

T→TC−−−−−→

{
0 T > TC

3/2 T < TC
(13)

The heat capacity indeed changes discontinuously.
Now, we turn to the first-order phase transition that happens in the

Ising model when we’re at a fixed temperature T < TC and we change the external magnetic field. The
origin of this phase transition can be seen in figure 3.

Figure 3: Magnetization at different
values of the external field h. Figure
taken from [2].

The external magnetic field destroys the second order phase
transition at T = TC , because the sign of the magnetization is
determined by the sign of h. So, when we vary h at constant
T < TC , the magnetization m discontinuously jumps to −m when
h changes sign: we have a first-order phase transition.

Associated to this phase transition we can also find other two
critical exponents. The first one shows how meq varies with h near
h = 0:

h =
1

β
tanh−1m−mTC ≈ (T − TC)m+ Tm3/3

We could do this expansion because we are assuming that m is
small: for this to be true, we must be close to h = 0 and to
T = TC . If T is close to TC , we ignore the first term in the above
expression and see that the magnetization scales with the external
field as

m ∼ h1/3 (14)

We can also ask how the magnetic susceptibility changes, χ = ∂m
∂h |T . As it turns out, the scaling law

is

χ ∼ 1

|T − TC |
(15)

So, when collecting equations (11), (13), (14) and (15), we have four mean-field critical exponents that
define scaling laws around the critical point. We’ll give the following names to these critical exponents:

m ∼ |T − TC |β β =
1

2
c ∼ c±|T − TC |−α α = 0

m ∼ h1/δ δ = 3

χ ∼ 1

|T − TC |γ
γ = 1

All these quantities are measurable, and can be compared to experiment. More than that, the Ising
model can be analytically solved for d ≤ 2 and numerically approximated to higher dimensions. As it
turns out, for dimensions greater or equal than 4, the mean field results are exact. However,
for d = 2 and d = 3 it gives the wrong critical exponents, and for d = 1 it fails completely: there is no
phase transitions.

Up to now, this breakdown of mean field theory at low dimensions seems a little mysterious. It’s
qualitatively reasonable that this approximation works best for higher dimensions, because the spin
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interacts with more neighbors and so experiences something closer to the average. However, it’s not yet
explained what is so special about dimension four. We’ll come back to it in section 4, with an explanation
using arguments from the Renormalization group.

Before that, we must write down a simple generalization of what we’ve been doing, to see more
clearly the analogy with Quantum Field Theory and to introduce the first steps that relate Statistical
Field Theory to the Renormalization Group procedure.

2.3 Coarse-Graining

The Mean Field Approximation that we studied in the last section ruled out the possibility of strong
spatial fluctuations in the spin lattice. Here, we generalize the idea to include the possibility of spatial
variations by promoting the order parameter m to a field m(x) that can vary in space, and study how
the Hamiltonian is constructed for such a model.

In this section, we will work with the average magnetization of a given spin configuration, given by m =
1
N

∑
i si. Note that this is not the same as the equilibrium magnetization we worked with in section 2.2,

although we used the letter m back then sometimes. The equilibrium magnetization is the average of the
magnetization over all configurations in the canonical ensemble (thermal equilibrium). This is the one that
can be found by relation (8) (notice that it does not depend on a specific spin configuration of the system).

Figure 4: Coarse-graining of
the lattice in box of size a. Fig-
ure taken from [1].

To promote the magnetization to a field, we divide our lattice in many
boxes with side length a. Each box contains many sites (say N ′), but
it is still much smaller than the scales we are going to observe in the
experiment. Then, we calculate the average magnetization for each of
these boxes, m(x) = 1

N ′

∑
i si, and assign its value to the coordinate of

the center of the box. This process is known as coarse-graining. Here,
we want to treat m(x) as a continuous function: we will consider that
the number of boxes N/N ′ is really big, and the number of sites in each
box N ′ is also big (so m(x) can take any value from −1 to 1).

Now, we refer back to the partition function in equation (4). It in-
volved a sum over all possible spin configurations for the lattice, that
can be rewritten as a sum over all m(x) and a sum over all spin config-
urations {si}|m(x), that give rise to the same value of magnetization
m(x).

Z =
∑
{si}

e−βE[si] =
∑
m(x)

∑
{si}|m(x)

e−βE[si]

from here, we can define the effective free energy related to the magnetization field m(x), a concept that
will be very important in relating the phase transitions problem with the framework of the Renormaliza-
tion Group.

e−βF [m(x)] ≡
∑

{si}|m(x)

e−βE[si] ⇒ Z =
∑
m(x)

e−βF [m(x)] (16)

this is not the same as the equilibrium free energy given by equation (9): the equilibrium free energy is
the effective free energy evaluated at the equilibrium magnetization or, in other words, the minimum of
F [m(x)].

In this section, the main point is to assume that the magnetization is actually a continuous function.
So, the sum over all field configurations in equation (16) needs to be replaced by a path integral:

Z =

∫
Dm(x)e−βF [m(x)] (17)

The assumption of locality (that comes from nearest neighbor interactions) in the Ising Model shows
us that the free energy can be written as:

F [m(x)] =

∫
ddxf [m(x)]

with f [m(x)] being a local function.
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With this at hand, we see clearly the analogy between Statistical Field Theory and Quantum Me-
chanics that was introduced in equations (1) and (2). Both of the theories can be described by partition
functions that are written as path integrals:

Statistical Field Theory: Z =

∫
Dme−β

∫
ddxf [m] (18)

Euclidean Quantum Field Theory: Z =

∫
Dφe

−1
~

∫
ddxL(φ) (19)

and the parameter that regulates the thermal fluctuations in statistical mechanics, the temperature,
appears as analogous to the “parameter” that regulates the relevance of quantum fluctuations in quantum
field theory, ~.

Now, we will give a brief review on the Renormalization Group formalism, to finally relate it to all
we’ve been doing in this section.

3 The Renormalization Group - Brief Review

Throughout this section, our main reference is [4].

3.1 Wilsonian Renormalization Group

When we study critical phenomena, we are interested in the long distance behavior of our system,
and usually ignore the short-range specific features. This is what we did in the coarse-graining procedure
introduced in section 2.3, where we literally averaged out the small scales.

This is the basic idea for the Wilsonian Renormalization Group: we integrate out the large momenta
(small distance) and pay attention only at the low momenta behavior of our system. In statistical
mechanics spin lattices, as we studied, this procedure has a physical and clear reason: the sites in the
lattice are discrete, so we have a real cut-off Λ in the momentum. In quantum field theory, the cut-off
is one of the possibilities for renormalizing the theory and getting rid of the infinities; however, unlike
in the spin lattices, our final goal is to take Λ → ∞. More than that, the cut-off method is not usually
appropriate for quantum field theories when we want to study the Ward identities. However, we will
develop the discussion of this section (and the next) in the quantum field theory framework.

In these notes, we are going to work only with scalar theories. If we start with a φ4 theory with an
initial cut-off Λ, our partition function is

Z =

∫
[Dφ]Λe

−1
~

∫
ddxL(φ) (20)

where [Dφ]Λ =
∏
|k|<Λ dφ(k), and we are in euclidean space.

Now, we choose a number b < 1 and redefine φ as being the low momentum field: it is equal to the
original φ when |k| < bΛ, but it is zero at higher momentum. Equivalently, we define φ̂ that is zero at

low momentum and equals the original one in bΛ ≤ |k| < Λ. The original φ just equals the new φ plus φ̂,
and we can rewrite Z in terms of these new fields. Doing so, we will find in the exponent a lot of terms
that mix φ and φ̂, and also some terms that depend only on φ or φ̂.

Now, the point is to integrate out the high momentum field φ̂ and end up with a path integral on the
low momentum field:

Z =

∫
[Dφ]bΛe

−1
~

∫
ddxLeff (φ) (21)

We are not going to do the full development here, but it turns out that Leff can be found writing

down Feynman Rules to the field φ̂, considering the terms of the original Lagrangian that depend on φ̂
as perturbations. This development is made in [4]. The effective Lagrangian end up having all possible
orders of operators in φ, even those including derivatives.

To compare the expressions 20 and 21, we need them to be integrated up to the same momentum.
So, we do the rescaling:

k′ = k/b x′ = xb
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If the coefficient of (∂µφ)2 in Leff is (1 + ∆Z)/2, we will also rescale φ for this coefficient to be 1/2 after
the full rescaling:

φ′ = [b2−d(1 + ∆Z)]1/2φ

In the end, the procedure of integrating out high momenta and rescaling ends up being just a trans-
formation L → Leff in the Lagrangian. If b is close to 1, this transformation becomes continuous: a flow
in the space of all possible Lagrangians (an infinite-dimensional space whose axes are the coefficients of
each possible term).

We have defined our transformation such that the free-field Lagrangian L0 = 1
2 (∂µφ)2 is left un-

changed. This is called a fixed point of the RG flow. Analyzing what happens in the vicinity of the fixed
point, we see that the coefficients of φ2, φ4, (∂µφ)4, φ6 etc scale respectively as:

m′2 = m2b−2, λ′ = λbd−4, C ′ = Cbd, D′ = D2d−6, etc.

C ′N,M = bN(d/2−1)+M−dCN,M , N powers of φ, M derivatives

b < 1, so we see that operators multiplying positive powers of b decay (and are called irrelevant), while
those multiplying negative powers of b grow (and are called relevant). Operators that are independent of
b are called marginal.

So, this tells us that m2 is always relevant, while λ is relevant if d < 4 (the dimension 4 appears here
as special!). More than that, the general relation for an operator CN,M has (dN,M − d) in the exponent
of b, where dN,M is precisely the mass dimension of the operator (that has to be smaller than d for the
theory to be renormalizable). So, relevant operators around L0 correspond to renormalizable theories!
This means that, for example, it is not a coincidence that only renormalizable terms appear in QED:
whatever the more fundamental, high-energy Lagrangian could be, when we apply the RG flow to it to
go to low energy scales all the non-renormalizable terms go to zero (because they correspond to irrelevant
couplings).

For d > 4, only the φ2 coupling is relevant, namely m2. See it in figure 5 (a). For d = 4, λ is marginal.
Looking at the specific transformation law of λ under RG flow we find out that it goes to zero, but slower
than in the previous case. See it in figure 5 (b). Lastly, for d < 4, the operator φ4 is relevant. However,
when λ becomes large, we must include nonlinear corrections to the scaling law, that turns out to be:

λ′ =

[
λ− 3λ2

(4π)d/2Γ(d/2)

bd−4 − 1

4− d

]
bd−4 (22)

In this case there is another fixed point, when λ′ = λ solves this equation. For d → 4 it tends to
the free-field fixed point, so when d is close to 4 we can compute the transformations equations with
perturbation theory, and the new fixed point also has m2 relevant. This is shown in picture 5 (c). We
will call it the Wilson-Fisher fixed point.

Figure 5: RG flows in the theory space for (a) d > 4, (b) d = 4, (c) d < 4. Figure taken from [4].

3.2 Continuum Renormalization Group: The Callan-Symanzik Equation

When we want to extract quantitative predictions, it’s technically much easier to work in the contin-
uum renormalization group than to integrate out slices of momentum space like Wilson did (in addition,
as we mentioned, the cut-off method is problematic in QFT).
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Figure 6: Renormalization conditions. Equations taken from [4].

We construct the continuum RG by looking at how the fields and couplings change in massless φ4

theory when we make a slight change in the renormalization conditions. Here we are going to work with
dimensional regularization and the renormalization conditions in figure 3.2. That are just the on-shell
renormalization conditions, but in a point M that is not the physical mass.

These conditions are used to find the counterterm factor Zφ:

φR = Z
−1/2
φ φB (23)

When we change the renormalization scale M , the renormalized field and the φ4 coupling suffer
correspondent shifts:

M →M + δM φR → (1 + δη)φR λ→ λ+ δλ

Note that all the bare fields remain unchanged. The connected n-point Green’s function, being formed
of n fields, has the following renormalization rule and change under the shift of M , respectively:

G
(n)
R = Z

−n/2
φ G

(n)
B ; G

(n)
R → (1 + nδη)G

(n)
B (24)

If we look at G
(n)
R as a function of M and λ, we can expand dG

(n)
R

(
= nδηG

(n)
R

)
in terms of partial

derivatives and, defining the quantities

β ≡ M

δM
δλ γ ≡ − M

δM
δη , (25)

we get: [
M

∂

∂M
+ β

∂

∂λ
+ nγ

]
G

(n)
R = 0 (26)

this is the Callan-Symanzik Equation.
From equation (23), we get

Z
1/2
φ (M)φR = Z

1/2
φ (M + δM)(1 + δη)φR

⇓

δη =
Zφ(M + δM)−1/2 − Zφ(M)−1/2

Zφ(M)−1/2
≈ ∂(Zφ)−1/2(M)

∂M

δM

Zφ(M)−1/2

So, we can rewrite equation (25) as

β(λ) = M
∂λ

∂M

∣∣∣∣
λB ,Λ

γ(λ) =
1

2

M

Zφ

∂Zφ
∂M

(27)

β and γ are functions only of the dimensionless variable λ. Here, we can see that these functions dictate
the running of the coupling constant and the field strength rescaling. In a general theory of massless
scalar fields, we would have one β for each coupling and one γ for each field. Notice that a fixed point
of the renormalization group flow in the λ direction is a point where β = 0, and it can be shown that for
d < 4 this happens at the same Wilson-Fisher fixed point defined before.
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Before showing the solution to the Callan-Symanzik equation, let’s write down a generalization. Sup-
pose now that our theory is not massless φ4 anymore, but instead it contains a lot of different local
operators Oi that depend only on the field φ and on its derivatives. These operators rescale under
renormalization as

OB = ZO(M)OM
So, we can do the same procedure as we did to obtain equation (26) in order to include the new

operators into the Callan-Symanzik equation, defining the running

γO = M
∂

∂M
logZO(M) (28)

If we have a Green’s function that contains n powers of φ and one power ofO, G(n,1) = 〈φ(p1)...φ(pn)OM (k),
then we follow the same procedure as before and find that the Callan-Symanzik equation for this Green’s
function is: [

M
∂

∂M
+ β(λ)

∂

∂λ
+ nγ(λ) + γO(λ)

]
G

(n,1)
R = 0

If we had a Green’s function that includes l powers of O, we would obtain the equation above with l
multiplying the γO term.

Now, if we add the operator Oi with coupling ρi to our Lagrangian, then the Green’s function of n
scalar fields G(n) = 〈φ(p1)...φ(pn)〉 will be expressed as a perturbation series with all possible powers of
the parameter ρi, and the coefficient of ρli would be precisely the Green’s functions with all the n scalar
fields and the l powers of the operator Oi. So, it obeys the Callan-Symanzik equation with l multiplying
γOi . To count the number l in each term of the expansion in ρi, we use the operator ρi(∂/∂ρi):[

M
∂

∂M
+ β

∂

∂λ
+
∑
i

βi
∂

∂ρi
+ nγ

]
G(n)({pi},M, λ, {ρi}) = 0

βi ≡ (di − 4 + γi)ρi

where the term (di − 4) appears because we want ρi to be dimensionless.
The solution to this Callan-Symanzik equation can be found by dimensional analysis on G(n). For

example, the solution when n = 2 will be given in equation (29) of section 4.1.

4 Finding the Critical Exponents with the RG

The most important step to connect all the theory of the Renormalization Group with the phase
transitions in statistical mechanics is to identify the critical point with the fixed point of the RG
flow.

Before getting into the details of the method, let’s justify this identification by looking at configurations
of the two dimensional Ising model (produced by computer simulation) that are shown in [5]. In figure
7, we have a configuration that is slightly above the critical temperature, then we apply on it what we
will call a block-spin transformation: we group the sites into 3× 3 blocks and assign spins to the blocks
according to the “majority rule”: if there are more spins up inside it, we assign a spin up to it, and vice
versa. Finally, we rescale by a factor of 3 so our blocks have the same size as the original squares. What
we are doing is to look at the system from a larger scale.

In the initial configuration we had big clusters of correlated spins, but after the transformation the
configuration looks more randomized. This happens because we are above the critical temperature: we
are in the disordered phase. If we were in the ordered phase (T < TC), the system would choose one
orientation and would go closer and closer to the configuration with all the spins aligned. But what
happens at the point T = TC? As shown in figure 8, the configuration does not suffer substantial changes
in this case. Actually, they are statistically the same: both configurations are equally probable for the
Ising Model. This means that, at the critical point of a second-order phase transition, the system has
scale invariance; fluctuations occur on all length scales, even if we look at arbitrarily large scales. So,
the correlation length diverges at this point. A really good demonstration of this scale invariance at the
critical point is shown by Douglas Ashton in a 25 seconds long Youtube video [6].
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Figure 7: Block spin transformation being applied on a configuration that’s slightly above the critical
temperature in the 2D Ising Model. Figure taken from [5].

Figure 8: Block spin transformation being applied on a configuration that’s at the critical temperature
in the 2D Ising Model. Figure taken from [5].

This justifies the identification of the critical point in the Ising Model phase transition with the fixed
point of the Renormalization Group: the fixed point is precisely when we have scale invariance, so the
RG flow does not affect our theory. When we have more than one fixed point, as in figure 5 (c), the
critical point will be the point that has only one relevant direction (in the case, the Wilson-Fisher fixed
point). This happens because, if we were at any other fixed point, we could go to the referred one by
applying the RG flow more times.

As we saw in section 3.1, near the fixed point all the irrelevant operators go to zero. So, this is
in accordance with the idea that the form of the full Lagrangian (the short-distance interactions of
the specific system) is not important for the behavior around the critical point: under the view of the
Renormalization Group, this explains universality.

Another feature that’s immediately explained by this identification is the upper critical dimension
d = 4: this is the dimension where the Wilson-Fisher fixed point starts coinciding with the free-field fixed
point. For mean field theory to work, we need the couplings to be small: this happens only if the critical
point is the free-field fixed point. For d < 4 the critical point is the Wilson-Fisher fixed point, because λ
goes from the free-field point to the Wilson-Fisher fixed point under the flow (see figure 5).

Now, we follow [7] and use Callan-Symanzik equation to derive the scaling laws near the critical point
when d < 4. This development was first made by Brézin, Guillou and Zinn-Justin [8], and is more rigorous
than the one first created by Wilson[9][10]. However, we chose to include previously in these notes the
discussion of the Wilsonian RG framework because of the illuminating insights it brings us.

As we will see, the first two critical exponents are related to the two-point correlation function, and
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the four last ones are related to thermodynamic quantities.

4.1 Spin Correlation Function

The Callan-Symanzik equation for the two-point correlation function (n=2) is:[
µ
∂

∂µ
+
∑
i

βi
∂

∂ρi
+ 2γ(λ)

]
G(2)(x, µ, {ρi}) = 0

where we started from a general Lagrangian with all possible analytic couplings. The coupling of φ4 is
included in the (dimensionless) ρi’s as ρλ = λ− λ∗, where λ∗ is the Wilson-Fisher fixed point.

The mass dimension of the field is [φ] = d−2
2 , because the Lagrangian must be dimensionless. So, the

two-point correlation function is written as:

G(2)(x) =
1

|x|d−2
g(µ|x|, {ρi})

where g is a dimensionless function. Using this, the solution of the Callan-Symanzik equation will be:

G(2)(x) =
1

|x|d−2
h({ρ̄i}) exp

{
−2

∫ |x|
1/µ

d(log |x′|)γ(ρ̄λ(x′))

}
(29)

d

d(log(1/µ|x|))
ρ̄i = βi({ρj}) (30)

Where h is another dimensionless initial condition.
Near the Wilson-Fisher fixed point, the mass coupling increases as we go to smaller momenta, but

all the other dimensionless parameters become small (see figure 5 (c)). Here, we assume that there’s a
regime where we can take all the couplings ρi with i 6= m to zero, but ρm is still small enough that we
can still consider that we’re close to the fixed point.

To calculate the RG flow of the mass coupling, we remember where the quantity βm came from: in
equation (3.2) βm = (dm − 4 + γm)ρm, where dm is the mass dimension of the φ2 term. For this term,
dm = 2. So, integrating equation (30) near the fixed point λ = λ∗, we get:

ρ̄m = ρm(µ|x|)2−γm(λ∗) (31)

Putting it back in equation (29), together with the assumption that all the other ρi are zero, we get:

G(2)(x) =
1

|x|d−2
h
(
ρm(µ|x|)2−γm(λ∗)

)
exp [−2γ(λ∗)(log |x| − log(1/µ))]

=
1

|x|d−2
h
(
t(µ|x|)2−γm(λ∗)

) 1

(µ|x|)2γ(λ∗)

(32)

where we substituted ρm for t = T − TC in reference to the development of section 2, because we can
show that in the mean-field free energy f [m], t is the factor that multiplies the term that’s quadratic in
the field. This makes sense, because in the RG we see that ρm is the only parameter that we have to
adjust finely (just like we do with the temperature in phase transitions) in order to fall in the fixed point:
all the others go there by themselves.

The spin lattice have a characteristic length scale, called the correlation length ξ, that is defined as
the point when the ρm term starts to be important in the Lagrangian:

ξ ∼ x0 where ρ̄m(x0) = 1

this correlation length dictates the point where the correlations in the φ field begin to die away exponen-
tially.

From equation (31), we see that the correlation length diverges at the critical point, and scales as:

ξ ∼ |t|−ν where ν =
1

2− γm(λ∗)
(33)
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This is the first critical exponent we are deriving with the Renormalization Group approach. As
we will see, all the critical exponents are going to depend only upon two anomalous dimensions, γ(λ∗)
and γm(λ∗). Indeed, at large distances the exponential decay of the correlation function goes with
exp{−|x|/ξ}, and we can see from the argument of h in equation (32) that the scaling law is really the
one given in equation (33).

At small distances, the argument of h goes to zero. So, G(2) goes as a power law, with −(d−2+2γ(λ∗)).
We define from here other critical exponent:

η = 2γ(λ∗) (34)

If the critical exponent were given by simple dimensional analysis, we would have G(2) ∼ 1/|x|d−2.
So, this is a justification for the name “anomalous dimension” given to γ(λ∗).

4.2 Thermodynamic Functions

To obtain the thermodynamic quantities that we can measure, we want to obtain first the equilibrium
Gibbs’s Free Energy. All the other quantities can be obtained by derivatives and manipulation of this
free energy.

The Gibbs’s Free Energy is the Legendre transformation of the Helmholtz’s Free Energy that we
defined back in section 2.3:

Geq(T, [meq]) = Feq(T, [h]) +

∫
h(x)meq(x)ddx

where we are letting the external field h depend on the position. If we look back at the analogy between
QFT and statistical field theory that was established in equations (18) and (19), we can rewrite them as:

ZSFT =

∫
Dme−β(F [m]−

∫
h(x)m(x)dx) = e−βFeq[h]

ZQFT =

∫
Dφe− 1

~ (S[φ]+
∫
J(x)φ(x)dx) = e−

1
~W [J]

where we included source terms. The Legendre transformation of W [J ] is the effective action:

Γ[φcl] = W [J ]−
∫
J(x)φcl(x)dx

So, the Gibbs’s Free Energy is exactly the analog to the effective action in QFT. Then, we are going
to use the Callan-Symanzik equation for the effective action to study its behavior, and in the end we will
switch it to the Gibbs’s Free Energy.

The effective action is written in terms of 1PI functions as

Γ[φcl] = i

∞∑
n=2

1

n!

∫
dx1...dxnφcl(x1)...φcl(xn)Γ(n)(x1, ..., xn) (35)

And given that the rescaling for the fields is given by φR = Z
−1/2
φ φB , the scaling law for the 1PI

function is Γ
(n)
R = Z

(n/2)
φ Γ

(n)
B (it is a positive power because we need to amputate the external legs). It

is the same scaling law that we had for G(n) in equation (24), but with the opposite sign of the power.
So, the Callan-Symanzik equation for Γ(n) is almost identical to (26):[

µ
∂

∂µ
+ β

∂

∂λ
− nγ

]
Γ

(n)
R = 0

If we integrate it with n fields φcl and sum over all n we get Γ by equation (35). The operator that
counts n in each term is

∫
dxφcl(x) δ

δφcl(x) applied in Γ. We can choose the case where φcl is constant, in

wich the Callan-Symanzik equation for Γ is:
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[
µ
∂

∂µ
+ β(λ)

∂

∂λ
− γ(λ)φcl(x)

∂

∂φcl(x)

]
ΓR([φcl, µ, λ]) = 0

The solution of this equation will be:

Γ([φcl]) = φdk({ρ̄i(φcl)}) exp

[
−
∫ φcl

µ(d−2)/2

d(log |φ′|) 4γd

(d− 2)(d− 2 + 2γ)
(ρ̄(φ′))

]
(36)

d

d(log(φcl))
ρ̄i =

2βi({ρj})
d− 2 + 2γ({ρj})

(37)

Where k is a dimensionless initial condition to be determined by perturbation theory. Again, we
specialize to a region close to the Wilson-Fisher fixed point:

d

d(log(φcl))
ρ̄m =

2(−2 + γm(λ∗))

d− 2 + 2γ(λ∗)
ρ̄m

⇓
ρ̄m = ρm(φclµ

−(d−2)/2)−2(2−γm(λ∗))/(d−2+2γ(λ∗))

Ignore irrelevant operators: ρ̄i = 0 for i 6= m. To get the Gibbs free energy instead of the effective
action Γ, we simply change ρm → t and φcl →M (the magnetization).

In the approximation we just made (near the fixed point), the Gibbs Free Energy is:

G(M, t) = Mdk
(
t(Mµ−(d−2)/2)−2(2−γm(λ∗))/(d−2+2γ(λ∗)

)(µ(d−2)/2

M

) 4dγ(λ∗)
(d−2)(d−2+2γ(λ∗))

(38)

From this equation, we can derive the critical exponents α, β, γ and δ (do not confuse the exponents
β and γ with the runnings):

• Setting t = 0 (we sit at the critical temperature), we do the derivative of the free energy with
respect to the field M , which gives us the field H. Inverting the resulting expression, we find δ.

• When we set H = 0 (to look at the second-order phase transition), we are finding the minimum of
G with respect to M . This minimum is nonzero in the ordered phase (temperature below TC). If

we rewrite G in equation (38) as a power of t times a function f̂ of M and t, the minimum of G will

happen at the minimum of f̂ . So, when we look at phase transitions with H = 0, the β exponent
can be found by saying that the argument of f̂ is constant.

• When we are above TC , the minimum of G with respect to M happens at the point M = 0, so the
argument of f̂ is zero. So, the free energy will scale just as the power of t that multiplies f̂ in the
expression for G; as it turns out, this power is tβ(1+δ). Derivating G with respect to t twice, we
find the heat capacity and the critical exponent α = 2− β(1 + δ).

• Finally, to find the exponent γ, we notice that H = ∂G
∂M = tβδ f̂ ′(Mt−β), so we can invert this

equation and find M = tβ ĉ(Ht−βδ), where ĉ is another function. Deriving this expression with
respect to H we find the magnetic susceptibility, and the critical exponent γ = (δ − 1)β.

The results of all this calculations we just described are summarized below.

β =
d− 2 + 2γ(λ∗)

2(2− γm(λ∗))
δ =

d+ 2− 2γ(λ∗)

d+ 2 + 2γ(λ∗)
γ =

2(1− γ(λ∗))

2− γm(λ∗)
α = 2− 2d

2− γm(λ∗)
(39)

So, the equations (33), (34) and (39) indeed say how to relate all the critical exponents with only two
anomalous dimensions, as we mentioned earlier.

It is possible to calculate these quantities by writing down the perturbation theory results for the
counterterms and expanding equations (27) and (28) to find the functions γ and γm to first orders. Doing
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this procedure to the β function, we can find its non-trivial zero λ∗, and use it to calculate the anomalous
dimensions γ(λ∗) and γm(λ∗).

In this discussion, we’ve been considering systems that are described by only one scalar field φ. This
is true for the example we gave in section 2, where the spins have a preferred axis. However, if we had
more than one spin component, for example spins with a preferred plane (N = 2) or isotropic spins
(N = 3), they would be described by 2 and 3 scalar fields, respectively. In this case, the relation between
the critical exponents and the anomalous dimensions remains the same, but the results for the anomalous
dimensions change. They must be computed in symmetric O(N) φ4 theory.

In the last page, we show a table of critical exponents taken from [7]. In the column “Landau”, we
see the results from Mean-Field Approximation and simple dimensional analysis. On the other hand, the
column ”QFT” shows the results obtained with the techniques described in this section. The dimension
is 3. We can see that the RG results are in much more agreement with experiment than the Mean-Field
results. More than that, we see the comparison of the critical exponents obtained for different systems,
as a demonstration of universality.

5 Conclusions

In these notes we introduced the use of the Renormalization Group as a powerful tool to study the
behavior of thermodynamical systems near phase transitions. With the renormalization group ideas,
we were able to understand the phenomenon of universality (why different systems look the same near
second-order phase transitions), and we explained the upper critical dimension d = 4 for the Mean-Field
approximation of the Ising Model. More than that, we were able to calculate the critical exponents,
numbers that dictate the scaling behavior of correlations and thermodynamic quantities near the critical
point, with much better accuracy than mean field approximation when d ≤ 4.

The use of these tools that we learned in QFT was possible because of the analogy between Quantum
Field Theory and Statistical Field Theory that is made explicit by the path integral formulation.
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