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We introduce the concept of instantons first in Quantum Mechanics (Sec. 1) and then in
Quantum Field Theory (Sec. 2). Similarly to the WKB approximation, the technique behind
instantons involves a small-~ nonperturbative approximation. It also connects the topology of
spacetime to the the vacuum structure of quantum theories (Sec. 2.3).

Of the many applications of instantons, we discuss the confinement effect in the Abelian Higgs
Model in 1+1 dimensions (Sec. 3.1) and the ’t Hooft solution of the U(1) problem (Sec. 3.2).

These notes are based mostly on Chapter 3 of Sidney Coleman’s “Aspects of Symmetry” [1].
Other references include Chapter 3 of “Condensed Matter Field Theory”, by A. Altland and B.
Simon [2],
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Warning: Euclidean Spaces
As we will work almost solely within Euclidean Space, we shall remind ourselves of the necessary

changes:

x4 = ix0,

t = iτ,

SE = −iS.

If, for example, the relation between the action S of a massive particle in Minkowski space

S =

∫
R

dτ

[
m

2

(
dx

dτ

)2

− V

]
,

and the corresponding Euclidean action SE is the following

S = −i
∫
iR

dt

[
−m

2

(
dx

dt

)2

− V

]
,

= i

∫
iR

dt

[
m

2

(
dx

dt

)2

+ V

]
,

= iSE .

Note that the kinetic and potential terms of SE have the same plus sign.

Since the following discussion uses only Euclidean spaces, we will
drop the subscript E from Euclidean quantities.

1 Instantons in Quantum Mechanics
We will first introduce the instantons in the context of Nonrelativistic Quantum Mechanics

(NRQM), which will form the basis for the calculations in QFT. In all cases, the definition of
instantons is

Instantons are (nontrivial) solutions φ of the classical equations of motion of an action S, i.e.

δS

δφ
[φ] = 0.

More that that, the main idea behind instantons is that we can have a nonperturbative results
arising from a small ~ (semiclassical) approximation. As we shall see, this amounts to nontrivial
solutions of the equation of motion, around which we will calculate quantum perturbations.

Nonperturbative results in a small ~ approximation may seem strange, but there are known
examples of this behavior in ordinary NRQM, such as the WKB approximation. It is a small ~
approximation that predicts effects that don’t appear in any order in perturbation theory, such as
tunneling probabilities.

1.1 Saddle Point Approximation
Suppose a field action S has a stationary point φ, which, by definition, satisfies the equations

of motion of S. In this case, we can do a Taylor expansion around φ to calculate the partition
function:

Z = N

∫
Dφ exp{−S[φ]/~},

≈ N
∫
Dφ exp

{
−S[φ]/~− 1

2

∫
d4xd4y ∆φ(x)

1

~
δ2S[φ]

δφ(x)δφ(y)
∆φ(y)

}
,

= Ne−S[φ]/~ det

(
1

2π~
δ2S[φ]

δφ(x)δφ(y)

)−1/2

[1 +O(~)],
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1 INSTANTONS IN QUANTUM MECHANICS Notes on Instantons

where ∆φ = φ − φ and N is a normalization factor. This formula also works for NRQM action
with substitutions x → t, y → t′, φ → x1. In the case of S =

∫
dt
[
m
2

(
dx
dt

)2
+ V (x(t))

]
, the path

integral becomes
Z = Ñe−S[x]/~ det

[
m(−∂2

t + ω2)
]−1/2

[1 +O(~)],

where mω2 = V ′′(x(t)) and the operator m(−∂2
t +ω2) is to be viewed as a diagonal infinite matrix

in t and t′. If S has many stationary points, we sum over them.

The stationary point condition for the NRQM action is mẍ =
V ′(x), Newton’s Law with inverted potential −V .

The partition function will be useful for analyzing the states of lowest energies, since 〈xf | e−HT/~ |xi〉 =
Z with boundary conditions x(0) = xi and x(T ) = xf . If H |n〉 = En |n〉, with E0 being the energy
of the ground state,

G(xf , xi;T ) := 〈xf | e−HT/~ |xi〉 =
∑
n

e−EnT/~ 〈xf |n〉 〈n|xi〉 ,

T→∞
= e−E0T/~ 〈xf |0〉 〈0|xi〉 , (1.1)

so the ground state mode dominates the behavior of Z in the limit T → +∞.

1.2 Quadratic Potential

x

±V

Figure 1: Quadratic potential

To test our saddle point approximation, we will calculate the
propagator

G(0, 0;T ) = 〈xf = 0| e−HT/~ |xi = 0〉

for the locally quadratic potential V (x) ∼ 1
2ω

2x2 (see Figure 1).
The stationary points of the action are classical solutions for the
inverted potential −V (dashed curve) with x(0) = x(T ) = 0. For
a quadratic potential, only x = 0 satisfy these requirements, for
which S[x] = 0.

Now, it remains to calculate the operator determinant. The
eigenvectors of the −∂2

t + ω2 with boundary conditions x(0) =
x(T ) = 0 are rn(t) = sin(πnt/T ), n = 1, 2, . . ., with eigenvalues
εn = (πn/T )2 + ω2. Thus,

det
(
−∂2

t + ω2
)−1/2

=

∞∏
n=1

[(πn
T

)2

+ ω2

]−1/2

,

which appears in the propagator as G(0, 0;T ) = J det
(
−∂2

t + ω2
)−1/2. To calculate the prefactor

J , we use that G(0, 0;T ) should reduce to the free propagator

Gfree(xf , xi;T ) = (2π~T )
−1/2

exp

{
− (xf − xi)2

2~T

}
,

in the limit ω → 0. Thus,

G(0, 0;T ) =
G(0, 0;T )

G(0, 0;T )|ω=0
Gfree(0, 0;T ),

=

∞∏
n=1

[
1 +

(
Tω

πn

)]−1/2

(2π~T )
−1/2

,

=

√
ω

2π~ sinhωT

T→∞−→
√

ω

π~
e−ωT/2, (1.2)

1NRQM is just a 0 space + 1 time = 1 dimensional field theory.
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1 INSTANTONS IN QUANTUM MECHANICS Notes on Instantons

where we used that
∏
n≥1[1 + (x/nπ)]−1 = x/ sinhx. In the limit T → ∞, we can use (1.1) and

(1.2) to conclude that E0 = 1
2ω~[1 + O(~)] and |〈x = 0|n = 0〉|2 = (ω/π~)1/2[1 + O(~)], which

reproduces the semiclassical results.

From now on, we will drop the O(~) when it is clear from the
context that we are approximating at first order in ~.

1.3 Double Well

−a a

x

±V

Figure 2: Double well potential

Now, let’s consider a double well potential (see Fig-
ure 2) with minima in ±a. We can investigate the prop-
agators G(±a,∓a;T ), between −a and a, and between
themselves G(±a,±a;T ). Looking at the inverted po-
tential (dashed curve), we can see that there are classical
solutions that start at x = −a and go to x = a. Their en-
ergy is zero, so they satisfy dx/dx =

√
2V and the action

for them is S0 =
∫

dt
[

1
2

(
dx
dt

)2
+ V

]
=
∫ a
−a dx

√
2V .

Moreover, these solutions are non trivial stationary
points of the action and are called instantons (see Fig-
ure 3). The inverse solution is called an anti-instanton
and we can combine any number of them centered at
different times to construct a multi-instanton solution.

The dynamical part of an instanton is localized within
a time ∼ ω−1. Thus, taking T →∞, we can assume the
transitions between minima are instantaneous and infinitely far apart for a multi-instanton solution
(see Figure 4). Therefore, we can treat them as independent instantons.

−a

a

t

x

Figure 3: Instanton solution

According to the instanton gas approximation, we need to sum
over all of configurations that take a certain minimum point to
another one, and then integrate over all their centers. The result
of this for the propagator is

G(−a,−a;T ) =

√
ω

π~
e−ωT/2

∑
even n

Tn

n!
(Ke−S0/~)n,

where the external factor
√

ω
π~e
−ωT/2 comes from the quadratic

potential propagator; K is a correction term2; Tn/n! comes from
the integration over all instantons’ centers; and the sum over even
n guarantees that the system comes back to the initial state. Anal-
ogously,

G(±a,−a;T ) =
1

2

√
ω

π~
e−ωT/2

[
exp
(
Ke−S0/~T

)
∓ exp

(
−Ke−S0/~T

)]
. (1.3)

−a

a

t

x

Figure 4: Multi-instanton

Comparing equations (1.1) and (1.3), we see not only the ground
state contributing to the propagator, but two low energy states, with
energies E± = 1

2~ω±~Ke−S0/~, separated by an exponentially small
factor in ~, the barrier penetration factor, characteristic of an instan-
ton solution. These states are exactly the symmetric and antisym-
metric combinations of the ground states of the harmonic oscillators.

Observation: The λφ4 model with negative mass L = 1
2∂

µφ∂µφ+
1
2m

2φ2− 1
4λφ

4 exhibits spontaneous symmetry breaking (SSB) of the
φ → −φ symmetry. If we discretize spacetime and ignore the spa-
tial derivative term, there would be a double well potential for each
spacetime point. According to our analysis, the energy difference be-

tween the lowest energy states would be ∼ e−V S0/~, where V is the volume of the space. Taking
V →∞, the ground state becomes two-fold degenerate, as expected from SSB.

2K corrects the fact that we need to calculate the operator determinant around an instanton solution, not just
around the minima. For an explicit calculation, see [1].
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2 INSTANTONS IN GAUGE FIELD THEORIES Notes on Instantons

1.4 Periodic Potential

−1 1 2

x

±V

Figure 5: Periodic potential

For our last NRQM example, we will consider a
periodic potential (see Figure 5). Just like the dou-
ble well potential, the (anti-)instantons can jump
from a minimum at x = j ∈ Z to an adjacent one
x = j ± 1, but now there is no constraint on x (See
Figure 6). Repeating the same reasoning as before,
we can find the propagator between xi and xf with
xf − xi = k ∈ Z by summing over configuration
with n instantons and n anti-instantons, subject to
n− n = k:

G(xf − xi = k;T ) =

√
ω

π~
e−ωT/2

∑
n,n̄

Tn+n

n!n!

× (Ke−S0/~)n+nδn−n,k.

−1

0

1

2

3

t

x

Figure 6: Multi-instanton

Using that δab =
∫ 2π

0
dθ
2π e

iθ(a−b), we arrive at

G(k;T ) =

√
ω

π~
e−ωT/2

∫ 2π

0

dθ

2π
eikθ exp

[
2KT cos θe−S0/~

]
,

which corresponds to a continuum of low energy states |θ〉 for
θ ∈ [0, 2π) with energy E(θ) = 1

2~ω + 2~K cos θe−S0/~ and

wave function 〈θ|j〉 =
(
ω
π~
)1/4

(2π)−1/2eijθ, exactly what is
predicted by Bloch waves.

2 Instantons in Gauge Field Theories
We will now see how instantons can affect the vacuum structure of Quantum Field Theories,

in special Gauge Field Theories. But first we need to make Coleman’s notation explicit.

Notation
For a gauge group G with Lie algebra g, we can choose a basis {T a} ⊂ g such that, in some

representation R, Tr
(
T aT b

)
= C(R)δab. It is also useful to define the Lie-algebra-valued forms

A = Aµ dxµ, which is i times the usual vector potential , and F = 1
2Fµν dxµ∧dxν with components

Aµ = gAaµT
a

Fµν = gF aµνT
a = ∂µAν − ∂νAµ + [Aµ, Aν ]

and the Cartan inner product (x, y) = 1
C(R) Tr(xy), x, y ∈ g, so that the Euclidean gauge action

becomes just S = 1
4g2

∫
d4x(F, F ), with (F, F ) = (Fµν , Fµν). For example, for G = SU(2), we have

T a = 1
2iσ

a and C(fund) = − 1
2 , by convention. This is such that Aaµ and F aµν are real numbers.

2.1 A Minimum of Homotopy Groups
Two continuous maps f, g : S → T are said to be homotopic if there exists a continuous

function H : [0, 1]×S → T such that H(0, s) = f(s) and H(1, s) = g(s), for any s ∈ S. Intuitively,
f can be continuously deformed into T . If S = S1, or, equivalently, S = [0, 1] with endpoints
identified, then f and g are loop curves in the topological space T and the homotopic property
defines an equivalence relation between them. Moreover, the space of all loops based in a point
p = f(0) = f(1) ∈ T has a group structure defined by adjoining them as (see Figure 7)

(f ∨ g)(s) =

{
f(2s), if 0 < s < 1/2

g(2s− 1), if 1/2 < s < 1
.

5



2 INSTANTONS IN GAUGE FIELD THEORIES Notes on Instantons

Figure 7: Adjoining Curves

Turns out3 that the space of all equivalence classes under ho-
motopy is a group under this operation as well, called the funda-
mental group π1(T ). For example, π1(S1) ∼= Z, whose curves
are indexed by the number of turns within S1, called the winding
number. This can be generalized to maps f : Sn → T , and the
corresponding group is πn(T ), called the n-th homotopy group.
For more information, we recommend Nakahara’s book [4].

2.2 Topological Solutions and Winding Number
A common feature of instantons that was displayed in our pre-

vious examples is that they are nontrivial solution that connect vacua in the border of the field
domain. In the case of the double well, for example, the domain border is {−T,+T} and an
instanton connects the vacuum state x = −a at t = −T to the other vacuum x = a at t = +T .
In QFT, this is no different, but with the additional complication that the domain boundary is
topologically a Sd−1, for a d-dimensional QFT.

Additionally, we will study finite action stationary field configurations, since an infinite action
would not contribute to the integral because of the term e−S[φ] in the path integral. For a pure
euclidean gauge theory, this limits the asymptotic behavior of the fields, since∫

d4x F aµνF
a
µν <∞ ⇒ F aµν = O(r−3)

?⇒ Aaµ = O(r−2)

where r is the radius of the Euclidean M = R4 space.
This analysis seems fine but we need to remember that we can also have vanishing F aµν if

Aµ = g∂µg
−1 + O(r−2), for a gauge transformation g : S3 → G that only depends on angular

coordinates. Moreover, we can change g to any other homotopic gauge map g̃ : S3 → G by doing a
globally defined gauge transformation on Aµ, but not to non-homotopic ones. This has a profound
consequence:

For each g ∈ π3(G) in the third homotopy group of the gauge group G,
we get a distinct asymptotic expression4 for the potential Aµ = g∂µg

−1 +O(r−2).

Table 1: Elements of π3(SU(2))

Winding Group
Number ν Map gν

0 1
1 x4 + ix · σ
ν [g1(x)]ν

Turns out that we need only to consider G = SU(2) in
four dimensions5, for which π3(SU(2)) ∼= π3(S3) ∼= Z. As this
relation suggests, SU(2) is topologically related to S3. Indeed,
any element g of SU(2) is of the form g = a + ib · σ, where
(a,b) ∈ S3. It can also be shown that the representatives of
π3(SU(2)) in Table 1 exhaust the group. Consequently, the
winding number ν ∈ Z classifies the asymptotic behavior of Aµ
and is gauge invariant.

Defining the Hodge dual of Fµν by (∗F )µν := 1
2εµνρσFρσ,

we can calculate the winding number of Aµ via the integral∫
M

d4x (F, ∗F ) =

∫
S3

d3SµG
µ = 32π2ν, (2.1)

where (F, ∗F ) = (Fµν , ∗Fµν) and Gµ = εµνρσ(Aν , Fρσ − 2
3AρAσ) 6.

2.3 Many Vacua of Gauge Theories
As we have seen earlier, the asymptotic behavior of the fields is reflected on the vacua, so we

expect the winding number to somehow classify low energy states of the gauge theory. To see this,
3See any book on fundamental groups or algebraic topology, for example [3].
4Equivalently, we may compactify R4 → S4 by adding a point ∞ at the infinity. In this context, “asymptotic” is

replaced by locally around ∞.
5See page 291 of Coleman’s book [1].
6This result comes from an area of profound connection between geometry and physics called Characteristic

Classes. The interested reader is referred to Chapter 11 of Nakahara [4] and, for a simpler proof, to Page 289 of
Coleman [1].

6



2 INSTANTONS IN GAUGE FIELD THEORIES Notes on Instantons

we will work with QFT in a spacetime box of space volume V and time range T , so boundary
conditions that persist in the limit V, T →∞ are made explicit.

For a variety of reasons, we will adopt the axial gauge A3, one of them being the lack of ghosts.
Moreover, we fix the tangential components of Aµ at the boundary, so the variation of the action
δS = 1

g2

∫
d3SµFµνδA

ν + · · · is zero. In particular, the field at the boundary must be of fixed
winding number.

Given this, we now proceed to calculate the path integral F (V, T, ν) :=

N
∫
DA(ν) e−S , over fields A(ν)

µ of winding number ν 7. At large T , we can
separate our domain into two parts of duration T1 and T2, with T1 + T2 = T
and neglect effects that could come from the boundary between them. Because
of (2.1), the winding numbers of these parts are added, so we sum over all
combinations that give a total winding number ν

F (V, T1 + T2, ν) =
∑

ν1+ν2=ν

F (V, T1, ν1)F (V, T2, ν2). (2.2)

Unfortunately, the terms F (V, T, ν) do not describe an eigenstate of the Hamiltonian, since
that would give a simple multiplication law, instead of (2.2). However, we can correct this via a
Fourier transform:

F (V, T, θ) :=
∑
ν∈Z

eiνθF (V, T, ν) = N
∑
ν∈Z

∫
DA(ν) e−Seiνθ, θ ∈ [0, 2π),

which satisfies F (V, T1 + T2, θ) = F (V, T1, θ)F (V, T2, θ). Assuming strong continuity of F (V, T, θ)
with T and using (1.1), there exists an energy eigenstate |θ〉 such that F (V, T, θ) ∝ 〈θ| e−HT |θ〉.
These |θ〉 states, called theta vacua, are similar to the corresponding ones of the periodic potential
example, as the winding number is analogous to a total change in x (see Section 1.4). The analogy
goes further if we define the n−states by |n〉 = 1√

2π

∫ 2π

0
einθ |θ〉, such that F (V, T, ν) is a probability

amplitude to go from |n〉 to |n+ ν〉, since

〈n+ ν| e−HT |n〉 =
1

2π

∫ 2π

0

e−iνθ 〈θ| e−HT |θ〉 ∝ F (V, T, ν).

The path integral corresponding to F (V, T, θ) can be seen as the usual partition function of an
effective action

Seff = S − iθ

64π2

∫
d4x εµνρσFµνFρσ. (2.3)

Interestingly, even though we know from equation (2.1) that this extra term is a divergence, it has
physical consequences, such as choosing the vacuum of the gauge theory. Furthermore, perturbation
theory is connected only to the ν = 0 gauge fields, so the θ vacua is within the nonperturbative
regime [5].

2.4 General Features of Instantons

Keep in mind that we have only showed the existence of such instantons and vacua but not their
exact expression. Surprisingly, many features of Instantons can be explored without constructing
them explicitly.

Imitating what we did in the periodic potential case, we can calculate F (V, T, θ) considering a
diluted instanton gas of n instantons of ν = 1 and n anti-instantons of ν = −1:

〈θ| e−HT |θ〉 ∝
∑
n,n

(Ke−S0)n+n (V T )n+n

n!n!
ei(n−n)θ, (2.4)

= exp
(
2Ke−S0V T cos(θ)

)
, (2.5)

7We have set ~ = 1. We can still count the power of ~ via the powers of g2, since they always come together in
our notation.

7



2 INSTANTONS IN GAUGE FIELD THEORIES Notes on Instantons

where V T comes from an integration over all possible centers of the instantons. By (1.1), we
conclude that a θ vacuum has an energy density of

E(θ) = −2K cos(θ)e−S0 . (2.6)

This result confirms that the θ vacua are all different from each other and that their energy density
is small, because of the factor e−S0/~.

Using (2.2), we can also see that the field strength has a non-zero expectation value:

〈θ| (F, ∗F ) |θ〉 =
1

V T
〈θ|
[∫

d4x (F, ∗F )

]
|θ〉 ,

= −32π2i

V T

d

dθ
ln

(∫
DA(ν) e−Seiνθ

)
,

= −64π2iKe−S0 sin(θ), (2.7)

where we used translational invariance of the θ vacuum in the first line. In the abelian case, we
have (F, ∗F ) ∝ E ·B, so the EM fields are non-zero in the θ vacuum, for θ 6= 0.

2.5 Constructing the Instanton

We know that instantons have a definite winding number, but we lack an explicit expression for
them. For this, we could solve the classical equation of motion for the pure gauge action, which is
DµFµν = ∂µFµν + [Aµ, Fµν ] = 0. However, this is a complicated second-order differential equation
in Aµ. Fortunately, we can simplify our problem by realizing that, by Cauchy-Schwartz inequality
in L2(R4),

∫
d4x (F, F ) =

√(∫
d4x (F, F )

)(∫
d4x (∗F, ∗F )

)
≥
∣∣∣∣∫ d4x (F, ∗F )

∣∣∣∣ ,
thus, by (2.2), S ≥ 8π2

g2 |ν|. The equality is attained iff ∗F = λF , λ ∈ R, but using that ∗ ∗ F = F ,
only λ = 1 (self-dual, ν > 0) or λ = −1 (anti-self-dual, ν < 0) solutions are present. In either case,
the equation of motion is automatically satisfied8, we get a minimum action solution for a given
winding number and F = ± ∗ F is an easier first-order differential equation.

ρ

0.5

1

r

f(r)

Figure 8: Radial part f(r)

Using rotational invariance, the solution of F = ∗F for ν = 1 is

Aµ = f(r)g1∂µg
−1
1 , with f(r) =

r2

r2 + ρ2
, (2.8)

where ρ > 0 is the “size of the instanton” that comes from scale
invariance of the theory (See Figure 8). Since we take V, T → +∞,
we can see from (2.8) that the instanton in localized in space and in
time.

All other solutions for ν = 1 are conformal and gauge transforma-
tions of this one. Furthermore, we don’t need solutions with higher
winding number. First because we can always imitate one with many
ν = ±1 instantons far apart, and second because they would give a minute contribution to the
energy density (2.6), proportional to e−νS0 .

From now on, we will discuss applications of instantons. The only detail left over was the
calculation of K, which involves renormalization group and infrared divergences. Hence, to not
lose focus, the interested reader is directed to section 7.3.6 of Coleman [1].

8Since Dµ(∗F )µν = 0, a non-abelian version of the homogeneous Maxwell’s equations, called the Bianchi identity
(see Section 10.3.5 of Nakahara [4]).
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3 Applications of Instantons

3.1 Abelian Higgs Model in 1+1 Dimensions
Usually, a spontaneous symmetry breaking model gives rise to a massive field and a Goldstone

boson. If we introduce gauge symmetry, the massless gauge vector “absorbs” the Goldstone boson
and becomes massive, in turn reducing the interaction range by an exponentially decaying factor
in the propagators. I will now show that instantons reverse this effect in the abelian Higgs model
in 1+1 dimensions by creating an effective Coulomb force between charges and hindering the Higgs
phenomenon.

The Lagrangian for this model is of U(1) gauge group with Higgs coupling,

L =
1

4e2
(F, F ) +Dµψ

∗Dµψ +
λ

4
(ψ∗ψ)2 +

µ2

2
ψ∗ψ,

with µ2 < 0, such that the ψ potential has a Mexican hat shape, which allows for symmetry
breaking.

If we repeat the same construction done in Section 2, we find that the instantons of this model
are classified by the homotopy group π1(U(1)) ∼= Z via

ν =
i

4π

∫
M

d2x εµνFµν . (3.1)

The energy density is the same as in (2.6) and the analogous of (2.7) is 〈θ|E |θ〉 = −4πKe−S0 sin θ,
with E = F21 being the electric field.

To analyze the interaction between charges, we will calculate the energy difference ∆ due to
the presence of two static charges ±q a distance L′ apart (See Figure 9). First, we define R to be
the spacetime region enclosed by the charges’ world lines in a time period T ′.

Figure 9: Wilson Line

Following Wilson [6], we claim that

∆ = − lim
T ′→∞

1

T ′
ln 〈θ|W |θ〉,

where

W = exp

{
−q
e

∮
∂R

Aµdxµ

}
= exp

{
− q

2e

∮
R

Fµνεµνd2x

}
,

and

〈θ|W |θ〉 =

∑
ν∈Z

∫
DA(ν) Dψ∗ Dψ We−Seiνθ∑

ν∈Z

∫
DA(ν) Dψ∗ Dψ e−Seiνθ

My semiclassical explanation for this is that ∆ is a potential difference
between the charges, since − 1

T ′ lnW ≈ − qe
∫ L′

0
E(x)dx 9.

If we take L′ and T ′ large enough, but still much smaller than L
and T , we can suppose there is an instanton solution of winding number νI inside R and another
of winding number νO outside R. As such, we can use (3.1) with ν = νI to do the W integral:

〈θ|W |θ〉 =

∑
ν∈Z

∫
DA(ν) Dψ∗ Dψ e2πqiνI/ee−Seiνθ∑
ν∈Z

∫
DAν Dψ∗ Dψ e−Seiνθ

,

=

∑
νI ,νO∈Z

(∫
DA(νI) Dψ∗ Dψ e−SIeiνI(θ+2πq/e)

) (∫
DA(νO) e−SOeiνOθ

)∑
ν∈Z

∫
DAν Dψ∗ Dψ e−Seiνθ

,

(2.5)
= exp{2Ke−S0 [L′T ′ cos(θ + 2πq/e) + (LT − L′T ′) cos(θ)− LT cos(θ)]},

so that ∆ = 2L′Ke−S0 [cos(θ)− cos(θ + 2πq/e)]. Since ∆ depends linearly in L′, then there exists
a constant force between charges, as expected from a Coulomb force in 1+1 dimensions10.

Unfortunately, this argument doesn’t generalize to 4 dimensions, since the area bounded by the
loop integral ofW has measure zero and, as such,W can be made trivial by a gauge transformation.

9A more accurate justification can be found in Schwartz [7], p. 531.
10To see this, we can use Gauss’ Law ∇ ·E = ρ/ε0 in 1 spatial dimension or treat each charge as a infinite plane

in 3 spatial dimensions.
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3.2 ’t Hooft Solution of the U(1) Problem

In Minkowski space, the QCD Lagrangian with quarks q = (u, d) is

LQCD = − 1

4g2
(Fµν , F

µν) +
∑
f=1,2

q̄f (iDµγ
µ −mf )qf .

In the massless limit mf = 0, QCD has a U(2)V ×U(2)A symmetry acting on the flavor indices (see
Table 2) that holds approximately well because of the small quark masses mu,md < ΛQCD. More
specifically, U(2)V symmetry is realized and SU(2)A is spontaneously broken, as we can see from
the quark condensates 〈ūu〉 =

〈
d̄d
〉
6= 0, giving rise to approximate Goldstone bosons, the pions.

However, U(1)A is neither realized (there is no associated multiplet) nor spontaneously broken [5].
If it were the latter, there would be another particle as light as the pions, but the next candidate,
the η′ meson, is too heavy11.

Table 2: U(2)V × U(2)A approximate symmetry of QCD.

Symmetry Action Consequence

U(2)V

{
SU(2)V ei~α·~σ/2q Isospin Multiplet
U(1)V eiαq Barion number conservation

U(2)A

{
SU(2)A ei~α·~σγ5/2q SSB: pions π0, π±

U(1)A eiαγ5q See main text

You may think this is not a problem, since the axial symmetry is anomalous, for its current
jµ5 =

∑
f q̄fγ

µγ5qf satisfies

∂µj
µ
5 =

N

16π2
(F, ∗F ) =

N

16π2
∂µG

µ, (3.2)

where N is the number of massless quarks and Gµ = εµνρσ(Aν , F ρσ − 2
3A

ρAσ). But if we define a
conserved current Jµ5 = jµ5 − N

16π2G
µ, we would get corresponding Ward identities and Goldstone

poles in Green’s functions with Jµ5 , pointing again at a nonexistent Goldstone boson. This is the
U(1) Problem.

’t Hooft gave an explanation [9] of how this problem can be solved using instantons, which I
will briefly comment here. As we saw in section 2.3, we need to include a term proportional to
θ(F, ∗F ) in the effective action to account for instantons and to select a θ vacuum. In turn, this
extra term explicitly breaks the chiral symmetry, since, from (3.2), a chiral rotation applied to the
effective action changes the θ vacuum. Therefore, the U(1)A transformation is not a symmetry to
begin with.

Note that (F, ∗F ) ∝ Ea ·Ba breaks CP symmetry. If we include this CP symmetry violation
with the one coming from the electroweak sector in the quark mass matrix, we arrive at an effective
θ̄ angle that gives an electric dipole moment for the neutron dn ≈ θ̄

emq

M2
n
. In order to comply to

experimental upper bounds on dn, the effective angle has to satisfy θ̄ ≤ 10−9 rad [5]. This is called
the Strong CP Problem.

4 Conclusion

Despite their simple definition, we have seen here many interesting features of instantons,
including:

• How they affect the vacuum structure of quantum theories, via the equation (1.1);

• They are topological in nature, in the sense that the topological properties of the spacetime
and of the gauge group are solely responsible for many qualitative features (see Section 2.2)

11Weinberg proved an upper limit of
√
3mπ for the supposed U(1)A Goldstone boson [8]. The eta prime meson

exceeds this limit by mη′/mπ+ > 6.
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• Their far-reaching consequences for the theory. For example, the existence of many vacua in
a gauge theory and their appearance in the effective action (2.3), and the effects we discussed
in the application (see Section 3).
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