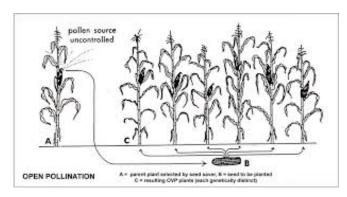


UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA "LUIZ DE QUEIROZ" DEPARTAMENTO DE GENÉTICA LGN5825 Genética e Melhoramento de Espécies Alógamas

Recurrent selection

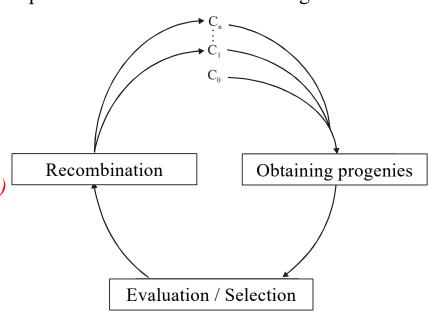

Prof. Roberto Fritsche-Neto

roberto.neto@usp.br

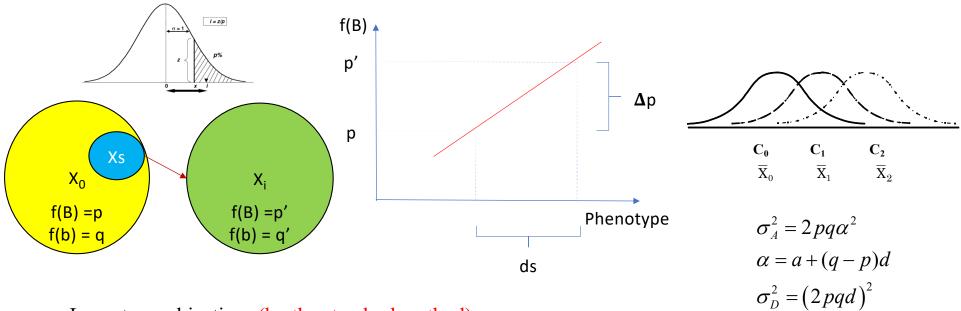
Piracicaba, November 13th, 2019

Applications

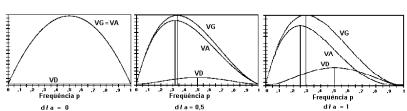
- Heterogeneous populations
- Advantages
- Drawbacks
- There is a limit of heterosis exploited
- It is difficult to identify the best balance between genetic variability, heterozygosity, and number of cycles
- Types of population
- Synthetics
- Pre-breeding
- Heterotic groups
- Open-pollinated varieties (OPV)


Definition and scheme

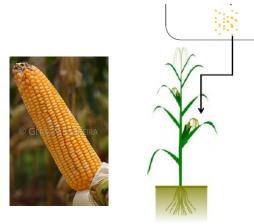
• Continuous process which aims the increasing of the allele frequencies but without miss substantial genetic variability.


• Dynamic process – every cycle is possible to release na improved material and add more genetic

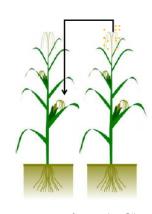
variability


- Three stages
- i) Obtaining progenies
- ii)Evaluation and selection identify the best parents
- iii) Intermate the selected progenies (next cycle of selection)

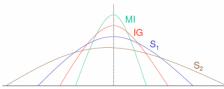
Main features

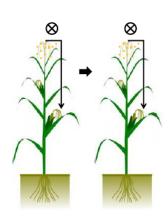


- Long-term objectives (by the standard method)
- Time-consuming per cycle
- 2 or 3 cycles to achieve the first results
- Quantitative traits


Stages of recurrent selection

• Stage 1: obtaining progenies


Half-sibs (HS)
Open-pollinated


$$\sigma_g^2 = \frac{1}{4}\sigma_A^2$$

Full-sibs (FS)
Controlled pollination

$$\sigma_g^2 = \frac{1}{2}\sigma_A^2 + \frac{1}{4}\sigma_D^2$$

Self-pollinated (Sn) Controlled pollination

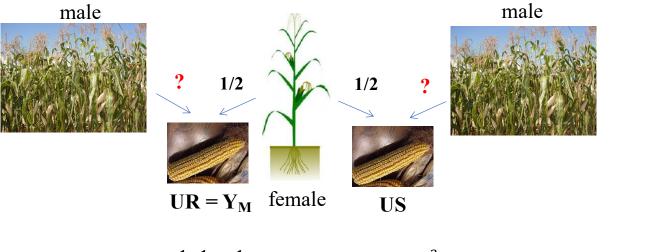
$$\sigma_g^2 = \frac{1}{2}\sigma_A^2$$

Stages of recurrent selection

- Stage 2: evaluation and selection
- Breeding objectives

$$RS = \frac{i}{\sigma_P} c \sigma_A^2$$

$$RS = \frac{i}{\sigma_P} c \left(\sigma_A^2 + \frac{D1}{2Ne} \right) - \frac{ID}{2Ne}$$

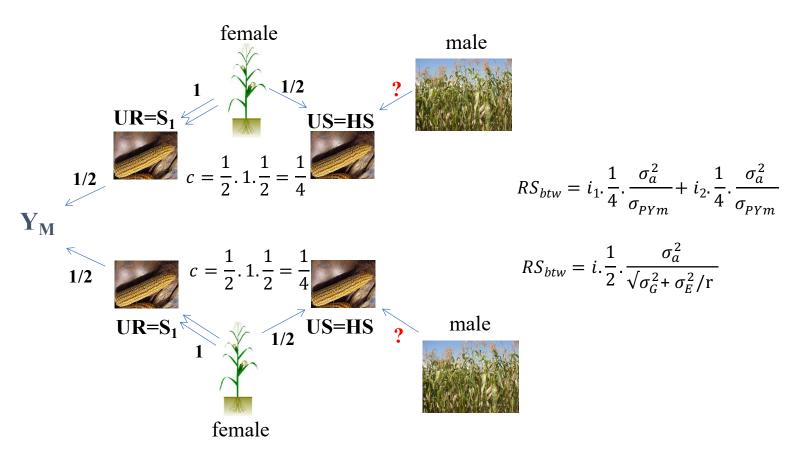

Evaluate	Intermate	c	Ne	Ne (10% of 200)	\mathbf{D}_1
HS	HS	1/4	4	80	0
HS	\mathbf{S}_1	1/2	1	20	0
FS	FS	1/2	2	40	0
FS	S_1	1/2	1	20	0
S_1	\mathbf{S}_1	1	1	20	0.5

$$Ne = \frac{1}{2F}$$

- c = Parental control and additive covariance between the units of selection and recombination
- D_1 = covariance between additive and dominance effects in the homozygous genotypes
- DE = inbreeding depression
- Effective population size evaluation (200) and intermate (30 to 40)
- Avoid to miss the genetic variability and boost the genetic drift

Selection based on progenies

• Among half-sibs (only one sex)

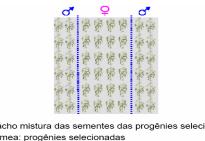


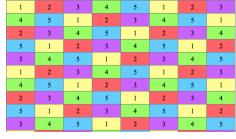
$$c = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

$$RS = i.\frac{1}{4}.\frac{\sigma_a^2}{\sigma_{PVm}}$$

$$c = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \qquad RS = i \cdot \frac{1}{4} \cdot \frac{\sigma_a^2}{\sigma_{PYm}} \qquad RS = i \cdot \frac{1}{4} \cdot \frac{\sigma_a^2}{\sqrt{\sigma_G^2 + \sigma_E^2/r}}$$

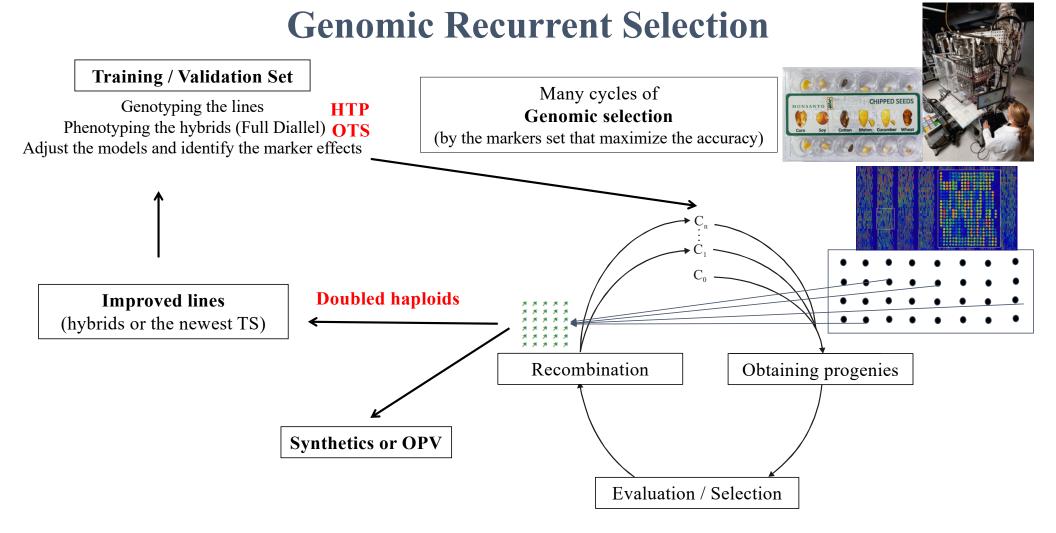
Scheme based on two types of progenies – HS / S_1




Stages of recurrent selection

- Stage 3: intermate
- Produce genetic variability for the next cycle
- Combine the superior allele/genes selected from different individuals in the newest genotypes

Ireland Method



$$Ne \cong \frac{2N}{\frac{\sigma_o^2}{\mu_0} + 1}$$

- 50 plants at least in the female rows
- Just one cycle of random intermate is enough to achieve the HWE
- Use the same number of seeds to hybridize and to compose the post-harvest sample

2N = number of gametes used $u_0 =$ mean of gametes per parent $\sigma =$ variance for number of gametes

Is this a worthy effort?

TABELA 6. Número de indíviduos a serem avaliados em um ciclo seletivo para se obter uma linhagem com o mesmo número de alelos favoráveis de dois ciclos seletivos, considerando 40 locos segregantes e diferentes números de famílias (Q) sendo avaliadas.

Número desejado de alelos favoráveis		Número de famílias		
		Dois ciclos seletivos	Um ciclo seletivo	Q ₁ /2Q
		Q=Q'		
3	1,3	50	3500	35
3	2,6	100	18800	94
3	3,8	200	116400	291
3	4,8	400	543200	679

¹¹Q=Q' indica que o mesmo número de famílias foi considerado nos dois ciclos.