Homework I

Suggested reading:

- 1. Schwartz, chapter 20.
- 2. To learn more see Peskin-Schroeder section 6.5.

due date September 24th

- 1. Consider the processes $e^+e^- \to \mu^+\mu^-$ and $e^+e^- \to \mu^+\mu^-\gamma$ in QED and that the charge of the electron (Q_e) and the muon one (Q_μ) are arbitrary. Assume that the mass of the electron and the muon are zero. Working in $d=4-\epsilon$ dimensions and calculating all the intermediate steps, evaluate:
 - (a) the cross section for this process at order $Q_e^2 Q_u^2$.
 - (b) the one-loop $\mathcal{O}(Q_e^2Q_\mu^6)$ contribution to $e^+e^- \to \mu^+\mu^-$, separating the infrared and ultraviolet divergences. For that you need to take the limit $\epsilon \to 0$ only after integrating over the Feynman parameters.
 - (c) renormalize the ultraviolet divergences from the previous item.
 - (d) evaluate the cross section to order $\mathcal{O}(Q_e^2 Q_\mu^6)$ of the process $e^+e^- \to \mu^+\mu^-\gamma$ in d dimensions. Define carefully the phase space in this case.
 - (e) Add the previous results showing that the inclusive process $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ is free of infrared divergences.

Hint: use Mathematica to obtain the poles and finite parts in the limit $\epsilon \to 0$.