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1 Introduction

Synchrotron radiation is the radiation emitted by charged particles when they
are accelerated radially to relativistic velocities. The non-relativistic counter-
part is called cyclotron radiation.

In order to radially accelerate the particles, it is needed a magnetic field per-
pendicular to the particles’ velocity, which can be produced inside accelerators
so called “synchrotrons”, or in naturally occurring magnetic fields, for example
in the intragalactic medium.

In the astronomical context, this kind of radiation was first detected in
1965, from a jet emitted by Messier 87. Synchrotron radiation is also found in
sunspots and in the particle radiation belts in Jupiter. Another important case
of synchrotron radiation emission are the pulsar wind nebulae, clouds inside
shells of supernova remnants. The blue glow in the center of the Crab nebula
is an example.

Figure 1: Left: Messier 87’s synchrotron radiation. Right: Crab Nebula.
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2 Theory

2.1 Liénard-Wiechert potential

Consider the Maxwell equations in the Lorenz gauge (∂µA
µ = 0)

∂µF
µν = ∂µ∂

µAν =
4π

c
Jν (1)

where Fµν is the electromagnetic tensor, Jν is the current 4-vector and Aν is
the 4-potential.

In the case of a charged particle in motion, the current is given by

Jν(x) = ec

∫
dτV ν(τ)δ(x− r(τ))

where V ν(τ) is the charge’s 4-velocity at time τ , and rµ(τ) it’s position. The
solution to (1) is given by

Aµ(x) =
4π

c

∫
d4x′G(x− x′)Jµ(x′)

where G is the retarded Green function, defined by ∂µ∂
µG(x, x′) = δ(x − x′),

whose solution is

G(x− x′) =
1

2π
θ(x0 − x′0)δ[(x− x′)2]

That is, G is only non-null in the past light cone of x, defined by the set of
points x′ such that c(x0 − x′0) = |x − x′| and x0 > x′0. Thus, plugging in the
Green function we find the solution

Aµ(x) = 2e

∫
dτV µ(τ)θ(x0 − r0(τ))δ([x− r(τ)]2)

But the trajectory of the particle only intersects the past light cone at one
point, which we call r(τ0). Using the rule

δ(f(x)) =
∑
i

δ(x− xi)
|f ′(xi)|

where xi are the roots of f(x), and setting f(τ) = (x− r(τ))2, we get

δ([x− r(τ)]2) =
δ(τ − τ0)

2(x− r(τ0))µV µ(τ0)

And thus, the Liénard-Wiechert potentials for a moving charge are given
by

Aµ(x) =
eV µ(τ)

V ν [x− r(τ)]ν

∣∣∣∣∣
τ0
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As Vµ =
drµ
dτ = γ(c,v), if we set c(x0 − r0(τ0)) = |x − r(τ0)| = R, we can

write

V ν(x− r(τ))ν = γ(c,−v) · (R,Rn) = cR(1− β · n)

where n is an unit vector in the direction of x− r(τ) and β = v(τ)/c.

Figure 2: The potential at x is affected by the position of the particle at the
“retarded” time τ0. We defined R = c(x0 − r0(τ0)) = |x− r(τ0)|

Now these potentials take the more familiar form

φ(x, t) =
e

(1− β · n)R

∣∣∣∣∣
τ0

A(x, t) =
eβ

(1− β · n)R

∣∣∣∣∣
τ0

From this potentials, we can get the fields:

E(x, t) = e

[
n− β

γ2(1− β · n)3R2

]
τ0

+
e

c

[
n× {(n− β)× β̇}

(1− β · n)3R

]
τ0

(2)

B = [n×E]τ0

2.2 Accelerated charges

Let’s consider a situation in which the particle is accelerated but observed in a
reference frame in which its velocity is small compared to c. Since the first term
in (2) falls with R2, we retain only the second term, in the form

E =
e

c

[
n× (n× β̇)

R

]
τ0

The associated Poynting vector is
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S =
c

4π
E×B =

c

4π
|E|2n

Therefore, the power radiated per unit solid angle, by a particle at position
r(τ0), through a sphere of radius R is

dP

dΩ
=
dP

dA
R2 = S · nR2 =

e2

4πc
|n× (n× β̇)|2

If the angle between β̇ and n is θ,

dP

dΩ
=

e2

4πc2
|n× β̇|2 =

e2β̇2

4πc
sin2 θ

which corresponds to a “donut-shaped” power angular distribution, as seen in
figure 3.

Figure 3: Power per solid angle angular distribution in the non-relativistic pic-
ture

Integrating, we get Larmor’s formula (for an accelerated charge in non-
relativistic motion)

P =
2

3

e2

c
β̇2

Now consider a particle in relativistic motion. From (2), we see that

S · n =
e2

4πc2
1

R2

[
n× {(n− β)× β̇}

(1− β · n)3

]2
This is the energy per unit time per unit area detected at time x0 = t

emitted by the charge at time r0(τ0) = t′ = t − R/c. We can transform this
to the energy per unit retarded time per unit area, that is, the emission rate
instead of detection rate:

dE

dAdt′
=

dE

dAdt

dt

dt′

So using that

dt

dt′
= 1 +

1

c

dR

dt′
= 1 +

1

c

d
√

R ·R
dt′

= 1− β · n
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we get

dP (t′)

dΩ
= R2S · n dt

dt′
= S · n(1− β · n)

dP (t′)

dΩ
=

e2

4πc2
|n× {(n− β)× β̇}|2

(1− β · n)5
(3)

In the case of linear motion (β‖β̇), we get

dP

dΩ
(t′) =

e2β̇2

4πc

sin2 θ

(1− β cos θ)5
(4)

that is, the angular distribution of the power is tipped towards the direction of
motion, as indicated in figure 4.

Figure 4: Power per solid angle angular distribution for β‖β̇

The total radiated power, given by integration of (4), is

P (t′) =
2

3

e2

c
β̇2γ6 (5)

In the case of instantaneously circular motion (β ⊥ β̇), defining the angles
φ and θ as in figure 5 the angular power distribution is

dP

dΩ
(t′) =

e2

4πc

β̇2

(1− β cos θ)3

[
1− sin2 θ cos2 φ

γ2(1− β cos θ)2

]
(6)

Integration of (6) yields the total radiated power

P (t′) =
2

3

e2

c
β̇2γ4 (7)

2.3 Frequency spectrum

As seen in the beggining of the previous section, the radiated power is given by

dP

dΩ
(t) = |A|2

where
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Figure 5: Left: Coordinates θ, φ. Right: Power per solid angle distribution for
β ⊥ β̇.

A(t) =

√
c

4π
[RE]tret

and E is given by (2). The Fourier transform of A(t) is

A(ω) =
1√
2π

∫ ∞
−∞

A(t)eiωtdt

So the energy radiated per unit solid angle can be written as

dE

dΩ
=

1

2π

∫
dtdωdω′A(ω′)∗ ·A(ω)ei(ω

′−ω)t =

∫ ∞
−∞
|A(ω)|2dω

So if we define the energy radiated per unit solid angle per unit frequency
interval by

dE

dΩ
=

∫ ∞
0

d2I(ω,n)

dωdΩ
dω

we find

d2I

dωdΩ
= |A(ω)|2 + |A(−ω)|2 = 2|A(ω)|2

and plugging in the field expression, after some algebra (we refer to page 675 of
[1]):

d2I

dωdΩ
=
e2ω2

4π2c

∣∣∣∣∣
∫ ∞
−∞

n× (n× β)exp(iω(t− n · r(t)/c))dt

∣∣∣∣∣
We have seen that the radiation emitted by a charged particle in circular

motion is concentrated in a narrow cone in the direction of the tangent of the
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Figure 6: The instantaneous radius of curvature of the trajectory is ρ and θ is
the angle between n and the x axis.

velocity vector (that is, tangent to the trajectory). To calculate this integral,
we make use of the coordinate system displayed in figure 6, so that

n× (n× β) = β

(
−ε‖sin

(
vt

ρ

)
+ ε⊥cos

(
vt

ρ

)
sinθ

)
Making the approximations sin(vt/ρ) = vt/ρ − v3t3/6ρ3, cos θ = 1 − θ2/2

and β ∼ 1

ω(t− n · r(t)/c) = ω

[
t− ρ

c
sin

(
vt

ρ

)
cos θ

]
' ω

2

[(
1

γ2
+ θ2

)
t+

c2

3ρ2
t3
]

And therefore

d2I

dωdΩ
=
e2ω2

4π2c

∣∣∣∣∣
∫ ∞
−∞

(
−ε‖

ct

ρ
+ ε⊥θ

)
exp

(
i
ω

2

[(
1

γ2
+ θ2

)
t+

c2

3ρ2
t3
])

dt

∣∣∣∣∣
Integration results in

d2I

dωdΩ
=
e2ω2ρ2

3π2c3

(
1

γ2
+ θ2

)1/2 [
K2

2/3(ξ) +
θ2

(1/γ2) + θ2
K2

1/3(ξ)

]
(8)

where K are modified Bessel functions of the second kind.

K2/3(ξ) =
√

3

∫ ∞
0

x sin

[
3

2
ξ

(
x+

1

3
x3
)]

dx

K1/3(ξ) =
√

3

∫ ∞
0

cos

[
3

2
ξ

(
x+

1

3
x3
)]

dx

ξ =
ωρ

3c

(
1

γ2
+ θ2

)3/2
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In (8), the first term (associated to ε‖) corresponds to the energy of radiation
polarized in the plane of the circular motion, while the second term (associated
to ε⊥) corresponds to radiation polarized perpendicular to that plane. Integrat-
ing over frequency, we find

dE

dΩ
=

∫ ∞
0

d2I

dωdΩ
dω =

7e2

16ρ

1

(1/γ2 + θ2)5/2

[
1 +

5

7

θ2

1/γ2 + θ2

]
with a behavior similar to that of (6). Again, the first term corresponds to
parallel polarization and the second to perpendicular. We see that the radiation
is strongly polarized in the plane of motion.

Furthermore, (8) tells us that the intensity will be negligible for ξ � 1,
which corresponds to larger angles θ. Hence, the radiation is confined to near
the plane of motion.

On the other hand, ξ also becomes large as ω grows, independently of θ.
We define the critical frequency, beyond which there is negligible radiation, by
ξ = 1/2 at θ = 0, so that

ωc =
3

2
γ3
(
c

ρ

)
(9)

Integrating (8) over all solid angle, we get the frequency spectrum:

J(ω) =
dI

dω
=
√

3
e2γ

c

ω

ωc

∫ ∞
ω/ωc

K5/3(x)dx (10)

which is plotted in linear and logarithmic scale in figure 7.
In the following section we will discuss certain physical applications where

the electrons are accelerated by a magnetic field B. The electrons move with
a velocity v and an angle α between v and B. In the laboratory frame of
reference, its motion is given by

d

dt
(γmev) = q(v ×B)→ γmea = qvB sinα

Equating to the centripetal acceleration (for an instantaneous circular mo-
tion with radius r) yields

v2⊥
r

=
qvB sinα

γme
=
qBv⊥
γme

(11)

Thus, the angular velocity is given by

ωr =
v⊥
r

=
qB

γme
=
ωg
γ

where ωg is the non-relativistic rotation frequency. If we substitute ρ = v/ωr =
v⊥/(ωr sinα) in (9)

ωc =
3

2
γ3

c

v⊥
ωr sinα =

3

2
γ2
(
c

v⊥

)
ωg sinα
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Figure 7: Synchrotron radiation frequency spectrum in (a) linear and (b) loga-
rithmic scale

3 Power-law distribution of electron energies

In astrophysical applications, we must consider the presence of multiple electrons
with a range of energies. In this section we will discuss the synchrotron radiation
emitted by a power-law distribution of electron energies, i.e.

N(E)dE = κE−pdE

where N(E)dE is the number density of electrons in the energy range E to
E + dE.

This functional form is chosen since the energy spectra in many astrophysical
situations can be approximated by a power-law, such as cosmic-ray electrons.

As discussed in the previous section, the intensity of the radiation declines
rapidly for frequencies far from ωc. Therefore, we make the crude approximation
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that the radiation only occurs at ωc, which results in

ν ≈ νc ≈ γ2νg =

(
E

mec2

)2(
eB

2πme

)
, (12)

where we used the approximations made in the previous section and ν = ω/2π.
Hence, the energy radiated in frequencies between ν and ν + dν correspond to
the electrons with energies between E and E + dE and the frequency spectrum
is

J(ν)dν =

(
−dE
dt

)
N(E)dE

We also have that

E = γmec
2 =

√
ν

2πme

eB
mec

2 ∝ ν1/2B−1/2,

where, in the second equality, we used expression 12. Furthermore,

dE =
mec

2

2

√
ν

2πme

eB
dν ∝ ν1/2B−1/2

Then, using N(E) = κE−p and that the power radiated by each electron
is given by (7), substituting the centripetal acceleration (11) and using γ2 ∼
ν/νg ∼ ν/B

−dE
dt

= −P =
2

3

e2

c
γ4β̇2 =

2

3

e2

c
γ4
e2β2B2 sin2 α

γ2m2
e

∝ νB

Therefore, gathering everything

J(ν) ∝ κB(p+1)/2ν−(p−1)/2

The exponent a in J(ν) ∝ ν−a is called spectral index. The full expression
for J(ν) (we refer to (8.130) of [2]) is

J(ν) = 2.344× 10−25a(p)B(p+1)/2κ

(
1.253× 1037

ν

)(p−1)/2

Wm−3Hz−1 (13)

where a(p) is a constant that depends on p.

4 Astrophysical Sources

As an application of the ideas discussed above, we consider the radio emission
of the Galaxy. Figure 8 exhibits the map of radio emission of the Galaxy at a
frequency of 408 MHz, which is dominated by synchrotron radiation.
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Figure 8: Radio emission map at 408MHz

Figure 9(top) shows the spectrum of radio emission in the direction of the
anticentre (that is, outwards from the center of the galaxy), for lower (I, close to
the North Galactic Pole) and higher (II, close to the interarm region) latitudes.

For ν < 200MHz, the spectrum is well described by a power law J(ν) ∼
ν−0.4, and for ν > 400MHz, the spectral index is about 0.8-0.9.

For cosmic ray electrons at energies greater than 10 GeV, we assume a
distribution ([2])

N(E)dE = 2.9× 10−5E−3.3dE electronsm−3

Electrons with energy E = γmec
2 will radiate most of their energy at fre-

quency

ν ∼ γ2νg = γ2
qB

2πme
∼ 28γ2B GHz

where B is measured in Tesla.
Now we calculate the spectrum using (13), κ = 2.9× 10−5 and p = 3.3 (for

which a(p) = 0.238. The result is compared to the measured spectrum in figure
9(bottom).

We see that for B = 0.6 nT , the observed and predicted spectrum join
smoothly. However, in general it is assumed that the magnetic field is about
0.15 − 0.3 nT . This discrepancy may arise for different reasons, for example,
the Earth may be in a low electron density region relative to the interstellar
medium.
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Figure 9: (Top) Galactic radio emission in the anticenter direction (I) and
interarm region (II), (bottom) Comparison of observed and predicted spectrum
for different values of B = 0.3x nT (x = 0.5, 1, 2). Frequency distribution J(ν)
here is denoted εν and is normalized with respect to the local spectrum of the
interstellar medium.
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