## PEARSON

Addison
Wesley

## FÍSICA III

Eletromagnetismo
Fórmulas


$$
F=\frac{1}{4 \pi \epsilon_{0}} \frac{\left|q_{1} q_{2}\right|}{r^{2}} \quad \begin{align*}
& \text { (lei de Coulomb: força entre }  \tag{22.2}\\
& \text { cargas puntiformes) }
\end{align*}
$$

$$
\overrightarrow{\boldsymbol{E}}=\frac{\overrightarrow{\boldsymbol{F}}_{0}}{q_{0}} \quad \begin{aligned}
& \text { (definição de campo elétrico como força elétrica } \\
& \text { por unidade de carga). }
\end{aligned}
$$

$$
\begin{align*}
\overrightarrow{\boldsymbol{F}}_{0}=q_{0} \overrightarrow{\boldsymbol{E}} & \text { (força que atua sobre uma carga puntiforme } \\
& \left.q_{0} \text { provocada pelo campo elétrico } \overrightarrow{\boldsymbol{E}}\right) . \tag{22.4}
\end{align*}
$$

$$
E=\frac{1}{4 \pi \epsilon_{0}} \frac{|q|}{r^{2}} \quad \text { (módulo do campo elétrico de uma carga puntiforme). }
$$

$$
\begin{equation*}
\overrightarrow{\boldsymbol{E}}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\boldsymbol{r}} \quad \text { (vetor campo elétrico de uma carga puntiforme). } \tag{22.7}
\end{equation*}
$$

$$
p=q d \quad \text { (módulo do momento de dipolo elétrico). }
$$

$$
\tau=p E \operatorname{sen} \phi \quad \text { (módulo do torque sobre um dipolo elétrico). }
$$

$$
\Phi_{E}=\int E \cos \phi d A=\int E_{\perp} d A=\int \overrightarrow{\boldsymbol{E}} \cdot d \overrightarrow{\boldsymbol{A}} \quad \text { (definição geral de fluxo elétrico). }
$$

$$
\begin{gather*}
\Phi_{E}=\oint \overrightarrow{\boldsymbol{E}} \cdot d \overrightarrow{\boldsymbol{A}}=\frac{Q_{\text {inte }}}{\epsilon_{0}} \quad \text { (lei de Gauss) } \\
\Phi_{E}=\oint E \cos \phi d A=\oint E_{\perp} d A=\oint \overrightarrow{\boldsymbol{E}} \cdot d \overrightarrow{\boldsymbol{A}}=\frac{Q_{\text {inte }}}{\epsilon_{0}} \quad \begin{array}{l}
\text { (diversas formas } \\
\text { da lei de Gauss) }
\end{array} \tag{23.9}
\end{gather*}
$$

$$
\begin{gather*}
W_{a \rightarrow b}=U_{a}-U_{b}=-\left(U_{b}-U_{a}\right)=-\Delta U \begin{array}{l}
\text { (trabalho realizado } \\
\text { por uma força } \\
\text { conservativa). }
\end{array} \\
U=\frac{1}{4 \pi \epsilon_{0}} \frac{q q_{0}}{r} \quad \begin{array}{l}
\text { (energia potencial elétrica de } \\
\text { duas cargas puntiformes } \left.q \text { e } q_{0}\right) .
\end{array}  \tag{24.2}\\
U=\frac{q_{0}}{4 \pi \epsilon_{0}}\left(\frac{q_{1}}{r_{1}}+\frac{q_{2}}{r_{2}}+\frac{q_{3}}{r_{3}}+\cdots\right)=\frac{q_{0}}{4 \pi \epsilon_{0}} \sum_{i} \frac{q_{i}}{r_{i}} \quad \begin{array}{l}
\text { (carga puntiforme } q_{0} \\
\begin{array}{l}
\text { e um conjunto de } \\
\text { cargas } \left.q_{i}\right) .
\end{array}
\end{array}
\end{gather*}
$$

$$
V=\frac{U}{q_{0}}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r} \quad \text { (potencial de uma carga puntiforme), }
$$

$$
V=\frac{U}{q_{0}}=\frac{1}{4 \pi \epsilon_{0}} \sum_{i} \frac{q_{i}}{r_{i}} \quad \begin{align*}
& \text { (potencial de um conjunto }  \tag{24.15}\\
& \text { de cargas puntiformes) }
\end{align*}
$$

$$
V=\frac{1}{4 \pi \epsilon_{0}} \int \frac{d q}{r} \quad \begin{align*}
& \text { (potencial de uma distribuição }  \tag{24.16}\\
& \text { contínua de cargas) }
\end{align*}
$$

$$
V_{a}-V_{b}=\int_{a}^{b} \overrightarrow{\boldsymbol{E}} \cdot d \overrightarrow{\boldsymbol{l}}=\int_{a}^{b} E \cos \phi d l \quad \begin{align*}
& \text { (diferença de potencial }  \tag{24.17}\\
& \text { com uma integral de } \overrightarrow{\boldsymbol{E}}) .
\end{align*}
$$

$$
E_{x}=-\frac{\partial V}{\partial x}, \quad E_{y}=-\frac{\partial V}{\partial y}, \quad E_{z}=-\frac{\partial V}{\partial z} \quad \begin{aligned}
& \text { (componentes de } \overrightarrow{\boldsymbol{E}} \\
& \text { em termos de } V)
\end{aligned}
$$

$$
\begin{equation*}
\overrightarrow{\boldsymbol{E}}=-\left(\hat{\boldsymbol{\imath}} \frac{\partial V}{\partial x}+\hat{\boldsymbol{j}} \frac{\partial V}{\partial y}+\hat{\boldsymbol{k}} \frac{\partial V}{\partial z}\right) \quad(\overrightarrow{\boldsymbol{E}} \text { em termos de } V) \tag{24.20}
\end{equation*}
$$

$$
\begin{gather*}
C=\frac{Q}{V_{a b}} \quad \text { (definição de capacitância). }  \tag{25.1}\\
C=\frac{Q}{V_{a b}}=\epsilon_{0} \frac{A}{d} \quad \begin{array}{l}
\text { (capacitância de um capacitor com placas } \\
\text { paralelas no vácuo). }
\end{array} \tag{25.2}
\end{gather*}
$$

$$
\frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\cdots \quad \text { (capacitores em série) }
$$

$$
\begin{equation*}
C_{\mathrm{eq}}=C_{1}+C_{2}+C_{3}+\cdots \quad \text { (capacitores em paralelo). } \tag{25.7}
\end{equation*}
$$

$$
U=\frac{Q^{2}}{2 C}=\frac{1}{2} C V^{2}=\frac{1}{2} Q V \quad \begin{align*}
& \text { (energia potencial acumulada }  \tag{25.9}\\
& \text { em um capacitor) } .
\end{align*}
$$

$$
\begin{equation*}
u=\frac{1}{2} \epsilon_{0} E^{2} \quad \text { (densidade de energia elétrica no vácuo) } \tag{25.11}
\end{equation*}
$$

$$
\begin{equation*}
\epsilon=K \epsilon_{0} \quad \text { (definição de permissividade). } \tag{25.16}
\end{equation*}
$$

$$
C=K C_{0}=K \epsilon_{0} \frac{A}{d}=\epsilon \frac{A}{d} \quad \begin{align*}
& \text { (capacitor com placas paralelas, }  \tag{25.18}\\
& \text { dielétrico entre as placas) }
\end{align*}
$$

$$
u=\frac{1}{2} K \epsilon_{0} E^{2}=\frac{1}{2} \epsilon E^{2} \quad \begin{align*}
& \text { (densidade de energia elétrica }  \tag{25.19}\\
& \text { em um dielétrico) }
\end{align*}
$$

$$
\begin{equation*}
\oint K \overrightarrow{\boldsymbol{E}} \cdot d \overrightarrow{\boldsymbol{A}}=\frac{Q_{\text {int-liv }}}{\epsilon_{0}} \text { (lei de Gauss em um dielétrico), } \tag{25.22}
\end{equation*}
$$

$$
\begin{gather*}
I=\frac{d Q}{d t} \quad \text { (definição de corrente). }  \tag{26.1}\\
I=\frac{d Q}{d t}=n|q| v_{\mathrm{d}} A \quad \text { (expressão geral da corrente). }  \tag{26.2}\\
\vec{J}=n q \overrightarrow{\boldsymbol{v}}_{\mathrm{d}} \quad \text { (vetor densidade de corrente) } \tag{26.4}
\end{gather*}
$$

$$
\begin{gather*}
\rho=\frac{E}{J} \quad \text { (definição de resistividade). }  \tag{26.5}\\
\rho(T)=\rho_{0}\left[1+\alpha\left(T-T_{0}\right)\right] \quad \text { (resistividade em função da temperatura), }  \tag{26.6}\\
R=\frac{\rho L}{A} \quad \text { (relação entre resistência e resistividade). } \tag{26.10}
\end{gather*}
$$

$$
\begin{equation*}
V=I R \quad \text { (relação entre voltagem, corrente e resistência) } \tag{26.11}
\end{equation*}
$$

$$
\begin{equation*}
V_{a b}=\varepsilon-I r \quad \text { (voltagem nos terminais da fonte com resistência interna). } \tag{26.15}
\end{equation*}
$$

$$
\frac{d W}{d t}=P=V_{a b} I \quad \begin{align*}
& \text { (taxa de fornecimento de energia elétrica }  \tag{26.17}\\
& \text { para um elemento do circuito) } .
\end{align*}
$$

$$
P=V_{a b} I=I^{2} R=\frac{V_{a b}{ }^{2}}{R} \text { (potência fornecida a um resistor). }
$$

$$
\begin{equation*}
R_{\mathrm{eq}}=R_{1}+R_{2}+R_{3}+\cdots \quad \text { (resistores em série) } \tag{27.1}
\end{equation*}
$$

$$
\frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots \quad(\text { resistores em paralelo }) .
$$

$\Sigma I=0 \quad$ (lei dos nós, válida para qualquer nó).

$$
q=C \varepsilon\left(1-e^{-t / R C}\right)=Q_{\mathrm{f}}\left(1-e^{-t / R C}\right) \quad \begin{align*}
& \text { (circuito } R-C, \text { carregando }  \tag{27.12}\\
& \\
& \text { um capacitor) } .
\end{align*}
$$

$$
\begin{equation*}
i=\frac{d q}{d t}=\frac{\varepsilon}{R} e^{-t / R C}=I_{0} e^{-t / R C} \text { (circuito } R-C \text {, carregando um capacitor). } \tag{27.13}
\end{equation*}
$$

$$
\begin{equation*}
\tau=R C \quad \text { (constante de tempo de um circuito } R-C \text { ). } \tag{27.14}
\end{equation*}
$$

$$
\begin{gather*}
q=Q_{0} e^{-t / R C} \quad \text { (circuito } R-C \text {, descarregando um capacitor). } \\
i=\frac{d q}{d t}=-\frac{Q_{0}}{R C} e^{-t / R C}=I_{0} e^{-t / R C} \text { (circuito } R-C \text {, descarregando um capacitor). } \tag{27.17}
\end{gather*}
$$

$$
\begin{align*}
& \overrightarrow{\boldsymbol{F}}=q \overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{B}} \quad \text { (força magnética sobre uma partícula carregada). } \\
& \Phi_{B}=\int B_{\perp} d A=\int B \cos \phi d A=\int \overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{A}} \quad \text { (fluxo magnético através }  \tag{28.6}\\
& \text { de uma superfície). } \tag{28.8}
\end{align*}
$$

$$
\begin{equation*}
R=\frac{m v}{|q| B} \text { (raio da órbita circular em um campo magnético). } \tag{28.11}
\end{equation*}
$$

$$
\begin{equation*}
\vec{F}=\overrightarrow{l l} \times \vec{B} \quad \text { (força magnética sobre um segmento de fio retilíneo). } \tag{28.19}
\end{equation*}
$$

$$
\begin{equation*}
d \overrightarrow{\boldsymbol{F}}=I d \overrightarrow{\boldsymbol{l}} \times \overrightarrow{\boldsymbol{B}} \quad \text { (força magnética sobre um segmento de fio infinitesimal). } \tag{28.20}
\end{equation*}
$$

$$
\tau=I B A \operatorname{sen} \phi \quad(\text { módulo do torque sobre uma espira). }
$$

$$
\begin{equation*}
\vec{\tau}=\vec{\mu} \times \overrightarrow{\boldsymbol{B}} \quad(\text { vetor torque sobre uma espira }) \tag{28.26}
\end{equation*}
$$

$$
U=-\vec{\mu} \cdot \overrightarrow{\boldsymbol{B}}=-\mu B \cos \phi \quad \text { (energia potencial para um dipolo magnético). }
$$

$$
\begin{align*}
\overrightarrow{\boldsymbol{B}} & =\frac{\mu_{0}}{4 \pi} \frac{q \overrightarrow{\boldsymbol{v}} \times \hat{\boldsymbol{r}}}{r^{2}} \quad \begin{array}{l}
\text { (campo magnético de uma carga } \\
\text { puntiforme com velocidade constante). }
\end{array}  \tag{29.2}\\
d \overrightarrow{\boldsymbol{B}} & =\frac{\mu_{0}}{4 \pi} \frac{I d \overrightarrow{\boldsymbol{l}} \times \hat{r}}{r^{2}} \quad \text { (campo magnético de um elemento de corrente), }  \tag{29.6}\\
B & =\frac{\mu_{0} I}{2 \pi r} \quad \text { (fio retilíneo infinito conduzindo uma corrente). } \tag{29.9}
\end{align*}
$$

$$
\begin{equation*}
\frac{F}{L}=\frac{\mu_{0} I I^{\prime}}{2 \pi r} \text { (dois fios paralelos longos conduzindo correntes). } \tag{29.11}
\end{equation*}
$$

$$
\begin{gather*}
\oint \overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{l}}=\mu_{0} I_{\mathrm{inte}} \quad \text { (lei de Ampère). } \\
i_{\mathrm{D}}=\epsilon \frac{d \Phi_{E}}{d t} \quad \text { (corrente de deslocamento). } \tag{29.35}
\end{gather*}
$$

$$
\begin{equation*}
\oint \overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{l}}=\mu_{0}\left(i_{\mathrm{C}}+i_{\mathrm{D}}\right)_{\text {inte }} \quad \text { (lei de Ampère generalizada). } \tag{29.36}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon=-\frac{d \Phi_{B}}{d t} \quad \text { (lei de Faraday da indução). } \tag{30.3}
\end{equation*}
$$

$$
\begin{array}{ll}
\mathcal{E}=v B L \quad & \text { (fem do movimento; comprimento e } \\
& \text { velocidade perpendicular a } \overrightarrow{\boldsymbol{B}} \text { uniforme) }
\end{array}
$$

$$
\begin{equation*}
\oint \vec{E} \cdot d \vec{l}=-\frac{d \Phi_{B}}{d t} \quad \text { (percurso de integração estático). } \tag{30.10}
\end{equation*}
$$

$$
\begin{gather*}
\varepsilon_{2}=-M \frac{d i_{1}}{d t} \quad \text { e } \quad \varepsilon_{1}=-M \frac{d i_{2}}{d t} \quad \text { (fem mutuamente induzida), } \\
M=\frac{N_{2} \Phi_{B 2}}{i_{1}}=\frac{N_{1} \Phi_{B 1}}{i_{2}} \quad \text { (indutância mútua). }  \tag{31.5}\\
L=\frac{N \Phi_{B}}{i} \quad \text { (auto-indutância). } \tag{31.6}
\end{gather*}
$$

$$
\begin{gather*}
\varepsilon=-L \frac{d i}{d t} \quad \text { (fem auto-induzida). }  \tag{31.7}\\
U=L \int_{0}^{I} i d i=\frac{1}{2} L I^{2} \quad \text { (energia armazenada em um indutor). }  \tag{31.9}\\
u=\frac{B^{2}}{2 \mu_{0}} \quad \text { (densidade de energia magnética no vácuo). } \tag{31.10}
\end{gather*}
$$

$$
\begin{gather*}
u=\frac{B^{2}}{2 \mu} \quad \text { (densidade de energia magnética em um material). }  \tag{31.11}\\
\tau=\frac{L}{R} \quad \text { (constante de tempo de um circuito } R-L \text { ). }  \tag{31.16}\\
\omega=\sqrt{\frac{1}{L C}} \quad \text { (frequiência angular da oscilação de um circuito } L-C \text { ). }  \tag{31.22}\\
\omega^{\prime}=\sqrt{\frac{1}{L C}-\frac{R^{2}}{4 L^{2}}} \quad \text { (circuito } R-L-C \text { subamortecido). } \tag{31.29}
\end{gather*}
$$

$$
\begin{equation*}
I_{\mathrm{r} \cdot \mathrm{~m} .}=\frac{2}{\pi} I=0,637 I \quad \text { (corrente retificada média de uma corrente senoidal). } \tag{32.3}
\end{equation*}
$$

$$
\begin{equation*}
I_{\mathrm{q}-\mathrm{m}}=\frac{I}{\sqrt{2}} \quad \text { (valor eficaz de uma corrente senoidal) } \tag{32.4}
\end{equation*}
$$

$$
\begin{equation*}
V_{\mathrm{q}-\mathrm{m}}=\frac{V}{\sqrt{2}} \quad(\text { valor eficaz de uma voltagem senoidal }) \tag{32.5}
\end{equation*}
$$

$$
V_{R}=I R \quad \text { (amplitude da voltagem através de um resistor, circuito ac). }
$$

$$
\begin{equation*}
X_{L}=\omega L \quad \text { (reatância indutiva). } \tag{32.12}
\end{equation*}
$$

$$
\begin{equation*}
V_{L}=I X_{L} \quad(\text { amplitude da voltagem através de um indutor, circuito ac). } \tag{32.13}
\end{equation*}
$$

$$
\begin{equation*}
X_{C}=\frac{1}{\omega C} \quad \text { (reatância capacitativa). } \tag{32.18}
\end{equation*}
$$

$$
\begin{equation*}
V_{C}=I X_{C} \text { (amplitude da voltagem através de um capacitor, circuito ac). } \tag{32.19}
\end{equation*}
$$

$$
\begin{equation*}
V=I Z \text { (amplitude da voltagem através de um circuito ac). } \tag{32.22}
\end{equation*}
$$

$$
\begin{align*}
& Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
&=\sqrt{R^{2}+[\omega L-(1 / \omega C)]^{2}} \quad \text { (impedância de um circuito } R-L-C \text { em série). }  \tag{32.23}\\
& \tan \phi=\frac{\omega L-1 / \omega C}{R} \quad \text { (ângulo de fase de um circuito } R-L-C \text { em série). }  \tag{32.24}\\
& P_{\mathrm{méd}}=\frac{1}{2} V I \cos \phi=V_{\mathrm{q}-\mathrm{m}} I_{\mathrm{q}-\mathrm{m}} \cos \phi \quad \begin{array}{l}
\text { (potência média de um } \\
\text { circuito ac geral). }
\end{array} \tag{32.30}
\end{align*}
$$

$$
X_{L}=X_{C}, \quad \omega_{0} L=\frac{1}{\omega_{0} C}, \quad \omega_{0}=\frac{1}{\sqrt{L C}} \quad \begin{align*}
& \text { (circuito } L-R-C \text { em série }  \tag{32.31}\\
& \text { durante a ressonância) }
\end{align*}
$$

$$
\frac{V_{2}}{V_{1}}=\frac{N_{2}}{N_{1}} \quad \begin{align*}
& \text { (voltagens nos terminais do primário }  \tag{32.34}\\
& \text { e do secundário de um transformador) }
\end{align*}
$$

$$
\begin{array}{ll}
V_{1} I_{1}=V_{2} I_{2} & \begin{array}{l}
\text { (correntes no primário e no secundário } \\
\text { de um transformador) }
\end{array}
\end{array}
$$

$$
\begin{gather*}
E=c B \quad \text { (onda eletromagnética no vácuo). }  \tag{33.4}\\
B=\epsilon_{0} \mu_{0} c E \quad \text { (onda eletromagnética no vácuo). }  \tag{33.8}\\
c=\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}} \quad \text { (velocidade de ondas eletromagnéticas no vácuo). } \tag{33.9}
\end{gather*}
$$

$$
E(x, t)=E_{\max } \operatorname{sen}(\omega t-k x), \quad B(x, t)=B_{\max } \operatorname{sen}(\omega t-k x)
$$

$$
\begin{equation*}
\text { (onda eletromagnética plana senoidal se propagando no sentido }+x \text { ). } \tag{33.16}
\end{equation*}
$$

$$
\begin{equation*}
E_{\text {max }}=c B_{\text {max }} \quad \text { (onda eletromagnética no vácuo). } \tag{33.1}
\end{equation*}
$$

$E(x, t)=-E_{\text {máx }} \operatorname{sen}(\omega t+k x), \quad B(x, t)=B_{\text {máx }} \operatorname{sen}(\omega t+k x)$ (onda eletromagnética plana senoidal se propagando no sentido $-x$ ).

$$
\begin{equation*}
\overrightarrow{\boldsymbol{S}}=\frac{1}{\mu_{0}} \overrightarrow{\boldsymbol{E}} \times \overrightarrow{\boldsymbol{B}} \quad \text { (vetor de Poynting no vácuo) } \tag{33.25}
\end{equation*}
$$

$$
\begin{equation*}
I=S_{\operatorname{méd}}=\frac{E_{\max } B_{\max }}{2 \mu_{0}}=\frac{E_{\max }^{2}}{2 \mu_{0} c}=\frac{1}{2} \sqrt{\frac{\epsilon_{0}}{\mu_{0}}} E_{\max }^{2}=\frac{1}{2} \epsilon_{0} c E_{\max }^{2} \tag{33.26}
\end{equation*}
$$

(intensidade de uma onda senoidal no vácuo).

$$
\begin{equation*}
\frac{1}{A} \frac{d p}{d t}=\frac{S}{c}=\frac{E B}{\mu_{0} c} \quad \text { (taxa do fluxo do momento linear). } \tag{33.28}
\end{equation*}
$$

$$
\begin{equation*}
p_{\text {rad }}=\frac{S_{\mathrm{med}}}{c}=\frac{I}{c} \quad \text { (pressão da radiação, onda totalmente absorvida). } \tag{33.29}
\end{equation*}
$$

$$
\begin{equation*}
p_{\text {rad }}=\frac{2 S_{\text {med }}}{c}=\frac{2 I}{c} \quad \text { (pressão da radiação, onda totalmente refletida). } \tag{33.30}
\end{equation*}
$$

$$
\begin{equation*}
v=\frac{1}{\sqrt{\epsilon \mu}}=\frac{1}{\sqrt{K K_{\mathrm{m}}}} \frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}=\frac{c}{\sqrt{K K_{\mathrm{m}}}} \tag{33.32}
\end{equation*}
$$

(velocidade de uma onda eletromagnética

$$
\begin{gather*}
\overrightarrow{\boldsymbol{S}}=\frac{1}{\mu} \overrightarrow{\boldsymbol{E}} \times \overrightarrow{\boldsymbol{B}} \quad \text { (vetor de Poynting em um dielétrico), }  \tag{33.35}\\
I=\frac{E_{\max } B_{\max }}{2 \mu}=\frac{E_{\max }^{2}}{2 \mu v}=\frac{1}{2} \sqrt{\frac{\epsilon}{\mu}} E_{\max }^{2}=\frac{1}{2} \epsilon v E_{\max }^{2} \\
\text { (onda senoidal em um dielétrico). } \tag{33.37}
\end{gather*}
$$

