
0 7 4 0 - 7 4 5 9 / 0 2 / $ 1 7 . 0 0 © 2 0 0 2 I E E E J u l y / A u g u s t 2 0 0 2 I E E E S O F T W A R E 8 1

O
n a recent visit to Norway, I was
served the customary lunch of open-
faced sandwiches. I don’t understand
the logic of the open-faced sand-
wich—all the work of preparing a
sandwich, but you still have to eat it

with a knife and fork. Perhaps the Norwe-
gian that brought the idea of the sandwich
from overseas (our British tradition holds

that the Earl of Sandwich invented
it) simply lost the key instruction:
place another slice of bread on top
so that you can pick it up!

Some Norwegians might feel
the same way about what the rest
of the world did to one of their
great ideas: object-orientation.
Looking at most so-called object-
oriented software, you’d think the
designers had never heard about
the key idea: An object should

model some aspect of the business domain—
not just its attributes and associations—but all
behaviors that might be required of it. This
behavioral completeness yields a big benefit,
in that changes to the business domain map
simply to changes in the software. Actually,
many designers intend to create behaviorally
complete objects, but just as milk degrades
into curds and whey and salad dressing into
oil and vinegar, their software seems almost
inevitably to separate into process and data.

Separating process and data
Several years ago I determined to find out

what caused this. My research identified
several common practices that encourage
the separation of process and data in object-

oriented designs. The problem is that none
of those practices is a bad habit; each was
deliberately designed to overcome some ex-
isting problem with software engineering.

Let’s look at an example. The argument
for the Model-View-Controller pattern and
its close-relation, the Entity-Boundary-Con-
troller pattern is that a given business object
must be viewed on different platforms, in dif-
ferent contexts, and with different visual rep-
resentations. Embedding knowledge of how
to create these different views in business ob-
jects would result in bloated objects with
heavy duplication of functionality. Using
MVC or EBC, the core business objects (that
is, the Model or Entity objects, respectively)
have no knowledge of these different presen-
tations. Dedicated presentation objects (that
is, the View or Boundary objects) specify
what will appear in each view, and know
how to create the visual display and accept
inputs from the user. Controller objects
provide the glue between the two—populat-
ing the views with attributes from the busi-
ness objects and invoking methods on those
objects in response to user-initiated events.

However, there is a marked tendency for
Controller objects to become an explicit
representation of business tasks, managing
the optimized sequence of activities and en-
forcing appropriate business rules. In doing
so, they usurp the business objects’ natural
responsibilities. The presentation objects,
meanwhile, often mix attributes from multi-
ple business objects. Before long, the Entity
or Model objects become the data represen-
tation, and the Controller objects become
the process representation.

software construction

Naked Objects
Richard Pawson

E d i t o r s : A n d y H u n t a n d D a v e T h o m a s � T h e P r a g m a t i c P r o g r a m m e r s
a n d y @ p r a g m a t i c p r o g r a m m e r. c o m � d a v e @ p r a g m a t i c p r o g r a m m e r. c o m

8 2 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 2

DEPT TITLE

Naked Objects
Robert Matthews and I designed

Naked Objects, an open-source Java-
based framework, to discourage pro-
cess and data separation and to en-
courage business system creation
from behaviorally complete objects.
Naked Objects’ key idea is to directly
expose the core business objects (such
as Customer, Product, and Order)
to the user. All user actions consist of
invoking a behavior directly on a
business object, either by selecting an
icon from a pop-up menu or dragging
an object and dropping it on another.
There are no top-level menus, or any
forms or scripts sitting on the objects.
The framework is so radical that it
does not even permit the creation of
dialog boxes.

Applying the principles of Naked
Objects

One of the first organizations to
apply the design principles embodied
in Naked Objects is the Irish govern-
ment’s Department of Social, Com-
munity, and Family Affairs. Figure 1
shows a screenshot from a prototype

for a new system, created using
Naked Objects, to replace their exist-
ing Child Benefit Administration sys-
tem. That system is now in full-scale
development and is near deployment.
Although the user interface differs
slightly from that shown here, the
prototype’s principles have been faith-
fully preserved. The new architecture,
which mimics that of the Naked Ob-
jects framework but is tailored to the
DSCFA’s own technical environment,
will eventually replace all of their ex-
isting core business systems.

Figure 1 shows several classes of
business objects including Customers
(the mother and children involved in a
claim), Officers, Cases, Payments,
Communications, and Schemes (the
various legislative schemes that the
DSCFA administers—only Child

Benefit is included in this prototype),
which are represented as icons. Users
can double click on any instance to
show an expanded view, or they can
drag it to the desktop to create a sepa-
rate viewer. Right clicking on any in-
stance, in any context, produces a pop-
up menu of actions, some of which are

generic and some of which are object
specific. These actions all correspond
to methods on the business object. For
a Customer object, specific actions in-
clude Authenticate, Communicate,
and RegisterNewChild. Some ac-
tions perform simple operations on
that object; others initiate more com-
plex transactions.

Users can also initiate behaviors by
dragging and dropping objects on
other objects, or into specific fields
within objects. Dragging a Customer
instance on the Child Benefit class
would cause the system to check if that
customer was already claiming child
benefit. If not, the system initiates a
new claim by creating an instance of
the Child Benefit Scheme, insert-
ing a reference to the Customer object
inside it, and creating a new instance
of Case to track the progress of this
claim. The Case owner is the object
representing the Officer logged into
the system. (The user could also per-
form each action individually and in a
different order).

The system also portrays the busi-
ness object classes directly. A win-
dow on the left lists the six primary
business object classes that constitute
the system. Each class icon has a
pop-up menu of class methods.
These are mostly generic methods,
and include

� Create a new instance of this class
� Retrieve an existing instance from

storage
� List instances of this class that

match a set of criteria
� Show any subclasses that are

available to the user

Because there is no other mecha-
nism with which users can initiate a
business action, the programmers de-
veloping an application are forced to
encapsulate all required behavior
with the core business objects. How-
ever, because there is a 1:1 corre-
spondence between the underlying
object model and the user interface,
Naked Objects can auto-generate the
latter from the former. Programmers
do not need to write any user inter-
face code to develop a fully working

SOFTWARE CONSTRUCTION

Figure 1. A prototype for a new government benefits administration
system built using Naked Objects. All user actions consist of noun-
verb style operations on core business objects.

J u l y / A u g u s t 2 0 0 2 I E E E S O F T W A R E 8 3

DEPT TITLE

application using Naked Objects.
Instead, at runtime the framework’s
generic viewing mechanism uses
Java’s reflection to identify objects’
behaviors and makes these available
to the user. Programmers need only
follow a few simple conventions
when writing business objects in
Java. The Naked Objects framework
effectively provides the View and
Controller roles in generic form—
the programmer writes only the
Model objects.

Most early attempts at auto-gener-
ating a user interface from an under-
lying model, such as some application
generators in the 1980s, produced
spectacularly poor user interfaces.
Naked Objects does rather better. I
would not suggest that our user inter-
faces are in any sense optimal, but
they are remarkably expressive and
give users a strong sense of control—
what Edwin Hutchins, James Hollan,
and Donald Norman call “direct en-
gagement”1 and Brenda Laurel calls a
“first-person experience.”2 We would
even suggest that much of the efforts
of the human-computer interface
community, which is concerned with
optimizing a user interface design for
a given set of tasks, is actually coun-
terproductive. Who has not experi-
enced the frustration of being man-
aged by an optimized script when
dealing with a customer agent at a
call center, for example?

I don’t mean to suggest that the
user is free to do anything with a
Naked Object system—some con-
straints are genuinely needed. But
these constraints are built into the
business objects, not into the scripted
tasks that usually sit on top of them.
The net effect is similar to using a
drawing program or a CAD system,
but for business transactions.

When developing an application
using Naked Objects, the 1:1 corre-
spondence between the screen repre-
sentation and the underlying model
means that the business objects now
provide a common language for the
user and programmer. The auto-gen-
eration of one from the other shortens
the development cycle to the point
where we can now create prototypes

in real time. Most approaches to rapid
prototyping develop only the users’
view of the system. Using Naked Ob-
jects we are prototyping the object
model simultaneously. With Naked
Objects, the conventional notion of
the user interface simply disappears—
programmers don’t even consider a
user-interface because they don’t have
to develop one and users talk only
about the objects with which they
deal.

New generation of business systems
A handful of commercial organiza-

tions have already started to use
Naked Objects to conceive a new gen-
eration of business systems. In each of
these projects, the organization has
stated that they have never seen such
positive communication between de-
velopers and users during develop-
ment. Developers have praised Naked
Objects for its “flexibility”—quite an
interesting comment given that the
framework doesn’t let them do many
things they are accustomed to doing,
such as customizing the user interface
or writing dialog boxes. (The latter is
a massive constraint and somewhat
difficult to adjust to, but we have
found that it forces you to do a better
object modeling job.) Programmers
frequently comment, “This feels like
what I had in my mind when I first en-

countered OO, and I’ve just realized
how far it is from what we’ve actually
been doing.”

Naked Objects is still in its in-
fancy, but it is developing rapidly. We
have much that we still want to do
with the framework. We are starting
to get offers of help from others who
are catching the vision. What pleases
us most is that the framework gets
simpler with every iteration. You can
read more about the design princi-
ples behind Naked Objects and
download the Java framework from
www.nakedobjects.org.

Antoine de Saint Exupery wrote
that “In anything at all, perfection is
finally achieved not when there is no
longer anything to add, but when
there is no longer anything to take
away, when a body has been stripped
down to its nakedness.” This princi-
ple has been one of the inspirations
for Naked Objects. I remain to be
convinced about the merit of naked
sandwiches, though.

References
1. E. Hutchins, J. Hollan, and D. Norman, “Di-

rect Manipulation Interfaces,” User Centered
System Design: New Perspectives on Human-
Computer Interaction, D. Norman and S.
Draper, eds., Lawrence Erlbaum, Hillsdale,
N.J., 1986, p. 94.

2. B. Laurel, Computers as Theatre, Addison-
Wesley, Reading, Mass., 1991, pp. 116–119.

Richard Pawson is a research fellow with Computer
Sciences Corporation. He has a BSc in engineering science and is
currently earning a PhD in computer science at Trinity College,
Dublin. He is coauthor of Naked Objects with Robert Matthews,
which will be published by Wiley in November 2002. Contact
him at CSC Research Services, 70 Wilson St., London EC2A 2DB,
UK; rpawson@csc.com.

SOFTWARE CONSTRUCTION

“In anything at all,
perfection is finally
achieved not when
there is no longer
anything to add,

but when there is no
longer anything to

take away,
when a body has been

stripped down to
its nakedness.”

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

