
Neutrophils are the most abundant innate immune 
effector cells of the human immune system. They  
are armed with broadly effective antimicrobials that are 
stored predominately in specialized granules. Given that 
this neutrophil arsenal can also damage host tissues, its 
deployment is tightly regulated through three major 
strategies: phagocytosis, degranulation and the release 
of neutrophil extracellular traps (NETs). NETs are large, 
extracellular, web-like structures composed of cytosolic 
and granule proteins that are assembled on a scaffold of 
decondensed chromatin1. Although the majority of DNA 
in NETs originates from the nucleus, these structures 
also contain mitochondrial DNA2. NETs trap, neutralize 
and kill bacteria1, fungi3, viruses4 and parasites5 and are 
thought to prevent bacterial and fungal dissemination6,7. 
However, if dysregulated, NETs can contribute to the 
pathogenesis of immune-related diseases.

Initially, 24 proteins were identified in NETs formed 
by stimulation of neutrophils with phorbol 12‑myristate 
13‑acetate (PMA), a molecule that activates protein 
kinase C (PKC) and triggers the production of reactive 
oxygen species (ROS). Among these proteins were his-
tones, the serine protease neutrophil elastase (NE; also 
known as ELANE), myeloperoxidase (MPO), calprotectin, 
cathelicidins, defensins and actin8. Subsequent studies 
have extended this list, suggesting that the composition of 
NETs varies depending on the stimulus. For example, dif-
ferent Pseudomonas aeruginosa mucoid and non-mucoid 
strains induce the formation of NETs containing 33 com-
mon proteins and up to 50 variable proteins9. Whether 
and how differences in NET composition impact NET 
function remains to be investigated.

NET release occurs primarily through a cell death 
process termed NETosis10. To initiate this process, 
neutrophils arrest their actin dynamics and depolarize11.  

Next, the nuclear envelope disassembles, and nuclear 
chromatin decondenses into the cytoplasm of intact 
cells, mixing with cytoplasmic and granule components10 
(FIG. 1). The plasma membrane then permeabilizes, and 
NETs expand into the extracellular space 3–8 hours after 
neutrophil activation. An alternative mechanism termed 
non-lytic NETosis leads to the rapid release of NETs 
within minutes of exposure to Staphylococcus aureus 
via the secretion of chromatin and granule contents12,13 
and in the absence of cell death. This phenomenon 
has been observed by intravital microscopy in a small 
fraction of neutrophils during systemic S. aureus infec-
tion and generates NETs and anucleated cytoplasts that  
crawl and phagocytose bacteria13. This multitasking non-
lytic rapid response is mounted by the first neutrophils to 
arrive at sites of infection.

The mechanisms that clear NETs are less well under-
stood. During infection, NETs persist for several days7 
and are thought to be dismantled by the secreted plasma 
nuclease DNase I (REF. 14). Injection of this enzyme dur-
ing S. aureus infection leads to rapid degradation of NET-
associated DNA15, but the dynamics of NET clearance by 
endogenous enzymes are unknown. Strikingly, NET pro-
teins persist long after DNA degradation15, suggesting that 
they are cleared via additional mechanisms. These mecha-
nisms might involve macrophage scavenging, as DNase I 
facilitates the ingestion of NETs by macrophages in vitro16.

Here, I provide an overview of the mechanisms that 
regulate NET formation and clearance and describe 
recent advances in our understanding of how NETs pro-
tect against infection and cause pathology associated with 
several diseases. These topics are organized in a concep-
tual manner according to the immunological function 
of NETs. I pay attention to key findings, highlight open 
questions and discuss the controversies in the field.
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Neutrophil elastase
(NE). A neutrophil-specific 
antimicrobial serine protease 
stored in azurophilic granules.

Myeloperoxidase
(MPO). A haem-containing 
enzyme that reacts with 
hydrogen peroxide to generate 
hypochlorite and other halide 
oxidants.
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Abstract | Neutrophils are innate immune phagocytes that have a central role in immune 
defence. Our understanding of the role of neutrophils in pathogen clearance, immune 
regulation and disease pathology has advanced dramatically in recent years. Web-like 
chromatin structures known as neutrophil extracellular traps (NETs) have been at the forefront  
of this renewed interest in neutrophil biology. The identification of molecules that modulate  
the release of NETs has helped to refine our view of the role of NETs in immune protection, 
inflammatory and autoimmune diseases and cancer. Here, I discuss the key findings and 
concepts that have thus far shaped the field of NET biology.
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NADPH oxidase
A membrane-associated 
complex of proteins that 
transfer electrons from NADPH 
to molecular oxygen to 
generate the oxygen radical 
superoxide.

Azurophilic granules
A subset of neutrophil granules 
that contain antimicrobials 
such as myeloperoxidase and 
neutrophil elastase. Within the 
granule membranes, a complex 
of eight antimicrobial proteins 
forms the azurosome.

Chronic granulomatous 
disease
(CGD). An inherited X‑linked 
immune deficiency caused by 
genetic mutations that disrupt 
the activity of NADPH oxidase. 
It is associated with 
hyperinflammation and 
increased susceptibility to 
bacterial and fungal infections.

Thrombosis
Formation of a blood clot 
(thrombus) in blood vessels, 
resulting in partial or complete 
vessel occlusion.

DEK
A DNA-binding protein that 
alters DNA structures and is 
involved in DNA repair.

Mechanisms of NET formation
From ROS to chromatin decondensation. Two enzymes 
in the ROS pathway have critical roles in NETosis. 
ROS generated by NADPH oxidase stimulate MPO to 
trigger the activation and translocation of NE from  
azurophilic granules to the nucleus, where NE proteo
lytically processes histones to disrupt chromatin pack-
aging17. Subsequently, MPO binds chromatin and 
synergizes with NE in decondensing chromatin inde-
pendently of its enzymatic activity17 (FIG. 2). NADPH 
oxidase activity can be redundant in response to  
some stimuli, such as immune complexes in which 
mitochondrial ROS are sufficient to drive NETosis2.

NE release from azurophilic granules does not 
require membrane rupture or fusion. In resting neutro
phils, a fraction of MPO is bound to NE as part of a 
complex called the azurosome, which spans granule 
membranes11. Hydrogen peroxide selectively releases 
NE into the cytosol in an MPO-dependent manner 
(FIG. 2). It is important to clarify that inhibition of the 
enzymatic activity of MPO does not block but only 
delays NETosis18, potentially owing to the role of MPO 
in activating the proteolytic activity of NE against 
large protein substrates. This oxidative activation 
is important because NE binds to F‑actin filaments 
in the cytoplasm and must degrade them in order to 
enter the nucleus11. NE is sufficient to decondense 
nuclei in vitro17, but unknown mechanisms may help to  
disassemble the nuclear envelope in neutrophils.

This MPO–NE pathway is induced by many NET 
stimuli, such as fungi and crystals19,20, and its role is 

supported by studies of neutrophils from patients with 
chronic granulomatous disease (CGD)10 and with com-
plete MPO deficiency18, as well as by studies using 
NE‑deficient mice or NE inhibitors in mouse models 
of sepsis, cancer and pulmonary infection7,15,17,21. NET 
release is also abrogated in NADPH oxidase-deficient 
mice during pulmonary fungal infection, which stim-
ulates robust NET release22. Similarly, NETosis is defec-
tive in neutrophils from patients with Papillon–Lefèvre 
syndrome caused by mutations in the cysteine pro-
tease cathepsin C (CTSC), which processes NE into its 
mature form23,24. Mice lacking CTSC fail to form NETs 
upon pulmonary Sendai virus infection25 and in aortic 
aneurism models26. Moreover, isolated CTSC-deficient 
neutrophils exhibit defects in NETosis, although the 
impairment is less striking than that observed after 
pharmacological NE inhibition.

One study challenged the requirement of NE in 
NETosis27 on the basis of experiments with PMA-induced 
mouse neutrophils that yielded low levels of NETs. By 
contrast, NE deficiency and inhibitors attenuated NETosis 
upon stimulation with the Ca2+ ionophore ionomycin, 
which induced a robust response27. In the same study, 
NE deficiency did not reduce NET-mediated thrombosis 
in vivo27, but this result contradicts prior literature28.

Another nuclear chromatin-binding protein that has 
recently been implicated in NETosis is DEK. NETosis is 
defective in Dek-deficient neutrophils and can be rescued 
by addition of exogenous recombinant DEK protein, 
which suggests that DEK binding promotes chromatin 
decondensation in a similar manner to MPO29.

Figure 1 | NET formation pathways. Neutrophil extracellular traps (NETs) form via two pathways. The first is a cell 
death pathway termed NETosis that begins with nuclear delobulation and the disassembly of the nuclear envelope and 
continues with loss of cellular polarization, chromatin decondensation and plasma membrane rupture. The second is a 
non-lytic form of NETosis that can occur independently of cell death and involves the secreted expulsion of nuclear 
chromatin that is accompanied by the release of granule proteins through degranulation. These components assemble 
extracellularly and leave behind active anucleated cytoplasts that continue to ingest microorganisms.
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As mentioned above, some NET stimuli, such as 
immune complexes, ionomycin and nicotine, have 
been proposed to trigger NETosis independently of 
NADPH oxidase, relying instead on mitochondrial 
ROS2,30,31. Non-lytic NETosis is also thought to occur 
independently of ROS12. It is therefore important to 
consider the effects of ROS-blocking compounds on 
ROS generated by both the NADPH oxidase and the 
mitochondria. ROS do not only trigger chromatin 
decondensation. Chlorinated polyamines generated 
upon reaction with hypochlorous acid, produced by 

MPO, crosslink NET proteins, increasing NET stability 
and integrity and potentiating the capture of micro-
organisms32. This crosslinking reaction might explain 
why NET proteins persist longer than DNA following 
DNase I administration in vivo15. Interestingly, glycans 
in saliva induce NETs via an unknown mechanism 
that does not involve ROS or NE. These NETs are 
more resistant to nucleases and kill microorganisms 
more effectively than NETs generated with PMA33. 
Therefore, different pathways may generate NETs with 
different functional attributes.

Figure 2 | Molecular mechanisms regulating NETosis. The formation of neutrophil extracellular traps (NETs) — 
known as NETosis — can be triggered by microorganisms and endogenous stimuli, such as damage-associated 
molecular patterns and immune complexes. Ligation of a number of receptors by bacteria, fungi, viruses, immune 
complexes and crystals activates NETosis through various downstream effector proteins. Activated platelets can also 
trigger NETosis via high mobility group protein B1 (HMGB1)–receptor for advanced glycation end products (RAGE) 
and P‑selectin–P-selectin glycoprotein ligand 1 (PSGL1) interactions. The induction of reactive oxygen species 
(ROS) via MEK–extracellular-signal-regulated kinase (ERK) signalling triggers a myeloperoxidase (MPO) pathway.  
In this pathway, MPO-mediated oxidative activation of neutrophil elastase (NE) is required for NE to degrade the 
actin cytoskeleton in the cytoplasm to block phagocytosis. NE then translocates to the nucleus to drive chromatin 
decondensation by processing histones. Chromatin decondensation is also promoted by MPO and DEK (not shown) 
binding and the activation of protein-arginine deiminase type 4 (PAD4), which citrullinates histones. Autophagy is 
also thought to have a role in NET formation. Phagocytic receptors such as dectin 1 inhibit NETosis in response to 
small microorganisms by promoting phagosome formation that sequesters NE away from the nucleus.  
Siglec‑5 and Siglec‑9 suppress NETosis by limiting neutrophil activation and ROS generation. Endogenous serpin 
protease inhibitors block NETosis by inhibiting NE. ATG7, autophagy-related protein 7; AZU, azurophilic granule;  
CG, cathepsin G; CR3, complement receptor 3; IRAK, IL‑1 receptor-associated kinase; MEK, MAPK/ERK kinase; 
mTOR, mechanistic target of rapamycin; PI3K, phosphoinositide 3‑kinase; PKC, protein kinase C;  
RIPK1, receptor-interacting serine/threonine-protein kinase 1; TLR, Toll-like receptor.
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Autophagy
An evolutionarily conserved 
process, in which acidic 
double-membrane vacuoles 
sequester intracellular 
contents (such as damaged 
organelles and 
macromolecules) and target 
them for degradation and 
recycling, through fusion with 
lysosomes.

Necroptosis
A form of programmed 
necrosis that is initiated by the 
kinases receptor-interacting 
serine/threonine-protein kinase 
1 (RIPK1) and RIPK3 in 
response to external signals, in 
conditions in which caspase 8 
activity is compromised.

Another chromatin modification that is implicated 
in chromatin decondensation is histone deamination 
or citrullination, which is driven by protein-arginine 
deiminase type 4 (PAD4), a nuclear enzyme that citrul-
linates arginine residues, converting amine groups to 
ketones34,35 (FIG. 2). Despite evidence that PAD4 activ-
ity requires a reducing environment36, inhibition of 
NADPH oxidase decreases citrullination. Moreover, 
hydrogen peroxide is sufficient to activate PAD4 
(REFS 37,38), which requires calcium39 and is activated 
by PKCζ40,41, a kinase that is implicated in the ROS 
burst. Together, these observations suggest that PAD4 
lies downstream of ROS and calcium signalling during 
NETosis. The degree and specificity of citrullination 
seems to vary depending on the stimulus owing to the 
activation of different PKC isoforms that activate or sup-
press PAD4 (REFS 41–43). Physiological stimuli such as 
fungi and crystals induce histone citrullination during 
NETosis7,20. However, the contribution of citrullination 
to chromatin decondensation has been more difficult to 
evaluate38,44,45. Experiments with cell lines treated with 
PAD4 inhibitors or with mouse neutrophils derived 
from PAD4‑deficient mice were initially difficult to 
interpret owing to low NET yields38,46. Mixed results 
have been reported with pharmacological PAD4 inhi-
bition with Cl‑amidine in human neutrophils known 
to be robust NET producers. For example, PAD4 inhi-
bition blocks NETosis induced by nicotine but does not 
interfere in the formation of NETs induced by choles-
terol crystals20,31. One complicating issue is that histone 
citrullination is often used as the sole marker to detect 
NETs in PAD4‑deficient or PAD4‑inhibited mice47,48. 
However, recent studies using multiple NET mark-
ers showed that PAD4 inhibition blocks NET release 
in mouse models of sepsis and cancer15,21. Moreover, 
PAD4‑deficient mouse neutrophils fail to release NETs 
upon stimulation with lipopolysaccharide (LPS) and 
tumour necrosis factor (TNF)43.

Whether histone citrullination is sufficient to pro-
mote chromatin decondensation in the absence of NE 
activity is unclear. NE inhibitors block chromatin de
condensation during pulmonary fungal infection with-
out interfering with histone H3 citrullination7, suggesting 
that histone citrullination occurs independently of NE 
activity, but histone citrullination might not be sufficient 
to drive chromatin decondensation. Interestingly, recent 
findings suggest that the repertoire of citrullinated pro-
teins in NETosis induced by microorganisms or PMA 
is dominated by histones and is distinct from extensive 
protein hyper-citrullination associated with stress induc-
ers such as ionomycin, pore-forming toxins and immune 
complexes42,49. Therefore, different NET-inducing stim-
uli might engage PAD enzymes in diverse ways, and the 
pattern of citrullinated substrates could help to deter-
mine the relevant immunopathogenic mechanisms 
in vivo.

In summary, these pathways are implicated in 
NETosis, and their pharmacological inhibition blocks 
chromatin decondensation in a variety of scenarios. 
Nevertheless, examples of alternative mechanisms are 
also emerging. Furthermore, PMA and ionomycin  

are useful for mechanistic studies, but data obtained 
with these non-physiological stimuli should be  
viewed with caution until validated with physiological 
stimuli. PMA and fungi elicit common pathways down-
stream of ROS (TABLE 1). The ionomycin-induced pathway 
that involves calcium signalling and small conductance 
calcium-activated potassium channel protein 3 (SK3) 
may share features with pathways induced by immune 
complexes, platelets and other stimuli that elicit a faster 
mitochondrial ROS-dependent response with varying 
degrees of citrullination30,41.

Upstream signalling pathways. The pathways that 
promote NETosis upstream of ROS are incompletely 
understood. A number of ROS-inducing receptors 
(BOX 1) and kinases, such as MEK (MAPK/ERK kinase), 
extracellular-signal-regulated kinase (ERK), IL‑1  
receptor-associated kinase (IRAK), PKC, phospho-
inositide 3‑kinase (PI3K) and AKT, have been linked 
to NETosis in response to PMA, microorganisms, 
parasites and immobilized immune complexes4,40,50–53 
(FIG. 2; TABLE 1). The requirement for PI3K in NETosis 
has also implicated a role for autophagy, which also 
depends on this enzyme54. Consistent with this, pro-
myelocytes that lack the autophagy-associated protein 
ATG7 exhibit a modest decrease in NET release55. By 
contrast, a requirement for mechanistic target of rapa-
mycin (mTOR), which suppresses autophagy, has also 
been reported in NETosis56. Nevertheless, LC3B+ vacu-
oles that resemble autophagosomes have been observed 
in neutrophils undergoing NETosis54,55,57. Finally, ROS 
are known to induce autophagy58, which in turn is 
required to sustain the ROS burst59 and might also help 
to tolerate ROS-induced stress.

During NETosis, plasma membrane permeabilization 
occurs in a programmed manner and not as a con
sequence of physical disruption by the expanding chro-
matin11. This observation suggests that NETosis involves 
programmed cell death. Consistent with this observa-
tion, NET inducers, such as monosodium urate (MSU) 
crystals, promote necroptosis60, and neutrophils lacking 
receptor-interacting serine/threonine-protein kinase 1 
(RIPK1) and RIPK3, two kinases involved in necrop
tosis, fail to form NETs without altering their ROS burst, 
which indicates that these enzymes act downstream or 
in parallel with the ROS pathway61. However, the role of 
these kinases in NETosis has been challenged by others62, 
and more evidence is needed to confirm their role and 
mode of action.

Regulation of NETosis. NETosis must be tightly regu-
lated to prevent pathology. The size of microorganisms 
is one of several factors that influence NETosis. The 
sensing of pathogen size depends on the competition 
between NETosis and phagocytosis for access to NE. 
This mechanism enables neutrophils to preferentially 
deploy NETs against large microorganisms. Small 
microorganisms are taken up into phagosomes that fuse 
with azurophilic granules, sequestering NE away from 
the nucleus and blocking chromatin decondensation7 
(FIG. 2). The absence of phagosomes in neutrophils that 
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engage microorganisms that are too large to be ingested 
allows NE to translocate to the nucleus via the slower 
azurosome pathway and to drive NETosis. Furthermore, 
NE release into the cytosol promotes actin cytoskeleton 
degradation, blocking phagocytosis and committing 
cells to NETosis11 (FIG. 2). The influence of particle size 
on NETosis also applies to sterile stimuli. Larger, needle-
shaped urate crystals trigger NETosis more potently 
than urate microaggregates that are small enough 
to be ingested63. The selective induction of NETosis 
limits unnecessary tissue damage during infection by 
pathogens that are small enough to be killed intra-
cellularly. Accordingly, mice that lack the antifungal 
phagocytic receptor dectin 1 are unable to selectively 
suppress NETosis and are susceptible to NET-mediated  
pathology in response to small microorganisms7.

However, NETosis induced by small bacteria has 
been widely reported. Other studies even report an 
increase in both phagocytosis and NET formation 
upon bacterial opsonization by IgA64 or disruption of 
the bacterial capsule65. Nevertheless, many of these 
microorganisms can survive and escape phagosomes66. 
It is therefore possible that NETosis is reserved for small 
virulent microorganisms that interfere with phago
somal killing. Consistent with this idea, virulent entero
pathogenic bacteria induce NET formation, whereas 
non-virulent probiotic bacteria do not67. One strat-
egy for small microorganisms to evade phagocytosis 
is aggregation. Large aggregates of Mycobacterium 
bovis Bacillus Calmette–Guérin drive NETosis in a 
microorganism size-dependent manner7. Similarly, 
S. aureus, which has been shown to stimulate NETosis 
in mouse models of sepsis12,13, forms large abscesses and 

aggregates upon exposure to plasma68,69. Aggregation 
might also explain early observations of pulmonary 
NET induction following infection with clumps of 
Klebsiella pneumoniae grown in solid phase17.

Alternatively, microbial interference with phago
some maturation may also enable small micro
organisms to induce NETosis. Neisseria gonorrhoeae 
delays the fusion of the phagosome with azurophilic 
granules and induces NETosis70. Virulence mecha-
nisms are also involved in the ability of P. aeruginosa 
to induce NETosis, which depends on expression of a 
motile flagellum71. Bacteria that lack flagella fail to elicit 
a potent ROS burst and NETosis, but flagella alone are 
not sufficient to induce NETosis. These findings appear 
to contradict the size-dependence principle. However, 
flagella are also known to alter host cell biology72,73, 
and it will be interesting to investigate whether and 
how they might potentiate the translocation of NE to 
the nucleus. Several findings suggest that by altering 
neutrophil cell biology, microbial virulence factors 
affect NETosis74. Many virulent S. aureus serotypes kill 
neutrophils75 and might promote the association of NET 
components by physical lysis of cellular membranes. 
For example, the S. aureus pore-forming toxin leuko-
toxin GH is sufficient to drive NETosis, but it is unclear 
whether it is required for NET induction by bacteria76. 
Moreover, expression of invasin, an adhesin that binds  
β‑integrins, potentiates the ROS burst to induce NETosis 
in response to Yersinia pseudotuberculosis77. Finally, the 
observation that Porphyromonas gingivalis mutants that 
lack a phagocytosis-promoting protease drive NETosis78 
is also consistent with the ability of phagocytosis to  
regulate NETosis.

Table 1 | Cellular pathways involved in NETosis

Stimulus Activating 
receptors

Repressing 
receptors

Signalling  
intermediates I

Signalling 
intermediates II

Independent of Refs

PMA NA NA MEK, ERK, AKT, PI3K, mTOR, 
ATG7, RIPK1, RIPK3

NOX2, MPO, NE, DEK PAD4 10,11,17,18,29,37, 
40,41,45, 

50,53,55,56,60

Ionomycin ND ND SK3, PKCζ mitoROS, NE, PAD4 ERK, NOX2 27,30,37,41

Fungi Dectin 2, CR3 Dectin 1 ND NOX2, MPO, NE ND 7,11,17,18,22,176,177

Bacteria TLR4, Siglec‑14 Siglec‑5, 
Siglec‑9, SIRL1

ND NOX2, MPO, NE, 
PAD4

ND 10,15,38,85,172

Immune 
complexes

FcγRIIIb SIRL1 ND mitoROS NOX2 52,84,181

Crystals ND SIRL1 RIPK1, RIPK3 NOX2, MPO, NE PAD4 19,20,60,61,84,85

Parasites TLR2, TLR4 ND ND ND NOX2 51,178

Viruses TLR7, TLR8 IL‑10R ND ND ND 4,94

LPS and/or 
platelets

TLR2, TLR4, 
PSGL1, RAGE

ND HMGB1 NE NOX2 118,120,172,173

Non-lytic 
NETosis

ND ND ND ND NOX2 12,13

ATG7, autophagy-related protein 7; CR3, complement receptor 3; ERK, extracellular-signal-regulated kinase; HMGB1, high mobility group protein B1; LPS, 
lipopolysaccharide; MEK, MAPK/ERK kinase; mitoROS, mitochondrial reactive oxygen species; MPO, myeloperoxidase; mTOR, mechanistic target of rapamycin; 
NA, not applicable; ND, not determined; NE, neutrophil elastase; NOX2, NADPH oxidase 2; PAD4, protein-arginine deiminase type 4; PI3K, phosphoinositide 
3‑kinase; PKCζ, protein kinase C ζ; PMA, phorbol 12‑myristate 13‑acetate; PSGL1, P-selectin glycoprotein ligand 1; RAGE, receptor for advanced glycosylation end 
products; RIPK, receptor-interacting serine/threonine-protein kinase; SIRL1, signal inhibitory receptor on leukocytes 1; SK3, small conductance calcium-activated 
potassium channel protein 3; TLR, Toll-like receptor.
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In addition, microorganisms attenuate NETosis by 
engaging host receptors that suppress neutrophil acti-
vation. Both group A streptococci (GAS) and group 
B streptococci (GBS) deploy molecules that resem-
ble sialic acids to dampen the ROS burst and reduce 
NETosis79,80 (FIG. 3; TABLE 1). Similarly, P. aeruginosa 
and GAS suppress NETosis through Siglec‑9 by coat-
ing themselves with host sialylated glycoproteins80,81. 
Moreover, β‑protein from GBS suppresses NETosis by 
binding to Siglec‑5. However, engagement of Siglec‑14 
by β‑protein antagonizes the repressive effects of 
Siglec‑5 by activating mitogen-activated protein 
kinase (MAPK) signalling, which explains why poly
morphisms that disrupt Siglec‑14 increase host suscep-
tibility to GBS82. Ligation of signal inhibitory receptor 
on leukocytes 1 (SIRL1) also attenuates NETosis by 
downregulating ROS production in response to 
S. aureus or MSU crystals83–85, but the physiological 
role of this pathway is unclear. In a similar manner, 
whereas bacterial biofilms induce NET formation86, 
fungal biofilms suppress NETosis by blocking ROS gen-
eration and increasing resistance to neutrophil killing87. 
The suppression of NETosis depends on mannosyla-
tion enzymes, but these enzymes are also important 
for fungal cell wall integrity, thereby making it diffi-
cult to attribute the virulence of these fungi solely to 
the suppression of NETosis87. Finally, the induction of 
immunosuppressive cytokines such as IL‑10 can also 
inhibit NET release4.

In summary, microorganisms modulate NETosis 
through diverse mechanisms, depending on their size 
and the expression of virulence factors.

NETs in host defence
Given that most of the proteins that are implicated 
in NETosis are also important for phagocytosis and 
cytokine regulation, it has been difficult to define the 
specific contribution of NETs to immune defence. The 
dependence of NETosis on microorganism size enabled 
us to study the role of NETs independently of phago
cytosis. In humans, complete MPO deficiency leads pre-
dominately to recurrent fungal infections88. Experiments 
with MPO-deficient mice are also consistent with a cru-
cial role for NETs against pathogens that are too large 
to be killed intracellularly, such as fungal hyphae7. The 
importance of NETs in clearing systemic fungal infec-
tion is also supported by the restoration of NETosis in a 
patient with CGD following gene therapy89.

Consistent with a selective antimicrobial role for 
NETs, only a small number of NET-deficient patients 
with Papillon–Lefèvre syndrome show susceptibility 
to pyogenic infections, and their neutrophils have no 
defects in bacterial killing23. Moreover, the reported 
lack of NETosis in PAD4‑deficient mice does not affect 
bacteraemia and survival in polymicrobial sepsis90 or 
Burkholderia pseudomallei-induced sepsis91. Likewise, 
in the original study implicating NETs in protection 
against bacterial sepsis, NET degradation with DNase 
yielded only a twofold increase in bacteraemia following 
S. aureus skin infection13 and reduced bacterial load at the 
primary site of skin infection, which was interpreted as 
an increase in dissemination13. However, in most cases, 
dissemination is accompanied by uncontrolled growth 
at the primary site of infection. However, a reduction of 
skin bacteria upon DNase treatment may also be caused 
by biofilm breakdown or disruption of NET-mediated 
immune evasion mechanisms of S. aureus92. By contrast, 
impaired killing of Shigella flexneri and GAS has been 
reported in PAD4‑deficient neutrophils alongside larger 
lesions in a model of GAS-induced necrotizing fasciitis38, 
which was attributed to defects in NETosis. Finally, many 
parasites trigger NETosis in vitro (reviewed in REF. 93), 
but it is unclear whether NETs offer protection against 
these pathogens. These studies suggest that NETs play a 
critical role against fungal infections and virulent bacteria 
that can subvert other neutrophil antimicrobial strategies.

NET release has also been observed in response to 
viruses such as HIV4 and respiratory syncytial virus or 
syncytial viral proteins94. NETs trap and reduce the infec-
tivity of HIV virions4, but evidence for an antiviral role 
for NETs in vivo is lacking95. Notably, NETs were absent 
in mild infection with influenza virus or co‑infection 
with S. pneumoniae in wild-type mice96. Consistently, 
PAD4‑deficient animals do not exhibit increased sus-
ceptibility to influenza virus95. On the contrary, NETs 
are thought to mediate pathology during severe influ-
enza virus infection in mice deficient in viral sensing 
pathways97. Under these conditions, virus-induced 
tissue damage results in bacterial overgrowth associ-
ated with NET release and pathology. In this study, 
antibiotics, DNase treatment, neutrophil depletion and 
inhibition of neutrophil recruitment rescued mortality. 
However, given that the effect of antibiotics on NETosis 
was not examined, it is unclear whether NETs are 

Box 1 | Receptors that trigger the release of NETs

During sepsis, lipopolysaccharide (LPS) triggers platelet activation through 
Toll-like receptor 4 (TLR4), which promotes the association of platelets with 
neutrophils and drives the formation of neutrophil extracellular traps (NETs)173. 
Neutrophil–platelet interactions are mediated by P‑selectin118 and allow 
platelet-derived high mobility group protein B1 (HMGB1)174 to stimulate 
NETosis110,173 through binding to receptor for advanced glycation end products 
(RAGE)174 — a pathway that has also been implicated in vascular inflammation and 
damage175. Interestingly, HMGB1 also signals through TLR2 and TLR4 
(REFS 110,176). In contrast to dectin 1, which suppresses NETosis, dectin 2, which 
binds fungal cell wall mannan, promotes the association of neutrophils with fungal 
hyphae and the release of NETs177. Whether NETosis is activated by dectin 2 
signalling through its Fc co‑receptor or whether it acts indirectly by enhancing the 
activation of other receptors remains to be investigated. Although the fungal 
molecules and receptors that activate NETosis have not yet been identified, 
experiments with surfaces coated with the fungal cell wall components β‑glucan 
and fibrinogen implicate a role for complement receptor 3 (CR3) in dectin 2‑induced 
NETosis178.

A role for TLR2 and TLR4 in NETosis stems from studies with the parasite 
Trypanosoma cruzi and its secreted compounds179. In addition, the endosomal 
receptors TLR7 and TLR8 mediate NETosis triggered by HIV4. In macrophages, 
cholesterol crystals activate the inflammasome through the receptor CD36 (REF. 180), 
which mediates apoptosis in neutrophils181 and might be implicated in NETosis.

Immune complexes activate NETosis by engaging FcγRIIIb. By contrast, 
antibody-mediated FcγRIIb or integrin receptor signalling does not induce 
NETosis52,182. Less is known about the importance of antibodies in microorganism-
induced NETosis. Opsonization is not necessary in fungus-induced NETosis7,  
but coating Staphylococcus aureus or beads with IgA promotes NETosis through 
FcαRI signalling64.

R E V I E W S

NATURE REVIEWS | IMMUNOLOGY	  VOLUME 18 | FEBRUARY 2018 | 139

©
 
2018

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved. ©

 
2018

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.



Nature Reviews | Immunology

Neutrophil

Apoptotic 
macrophage

Siacylated 
proteins

Bacteria
a

b

c

Capsulated
microorganism

DNA
NET

NET
degradation

Pro-apoptotic
NET products

Endonuclease

Granule 
protein

Nucleotidase

dAdo
P

Damage-associated 
molecular patterns
(DAMPs). Conserved 
mammalian motifs, recognized 
by pattern recognition 
receptors, that are broadly 
upregulated in response to 
cellular stress and that trigger 
an innate immune response. 
Examples include heat shock 
proteins, high mobility group 
protein B1 (HMGB1), 
DNA-binding proteins and uric 
acid.

Cystic fibrosis
An autosomal recessive genetic 
condition secondary to 
mutations in the cystic fibrosis 
transmembrane conductance 
regulator (a chloride channel), 
causing lung, gastrointestinal, 
endocrine and fertility 
complications. Chronic 
infection of the lungs is 
associated with sputum that is 
rich in neutrophil proteins and 
DNA..

triggered directly by the microbiota or in response to host  
damage-associated molecular patterns (DAMPs), because 
alveolar epithelial cells isolated from influenza virus-
infected lungs stimulate NETosis98. How NETs cause 
pathology in severe flu infection is unknown, but NETs 
have been associated with increased inflammation in  
pulmonary Sendai virus infections25.

It is therefore evident that although NETs may be 
critical against specific infections, NET-driven pathol-
ogy affects host survival. The molecular basis for the 
antimicrobial capacity of NETs is not well understood 
but is summarized along with several microbial NET 
countermeasures in BOX 2 and FIG. 3.

NETs in disease
In addition to recent advances that point to a special-
ized immune-protective function of NETs, the list of 

conditions in which NETs cause pathology is contin-
uously expanding. This section focuses on the mech-
anisms of NET-mediated pathology and the medical 
conditions in which they are implicated (FIG. 4).

NETs damage tissues. The ability of NETs to dam-
age tissues is well documented in infection and sterile 
disease. NETs directly kill epithelial and endothelial 
cells99,100, and excessive NETosis damages the epi
thelium in pulmonary fungal infection7 and the  
endothelium in transfusion-related acute lung injury101. 
NETs are also linked to hepatic damage during sepsis 
with methicillin-resistant S. aureus, and this damage can 
be averted by NE or PAD4 deficiency15. Together with the 
poor protection NETs offer, these observations suggest  
that NETs have a predominately detrimental role in  
bacterial sepsis13.

In sepsis and acute injury, free circulating histones 
are cytotoxic, owing to their ability to compromise cell 
membrane integrity102,103. Antibody-mediated neutral-
ization studies suggest that NET-bound histones have 
a central role in NET-mediated cytotoxicity99, although 
neutrophils and NETs do not seem to be a direct source 
of free histones in sepsis104. Other NET proteins, such 
as defensins, permeabilize eukaryotic cells105,106, and NE 
targets extracellular matrix proteins that disrupt cell 
junctions107. DNA binding downregulates the proteo-
lytic activity of NE, but it also shields the enzyme from 
complete inhibition by endogenous serpin protease 
inhibitors17,108. Therefore, the interaction with DNA 
may alter the properties of these factors and should 
be taken into account when considering the effects of 
therapeutic DNases.

Interestingly, DNase treatment abrogates NET-
mediated cytotoxicity of epithelial and endothelial cells 
in vitro99. However, in vivo, DNase fails to immediately 
dislodge NET proteins and is less effective in block-
ing acute tissue pathology during systemic infection15.  
By contrast, DNase is effective in blocking NET pathol-
ogy during chronic inflammation20. Likewise, DNase 
treatment and, to a similar extent, PAD4 inhibition 
reduce NET-associated citrullinated histones and 
minimize immune cell recruitment109 and liver damage 
associated with ischaemia–reperfusion injury110.

The ability of NETs to damage tissues may explain 
the role of PAD4 in promoting age-related fibrosis111. 
Furthermore, NET-mediated damage might enhance 
rather than limit certain infections during chronic 
inflammation. NETs are prominent in the sputum of 
patients with cystic fibrosis112. The lungs of patients 
with cystic fibrosis are often colonized with P. aerugi-
nosa, a microorganism that has evolved sophisticated 
strategies to overcome lung barrier function. It is not 
known what triggers NET formation in cystic fibrosis, 
but P. aeruginosa is a potent inducer of NETosis, and 
although NETs eliminate laboratory strains, clinical 
isolates of this pathogen are resistant to NET-mediated 
killing74,113. These bacteria might benefit from the 
destructive capacity of NETs, which might contribute 
to the generation of microbial niches in fibrotic areas 
of the lungs.

Figure 3 | NET evasion mechanisms. Microorganisms 
can evade neutrophil extracellular traps (NETs) through 
three known mechanisms: by inhibiting NET formation 
(part a), by coating themselves with a capsule that 
reduces their avidity to NETs and makes them more 
resistant to NET-mediated killing (part b) and by 
secreting endonucleases that degrade NETs (part c). 
Specialized microbial enzymes can also convert the 
NET-derived products into cytotoxic molecules that kill 
immune cells. Staphylococcus aureus adenosine synthase 
(a 5ʹ, 3ʹ‑nucleotidase) converts NET-derived nucleotides 
into deoxyadenosine (dAdo), which triggers apoptosis, 
eliminating macrophages in close proximity to abscesses.
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The tissue-damaging capacity of NETs explains why 
their release is likely to be restricted to infections that 
cannot be cleared through less harmful strategies.

NETs promote vaso-occlusion. Another detrimental 
function of NETs is occlusion of the vasculature. NETs 
that form in the circulation provide a scaffold that 
promotes deep vein thrombosis (DVT)114, a condi-
tion that is more prominent in patients with cancer 
and obesity. A functional role for NETs in thrombo-
sis is supported by the finding that DNase treatment 
and PAD4 inhibitors block DVT in mice115,116. Also 
consistent with a role for NETs in thrombosis are 
the observations that patients with acute thrombo-
sis exhibit lower levels of plasma DNase I activity117 
and that thrombosis in mouse models is attenuated in 
NE‑deficient mice28.

NET formation during thrombosis is thought to be 
initiated by hypoxia-induced release of von Willebrand 
factor (VWF) and P‑selectin from the endothelium 
that recruits and activates neutrophils for NETosis114,118. 
Neutrophils accumulate in the vasculature in a 
P‑selectin-dependent manner, and this is followed by 
platelet recruitment. Neutrophils promote thromboxane 
A2 production by platelets, which induces endothelial 
cell expression of intercellular adhesion molecule 1 
(ICAM1) to strengthen neutrophil interactions with 
the endothelium119. This process triggers NETosis  
through a mechanism involving platelet-derived 
high mobility group protein B1 (HMGB1), ROS and 
integrins118,120.

In addition to providing a scaffold, NETs contribute 
to thrombosis through other means. NETs recruit Factor 
XIIa, a protein that promotes coagulation and mobilizes 
endothelial cell granules known as Weibel–Palade bod-
ies that contain VWF, P-selectin121 and Factor XIIa120. 
Extracellular NET histones bind VWF and fibrin122 to 
recruit platelets and red blood cells114,115. In addition, 
NET-bound NE cleaves tissue factor pathway inhibitor 
(TFPI), a factor that inhibits coagulation28, and proteo-
lytically activates platelet receptors to increase platelet 
accumulation123. However, a recent study contradicts 

these findings by showing that NE inhibitors and NE 
deficiency failed to reduce DVT27. Therefore, this issue 
remains unresolved.

Moreover, NETs released through alternative mech-
anisms promote vascular pathology in other conditions. 
For example, NETs form in response to the build-up 
of bicarbonate salts and occlude pancreatic ducts to 
drive pancreatitis124. Likewise, NETosis in response  
to free haem may contribute to vaso-occlusion in sickle 
cell disease125.

NETs modulate sterile inflammation. In addition to 
their antimicrobial capacity, NETs regulate inflam-
matory cytokines directly or indirectly by modulating 
other immune cells. During the early inflammatory 
stages of atherosclerosis, microscopic cholesterol crys-
tals126 induce NETs that turn on the transcription of 
genes encoding IL-6 and pro-IL-1β in macrophages, 
predominately via Toll-like receptor 2 (TLR2) and 
TLR4 (REF. 20). The upregulation of these cytokines 
augments T helper 17 cell differentiation and increases 
myeloid cell recruitment to atherosclerotic lesions20. 
Accordingly, mice deficient in the neutrophil proteases 
required for NETosis or treated with PAD4 inhibitors 
have lower inflammation and develop smaller athero
sclerotic lesions20,48. Neutrophil serine proteases are 
also known to process pro‑IL‑1β into its active form127. 
However, caspase 1‑mediated cytokine processing is 
critical in atherosclerosis126, and protease deficiency or 
the administration of DNase attenuates cytokine tran-
scription in lesions, suggesting that these proteases 
regulate inflammation transcriptionally in a NET-
dependent way20. MPO-deficient individuals are also 
protected against atherosclerosis88, but MPO is known 
to promote disease via low-density lipoprotein (LDL) 
oxidation and other mechanisms.

The pro-inflammatory role of NETs has also been 
documented in a mouse model of ischaemia–reperfusion 
injury in which NETs amplify inflammation and liver 
damage that can be markedly reduced with DNase treat-
ment or PAD4 inhibitors110. NETs are thought to form 
in response to extracellular HMGB1 and histones in a 

Box 2 | NET-mediated control of microorganisms and microorganism evasion strategies

Neutrophil extracellular traps (NETs) kill or suppress fungal and bacterial proliferation, but the underlying 
mechanisms are poorly understood. Histones, defensins and cathelicidins are potent antimicrobials in NETs, but their 
role in NET-mediated microbial killing has not yet been defined106,183. NETosis is also likely to be the major route for 
the release of calprotectin8, a metal chelator protein that protects against fungal infection. Neutralization of 
calprotectin attenuates the antifungal activity of NETs in vitro184, but whether it protects against other 
microorganisms and synergizes with other antimicrobials is unclear.

The physical sequestration of microorganisms by NETs is also thought to prevent systemic dissemination6,7,173.  
In myeloperoxidase-deficient mice, the absence of NETs is associated with fungal dissemination, a phenotype that is 
not observed upon infection with yeast-locked mutants that can be killed by phagocytosis. Further support that NETs 
block microbial dissemination is based on the finding that bacterial strains with mutations in a NET-degrading 
nuclease are unable to disseminate6, but it is difficult to rule out an alternative mechanism that involves the 
degradation of bacterial biofilms. Bacterial endonucleases degrade preformed NETs, and the bacterial capsule 
reduces NET trapping in vitro, but these results may have a different aetiology if NETs are not strongly induced by 
these microorganisms in vivo6,185–188.

Surprisingly, bacteria may even use NETs to their own advantage. For example, Staphylococcus aureus expresses 
two nucleases that convert NETs into pro-apoptotic nucleotides and promote macrophage killing around abscesses92. 
This is an intriguing hypothesis, but evidence of NETs forming around these abscesses is lacking.
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TLR4- and TLR9‑dependent manner, and mice defi-
cient in these receptors have reduced liver pathology. 
Therefore, by inducing NETosis, endogenous danger sig-
nals are sufficient to initiate inflammation in the absence 
of microbial priming cues.

NETs and neutrophil-derived IL‑17 have also been 
observed in the brain in mouse models of Alzheimer 
disease in which neutrophil depletion or blockade of 
neutrophil recruitment improved cognitive perfor-
mance128. However, whether and how NETs contribute 
to neuronal degeneration has to be further evaluated.

In contrast to this pathogenic role, NETs were sug-
gested to have an anti-inflammatory role in mouse 
models of gout induced by MSU crystals19. The func-
tional significance of NETs was demonstrated by 
showing that ROS-deficient mice that do not release 
NETs exhibit more inflammation and gouty arthritis. 
This phenotype was rescued by injecting in vitro-
generated preparations of aggregated NETs that 
degrade pro-inflammatory cytokines and chemokines 
through NET-bound proteases19. On the basis of these  
findings, the authors proposed that the local con-
centration of NETs might influence their effect on 
inflammation, with a high density of NETs suppressing 

inflammation. This idea requires further validation. 
It is important to remember that ROS directly sup-
press inflammation independently of their role in 
NETosis129, and it is unclear whether sufficient NET 
concentrations are achieved to suppress inflamma-
tion under physiological conditions. Moreover, a 
recent report confirmed that NETs from human but 
not mouse neutrophils degrade pro-inflammatory 
cytokines, but there was no evidence for increased 
inflammation upon neutrophil depletion in a mouse 
model of gouty arthritis130. However, the method used 
to deplete neutrophils in that study (GR1‑specific 
antibody) also targets other myeloid cells and may 
cancel out competing responses. The species-specific 
differences might reflect known differences in protease 
specificity. Moreover, the suppressive association with 
DNA might explain the need for high NET concen-
trations. Nevertheless, studies examining NETosis 
in response to synthetic nanoparticles are consistent 
with a dynamic process in which NETs promote the 
onset of inflammation but also speed up its resolution 
in arthritis and air pouch models131. Therefore, it is 
possible that NETs initiate inflammation and, as they 
build up over time, potentiate its resolution.

Figure 4 | Mechanisms of NET-mediated pathology. Neutrophil extracellular traps (NETs) cause pathology in a number 
of conditions through several mechanisms. Direct cell damage is implicated in infection, sepsis, autoimmunity and 
diabetes. By licensing macrophages for inflammation, NETs drive atherosclerosis. The increased propensity for NETosis 
promotes inflammation and organ damage in cancer and ischaemia–reperfusion injury. NET formation in the circulation 
promotes coagulation, vascular occlusion and thrombosis. NETs in capillaries can also capture and, potentially through 
other mechanisms, promote tumour metastasis. Finally, although NETs can promote inflammation, an accumulation  
of NETs promotes the resolution of inflammation through the degradation of cytokines and chemokines.  
CXCLs, CXC-chemokine ligands; IFNα, interferon-α; pDC, plasmacytoid dendritic cell; RA, rheumatoid arthritis;  
SLE, systemic lupus erythematosus; TLR9, Toll-like receptor 9.
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Given that the acute phase of inflammation sup-
presses tissue repair, the ability of NETs to promote 
inflammation and tissue destruction may explain their 
ability to delay wound healing in patients with dia
betes47. Glucose is required for NETosis, and neutrophils 
from patients with diabetes release NETs more read-
ily47,132,133. This is likely to be linked to an increase in the 
ROS burst caused by the effects of elevated glucose on 
NADPH oxidase and the mitochondria134,135. The role 
of glucose in NETosis is also consistent with a possible 
contribution of the mTOR pathway56. However, others 
reported that higher glucose levels suppress NETosis136. 
Likewise, both higher and lower serum concentrations 
of NET proteases have been associated with type 1 
diabetes137,138. Nevertheless, skin injury triggers neu-
trophil infiltration139 and NETosis through unknown 
mechanisms. The increase in NET deposition in skin 
wounds of diabetic mice reduces healing rates and nor-
mal healing rates can be restored by PAD4 deficiency47. 
How NETs obstruct wound healing is unknown, but 
the process might involve tissue damage or the mod-
ulation of inflammation and the downregulation of 
tissue repair mechanisms140. Finally, NET-driven in
flammation may also contribute to type 1 diabetes and 
obesity. NETs were recently detected in adipose tissues 
of obese mice, and although PAD4 inhibition did not 
affect inflammation141, NE deficiency is associated with 
lower inflammation and lower insulin resistance in mice 
fed a high-fat diet142.

It is therefore important to remember that neutrophils 
can modulate inflammation through NET-dependent 
and NET-independent mechanisms in a context-specific 
manner. NET-independent mechanisms seem to be more 
prevalent during infection143, whereas with few excep-
tions144, NET-dependent regulation of inflammation  
has so far been documented predominately in sterile  
conditions of inflammation.

NETs in autoimmunity. Following their discovery, NETs 
were proposed to serve as a source of self-antigen in 
autoimmune diseases, particularly those associated with 
autoantibodies against neutrophil-derived proteins. 
Evidence of NET deposition was first reported in kid-
ney biopsy samples from patients with antineutrophil 
cytoplasmic autoantibody (ANCA)-associated vascu
litis, who generate antibodies against NET components 
such as MPO and proteinase 3 (REFS 57,145). Similarly, 
NET components have been detected in the synovial 
fluid of patients with rheumatoid arthritis (RA) in 
which antibodies against citrullinated proteins are prev-
alent146. In many autoimmune conditions, a small pop-
ulation of circulating low-density granulocytes (LDGs) 
releases NETs spontaneously, as first shown in systemic 
lupus erythematosus (SLE) and RA146,147. Even neutro-
phils with normal density produce NETs in response 
to sera from these patients or purified SLE antiribo-
nucleoprotein antibodies in a manner that requires 
priming by type I interferons (IFNs) and depends on 
ROS147. Consistently, a type I IFN-driven gene expres-
sion signature is a hallmark of SLE neutrophils147,148. 
NETs induced by these autoimmune stimuli activate 

plasmacytoid dendritic cells (pDCs) via TLR9 and TLR7 
signalling, which promotes type I IFN expression and 
drives autoimmune pathology in animal models148,149. 
When pDCs are loaded with NETs and injected into 
mice, they induce the generation of neutrophil-specific 
autoantibodies and renal damage150. The ability of NETs 
to activate pDCs is attributed to the association of DNA 
with the antimicrobial peptide LL‑37, which potenti-
ates the activation of the DNA receptor TLR9 (REF. 151). 
The feedback between NETs and type I IFNs provides 
a model to explain how NETs exacerbate autoimmune 
pathology. Therefore, it would be interesting to examine 
whether spontaneous NETosis is abrogated in ongoing 
clinical trials that target type I IFN signalling. Moreover, 
patients with severe SLE symptoms tend to have defects 
in degrading NETs, owing to either low activity of 
DNase I or the presence of other factors such as anti-
bodies that protect NETs from degradation14. However, 
these mechanisms might also reduce the clearance of 
non-NET DNA.

The role of NETs in autoimmunity was challenged by 
the observation of exacerbated symptoms in NADPH 
oxidase-deficient mice. These data highlight the impor-
tance of NET-independent roles of NOX2‑derived ROS 
in immune suppression152,153. This inconsistency was 
resolved by recent work showing that NETosis triggered 
by ribonucleoprotein-containing immune complexes 
depends on mitochondrial ROS rather than ROS gen-
erated by NADPH oxidase2. Mitochondrial ROS oxidize 
NET DNA to increase its ability to activate the stimu-
lator of interferon genes (STING) pathway and trigger 
IFN production by pDCs2,154. Compared with reduced 
DNA, oxidized DNA is also more resilient to nucle-
ase degradation154. Consistent with this, NETs that are 
generated spontaneously by neutrophils from patients 
with SLE are more oxidized and more immunogenic 
than NETs from healthy neutrophils. Furthermore, 
blocking mitochondrial ROS with mitoTEMPO or 
PAD4 inhibitors ameliorated autoimmunity and vas-
cular complications in the lupus-prone MRL/lpr and  
New Zealand mixed 2328 mouse models155,156. 
Nevertheless, strong evidence for NET deposition in 
these mice is still lacking.

Furthermore, the evidence that links NET immuno
genicity exclusively to oxidized DNA of mitochondrial 
origin is inconclusive, as mitochondrial ROS also oxi-
dize the much more abundant NET genomic DNA2. 
Genomic and mitochondrial DNA oxidation was 
compared at a single locus, overestimating the amount  
of oxidized mitochondrial DNA2. Nevertheless, DNA 
oxidation is an important modification in NETs that 
potentiates type I IFN induction and autoimmunity 
with a surprising specificity with regard to the source 
of the DNA and ROS. Moreover, the release of NET-
associated DNA during rhinovirus infection was 
recently shown to potentiate type 2 T cell responses 
and contribute to the exacerbation of allergic asthma144. 
Rhinovirus does not infect neutrophils, suggesting that 
NETs are released via indirect mechanisms in response 
to infection, as seen during acute infection with  
influenza virus97.
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Additional evidence for the role of NETs in RA 
stems from studies that blocked NETosis and protein 
citrullination by Dek deficiency or by treatment with 
DEK-targeting DNA aptamers. These interventions 
reduced inflammation and symptoms in the joints of  
mice with zymozan-induced arthritis29. Similarly, 
compared with wild-type mice, PAD4‑deficient mice 
exhibit reduced arthritis severity, autoantibody titres 
and inflammation in RA induced by immunization with 
glucose‑6‑phosphate isomerase (GPI)157. Furthermore, 
PAD4 inhibition ameliorates symptoms in collagen-
induced arthritis158. By contrast, PAD4 deficiency did 
not ameliorate spontaneous arthritis in the K/BxN mouse 
model, which is neutrophil-dependent and mediated by 
antibodies against GPI159, suggesting that these models 
involve different effector mechanisms. Interestingly, the 
synovial fluid of human arthritic joints contains a large 
number of citrullinated proteins, which is consistent 
with the extensive citrullination observed in neutrophils 
treated with T cell-derived pore-forming toxins rather 
than the predominant histone citrullination associ-
ated with NETosis42. Moreover, protein citrullination is 
mediated by PAD2 rather than PAD4 in a TNF-induced 
model of arthritis. These data point to distinct pathogenic 
mechanisms that involve NET-dependent and NET-
independent pathways driving different mouse models 
of arthritis and potentially clinical arthritis.

Neutrophils are also prominent in psoriatic skin 
lesions, but their contribution to disease is poorly 
understood. Interestingly, sera from patients with  
psoriasis trigger NETosis, and NETs have been observed 
in imiquimod-induced mouse models of this disease160. 
Psoriatic symptoms are exacerbated in the absence of 
secretory leukocyte protease inhibitor (SLPI), which 
inhibits NETosis, suggesting that NETs contribute to 
pathology possibly by amplifying inflammation and 
damaging tissues108. However, SLPI may also act through 
NET-independent mechanisms by inhibiting proteolytic 
cytokine maturation161,162.

Therefore, neutrophils modulate T cell responses 
through NETs in varying contexts. It is still possible 
that genetic and pharmacological interventions that 
link NETs to autoimmunity in animal models function 
through NET-independent mechanisms. Although there 
is mounting evidence to implicate NETs in autoimmunity, 
determining the importance of these NET-mediated 
mechanisms in human disease will likely require clinical 
studies on specific NET-blocking therapies.

NETs in cancer. Neutrophils affect cancer through 
multiple mechanisms, and evidence for a role of NETs 
is also emerging. Tumours have systemic effects that 
modulate NETosis, causing NET-associated complica-
tions in cancer. Granulocyte colony-stimulating factor 
(G‑CSF) expression is upregulated in many cancers, and 
this in turn increases systemic NETosis163. Furthermore, 
intestinal tumours disrupt the intestinal barrier, allow-
ing LPS to leak into the circulation. By activating the 
alternative complement pathway, LPS drives the con-
version of neutrophils into NETotic LDGs that promote 
coagulation164. These findings provide a mechanistic link 

between cancer and the risk of thrombosis. The associa-
tion of neutrophils with platelets in the kidneys of mam-
mary carcinoma-bearing MMTV–PyMT mice has also 
been proposed to drive NETosis and IL‑1β‑mediated 
inflammation causing kidney failure165. Administration 
of DNase reduced the association of neutrophils with 
platelets, but evidence for NETs in the damaged kidneys 
is weak. However, NETs have been detected in pancreatic 
carcinomas, and NET deposition can be prevented by 
blocking neutrophil infiltration through deficiency in 
receptor for advanced glycation end products (RAGE), 
which mediates platelet–neutrophil interactions166, or 
by administration of the autophagy inhibitor chloro-
quine165. Consistently, DNase I treatment can reduce 
inflammation and pancreatic tumour growth167.

NETs that form in the necrotic core of subcutaneous 
G‑CSF-secreting Lewis lung carcinoma tumours 
might also promote tumour growth, as these tumours  
grow slower in PAD4‑deficient mice168. NE also pro-
motes adenocarcinoma growth in a mouse lung can-
cer model, but thus far, this has been attributed to a  
NET-independent mechanism169.

Finally, neutrophils promote metastasis through 
NET-independent mechanisms170,171, but NETs have 
also been implicated in this process. Notably, mammary 
tumour cell lines trigger NETosis in vitro, but strong 
evidence for NET formation in these tumours in vivo is 
still lacking172. However, the administration of DNase I 
crosslinked to nanoparticles to prolong its half-life inhib-
its lung metastasis of aggressive mammary tumours172. 
One underlying mechanism for this inhibition is thought 
to be the NET-mediated capture of migrating tumour 
cells, especially at sites of inflammation, which can be 
blocked with NE and PAD4 inhibitors21. Therefore, tar-
geting NETs through these avenues may be a promising 
therapeutic option to treat cancer.

Conclusion
Early on, the ability of NETs to trap microorganisms 
generated much enthusiasm, but it is their pathogenic 
potential that has attracted recent attention. However, 
it might turn out that their immune-modulatory prop-
erties have yet unknown beneficial roles in immune 
defence. Several factors determine whether NETs are 
beneficial or detrimental. Constitutive activation, dys-
regulation of suppressive mechanisms and excess NET 
yield are prominent pathogenic mechanisms that are 
likely to contribute to disease. Therefore, dose is a crit-
ical factor, as is the temporal regulation of NET release 
and clearance. In autoimmunity, aberrant NETosis 
may result from a breakdown in adaptive tolerance, but 
NETs seem to play a primary role in inflammatory dis-
ease pathogenesis. The capacity of NETs to potentiate or 
suppress inflammation may have a beneficial function 
in sterile disease and other yet unknown circumstances. 
Given the multitude of NET proteins, novel NET func-
tions are likely to emerge. A better understanding of 
the functions and impact of NETs on health will enable 
the suppression of detrimental attributes without inter-
fering with beneficial ones and ultimately allow us to 
exploit NETs to treat disease.
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