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A LIVING THING THAT EATS PLANTS = 7

Are these animals predators or
prey?



Characteristics of Prey

1. Eyes: Located on the side of the head so they
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Coevolucao

coevolugcao?

Dois ou mais especies: 1) fazem pressao seletiva um sobre o outro
2) evolvam em resposta uma da outra

Sendo cada espécie esta evoluindo em resposta ao outra
O ambiente seletiva esta em constante mudanca

Quando ocorre?
Presséo seletiva maior quando ha uma relagao ecologica forte

“relacdo ecologica forte = geralmente especialistas em vez de generalistas

relacbes ecoldgicas que levam a coevolucéo:

1) predators & prey 2) parasites & hosts 3) mutualists 4) competitors
predator parasite mutualist A competitor A

e S N I E
prey host mutualist B competitor B
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Plant-insect coevolution

Cospeciation in a plant-herbivore system

Tetraopes beetles eat milkweed plants in the genus Asclepias =» cospeciation
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Phaea gip 2
T comes

T, ineditus

T, elegans

T discoideus (MX)

T discoddeus (US)
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T tetropthaimus
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T basalis
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A subudata
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concentrated in latex

Simp
cardenalides

toxic cardenolides
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Plant-insect coevolution

Cospeciation in another plant-herbivore system
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Plant-insect coevolution
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Plant-insect coevolution
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Host specificity is determined by the chemical defenses of the plant
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Four major chemical classes of
These chemical classes do not
correspond to plant clades (top)
The bottom figure shows beetle
phylogeny with branches coded
for the chemical type of the host

The phylogenies are incongruent

because host switching can occur

as long as the beetle switches to a
new host with chemical defenses to

which it is already adapted

Becerra (1997) Science



Host-parasite coevolution

Coevolution — Thus far we have seen examples from mutualism interactions
Pocket gophers (Geomyidae) are are parasitized by lice (Mallophaga)

Clear pattern of cospeciation — this example also shows how rates of evolution
can be compared (b) to provide further evidence
for coevolution (letters in b = branches in a)

Host {b) All substitutions S’:mus
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Coevolutionary arms races

“Arms race”

Coevolving species have to constantly “improve” to meet each new adaptation
with a “better” adaptation of their own

Escalation

Coadaptations become increasingly powerful, yet species are not any better
adapted because the selective landscape is constantly changing

This may sound familiar: it is Van Valen’s Red Queen Hypothesis:
- running as fast as possible just to stay in the same place

An inherent feature of coevolution

We often think of “arms races” as occurring between predators and prey, or
between parasites and hosts — this makes intuitive sense

But it is not really that different in mutualists — each mutualist will be best adapted
when it receives the maximum benefit while paying the minimal cost

16



Coevolutionary arms races

An arms race in a predator-prey interaction
Taricha granulosa newts have powerful tetrodotoxins
(TTX) that are secreted as protection from predators

Thamnophis sirtalis garter snakes are the only major predator
of this newt — they have evolved resistance to TTX

40 Edntund D, Brodie 1 H | W84 &

Escalation

Toxins produced by newts are hundreds of times more powerful that necessary
to kill any other predator (including humans), but snakes are resistant

Can we find evidence for coevolution?

17
Brodie et al. (2002) Evolution 56:2067-2082



Coevolutionary arms races

Snake populations
vary in resistance
to newt toxins
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Coevolutionary arms races

An arms race in a predator-prey interaction

The extremely high toxicity of Taricha granulosa,
which is hundreds of times more toxic than necessary
for most predators, is a result of an escalating arms
race with one species, Thamnophis sirtalis

U)

60

50 F

Snake resistance is
predicted by newt
toxicity, as expected
If these species are
coevolving

40

30§

10 b F, =14575
R*=0.99
P<0.O001

Snake Resistance (50% dose TTX MAM

0 0.5 I 1.5 2
Newt Toxicity (mg TTX/g skin)
19
Brodie et al. (2002) Evolution 56:2067-2082



Evidence for coevolution

Local coadaptation

Snakes and newts are locally coadapted:
- shakes have not evolved resistance in populations outside of the newt’s range
- populations with high newt toxicity have high snake resistance

Snails and their castrating trematode parasites

In three separate studies, parasites were better able to infect snails from their own
population than hosts from other populations — parasites are locally coadapted

11 087 [aMhost m Poerua snails m lanthe snails

EW host

0.7 1 OP host

OM host
@A host 0.6

0.5 4

0.4 4

0.3 4

Frequency of infection
Frequency of infection

Experimental infection rate

Poerua lanthe Mixed

Mapourika (M) plexandrina (&) Mapourika (M) Wahapo (W) Paringa (P)

Parasite population Parasite population Parasite source

Curt Lively’s research: http://www.indiana.edu/~curtweb/Research/IocaI_adaptation.ht?rﬂ



Shells of fossil gastropods

Difficult to infer coadaptation from fossils because we can’t observe inte

Inferring an arms race from fossils

But we can use characteristics that reflect predator-prey interactions
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following a failed predation
attempt, it leaves a clear
pattern evident in fossils
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18.9 Some features of living molluscs that provide protection against predators
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Fossils and the Red Queen

Probability of extinction
The fossil record also supports another important theoretical point:

Probability of extinction is constant through the course of evolution

Osteichthyes {extinct genera) Reptilia {families) Mammalia (major therian orders) (genera)
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0 50 100 150 0 100 200 0 10 20 30
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Why is this important?
It shows that evolution is not progressive — taxa that have been around longer
have not become “better adapted” and thus better able to avoid extinction

Supports the Red Queen model and implicates coevolution as a major force:

Organisms have to keep running (evolving) just to stay in place (avoid extinction)
23



Loevolution: A Langonrtiedermaus

® Brooks/Cole, Cengage Learning




Species Interact in Five Major Ways

* |nterspecific Competition
* Predation

= Parasitism

* Mutualism

25

» Commensalism



» Predation - act of one
organism eating another
organism

- Predator - organism that does
the eating

- Prey - organism that gets
eaten

26



Most Consumer Species Feed on Live Organisms of Other Species

= Predators may capture prey by:
- Walking
- dwimming

- Flying

— Pursuit and ambush

- Camouflage

- Chemical warfare




Most Consumer Species Feed on Live Organisms of Other Species

= Prey may avoid capture by

- Lamouflage

(b) Wandering leaf insect

- Chemical warfare

— Warning coloration

(d) Foul-tasting monarch butterfly

- Mimicry
~ Deceptive looks

n L] Cac»
- D E E E t IV E h E h a V I D r. (e) Poison da”'OQ (f) Viceroy butterfly mimics
monarch butterfly

(g) Hind wings of lo moth {h) When touched, Gy
resemble eyes of a much snake caterpillar changes 28
larger animal shape to look like head of snake

@ Brooks/Cole, Cengage Leaming



Important lesson to remember:

= |t an organism is small and heautn‘ul it is probably
poisonous.

= |fitis strikingly heautlful and Easy tn catch it is probably
deadly.

29



Predation: Population Contraol

» [yclic fluctuations, boom-and-bust cycles

~ Top-down population regulation
= [ontrolled by predation

- Bottom-up population requlation
= [ontrolled by scarcity of one or more resources

160

140 “ m— Hare

120

Population size (thousands)
0
(@)
|

1845 1855 1865 1875 1885 1895 1905 1915 1925 1935
Year
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Mutualism: Oxpeckers Clean Rhinoceros; Anemones Protect and Feed Clownfish

(a) Oxpeckers and black rhinoceros (b) Clownfish and sea anemone
© Brooks/Cole, Cengage Learning
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=  Parasite lives on or in the host and benefits at the

expense nfthe hnst

32



Parasitism: Tree with Parasitic Mistletoe, Trout with Blood-Sucking Sea Lampreys

® Brooks/Cole, Cengage Learning @ Brooks/Cole, Cengage Leaming
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= (Inly one member benefits

- sharing space, defense, shelter,

food

» FHatworms that live on the
gills of horseshoe crabs
obtain food from the host,
but do not negatively affect
the host

34



Commensalism: Bromiliad Roots on Tree Trunk Without Harming Tree

35

® Brooks/Cole, Cengage Leamning



A WL Tl d Nee e Nadasia e tn L S

Case Study: Explr

= |370s-1930s: laws to protect the deer

= [urrent population explosion for deer
- Lyme disease

— Deer-vehicle accidents

- Eating garden plants and shrubs

= Ways to control the deer population



Aphids
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Not all animals that live in close association with a host are
parasites...

39



Even bacteria have “parasites”

40
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dNntsS Can parasitise other plants
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Evolution of a parasite

* Influenza virus:

* Immunity is determined by two antigens,
HA and NA.

* “Antigenic drift” leads to new strains with
different HA or NA antigens, that are able
to infect people who are resistant to other
strains

* This Is why we see periodic epidemics of
iInfluenza when new strains emerge and
are strongly selected for.

43
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Host evolution

* In the same way that parasites are
constantly evolving to overcome host
defences,

* Host organisms will be constantly evolving
to resist parasitic infection

* This will lead to Frequency dependent
selection, locking hosts and parasites into
endless coevolutionary cycles

 This is what is often called the “Red
Queen Effect”
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The Red Queen

“Now here, you see, it
takes all the running
you can do, to keep in
the same place. If you
want to get somewhere
else, you must run at
least twice as fast as
that”

from Through the Looking Glass,
by Lewis Carroll
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Parasitism and sex

* The evolution of sexual reproduction is a
big puzzle in biology

* One possibility Is that sexual reproduction
benefits an organism by increasing the
variability of the organism’s offspring

* This only gives a big fithness advantage
when the environment changes very
rapidly

* One aspect of the environment that does
change fast enough is the parasites that

a7



Evidence?

* Very hard to test experimentally

* One noteworthy study by Curtis Lively
and coworkers

* Potomopyrgus antipodiarum -
freshwater snail with both sexually
and asexually reproducing individuals

* The proportion of asexually
reproducing individuals is related to
the amount of parasitism a population
experiences

* More parasitism leads to more
sexually reproducing snails

48



18.3(1) Congruent & incongruent phylogenies of hosts & host-specific endosymbionts or parasites

(A)
Bacteria phylogeny

Buchnera

aphidicola

Aphid phylogeny
Ruminobacter amylophilus
Proteus vulgaris
Escherichia coli 48-70
Mya

Schlectendalia chinensis / 80-160
Melaphis rhoi | |/MYa
phis rhois

Pemphigus betae

Mindarus victoriae

Chaitophorus viminalis
Diuraphis noxia
Acyrthosiphon pisum

Uroleucon sonchi

Mpyzus persicae

80-120
Mya

|\_ ;

Origin of
endosymbiotic
association

Rhopalosiphum padi
Rhopalosiphum maidﬁ_
Schizaphis graminum

\

30-80

Mya
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18.3(2) Congruent & incongruent phylogenies of hosts & host-specific endosymbionts or parasites

(B)

Chewing lice

Pocket gophers

Geomydoecus chapini

Orthogeomys hispidus =

Geomydoecus setzeri

Geomydoecus panamensis

1

Geomydoecus cherriei

Orthogeomys underwoodi

Orthogeomys cavator

Geomydoecus costaricensis

Orthogeomys cherriei
Orthogeomys heterodus

Geomydoecus trichopi

Geomydoecus nadleri

Zygogeomys trichopus

Pappogeomys bulleri

Geomydoecus expansus
— Geomydoecus geomydis

Cratogeomys castanops

Cratogeomys merriami

i — Geomydoecus oklahomensis~ [N———Geomys bursarius
Geomydoecus ewingi DD GeOMYS DUTSAT TS e
_E Geomydoecus texanus N Geomys breviceps J_l_
Geomydoecus actuosi N Geomys personatus
Geomydoecus perotensis N

Thomomys bottae

Thomomydoecus barbarae

Geomydoecus thomomyus
Thomomydoecus minor_l ’

Thomomys talpoides

EVOLUTION, Figure 18.3 (Part 2) © 2005 Sinauer Associates, Inc.



18.4 Predators and parasites have evolved many extraordinary adaptations

(B) -
T d k‘ ‘g’ \ Normal
rematode- 3 oo L b 6 e 1k
. | ye sta
1nfected——/"4 » i :.
eye stalk o I
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EVOLUTION, Figure 18.4 © 2005 Sinauer Associates, Inc.



18.5 Examples of defenses against predation

(A)

52

EVOLUTION, Figure 18.5 © 2005 Sinauer Associates, Inc.



18.10 Variation in TTX resistance in garter snakes from several localities

TTX resistance in garter snake population

100 —
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—— Taricha present and toxic
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1 10 100 1000 10000
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EVOLUTION, Figure 18.10 © 2005 Sinauer Associates, Inc.




15.11 (A) ATleagling European CuCKoo being ted by Its Toster parent, (b) Mimetic eggd

EVOLUTION, Figure 18.11 © 2005 Sinauer Associates, Inc.



18.12(1) Coevolution in rabbits and myxoma virus after the virus was introduced

(A)

Rabbit mortality (%)

100

90
80
70
60
50
40
30

20

2 D +4 > 6 7
Number of epidemics

EVOLUTION, Figure 18.12 (Part 1) © 2005 Sinauer Asso
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Examples of “fitness”

* Bacterial resistance to antibiotics

A bunch of bacteria, ...get bathed in The resistant Eventually, the
including a resistant  antibiotics. Most  bacteria multiply entire infection
varlety... of the normal and become more  evolves into a
bacteria die. commaon. resistant strain.
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pE—
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@ normal bacterium  <&=Js9 dead bacterium
s resistant bacterium
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benefits of resistance

costs of resistance

reduced selection

infectivity
increasedselection  jycreasedselection
for pathogen infectivity 4o o5t resistance

cosis of pathogenicity

benefits of pathogenici

reduced selection

for host resistance
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WOLVES AND MOOSE ON ISLE ROYALE
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Isle Royale wolves
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