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Abstract A term map is a map that visualizes the structure of a scientific field by

showing the relations between important terms in the field. The terms shown in a term map

are usually selected manually with the help of domain experts. Manual term selection has

the disadvantages of being subjective and labor-intensive. To overcome these disadvan-

tages, we propose a methodology for automatic term identification and we use this

methodology to select the terms to be included in a term map. To evaluate the proposed

methodology, we use it to construct a term map of the field of operations research. The

quality of the map is assessed by a number of operations research experts. It turns out that

in general the proposed methodology performs quite well.
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Introduction

Bibliometric mapping is a powerful tool for studying the structure and the dynamics of

scientific fields. Researchers can utilize bibliometric maps to obtain a better understanding

of the field in which they are working. In addition, bibliometric maps can provide valuable

insights for science policy purposes (Noyons 1999, 2004).

Various types of bibliometric maps can be distinguished, which each visualize the

structure of a scientific field from a different point of view. Some maps, for example, show

relations between authors or journals based on co-citation data. Other maps show relations

between words or keywords based on co-occurrence data (e.g., Rip and Courtial 1984;

Peters and Van Raan 1993; Kopcsa and Schiebel 1998; Noyons 1999; Ding et al. 2001).

N. J. van Eck � L. Waltman
Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam,
P.O. Box 1738, 3000 DR Rotterdam, The Netherlands

N. J. van Eck (&) � L. Waltman � E. C. M. Noyons � R. K. Buter
Centre for Science and Technology Studies, Leiden University, Leiden, The Netherlands
e-mail: ecknjpvan@cwts.leidenuniv.nl

123

Scientometrics (2010) 82:581–596
DOI 10.1007/s11192-010-0173-0



The latter maps are usually referred to as co-word maps. In this paper, we are concerned

with maps that show relations between terms. We refer to these maps as term maps. By a

term we mean a word or a phrase that refers to a domain-specific concept. Term maps are

similar to co-word maps except that they may contain any type of term instead of only

single-word terms or only keywords.

When constructing a bibliometric map, one-first has to select the objects to be included

in the map. In the case of a map that contains authors or journals, this is usually fairly easy.

To select the important authors or journals in a field, one can usually simply rely on

citation counts. In the case of a term map, things are not so easy. In most cases, it is quite

difficult to select the important terms in a field. Selection of terms based on their frequency

of occurrence in a corpus of documents typically yields many words and phrases with little

or no domain-specific meaning. Inclusion of such words and phrases in a term map is

highly undesirable for two reasons. First, these words and phrases divert attention from

what is really important in the map. Second and even more problematic, these words and

phrases may distort the entire structure shown in the map. Because there is no easy way to

select the terms to be included in a term map, term selection is usually done manually

based on expert judgment (e.g., Noyons 1999; Van Eck and Waltman 2007b). However,

manual term selection has serious disadvantages as well. The most important disadvantage

is that it involves a lot of subjectivity, which may introduce significant biases in a term

map. Another disadvantage is that it can be very labor-intensive.

In this paper, we try to overcome the problems associated with manual selection of the

terms to be included in a term map. To do so, we propose a methodology that aims to

automatically identify the terms that occur in a corpus of documents. Term selection using

the proposed methodology requires less involvement of domain experts than manual term

selection. Consequently, we expect term maps constructed using the proposed methodol-

ogy to be more objective representations of scientific fields. An additional advantage of the

proposed methodology is that it makes the process of term selection less labor-intensive.

The general idea of the methodology that we propose can be explained briefly as

follows. Given a corpus of documents, we first identify the main topics in the corpus. This

is done using a technique called probabilistic latent semantic analysis (Hofmann 2001).

Given the main topics, we then identify in the corpus the words and phrases that are

strongly associated with only one or only a few topics. These words and phrases are

selected as the terms to be included in a term map. An important property of the proposed

methodology is that it identifies terms that are not only domain-specific but that also have a

high discriminatory power within the domain of interest. This is important because terms

with a high discriminatory power are essential for visualizing the structure of a scientific

field. Suppose, for example, that we want to construct a term map of the field of statistics.

sample and chi-square test are both statistical terms. However, sample is a quite general

statistical term, while chi-square test is more specific and, consequently, more discrimi-

natory. Because of the relatively high discriminatory power of chi-square test, inclusion of

this term in a term map may help to reveal the structure of the field of statistics. Inclusion

of sample, on the other hand, probably does not provide much additional insight into the

structure of the field. Hence, to visualize the structure of a scientific field, terms with a high

discriminatory power play an essential role.

The organization of this paper is as follows. We first provide a brief overview of the

literature on automatic term identification. After discussing the literature, we propose a

new methodology for automatic term identification. We then experimentally evaluate the

proposed methodology, focusing in particular on its performance in the context of bib-

liometric mapping. Evaluation is done by applying the proposed methodology to the field
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of operations research and by asking a number of experts in this field to assess the results

that are obtained. We end this paper with a discussion of the conclusions of our research.

Overview of the automatic term identification literature

In this section, we provide a brief overview of the literature on automatic term identifi-

cation (also known as automatic term recognition or automatic term extraction).1 For

extensive reviews of the literature, we refer to Kageura and Umino (1996), Cabré Castellvı́

et al. (2001), Jacquemin (2001), and Pazienza et al. (2005). We note that there are almost

no studies on automatic term identification in the context of bibliometric mapping.

Exceptions are the work of Janssens et al. (2006), Noyons (1999), and Schneider (2006), in

which automatic term identification receives some attention. In the literature discussed in

the rest of this section, automatic term identification is studied for purposes other than

bibliometric mapping.

We first discuss the notions of unithood and termhood (for the original definitions of

these notions, see Kageura and Umino 1996). We define unithood as the degree to which

a phrase constitutes a semantic unit. Our idea of a semantic unit is similar to that of a

collocation (Manning and Schütze 1999). Hence, a semantic unit is a phrase consisting of

words that are conventionally used together. The meaning of the phrase typically cannot be

fully predicted from the meaning of the individual words within the phrase. We define

termhood as the degree to which a semantic unit represents a domain-specific concept. A

semantic unit with a high termhood is a term. To illustrate the notions of unithood and

termhood, suppose that we are interested in statistical terms. Consider the phrases many
countries, United States, and probability density function. Clearly, United States and

probability density function are semantic units, while many countries is not. Hence, the

unithood of United States and probability density function is high, while the unithood of

many countries is low. Because United States does not represent a statistical concept, it has

a low termhood. probability density function, on the other hand, does represent a statistical

concept and therefore has a high termhood. From this it follows that probability density
function is a statistical term.

In the literature, two types of approaches to automatic term identification are distin-

guished, linguistic approaches and statistical approaches. Linguistic approaches are mainly

used to identify phrases that, based on their syntactic form, can serve as candidate terms.

Statistical approaches are used to measure the unithood and termhood of phrases. In many

cases, linguistic and statistical approaches are combined in a single hybrid approach.

Most terms have the syntactic form of a noun phrase (Justeson and Katz 1995; Kageura

and Umino 1996). Linguistic approaches to automatic term identification typically rely on

this property. These approaches identify candidate terms using a linguistic filter that checks

whether a sequence of words conforms to some syntactic pattern. Different researchers use

different syntactic patterns for their linguistic filters (e.g., Bourigault 1992; Dagan and

Church 1994; Daille et al. 1994; Justeson and Katz 1995; Frantzi et al. 2000).

Statistical approaches to measure unithood are discussed extensively by Manning and

Schütze (1999). The simplest approach uses frequency of occurrence as a measure of

unithood (e.g., Dagan and Church 1994; Daille et al. 1994; Justeson and Katz 1995). More

advanced approaches use measures based on, for example, (pointwise) mutual information

1 A more elaborate overview of the literature can be found in an earlier version of this paper (Van Eck et al.
2008).
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(e.g., Church and Hanks 1990; Damerau 1993; Daille et al. 1994) or a likelihood ratio (e.g.,

Dunning 1993; Daille et al. 1994). Another statistical approach to measure unithood is the

C-value (Frantzi et al. 2000). The NC-value (Frantzi et al. 2000) and the SNC-value

(Maynard and Ananiadou 2000) are extensions of the C-value that measure not only

unithood but also termhood. Other statistical approaches to measure termhood can be

found in the work of, for example, Drouin (2003) and Matsuo and Ishizuka (2004). In the

field of machine learning, an interesting statistical approach to measure both unithood and

termhood is proposed by Wang et al. (2007).

Methodology

In this section, we propose a three-step methodology for automatic term identification. An

overview of the proposed methodology is provided in Fig. 1. Consider some domain or

some scientific field, and suppose that we want to identify terms that belong specifically to

this domain or this field. Our methodology assumes the availability of a corpus that is

partitioned into a number of segments, each of which is concerned with a particular topic

or a particular combination of topics within the domain of interest. Such a corpus may for

example consist of a large number of documents or abstracts. In the first step of our

methodology, a linguistic filter is applied to the corpus in order to identify noun phrases. In

the second step, the unithood of noun phrases is measured in order to identify semantic

units. In the third and final step, the termhood of semantic units is measured in order to

identify terms. Termhood is measured as the degree to which the occurrences of a semantic

unit are biased towards one or more topics. Compared with alternative approaches to

automatic term identification, such as the ones discussed in the previous section, the

innovative aspect of our methodology mainly lies in the third step, that is, in the mea-

surement of termhood. We now discuss the three steps of our methodology in more detail.

Step 1: Linguistic filter

In the first step of our methodology, we use a linguistic filter to identify noun phrases. We

first assign to each word occurrence in the corpus a part-of-speech tag, such as noun, verb,

or adjective. The appropriate part-of-speech tag for a word occurrence is determined using

a part-of-speech tagger developed by Schmid (1994, 1995). We use this tagger because it

has a good performance and because it is freely available for research purposes.2 In

addition to a part-of-speech tag, the tagger also assigns a so-called lemma to each word

occurrence in the corpus. The lemma assigned to a word occurrence is the root form (or the

stem) of the word. The words function and functions, for example, both have function as

their lemma. In all further stages of our methodology, we use the lemmatized corpus

instead of the original corpus. In this way, differences between, for example, uppercase and

lowercase letters and singular and plural nouns are ignored.

After the corpus has been tagged and lemmatized, we apply a linguistic filter to it. The

filter that we use identifies all word sequences that meet the following three criteria:

1. The sequence consists of nouns and adjectives only.

2. The sequence ends with a noun.

2 See http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/.
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3. The sequence occurs at least a certain number of times in the corpus (ten times in the

experiment discussed later on in this paper).

Assuming an English language corpus, the first two criteria ensure that all identified

word sequences are noun phrases. Notice, however, that our filter does not identify all

types of noun phrases. Noun phrases that contain a preposition, such as the phrase degree
of freedom, are not identified (for a discussion of such noun phrases, see Justeson and Katz

1995). We emphasize that the choice of an appropriate linguistic filter depends on the

language of the corpus. The filter that we use works well for the English language but may

not be appropriate for other languages. For all noun phrases that are identified by our

linguistic filter, the unithood is considered in the second step of our methodology.

Step 2: Measuring unithood

In the second step of our methodology, we measure the unithood of noun phrases. Unit-

hood is only relevant for noun phrases consisting of more than one word. For such noun

phrases, unithood determines whether they are regarded as semantic units. The main aim of

the second step of our methodology is to get rid of noun phrases that start with uninter-

esting adjectives such as first, many, new, and some.

The most common approach to measure unithood is to determine whether a phrase

occurs more frequently than would be expected based on the frequency of occurrence of

the individual words within the phrase. This is basically also the approach that we take. To

measure the unithood of a noun phrase, we first count the number of occurrences of the

phrase, the number of occurrences of the phrase without the first word, and the number of

occurrences of the first word of the phrase. In a similar way as Dunning (1993), we then

use a so-called likelihood ratio to compare the first number with the last two numbers. We

interpret this likelihood ratio as a measure of the unithood of the phrase. In the end, we use

a cutoff value to determine which noun phrases are regarded as semantic units and which

are not. (In the experiment discussed later on in this paper, noun phrases are regarded as

semantic units if the natural logarithm of their likelihood ratio is less than -30.) For all

noun phrases that are regarded as semantic units (which includes all single-word noun

phrases), the termhood is considered in the third step of our methodology.

Step 3: Measuring termhood

In the third step of our methodology, we measure the termhood of semantic units. As

mentioned earlier, we assume that we have a corpus that is partitioned into a number of

segments, each of which is concerned with a particular topic or a particular combination of

topics within the domain of interest. A corpus segment may for example consist of a

document or an abstract, or it may consist of the set of all documents or all abstracts that

appeared in a journal during a certain period of time. We use the following mathematical

notation. There are K semantic units of which we want to measure the termhood. These

units are denoted by u1,…,uK. The corpus is partitioned into I segments, which are denoted

Fig. 1 Overview of the proposed methodology
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by s1,…,sI. The number of occurrences of semantic unit uk in corpus segment si is denoted

by nik. Finally, there are J topics to be distinguished. These topics are denoted by t1,…,tJ.
The main idea of the third step of our methodology is to measure the termhood of a

semantic unit as the degree to which the occurrences of the unit are biased towards one or

more topics. We first discuss an approach that implements this idea in a very simple way.

We assume that there is a one-to-one relationship between corpus segments and topics, that

is, each corpus segment covers exactly one topic and each topic is covered by exactly one

corpus segment. Under this assumption, the number of corpus segments equals the number

of topics, so I = J. To measure the degree to which the occurrences of semantic unit uk,

where k [ {1,…,K}, are biased towards one or more topics, we use two probability dis-

tributions, namely the distribution of semantic unit uk over the set of all topics and the

distribution of all semantic units together over the set of all topics. These distributions are

denoted by, respectively, P(tj | uk) and P(tj), where j [ {1,…, J}. Assuming that topic tj is

covered by corpus segment sj, the distributions are given by

PðtjjukÞ ¼
njk

PJ
j0¼1 nj0k

ð1Þ

and

PðtjÞ ¼
PK

k¼1 njk
PJ

j0¼1

PK
k¼1 nj0k

: ð2Þ

The dissimilarity between the two distributions indicates the degree to which the

occurrences of uk are biased towards one or more topics. We use the dissimilarity between

the two distributions to measure the termhood of uk. For example, if the two distributions

are identical, the occurrences of uk are unbiased and uk most probably does not represent a

domain-specific concept. If, on the other hand, the two distributions are very dissimilar, the

occurrences of uk are strongly biased and uk is very likely to represent a domain-specific

concept. The dissimilarity between two probability distributions can be measured in many

different ways. One may use, for example, the Kullback–Leibler divergence, the Jensen–

Shannon divergence, or a chi-square value. We use a somewhat different measure. Based

on this measure, the termhood of uk is calculated as

termhood ðukÞ ¼
XJ

j¼1

pj log pj; ð3Þ

where 0 log 0 is defined as 0 and where

pj ¼
PðtjjukÞ

�
PðtjÞ

PJ
j0¼1 Pðtj0 jukÞ

�
Pðtj0 Þ

: ð4Þ

It follows from (4) that p1,…,pJ define a probability distribution over the set of all

topics. In (3), termhood (uk) is calculated as the negative entropy of this distribution.

Notice that termhood (uk) is maximal if P(tj | uk) = 1 for some j and that it is minimal if

P(tj | uk) = P(tj) for all j. In other words, termhood (uk) is maximal if the occurrences of uk

are completely biased towards a single topic, and termhood (uk) is minimal if the occur-

rences of uk do not have a bias towards any topic.

The approach discussed above relies on the assumption of a one-to-one relationship

between corpus segments and topics. For most corpora, this assumption is probably not

very realistic. For example, if each segment of a corpus consists of a single document or a
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single abstract, there will most likely be some segments that are concerned with more or

less the same topic. Or the other way around, if each segment of a corpus consists of a set

of documents or abstracts that all appeared in the same journal, there will most likely be

some segments (particularly segments corresponding to multidisciplinary journals) that are

concerned with more than one topic. Below, we extend our approach in such a way that it

no longer relies on the assumption of a one-to-one relationship between corpus segments

and topics.

Identifying topics

In order to allow for a many-to-many relationship between corpus segments and topics, we

make use of probabilistic latent semantic analysis (PLSA) (Hofmann 2001). PLSA is a

quite popular technique in machine learning, information retrieval, and related fields. It

was originally introduced as a probabilistic model that relates occurrences of words in

documents to so-called latent classes. In the present context, we are dealing with semantic

units and corpus segments instead of words and documents, and we interpret the latent

classes as topics.

When using PLSA, we first have to determine an appropriate value for the number of

topics J. This value is typically much smaller than both the number of corpus segments I
and the number of semantic units K. In this paper, we manually choose a value for J. PLSA

assumes that each occurrence of a semantic unit in a corpus segment is independently

generated according to the following probabilistic process. First, a topic t is drawn from a

probability distribution P(tj), where j [ {1,…,J}. Next, given t, a corpus segment s and a

semantic unit u are independently drawn from, respectively, the conditional probability

distributions P(si | t), where i [ {1,…,I}, and P(uk | t), where k [ {1,…,K}. This then

results in the occurrence of u in s. It is clear that, according to the generative process

assumed by PLSA, the probability of generating an occurrence of semantic unit uk in

corpus segment si equals

Pðsi; ukÞ ¼
XJ

j¼1

PðtjÞPðsi j tjÞPðuk j tjÞ: ð5Þ

The probabilities P(tj), P(si | tj), and P(uk | tj), for i = 1,…,I, j = 1,…,J, and

k = 1,…,K, are the parameters of PLSA. We estimate these parameters using data from the

corpus. Estimation is based on the criterion of maximum likelihood. The log-likelihood

function to be maximized is given by

L ¼
XI

i¼1

XK

k¼1

nik log Pðsi; ukÞ: ð6Þ

We use the EM algorithm discussed by Hofmann (1999, Sect. 3.2) to perform the

maximization of this function.3 After estimating the parameters of PLSA, we apply Bayes’

theorem to obtain a probability distribution over the topics conditional on a semantic unit.

This distribution is given by

3 A MATLAB implementation of this algorithm is available on request.
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Pðtj j ukÞ ¼
PðtjÞPðuk j tjÞ

PJ
j0¼1 Pðtj0 ÞPðuk j tj0 Þ

: ð7Þ

In a similar way as discussed earlier, we use the dissimilarity between the distributions

P(tj | uk) and P(tj) to measure the termhood of uk. In this case, however, P(tj | uk) is given

by (7) instead of (1) and P(tj) follows from the estimated parameters of PLSA instead of

being given by (2). We again use (3) and (4) to calculate the termhood of uk.

Experimental evaluation

In this section, we experimentally evaluate our methodology for automatic term identifi-

cation. We focus in particular on the performance of our methodology in the context of

bibliometric mapping.

Application to the field of operations research

We apply our methodology to the field of operations research (OR), also known as

operational research. The OR field was chosen because some of us have some background

in this field and because we have easy access to a number of OR experts who can help us

with the evaluation of our results. We note that sometimes a distinction is made between

OR on the one hand and management science on the other hand (e.g., Eto 2000, 2002). For

our purpose, however, such a distinction is not important. In this paper, the term OR

therefore also includes management science.

We start with a discussion of how we put together our corpus. We first selected a

number of OR journals. This was done based on the subject categories of Thomson

Reuters. The OR field is covered by the category Operations Research & Management
Science. Since we wanted to focus on the core of the field, we selected only a subset of the

journals in this category. More specifically, a journal was selected if it belongs to the

category Operations Research & Management Science and possibly also to the closely

related category Management and if it does not belong to any other category. This yielded

15 journals, which are listed in the first column of Table 1. We used the database of the

Centre for Science and Technology Studies, which is similar to the Web of Science

database of Thomson Reuters, to retrieve all documents, except those without an abstract,

that were published in the selected journals between 2001 and 2006. For each journal, the

number of documents retrieved from the database is reported in the second column of

Table 1. Of each of the documents retrieved, we included the title and the abstract in our

corpus.

After putting together the corpus, we applied our methodology for automatic term

identification. In the first step of our methodology, the linguistic filter identified 2662

different noun phrases. In the second step, the unithood of these noun phrases was mea-

sured. 203 noun phrases turned out to have a rather low unithood and therefore could not be

regarded as semantic units. Examples of such noun phrases are first problem, good use, and

optimal cost. The other 2459 noun phrases had a sufficiently high unithood to be regarded

as semantic units. In the third and final step of our methodology, the termhood of these

semantic units was measured. To do so, each title-abstract pair in the corpus was treated as

a separate corpus segment. For each combination of a semantic unit uk and a corpus

segment si, it was determined whether uk occurs in si (nik = 1) or not (nik = 0). Topics

were identified using PLSA. This required the choice of the number of topics J. Results for
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various numbers of topics were examined and compared. Based on our own knowledge of

the OR field, we decided to work with J = 10 topics. The output of our methodology

consisted of a list of 2459 semantic units together with their termhood values. For the

interested reader, this list is available online.4

Evaluation based on precision and recall

The evaluation of a methodology for automatic term identification is a difficult issue. There

is no generally accepted standard for how evaluation should be done. We refer to Pazienza

et al. (2005) for a discussion of the various problems. In this paper, we evaluate our

methodology in two ways. We first perform an evaluation based on the well-known notions

of precision and recall. We then perform a second evaluation by constructing a term map

and asking experts to assess the quality of this map. Since our methodology for automatic

term identification is intended to be used for bibliometric mapping purposes, we are

especially interested in the results of the second evaluation.

We first discuss the evaluation of our methodology based on precision and recall. The

main aim of this evaluation is to compare the performance of our methodology with the

performance of two simple alternatives. One alternative is a variant of our methodology.

This variant assumes a one-to-one relationship between corpus segments and topics, and it

therefore does not make use of PLSA. The other alternative is a very simple one. It uses

frequency of occurrence as a measure of termhood.

In the context of automatic term identification, precision and recall are defined as

follows. Precision is the number of correctly identified terms divided by the total number

of identified terms. Recall is the number of correctly identified terms divided by the total

number of correct terms. Unfortunately, because the total number of correct terms in the

Table 1 Overview of the selected journals

Journal Number of documents Coverage (%)

European Journal of Operational Research 2705 97.2

Journal of the Operational Research Society 830 96.9

Management Science 726 98.9

Annals of Operations Research 679 95.3

Operations Research Letters 458 93.0

Operations Research 439 97.7

Naval Research Logistics 327 98.5

Omega-International Journal of Management Science 277 97.1

Interfaces 257 98.4

Journal of Operations Management 211 98.1

Journal of the Operations Research Society of Japan 158 96.8

Asia–Pacific Journal of Operational Research 140 99.3

OR Spectrum 140 97.9

RAIRO-Operations Research 92 93.5

Military Operations Research 53 98.1

Total 7492 97.0

4 See http://www.neesjanvaneck.nl/term_identification/.
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OR field is unknown, we could not calculate the true recall. This is a well-known problem

in the context of automatic term identification (Pazienza et al. 2005). To circumvent this

problem, we defined recall in a slightly different way, namely as the number of correctly

identified terms divided by the total number of correct terms within the set of all semantic

units identified in the second step of our methodology. Recall calculated according to this

definition provides an upper bound on the true recall. However, even using this definition

of recall, the calculation of precision and recall remained problematic. The problem was

that it is very time-consuming to manually determine which of the 2459 semantic units

identified in the second step of our methodology are correct terms and which are not. We

solved this problem by estimating precision and recall based on a random sample of 250

semantic units. The first two authors of this paper, who both have some knowledge of the

OR field, independently determined which of these 250 units are correct terms and which

are not. Units on which the authors did not agree were discussed until agreement was

reached.

To identify terms, we used a cutoff value that determined which semantic units were

regarded as terms and which were not. Semantic units were regarded as terms if their

termhood value was greater than the cutoff value. Obviously, a lower cutoff value leads to

a larger number of identified terms and, consequently, to a higher recall. However, a lower

cutoff value usually also leads to a lower precision. Hence, there is a trade-off between

precision and recall. By varying the cutoff value, the relation between precision and recall

can be obtained. In Fig. 2, the graphs labeled PLSA and No PLSA show this relation for,

respectively, our methodology and the variant of our methodology that does not make use

of PLSA. The third graph in the figure shows the relation between precision and recall for

the approach based on frequency of occurrence. It is clear from the figure that our

methodology outperforms the two simple alternatives. Except for very low and very high

levels of recall, our methodology always has a considerably higher precision than the

variant of our methodology that does not make use of PLSA. The low precision of our

methodology for very low levels of recall is based on a very small number of incorrectly

identified terms and is therefore insignificant from a statistical point of view. The approach

based on frequency of occurrence has a very bad performance. For almost all levels of

Fig. 2 The relationship between
precision and recall for our
methodology and for two simple
alternatives
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recall, the precision of this approach is even lower than the precision that would have been

obtained if terms had been identified at random. Unfortunately, there is no easy way to

compare the precision/recall performance of our methodology with that of other approa-

ches proposed in the literature. This is due to the lack of a generally accepted evaluation

standard (Pazienza et al. 2005). We refer to Cabré Castellvı́ et al. (2001) for an overview of

some precision/recall results reported for other approaches.

Evaluation using a term map

We now discuss the second evaluation of our methodology for automatic term identifi-

cation. This evaluation is performed using a term map. The evaluation therefore focuses

specifically on the usefulness of our methodology for bibliometric mapping purposes.

A term map is a map, usually in two dimensions, that shows the relations between

important terms in a scientific field. Terms are located in a term map in such a way that the

proximity of two terms reflects their relatedness as closely as possible. That is, the smaller

the distance between two terms, the stronger their relation. The aim of a term map usually

is to visualize the structure of a scientific field.

In order to evaluate our methodology, we constructed a term map of the OR field. The

terms to be included in the map were selected based on the output of our methodology. It

turned out that, out of the 2459 semantic units identified in the second step of our meth-

odology, 831 had the highest possible termhood value. This means that, according to our

methodology, 831 semantic units are associated exclusively with a single topic within the

OR field. We decided to select these 831 semantic units as the terms to be included in the

term map. This yielded a coverage of 97.0%, which means that 97.0% of the title-abstract

pairs in the corpus contain at least one of the 831 terms to be included in the term map. The

coverage per journal is reported in the third column of Table 1.

The term map of the OR field was constructed using a procedure similar to the one used

in our earlier work (Van Eck and Waltman 2007b). This procedure relies on the association

strength measure (Van Eck and Waltman 2009) to determine the relatedness of two terms,

and it uses the VOS technique (Van Eck and Waltman 2007a) to determine the locations of

terms in the map. Due to the large number of terms, the map that was obtained cannot be

shown in this paper. However, a simplified version of the map is presented in Fig. 3. This

version of the map only shows terms that do not overlap with other more important terms.

The complete map showing all 831 terms is available online.5 A special computer program

called VOSviewer (Van Eck and Waltman in press) allows the map to be examined in full

detail. VOSviewer uses colors to indicate the different topics that were identified using

PLSA.

The quality of the term map of the OR field was assessed by five experts. Two of them

are assistant professor of OR, one is associate professor of OR, and two are full professor

of OR. All experts are working at Erasmus University Rotterdam. We asked each expert to

examine the online term map and to complete a questionnaire. The questionnaire consisted

of one multiple-choice question and ten open-ended questions. The main results of the

questionnaire are discussed below. The full results are available on request.

In the multiple-choice question, we asked the experts to indicate on a five-point scale

how well the term map visualizes the structure of the OR field. Four experts answered that

the map visualizes the structure of the field quite well (the second highest answer on the

five-point scale). The fifth expert answered that the map visualizes the structure of the field

5 See http://www.neesjanvaneck.nl/term_identification/.
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very well (the highest answer on the five-point scale). Hence, overall the experts were quite

satisfied with the map. The experts could also easily explain the global structure of the

map, and for them the topics shown in the map (indicated using colors) generally had an

obvious interpretation. We also asked the experts whether the map showed anything

unexpected to them. One expert answered that he had not expected scheduling related

terms to be located at the boundary of the map. Two other experts turned out to be

surprised by the prominent position of economics related terms such as consumer, price,

pricing, and revenue. None of these three experts regarded the unexpected results as a

weakness of the map. Instead, two experts stated that their own perception of their field

may not have been correct. Hence, it seems that these experts may have learned something

new from the map.

The experts also indicated some weak points of the term map. Some of these points

were related to the way in which the terms shown in the map were selected. Other points

were of a more general nature. The most serious criticism on the results of the automatic

term identification concerned the presence of a number of rather general terms in the map.

Examples of such terms are claim, conclusion, finding, item, and research. There were

three experts who criticized the presence of terms such as these. We agree with these

experts that some of the terms shown in the map are too general. Although the number of

such terms is not very large, we consider it is highly desirable to get rid of them. To

achieve this, further improvement of our methodology for automatic term identification is

necessary. We will come back to this below.

Fig. 3 Simplified version of the term map of the OR field
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Another point of criticism concerned the underrepresentation of certain topics in the

term map. There were three experts who raised this issue. One expert felt that the topic of

supply chain management is underrepresented in the map. Another expert stated that he

had expected the topic of transportation to be more visible. The third expert believed that

the topics of combinatorial optimization, revenue management, and transportation are

underrepresented. It seems likely that in many cases the perceived underrepresentation of

topics was not due to our methodology for automatic term identification but was instead

caused by the way in which the corpus used by our methodology was put together. As

discussed earlier, when we were putting together the corpus, we wanted to focus on the

core of the OR field and we therefore only included documents from a relatively small

number of journals. This may for example explain why the topic of transportation is not

clearly visible in the map. Thomson Reuters has a subject category Transportation Science
& Technology, and it may well be that much transportation related OR studies are pub-

lished in journals that belong to this category (and possibly also to the category Operations
Research & Management Science). The corpus that we put together does not cover these

journals and hence may contain only a small portion of the transportation related OR

studies. It is then not surprising that the topic of transportation is difficult to see in the map.

The remaining issues raised by the experts are of a more general nature, and most likely

these issues would also have been raised if the terms shown in the term map had been

selected manually. One of the issues had to do with the character of the OR field. When

asked to divide the OR field into a number of smaller subfields, most experts indicated that

there are two natural ways to make such a division. On the one hand, a division can be

made based on the methodology that is being used, such as decision theory, game theory,

mathematical programming, or stochastic modeling. On the other hand, a division can be

made based on the area of application, such as inventory control, production planning,

supply chain management, or transportation. There were two experts who noted that the

term map seems to mix up both divisions of the OR field. According to these experts, one

part of the map is based on the methodology-oriented division of the field, while the other

part is based on the application-oriented division. One of the experts stated that he would

be interested to see an explicit separation of the methodology and application dimensions.

A final issue, which was raised by two experts, had to do with the more detailed

interpretation of the term map. The experts pointed out that sometimes closely related

terms are not located very close to each other in the map. One of the experts gave the terms

inventory and inventory cost as an example of this problem. In many cases, a problem such

as this is probably caused by the limited size of the corpus that was used to construct the

map. In other cases, the problem may be due to the inherent limitations of a two-dimen-

sional representation. The best solution to this kind of problems seems to be not to show

individual terms in a map but to only show topics (e.g., Noyons and Van Raan 1998;

Noyons 1999). Topics can then be labeled using one or more representative terms.

Conclusions

In this paper, we have addressed the question how the terms shown in a term map can be

selected without relying extensively on the judgment of domain experts. Our main con-

tribution consists of a methodology for automatic identification of terms in a corpus of

documents. Using this methodology, the process of selecting the terms to be included in a

term map can be automated for a large part, thereby making the process less labor-

intensive and less dependent on expert judgment. Because less expert judgment is required,
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the process of term selection also involves less subjectivity. We therefore expect term

maps constructed using our methodology to be more objective representations of scientific

fields.

We have evaluated our methodology for automatic term identification by applying it to

the OR field. In general, we are quite satisfied with the results that we have obtained. The

precision/recall results clearly indicate that our methodology outperformed two simple

alternatives. In addition, the quality of the term map of the OR field constructed using our

methodology was assessed quite positively by five experts in the field. However, the term

map also revealed a shortcoming of our methodology, namely the incorrect identification

of a number of general noun phrases as terms. We hope to remedy this shortcoming in

future work.

Finally, we would like to place the research presented in this paper in a broader per-

spective. As scientific fields tend to overlap more and more and disciplinary boundaries

become more and more blurred, finding an expert who has a good overview of an entire

domain becomes more and more difficult. This poses serious difficulties for any biblio-

metric method that relies on expert knowledge. Term mapping is one such method. For-

tunately, advanced computational techniques from fields such as data mining, machine

learning, statistics, and text mining may be used to take over certain tasks in bibliometric

analysis that are traditionally performed by domain experts (for an overview of various

computational techniques, see Leopold et al. 2004). The research presented in this paper

can be seen as an elaboration of this idea in the context of term mapping. We acknowledge,

however, that our research is only a first step towards fully automatic term mapping. To

produce accurate term maps, the output of our methodology for automatic term identifi-

cation still needs to be verified manually and some amount of expert knowledge is still

required. In future work, we intend to take even more advantage of the possibilities offered

by various kinds of computational techniques. Hopefully, this allows the dependence of

term mapping on expert knowledge to be reduced even further.

Acknowledgements We thank Rommert Dekker, Moritz Fleischmann, Dennis Huisman, Wilco van den
Heuvel, and Albert Wagelmans for their help with the evaluation of the term map of the OR field.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Bourigault, D. (1992). Surface grammatical analysis for the extraction of terminological noun phrases.
In: Proceedings of the 14th conference on computational linguistics (pp. 977–981). Morristown,
NJ: Association for Computational Linguistics.
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