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In previous articles of this series, we focused on relative risks

and odds ratios as measures of effect to assess the

relationship between exposure to risk factors and clinical

outcomes and on control for confounding. In randomized

clinical trials, the random allocation of patients is hoped to

produce groups similar with respect to risk factors. In

observational studies, exposed and unexposed individuals

may differ not only for the presence of the risk factor being

tested but also for a series of other factors that are

potentially related to the study outcome, thus making

‘confounding’ very likely. One of the most important uses

of multivariate modeling is precisely that ‘of controlling for

confounding’ to let emerge the effect of the risk factor

of interest on the study outcome. In this paper, we will

discuss linear regression analysis for the examination of

continuous outcome data and logistic regression analysis for

the study of categorical outcome data. Furthermore, we

focus on the most important application of multiple linear

and logistic regression analyses.
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LINEAR CORRELATION, AND SIMPLE AND MULTIPLE LINEAR
REGRESSION ANALYSES
Linear correlation analysis

Correlation and regression analyses are based on identical
calculations but address different questions. Correlation analysis
investigates the degree of association between two continuous
variables, that is, it defines how much a given relationship is
fitted by a straight line. In correlation analysis, the investigator is
simply interested in estimating the strength of linear association
between two variables. In general, this analysis is applied to
estimate the degree of association between two variables when
there is no sufficient knowledge to identify which of the two is
responsible for the variability in the other variable or when this
information is irrelevant to the question being asked. Regression
analysis instead is used to describe the linear dependence of the
outcome variable (or dependent variable) from one (or more)
predictor variable (or independent variable).

In a recent paper,1 the relationship between serum
albumin and free triiodothyronine (plasma levels of fT3)
was investigated in a sample of 41 patients on chronic
ambulatory peritoneal dialysis.

There is experimental evidence that malnutrition and
inflammation impair thyroid function and therefore the
investigators decided to identify plasma fT3 as the outcome
variable (or dependent variable) and serum albumin (a direct
marker of malnutrition and an inverse marker of inflammation
as well) as the predictor variable (or independent variable). In
regression analysis, the predictor variable is always plotted
on the horizontal axis (the X scale) and the outcome variable on
the vertical axis (the Y scale). Each dot in the graph represents
an individual and it is identified by a pair of values: the value of
albumin and the corresponding value of fT3. The scatter plot in
Figure 1 (left panel) shows that plasma fT3 increases in parallel
with serum albumin and vice versa, suggesting a linear
relationship between the two variables. In our example, the
correlation coefficient of the albumin–f T3 link is 0.52. The
square of the correlation coefficient (0.522¼ 0.27, that is, 27%)
indicates that about 1/4 of the total variability in plasma fT3 is
explained by concomitant variability in serum albumin. Linear
association does not demand the two variables changing in the
same direction. Indeed, two variables may be linearly related
also when they change in opposite directions (the fT3–age link
plotted in Figure 2) and in such a situation the correlation
coefficient is negative (r¼�0.61, Po0.001).
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Linear regression, intercept, regression coefficient, and
residuals

The linear dependence between serum albumin and plasma
fT3 can be assessed by calculating the increase in plasma fT3
for each unitary increase in serum albumin. This information
can be obtained by using the regression line, that is, a line
that can be calculated by the equation

EðyÞ ¼ b0 þ b1x

where E(y) is the estimated or predicted value of the
dependent variable Y, b0 is the intercept, b1 is the regression
coefficient, and x is a given value of the independent or
predictor variable.

The intercept (b0) is the theoretical value of Y when X
equals zero (Figure 1, left panel). The regression coefficient
(b1) is the estimated increase in the dependent variable (Y)
per one unit increase in the independent variable (X) or the
slope of the regression line (that is, the tangent of the angle
between the regression line and the X axis) (Figure 1, left
panel). The method used to estimate the intercept and the
regression coefficient is the least squares method. This
method consists of finding the parameters (b0 and b1) that
minimize the sum of the squares of the vertical deviations of
observed data points and the predicted values in the
regression line (see vertical pointed lines in Figure 1,

right panel). These deviations are called residuals. The least
squares method is described in full detail elsewhere.2

The mathematical equation for the regression line of the
fT3–albumin link in our sample, as provided by the computer
output, is

estimated fT3 ¼ �1:84 þ 1:36�albumin ðg per 100ml�1Þ

A regression coefficient of 1.36 means that for each 1 g per
100 ml change in serum albumin, there is a corresponding
change of 1.36 pg ml�1 in plasma fT3 (for example, for 2 g
per 100 ml decrease in serum albumin, there is an average
decrease of 2.72 pg ml�1 (that is, 1.36� 2) in plasma fT3). A
positive regression coefficient indicates a direct relationship
between risk factor and outcome variable and a negative
regression coefficient indicates an inverse one. A regression
coefficient close to zero indicates no association. The value of
the intercept (�1.84 pg ml�1) corresponds to the estimated
fT3 level when albumin is zero (Figure 1, left panel). Clearly,
a negative value of fT3 (�1.84 pg ml�1) and a serum albumin
of zero are purely theoretical values. The intercept is useful
because it can be applied, together with the regression
coefficient, to predict the estimated value of plasma fT3 for a
given individual of which we know the corresponding serum
albumin concentration. For example, the estimated value of
plasma fT3 for an individual having a serum albumin of
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Figure 1 | Relationship between serum albumin and plasma fT3 (left panel) in 41 patients on chronic ambulatory peritoneal
dialysis.1 In the right panel, the concept of ‘residual’ is described graphically as the distance (vertical pointed lines) between each observed
value and the regression line (see text for more details).
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Figure 2 | Relationship between age with plasma fT3 and serum albumin in 41 patients on chronic ambulatory peritoneal
dialysis.1 Data are Pearson correlation coefficient and P-value.
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3.4 g per 100 ml (see dot indicated by the arrow in Figure 1,
left panel) can be easily calculated by resolving the equation

estimated fT3 ¼ �1:84 þ 1:36�3:4 ¼ 2:78pgml�1

Thus, by using the regression line constructed in our sample,
we predict a plasma fT3 of 2.78 pg ml�1 for an individual
with a serum albumin of 3.4 g per 100 ml. For this individual,
the residual is calculated as the difference between the
observed (1.30 pg ml�1) and the estimated value of serum
albumin (2.78 pg ml�1), which is �1.48 pg ml�1.

By repeating this calculation for all observed and predicted
values, we obtain the distribution of residuals. The analysis of
residuals is of particular relevance for the ‘diagnostics’ of
linear regression analysis. Regression diagnostics rests on
three assumptions: (1) that to each value of the independent
variable corresponds a set of normally distributed values of the
dependent variable; (2) that the standard deviation of this set of
values is the same for each value of the independent variable;
and (3) that the relationship between the two variables is linear.
If all these assumptions are true, the residuals should be
normally distributed. In our instance, the residuals of the
fT3–albumin link have an approximately normal distribution
(not shown), implying that the data distribution in the sample
meets all the above-mentioned criteria.

95% confidence interval of the regression line

The regression line of the fT3–albumin link we fitted in our
sample is an estimate of the ‘true’ regression line, that is, of
the regression line of fT3–albumin link in the theoretical
population that includes all dialysis patients worldwide.
Therefore, we need to compute the degree of uncertainty of
our estimate by calculating the 95% confidence interval
(or prediction interval) of the regression line (see dotted lines
in Figure 1, left panel). The concept of the confidence interval
for the regression line can be explained as follows: if we draw
100 samples of the same size as the study sample (n¼ 41)
from the chronic ambulatory peritoneal dialysis population
and calculate for each sample the regression line of the
fT3–albumin link, we obtain a family of 100 (slightly
different) regression lines. The 95% confidence interval is
the interval that includes 95% of the regression lines of these
100 study samples. In our instance, the 95% confidence
interval is fairly narrow, indicating that the linear model
provides an adequate data fitting of the fT3–albumin link.

Multiple linear regression analysis

In another paper of this series,3 it was discussed that
‘confounding’ may disturb the interpretations of the effect of
an exposure on outcome. In that paper, we showed that
confounding can be prevented by randomization, restriction,
or matching, that is, by an appropriate study design.
Confounding may also be dealt with in the analytical phase
of the study by stratification or multiple linear regression
analysis that nicely serves this scope. Multiple linear
regression analysis allows estimation of the linear effect of a
given independent variable (for example, x1) on a given

dependent or outcome variable (y) after controlling for the
confounding effect of other variables (or covariates) (for
example, x2, x3, y, xn). The corresponding multiple linear
regression model is

EðyÞ ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ . . .þ bnxn

where E(y) is the estimated or predicted value of Y, b0 is the
intercept (that is, the value of Y when x1, x2, and x3 are zero),
and b1, b2, b3, and bn are the regression coefficients of x1, x2,
x3, and xn.

In the previous example, we described the link between
plasma fT3 and serum albumin in 41 patients on chronic
ambulatory peritoneal dialysis and found that the two
variables were strongly inter-related. Now, we analyze the
effect of serum albumin on plasma fT3 by adjusting for the
confounding effect of age, a variable that was linearly related
with plasma fT3 (r¼�0.61, Po0.001) and serum albumin
(r¼�0.38, P¼ 0.01) (Figure 2). We consider age as a
potential confounder because it meets criteria set for the
definition of confounder.3 In fact, age influences both plasma
fT3 (the outcome variable) and serum albumin (the predictor
variable); cannot be considered as an effect of exposure
(albumin as an indicator of malnutrition/inflammation); and
we assume that age is not in the causal pathway between
exposure (serum albumin) and outcome (plasma fT3). After
introducing age into the multiple linear model, the regression
line provided by the computer output is

Estimated fT3 ¼1:41 þ 0:87�albumin ðg per 100mlÞ
� 0:024�age ðyearsÞ

A 0.87 regression coefficient for serum albumin means that
for each 1 g per 100 ml change in this variable, there is a
0.87 pg ml�1 change in plasma fT3 and this estimate is
adjusted for the confounding effect of age. Comparing the
adjusted effect (0.87) and the unadjusted effect reported
above (1.36), we see that indeed age was a confounder here as
adjustment for age changed the effect of albumin on fT3. The
results of the multiple linear regression analysis are
summarized in Table 1.

A critical question is how many covariates can be entered
into a multiple linear regression analysis. The number of
covariates allowed depends on the sample size. A practical
rule is to include 1 covariate every 10 observations.4 Thus, if
we are to construct a model based on 10 variables, the general
rule demands a sample size of 100 individuals.

SIMPLE AND MULTIPLE LOGISTIC REGRESSION ANALYSIS
Simple logistic regression analysis

Linear regression analysis demands that the dependent
variable is continuous. However, many clinical or epidemio-
logical variables are dichotomic in nature: for example, a
patient may or may not be affected by a given disease, or he
can die or survive during a given time period. Logistic
regression analysis is a statistical technique that describes
the relationship between an independent variable (either
continuous or not) and a dichotomic dependent variable (or
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dummy variable) (that is, a variable with only two possible
values: 0¼ outcome absent and 1¼ outcome present).

Logit transformation (see below) is the fundamental
mathematical step underlying this analysis.

A recent study in a series of 500 patients with essential
hypertension5 investigated the relationship between systemic
endothelial dysfunction (as defined on the basis of the maximal
vasodilatory response to the infusion of acetylcholine in the
forearm) and the risk of chronic kidney disease (CKD, defined
as a glomerular filtration rate o60 ml per min per 1.73 m2).
Hypertensive patients were classified as having (n¼ 73) or not
having (n¼ 427) CKD and divided into two categories on the
basis of the maximal vasodilatory response to acetylcholine
(ACh) in the forearm (o400%: endothelial dysfunction;
X400%: normal endothelial function). See Table 2 for the
proportion of individuals with CKD in these two categories.

The proportion of individuals with CKD in patients with
endothelial dysfunction was about three times (0.17, that is,
17.0%) that in those with normal endothelial function
(0.063, that is, 6.3%) (Table 2).

Odds, odds ratio, and logit

The odds of CKD (third column) were calculated by the
formula

odds ¼ ½p=ð1 � pÞ�

In the group of individuals with a response to ACho400%,
the odds of CKD were

odds ¼ 0:170=ð1 � 0:170Þ ¼ 0:205

In the group of individuals with a response to AChX400%,
the odds of CKD were

odds ¼ 0:063=ð1 � 0:063Þ ¼ 0:067

Thus, the odds ratio (OR) of CKD between patients with and
without endothelial dysfunction will be the ratio between the
two odds:

OR ¼ 0:205=0:067 ¼ 3:06

The subsequent step was to make the logit (or logistic)
transformation of the odds of CKD (see Table 2, last
column). The logit is the natural logarithm (ln) of the odds.

logit ¼ ln½p=ð1 � pÞ�

where p is the proportion of individuals with CKD in each
category of maximal response to ACh. For example, the logit
transformation of the odds of CKD in the group of
individuals with a response to ACho400% is

logit ¼ lnð0:205Þ ¼ �1:58

As in linear regression analysis, in logistic regression analysis
also the outcome (dependent) variable is described by a
simple equation:

logit y ¼ b0 þ b1x

To be able to interpret this simple equation, both sides of the
equal to sign could be raised to the power e¼ 2.7183. It can
be shown that reworking this equation results in a nice
interpretation: eb1 is the OR of one unit increase in x. In this
analysis, the intercept (b0) is the value of the natural
logarithm of the odds of CKD when endothelial function
equals zero and the regression coefficient (b1) is the
logarithm of the odds of CKD in patients with endothelial
dysfunction. In the logistic regression analysis, the regression
coefficients are calculated by using the maximum likelihood
method, that is, a method that by an iterative calculation
routine identifies the regression coefficients that maximize
the probability of the observed data.7 The regression
coefficients are directly provided by the print-out of the
statistical software. To estimate the increase in the risk of
CKD in patients with endothelial dysfunction as compared to
that of patients with normal endothelial function, the authors
made the inverse operation of logit transformation, that is,
calculated the antilogarithm of the regression coefficient. In
other words, they computed the OR by exponentiating the
base of the natural logarithm (e¼ 2.1783) to the regression
coefficient (b1): 2:7183b1 . Therefore, the OR corresponding
to a regression coefficient of 1.118 (see Table 3) is

OR ratio ¼ 2:71831:118 ¼ 3:06

Of note, the OR calculated by univariate logistic regression
analysis is identical to that calculated by starting with the
odds of CKD in patients with and without endothelial
dysfunction (see above).

The study indicated that patients with endothelial
dysfunction (hemodynamic response to ACho400%) had

Table 1 | Multiple linear regression analysis of plasma fT3

Multiple R=0.68, Po0.001

Covariates (units of measure) Regression coefficients P

Serum albumin (g per 100 ml) 0.87 0.01
Age (years) �0.024 0.001
Intercept (b0) 1.41 0.31

fT3, triiodothyronine.

Table 2 | Relationship between the maximal vasodilatory response to ACh and the risk of CKD

Maximal vasodilatory response to ACh (%)
Proportion of individuals

with CKD (p)
Odds of CKD:

p/(1�p)
Logit

(ln odds)

X400 (n=111) (normal endothelial function) 0.063 0.067 �2.70
o400 (n=389) (endothelial dysfunction) 0.170 0.205 �1.58

ACh, acetylcholine; CKD, chronic kidney disease.
The concept of odds is described in a previous article of this series.6 A higher vasodilatory response to ACh denotes better endothelial function.
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an OR of CKD that was about three times that in those with
normal endothelial function (reference category: OR¼ 1).
This finding is of clinical relevance because the 95%
confidence interval does not include 1 (see Table 3).

Multiple logistic regression analysis

Again in close similarity with linear regression analysis,
the logit of the outcome variable can be described by an
equation including several independent (or predictor)
variables:

logit y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ 	 	 	 þ bnxn

To further elaborate on the same example, we now wonder
whether the link between endothelial function and CKD is
confounded by age. We consider once again age as a potential
confounder because it affects the risk of CKD (the outcome
variable) and the risk of endothelial dysfunction (the
predictor variable) and because it cannot be considered as
an effect of the exposure (that is, age is not influenced by
endothelial function).

To test whether the link between endothelial function and
the risk of CKD is independent of age, we introduce age into
the multiple logistic regression analysis. The results of this
analysis are summarized in Table 4.

Adjustment of maximal vasodilatory response to ACh for
age did not materially modify the OR of the relationship
between endothelial function and the risk of CKD (2.64 vs
3.06). In other words, the link between endothelial function
and the risk of CKD was only slightly affected by age.

Number of covariates in the multiple logistic regression
analysis

The maximum number of covariates that can be included in
a multiple logistic regression model is strictly dependent on
the number of events rather than on the number of
observations. A simple rule is to include in the multiple

logistic regression model 1 covariate every 10 events.8 For
example, if we have a sample of 1000 individuals who
experienced 20 events during a given follow-up, the
maximum number of covariates to include in the multiple
logistic model should be 2.

CONCLUSION

Linear and logistic regression analyses are important
statistical tools for assessing relationships between exposure
and outcome and for controlling confounding in epidemio-
logical studies. Here we focused on their use in etiological
research.

The validity of any conclusion drawn by using these
methods is critically dependent on the ascertainment of a
series of assumptions. The lack of a rigorous validation
of these conditions may lead to flawed data analyses and
invalid results.

REFERENCES
1. Enia G, Panuccio V, Cutrupi S et al. Subclinical hypothyroidism is

linked to micro-inflammation and predicts death in continuous
ambulatory peritoneal dialysis. Nephrol Dial Transplant 2007; 22:
538–544.

2. Armitage P, Berry G. Statistical Methods in Medical Research, 3rd edn.
Blackwell: London, England, 1994.

3. Jager KJ, Zoccali C, MacLeod A, Dekker FW. Confounding: what it is and
how to deal with it. Kidney Int 2007; October 31 [E-pub ahead of print].

4. Kleinbaum DG, Kupper LL, Muller KE, Nizam A. Applied Regression Analysis
and Other Multivariable Methods. Duxbury Press: Pacific Grove, 1998, pp
389–390.

5. Perticone F, Maio R, Tripepi G, Zoccali C. Endothelial dysfunction and mild
renal insufficiency in essential hypertension. Circulation 2004; 110:
821–825.

6. Tripepi G, Jager KJ, Dekker FW et al. Measures of effect: relative risks, odds
ratios, risk difference, and ‘number needed to treat’. Kidney Int 2007; 72:
789–791.

7. Kleinbaum DG, Kupper LL, Muller KE, Nizam A. Applied Regression Analysis
and Other Multivariable Methods. Duxbury Press: Pacific Grove, 1998, pp
639–655.

8. Peduzzi P, Concato J, Kemper E et al. A simulation study of the number of
events per variable in logistic regression analysis. J Clin Epidemiol 1996;
49: 1373–1379.

Table 3 | Simple logistic regression analysis of CKD (GFRo60 ml per min per 1.73 m2)

Units of increase
(ordered group)

Regression
coefficient (b1)

OR (95% confidence
interval) P

Maximal vasodilatory 0 (X400%) 1.118 1.00 (reference group) 0.007
response to ACh 1 (o400%) 3.06 (1.35–6.82)
Intercept (b0)=�2.70 o0.001

ACh, acetylcholine; CKD, chronic kidney disease; GFR, glomerular filtration rate; OR, odds ratio.
A higher vasodilatory response to ACh denotes better endothelial function.

Table 4 | Multiple logistic regression analysis of CKD

Units of increase
(ordered group)

Regression
coefficient (b1)

OR (95% confidence
interval) P

Maximal vasodilatory 0 (X400%) 0.974 1.00 (reference group) 0.02
response to Ach 1 (o400%) 2.64 (1.17–6.00)
Age 1 year 0.047 1.05 (1.02–1.07) o0.001
Intercept (b0)=�4.91 o0.001

ACh, acetylcholine; CKD, chronic kidney disease; OR, odds ratio.
A higher vasodilatory response to ACh denotes better endothelial function.
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