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Taylor Series expansion of the potential energy:

U(q1, q2,….qN)  =  U(0,0…..0) + σ𝟏
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+ more terms

H = 
ћ𝟐

𝟐µ

𝛛𝟐

𝛛𝐪𝟐
+ ½ kq2

Solutions of the Schrödinger equation: 

Harmonic Oscillator F = -kq, U =  
𝟏

𝟐
kq2

Eigenfunctions:  ϕn = NnHn(q) exp –aq2

Hn(q): Hermite Polynomials: 
H0 = 1 
H1 = 2q 
H2 = 4q2 -2 
H3 = 8q3-12q 
H4 = 16x4-48x2 +12

q = vibrational coordinate, 
k = force constant
µ = reduced mass

n = 0,2,4,… par
n= 1,3,5…  impar



The symmetry of vibrational modes

N atoms in a molecule imply 3N degrees of freedom of movement. Three of those can be ascribed to translational
and three additional ones to rotational motion. Thus there are 3N-6 vibrational modes for a non-linear molecule
For a linear molecule the rotational motion around the bond axis is not activated (energy too large due to the very
small moment of inertia.  In this case there are 3N-5 vibrational modes.

Basis chosen: molecular basis: dimension 3Nx3N. In this basis we can describe the effect of all the symmetry
operations upon all of the atomic coordinates. Example H2O: four 9x9 matrices

−1 0 0 0 0 0 0 0 0
0 − 1 0 0 0 0 0 0 0
0 0 + 1 0 0 0 0 0 0
0 0 0 0 0 0 − 1 0 0
0 0 0 0 0 0 0 − 1 0
0 0 0 0 0 0 0 0 + 1
0 0 0 − 1 0 0 0 0 0
0 0 0 0 − 1 0 0 0 0
0 0 0 0 0 + 1 0 0 0

C2
xo yo zo xa ya za xb yb zb

xo‘
yo‘
zo‘
xa‘
ya‘
za‘
xb‘
yb‘
zb‘

Ha Hb

O

xo->-xo

yo->-yo

zo-> zo

xa->-xb

ya->-yb

za-> zb

xb->-xa

yb->-ya

zb-> za

cT = -1

Example



Analogous matrices can be written for the other three symmetry operations in the group C2v.

The corresponding characters are: cT (E) = 9,      cT (C2) = -1,     cT (sv) = 1,      cT (s‘v) = 3

Simplified procedure in finding out the characters: cT (R)
1) Atoms moved by the symmetry operation contribute nothing
2) Coordinates maintained by the operation on non-moved atoms contribute +1
3) Coordinates inverted by the operation on non-moved atoms contribute -1 

In the next step we apply the decomposition formula to find out how often each irreducible
representation in the group C2v is realized by the 3N motional degrees of freedom.

al = 
𝟏

𝐡
σ𝐑 χT(R) χ(l) (R)

aA1 = 
1

4
(9×1 + (-1)×1 + 1×1 + 3×1) = 3

aA2 = 
1

4
(9×1 + (-1)×1 + 1×(-1) + 3×(-1)) = 1

aB1 = 
1

4
(9×1 + (-1)×(-1) + 1×1 + 3×(-1)) = 2

aB2 = 
1

4
(9×1 + (-1)×(-1) + 1×(-1) + 3×1) = 3

Character table C2v

Gtotal = 3A1 + 1A2 + 2B1+ 3B2

Gtrans = 1A1 +1B1+ 1B2

Grot = 1A2 + 1B1+ 1B2

Gvib = 2A1 + 1B2

irreducible representation of the 3N degrees of freedom
-irreducible representation of the 3 translational modes
-irreducible representation of the 3 rotational modes

=irreducible representation of the 3 vibrational modes

subtract

A1

A2

B1

B2



Vibrational normal modes of H2O

All symmetry
operations are
conserved

only E and sv‘ 
are conserved

A1

A1

B2

Second Example: SF4

C2

Simplified procedure in finding out 
the characters: cT (R)
1) Atoms moved by the symmetry operation

contribute nothing
2) Coordinates maintained by the operation on 

non-moved atoms contribute +1
3) Coordinates inverted by the operation on non-

moved atoms contribute -1 

Vibrational normal modes of SF4

We expect 3N-6 = 9 vibrational modes
and want to know their symmetry
types

Group C2v, Total representation:
Set of four 15×15 matrices. 

cT (E) = 15,      cT (C2) = -1,     cT (sv) = 3,      cT (s‘v) = 3

Gvib = 4A1 + A2 + 2B1 + 2B2

Using the same procedure we find: cT(R) = {(+ -)1 +2cosf)} M

+ for rotations
- for reflections,
f = Rotation angle 
M = number of atoms not moved

Expressed by a formula



Selection rule for the fundamental transition ψ0 -> ψ1

|<ψ0|x|ψ1 >|2

|<ψ0|y|ψ1 >|2

|<ψ0|z|ψ1 >|2

We need to know the symmetry types of the integrands,
To be determined by the direct products:
At least one of them must contain A1.

1) Symmetry of the vibrational ground state ψ0 =  ς𝑖=1
3𝑁−6 ϕo𝑖 = ς𝑖=1

3𝑁−6 𝑒𝑥𝑝 − 𝑎𝑖𝑞𝑖2

Because ϕo (q) = ϕo (-q) for all normal modes, each symmetry operation turns ψ0 into itself.. Thus the vibrational
Ground state always belongs to the irreducible representation A1.  

2) Symmetry of the first excited state ψ1 ~ ϕ1(j)ςiǂj
3N−6 ϕo𝑖 = 2qjςi=1

3N−6 exp − aiqi2

Since q is the vibrational coordinate itself the first excited state wavefunction has the same symmetry as the
vibrational mode itself. 

3) Symmetry of the translation operators x, y, z: depends on the group considered; see character table.

×Γψ0 Γx Γψ1

Γψ0 Γy Γψ1

Γψ0 Γz Γψ1

×
× ×
× ×

These direct
products must
be analyzed

The vibration is always allowed if it belongs to the same irreducible representation as one of the translation operators x, y or z

Example H2O: the three vibrational modes A1, A1, B2 are all allowed because z belongs to A1 and y belongs to B2.
Example SF4: the A2 mode is forbidden because none of the translation operators belong to A2: 8 allowed modes



Selection rules for overtone bands. 

ψ0 = ς𝑖=1
3𝑁−6 ϕo𝑖

×Γψ0 Γx Γψ2

Γψ0 Γy Γψ2

Γψ0 Γz Γψ2

×
× ×
× ×

Direct products to be analyzed:

ψ2 ~ ϕ2(j)ςiǂj
3N−6 ϕo𝑖 = (4qj

2− 2)ςi=1
3N−6 exp − aiqi2

Both ψ0 and ψ2 belong to A1 (totally symmetric).
Thus, the transition is group-theoretically allowed if at
one of the translation operators x, y or z belongs to A1

Despite this prediction, the transition will be weak, however, for a quantum-mechanical reason, which we can see
from the following argument:

Remembering Wmn = | 
𝑑

𝑑𝑡
𝑎𝑚 𝑡 |2 = | <m|H1|n >|2 (11)  with H1(t) = - µE(t) where µ ~ translational operator

like the vibrational coordinate q. We can express Wmn in a Taylor series in the vibrational coordinate q:

<n|µ|m>  = µ0<n|m> + (
𝑑µ

𝑑𝑞
)0 <n|q|m> + (

𝑑2µ

𝑑𝑞2)0 <n|q2|m> + other terms

For the overtone transition we have n = 0 and m =2 and <n|q|m> is zero for a harmonic oscillator, and only the third term is
different from zero.  This results in an overall much smaller transition probability.

<0|µ|2>  = µ0<0|2> + (
𝑑µ

𝑑𝑞
)0 <0|q|2> + (

𝑑2µ

𝑑𝑞2)0 <0|q2|2>  + …..

For the fundamental transition n = 0 and m =1. <n|q|m> is non-zero, so group theory can be used to decide if (
𝑑µ

𝑑𝑞
)0 is non-zero 

zero

zero



Selection rules for combination bands. 

ψ0 = ς𝑖=1
3𝑁−6 ϕo𝑖 ψ2 ~ ϕ1(j) ϕ1(k)ςiǂj,k

3N−6ϕo𝑖 = 4𝑞𝑗𝑞𝑘 ςi=1
3N−6 exp − aiqi2

In this case we determine the irreducible representation of the excited state wave function from the direct product
of the irreducible representations of the vibrational modes participating in the combination. The mode will be
allowed if the combination belongs to one of the irreducible representations of the translation operators (see
character table):

Example SF4: combination band B1 B2 = A2.   Not observed, because none of the translation operators in the group
C2v belong to A2.

×

Second example: PCl3, group C3v. The vibrational analysis results in the following representations of the 6 normal modes:

Gvib = 2A1 + 2E

For analyzing the symmetry of a combination band E × E, we first work with the character table to develop a reducible
representation and then apply the decomposition formula to get the irreducible representation.

E×E  4     1    0

aA1 =   
1

6
(4×1 + 2×1×1 + 3 × 0 × 1) = 1

aA2 =   
1

6
(4×1 + 2×1×1 + 3 × 0 ×(-1)) = 1

aE =   
1

6
(4×2 + 2×1×(-1) + 3 × 0 × 0) = 1

GE×E = A1 + A2 + E

Band is allowed because its irreducible representation contains A1 and E, to which z and x,y belong. 

al = 
𝟏

𝒉
σ𝑹 χT(R) χ(l‘) (R)



Philip McCord Morse 
(1903-1985), MIT

U = De(1 - exp-aq)2 with a = (k/2De)1/2 [cm-1]

Anharmonicity: 
The Morse potential (1929)

Instead of the parabolic potental, P. Morse developed an 
empirical potential that also allows an exact solution to the
Schrödinger equation:

Solution: 

Evib (n) = (n + ½) hn0 -
𝐡𝟐n0

𝟐

𝟒𝐃
𝐞

(n + ½)2

where n0 = 
𝐚

𝟐𝛑
𝐃𝐞/µ

-lower zero-point energy
-energy levels not equidistant
-there is a maximum value of n.
-maximum energy= De

-at the limit: transition from vibration
to free translation

-asymmetry of the potential is realistic
considering that attraction and repul-
sion potentials depend differently on
internuclear distance. 

n=6

n=5

n=4

n=3

n=2

n=1

n=0

Features, compared to harmonic osc.:



The Lennard-Jones Potential

Univ. Cambridge, „father“  
of Theoretical Chemistry“



Spectroscopic Manifestations of Anharmonicity: 

n=6

n=5

n=4

n=3

n=2

n=1

n=0

no n

first overtone

fundamental (harmonic)
fundamental (anharmonic)

hot
band

Evib (n) = (n + ½) hn0 -
𝐡𝟐n0

𝟐

𝟒𝐃
𝐞

(n + ½)2



Dispersive dual-beam IR spectrometer

Source: black-body radiator (1300-1500 ^C) SiC(Globar)
Wavelength selection: grids, prisms, Michelson interferometer
Sample compartment: gases: glass cells (5-10 cm) with NaCl windows.

liquids: thin films between NaCl plates
solids: suspensions in oils, KBr pellets, fine powders for ATR

Detectors: heat: resistance thermometer, thermocouple
photons: IR sensitive semiconductors: PbSe, PbTe



A C

B

If 2(AC-AB) = 
𝟐𝐧+𝟏

𝟐
λ

If 2(AC-AB) =  n λ, nє N0

extinction
enhancement

Mirror moves with velocity vm.Monochromatic radiation
would then result in an oscillatory detector signal

S(t) with period T =  
λ/𝟐

𝒗
𝒎

The corresponding frequency is f = 2vm/λ =  2vmν/c 
f = 2vmν/c  10-10 ν if vm  1.5 cm/s

FTIR spectrometer
(Michelson interferometer)

S(t)

t

F(ν)

ν

FT

Attenuated total reflectance (ATR) mode

evanescent
wave

Typical conditions: DW = 1 ms, 2000 channels, AT = 2s

A.Michelson
1852-1931
U. Chicago,
Nobel prize
1907



Raman Spectroscopy

Chandrasekara Raman
1888-1970
Univ. Calcutta
Nobel Prize 1930

Optical excited state

Optical ground state

Predicted 1923, demonstrated 1928
Inelastic scattering of light in the VIS region



Physics of the interaction
The oscillating electric component of the electromagnetic wave produces and oscillating electric dipole moment by interacting

with the electrons of the molecule:

µ = a E
a [Cm2/V] is the polarizability: „ease“ with which electrons can be moved within the

molecule to create an electric dipole

In non-spherical molecules a is direction dependent, described by a second-rank tensor.
The fluctuating electric dipole moment forced upon the molecule by the E vector constitutes emission of an electromagnetic
wave. However, because of the tensorial quality the dipole moment is generally not aligned with the E vector. The molecule
undergoes vibrations. Owing to these vibrations, the polarizability oscillates as well, with the frequencies ѡ𝐢 of all the normal
modes i describing the vibrational motion of the molecule: 𝐪𝐢 = 𝐪𝟎𝐜𝐨𝐬ѡ𝐢𝐭

To describe this, we can expand the polarizability in a Taylor series:

a = a0 + σ𝐢
𝐝α

𝐝𝐪
𝐢

𝟎 𝐪𝐢 + 𝐡𝐢𝐠𝐡𝐞𝐫 𝐭𝐞𝐫𝐦𝐬 𝐧𝐞𝐠𝐥𝐞𝐜𝐭𝐞𝐝 µ = a E = a0 E + (σ𝐢
𝐝α

𝐝𝐪
𝐢

𝟎𝐪𝐢) E. 

Now inserting E = E0 cos w0t and 𝐪𝐢 = 𝐪𝟎𝐜𝐨𝐬ѡ𝐢𝐭 the result is:

µ = a0 E0 cos w0t + (σ𝐢
𝐝α

𝐝𝐪
𝐢

𝟎𝐪𝟎𝐜𝐨𝐬ѡ𝐢𝐭) E0 cos w0t . 

µ = a E = a0 E0 cos w0t + (σ𝐢
𝐝α

𝐝𝐪
𝐢

𝟎𝐪𝟎E0[𝐜𝐨𝐬(w0 − w𝐢𝐭) + cos(w0+ w𝐢)t]. 

Rayleigh Stokes anti-Stokes

where E = E0 cos w0t oscillates with the frequency of the incident light α𝑥𝑥 α𝑥𝑦α𝑥𝑧
α𝑦𝑥 α𝑦𝑦α𝑦𝑧
α𝑧𝑥 α𝑧𝑦α𝑧𝑧

Polarizability tensor

symmetric, 2nd rank

1842-1919
Cambridge U.

Nobel prize 1904

1819-1903
Cambridge U.



From the latter equation we see that Stokes and Anti-Stokes lines can only be observed if
𝐝α

𝐝𝐪
𝐢

𝟎 is different from zero:

In words: the polarizability of the molecule has to change during the course of the vibration. Again we can use the group
theory formalism to make this assessment. Fór simple molecules this can be done by inspection, as shown by the examples
below: 

Change in polarizability
No change in dipole moment

No change in polarizability
Change in dipole moment

No change in polarizability
Change in dipole moment

Normal vibrational modes of CO2 Normal vibrational modes of H2O 

Change in both
Polarizability and
dipole moment

Selection Rules in Raman Spectroscopy



The symmetry properties of the polarizability tensor components are the same as those of binary products x, y and z. 
To show this, we consider a symmetry operation R, that converts a vector (x,y,z) into a vector (x‘,y‘,z‘)

𝑥
𝑦
𝑧

𝑥′
𝑦′

𝑧′

𝑥
𝑦
𝑧

𝑅𝑥𝑥 𝑅𝑥𝑦 𝑅𝑥𝑧

𝑅𝑦𝑥 𝑅𝑦𝑦 𝑅𝑦𝑧

𝑅𝑧𝑥 𝑅𝑧𝑦 𝑅𝑧𝑧

=
R

For example: x‘ = Rxx x + Rxy y + Rxz z

Likewise, for the transformation from a binary product such as x2 to x‘2 we have

x2 x‘2 = (Rxx x + Rxy y + Rxz z)2 = R2
xx x2 + R2

xy y2 + R2
xz z2 + 2RxxRxy xy + 2Rxy Rxz yz + 2RxzRxxzx    (A)

xy x‘y‘ and transformation of the other elements can be expressed analogously via matrix multiplication

R
R

Now we‘ll have a look at the transformation of the polarizability tensor components.

µ = a E
R

µ‘ = a‘ E‘ E‘  = RE

µ‘ = Rµ
with

µ = a E
R

Rµ = a‘RE

R-1Rµ = R-1a‘RE

a E =  R-1a‘RE a‘=  RaR-1
Similarity
transform



𝑅𝑥𝑥 𝑅𝑥𝑦 𝑅𝑥𝑧

𝑅𝑦𝑥 𝑅𝑦𝑦 𝑅𝑦𝑧

𝑅𝑧𝑥 𝑅𝑧𝑦 𝑅𝑧𝑧

=
𝑅𝑥𝑥 𝑅𝑦𝑥 𝑅𝑧𝑥

𝑅𝑥𝑦 𝑅𝑦𝑦 𝑅𝑧𝑦

𝑅𝑥𝑧 𝑅𝒚𝒛 𝑅𝑧𝑧

α𝑥𝑥 α𝑥𝑦α𝑥𝑧
α𝑦𝑥 α𝑦𝑦α𝑦𝑧
α𝑧𝑥 α𝑧𝑦α𝑧𝑧

a‘=  RaR-1

α𝑥𝑥 α𝑥𝑦 α𝑥𝑧
α𝑦𝑥 α𝑦 𝑦α𝑦𝑧
α𝑧𝑥 α𝑧𝑦α𝑧𝑧

𝑅𝑥𝑥 𝑅𝑥𝑦 𝑅𝑥𝑧

𝑅𝑦𝑥 𝑅𝑦𝑦 𝑅𝑦𝑧

𝑅𝑧𝑥 𝑅𝑧𝑦 𝑅𝑧𝑧

=
α𝑥𝑥𝑅𝑥𝑥 + α𝑥𝑦𝑅𝑥𝑦 + α𝑥𝑧𝑅𝑥𝑧

α𝑦𝑥𝑅𝑥𝑥 + α𝑦𝑦𝑅𝑥𝑦 + α𝑦𝑧𝑅𝑥𝑧

α𝑧𝑥𝑅𝑥𝑥 + α𝑧𝑦𝑅𝑥𝑦 + α𝑧𝑧𝑅𝑥𝑧

Only the first column of the product matrix RaR-1 is shown here. This will be sufficient to calculate the component α𝑥𝑥‘. 
We obtain

α𝑥𝑥‘ = 𝑅𝑥𝑥 α𝑥𝑥𝑅𝑥𝑥 + 𝑅𝑥𝑥α𝑥𝑦𝑅𝑥𝑦 +𝑅𝑥𝑥α𝑥𝑧𝑅𝑥𝑧 +𝑅𝑥𝑦α𝑦𝑥𝑅𝑥𝑥 + 𝑅𝑥𝑦α𝑦𝑦𝑅𝑥𝑦 + 𝑅𝑥𝑦α𝑦𝑧𝑅𝑥𝑧+ 𝑅𝑥𝑧α𝑧𝑥𝑅𝑥𝑥 + 𝑅𝑥𝑧α𝑧𝑦𝑅𝑥𝑦 + 𝑅𝑥𝑧α𝑧𝑧𝑅𝑥𝑧

Combination of the terms in the same colors (considering that the polarizability tensor is symmetric leads to

𝜶𝒙𝒙‘   = 𝑹𝟐
𝒙𝒙 𝜶𝒙𝒙 + 𝑹𝟐

𝒙𝒚𝜶𝒚𝒚 +
𝑹𝟐

𝒙𝒛𝜶𝒛𝒛 +
𝟐𝑹𝒙𝒙𝑹𝒙𝒚𝜶𝒙𝒚 + 𝟐𝑹𝒙𝒙𝑹𝒙𝒛𝜶𝒙𝒛 +𝟐𝑹𝒙𝒚𝑹𝒙𝒛𝜶𝒚𝒛 (B)

x‘2 = R2
xx x2 + R2

xy y2 + R2
xz z2 + 2RxxRxy xy + 2RxzRxx zx + 2Rxy Rxz yz (A)

This comparison shows that the tensor a transforms under symmetry operations like the binary products of x, y and z



Selection rule in Raman spectroscopy: All the modes that belong to the same irreducible representation as one of the
binary product operators of x, y, and z are Raman active, as the direct products
where i,j = x or y or z will contain A1 or A‘ or A1g

Γψ0 Γij Γψ1

Γψ0 Γij Γψ1

Γψ0 Γij Γψ1

× ×
×
×

×
×

Mutual exclusion rule: For molecules with a center of inversion
All translation operators belong to an irreducible representation of type u (ungerade), while all binary products of
translation operators belong to an irreducible representation of type g (gerade). As a consequence the infrared
and Raman spectra have no bands in common.   Examples CO2, N2, trans N2F2 (as opposed to cis-N2F2)

C2v C2h

no IR and Raman bands in common

Character table C2v

A1

A2

B1

B2

Character table C2h



Cis N2F2
Trans N2F2

Structural Information from Vibrational Spectroscopy



Polarization Phenomena in Raman Spectroscopy

µ = a E
a [Cm2/V] is the polarizability: „ease“ with which electrons can be moved within the

molecule to create an electric dipole

where E = E0 cos w0t oscillates with the frequency of the incident light α𝑥𝑥 α𝑥𝑦α𝑥𝑧
α𝑦𝑥 α𝑦𝑦α𝑦𝑧
α𝑧𝑥 α𝑧𝑦α𝑧𝑧

Polarizability tensor

symmetric, 2nd rankIn non-spherical molecules a is direction dependent, described by a second-rank tensor.

……a consequence of the anisotropy of the molecular polarizability

We remind ourselves again that the forced oscillation the electrons undergo when they feel the fluctuating electric
field of the applied electromagnetic wave in itself constitutes the emission of an electromagnetic wave.. In other words
when the molecule oscillates like this, it emits an electromagnetic wave – and when there was no energy exchange
between the molecule and the electromagnetic wave the emission will be at the same frequency as that of the incident
light. With unpolarized light, emission will be generally in all directions. 
This is called elastic scattering and corresponds to the Rayleigh emission.

Now, let us use polarized light 



Special situation: Molecule is spherically symmetric, and
has thus isotropic polarizability; in this case the induced
polarization oscillates in the same direction as the
electrical field, leading to the re-emission of polarized light

Even using unpolarized light source, we have a superposition of of A and B. Scattered light is still polarized in different
Ways if we eithre observe in direction x or direction y. 

α𝑥𝑥 0 0

0 α𝑦𝑦0
0 0 α𝑧𝑧



Light scattered by isotropic molecules is polarized



General case: the molecule is anisotropic. In this case the vectors
P and E will not have the same direction. Induced Polarization will be
in that direction where the molecule has the largest polarizability.

At each moment the polarized light will be emitted in a different direction. As a result the scattered
Light is unpolarized even when using polarized light as the source. Scattering will be observed in both x and y directions



Using an unpolarized light source we will observe both
Ex and Ey transversal components in both directions

As intensities are proportional to P2

Py
2 = (ayx Ex + ayy Ey)

2 = ayx
2 Ex

2 + ayy
2 Ey

2

Pz
2 = (azx Ex + azy Ey)

2 = azx
2 Ex

2 + azy
2 Ey

2 Ratio r𝒏 =
𝐼
𝑧

𝐼
𝑦

=
azx

2Ex
2 + azy

2Ey
2

ayx
2Ex

2 + ayy
2Ey

2 = 
azx

2 + azy
2

ayx
2 + ayy

2

Considering natural unpolarized light Ex
2 = Ey

2

For a spherical molecule, however: Ratio r𝒏 = 
𝐼
𝑧

𝐼
𝑦

=
azx

2 + azy
2=

ayx
2 + ayy

2 = 0  as only the aii are non-zero 



We can also choose to use polarized light. Defining the direction of propagation as the z-direction
There are two cases:
Case 1: incident light is polarized along y. In this case: Ex = 0. 
We place the detector along x and measure
we observe the scattered light in a direction orthogonal 
to the polarization plane of the incident light
to the oscillation direction of the incident light

Pz = azyEy Ratio = 
𝑰
𝒛

𝑰
𝒚

=
azy

2=

ayy
2 = r

Py = ayyEy

Case 2: incident light is polarized along x. In this case: Ey = 0. 
We place the detector along x and measure
we observe the scattered light in a direction parallel 
to the polarization plane of the incident light
to the oscillation direction of the incident light

Pz = azx Ex Ratio = 
𝑰
𝒛

𝑰
𝒚

=
azx

2=

ayx
2 = r||

Py = ayx Ex



These expressions are only valid for scattering by a single molecule fixed in space. In reality, many molecules
are present with all kinds of orientations of the polarizability tensor. Considering this distributions the equations
a bit more complicated:
Using unpolarized light, the expressions are:

r𝒏 =  
𝟔𝜸

𝟎
𝟐

𝟒𝟓𝜶
𝟎
𝟐+𝟕𝜸

𝟎
𝟐 where 𝜶𝟎 =

𝟏

𝟑
(𝜶𝒙𝒙 + 𝜶𝒚𝒚 + 𝜶𝒛𝒛) and 𝜸𝟎

𝟐 = 
𝟏

𝟐
[ (𝜶𝒙𝒙 - 𝜶𝒚𝒚)2 + (𝜶𝒚𝒚 - 𝜶𝒛𝒛)

2 + (𝜶𝒛𝒛 - 𝜶𝒙𝒙)2] + 6 (𝜶𝒙𝒚
𝟐 + 𝜶𝒚𝒛

𝟐+ 𝜶𝒛𝒙
𝟐)

Using polarized light as the incident light source, the expressions are: 

r =  
𝟑𝜸

𝟎
𝟐

𝟒𝟓𝜶
𝟎
𝟐+𝟒𝜸

𝟎
𝟐

r|| =  1

These expressions apply to Rayleigh scattering. 𝜶𝟎 is never zero, because every molecule has electrons. For spherical
molecules 𝜸𝟎 is zero, which means that the depolarization ratios r𝒏 = r are zero
For the general case we have 6/7 > r𝒏 > 0 and ¾ > r >  0

For Raman spectroscopy the Stokes band are relevant: Analogous equations can be developed for 𝜶𝟎
′ =

𝑑𝜶
𝟎

𝑑𝑞
and 𝜸𝟎′=  

𝑑𝜸
𝟎

𝑑𝑞

r𝒏 =  
𝟔𝜸

𝟎
′𝟐

𝟒𝟓𝜶
𝟎
′𝟐+𝟕𝜸

𝟎
′𝟐

where 𝜶′𝟎 =
𝟏

𝟑
(𝜶′𝒙𝒙 + 𝜶′𝒚𝒚 + 𝜶′𝒛𝒛) and 𝜸′𝟎

𝟐 = 
𝟏

𝟐
[ (𝜶′𝒙𝒙 - 𝜶′𝒚𝒚)2 + (𝜶′𝒚𝒚 - 𝜶′𝒛𝒛)

2 + (𝜶′𝒛𝒛 - 𝜶′𝒙𝒙)
2] + 

6 (𝜶′𝒙𝒚
𝟐 + 𝜶′𝒚𝒛

𝟐+ 𝜶′𝒛𝒙
𝟐)



For each vibrational modes we can write a specific tensor for
𝑑𝜶

𝒊𝒋

𝑑𝑞
with corresponding isotropic and anisotropic components. In 

this case the isotropic component can be zero. This happens for those modes for which the polarizability does not change
during the course of the vibration.

Interesting is also the case 𝜸𝟎′=  
𝒅𝜸

𝟎

𝒅𝒒
= 𝟎 .

In this case the anisotropy of the polarizability does not change during the course of
the vibration. This is the case of a totally symmetric vibrational mode. In this case r𝒏 = r are zero, i.e. the depolarization ratio
is zero. If we conduct the Raman spectrocscopy with polarized incident light, the scattered Raman band will also be polarized
even if the molecule by itself is not spherically symmetric. But it only applies for the totally symmetric vibrational modes
A1, Ag or A1g modes.

The Case 𝜸𝟎′=  
𝒅𝜸

𝟎

𝒅𝒒
≠ 𝟎 applies to any other, not totally symmetric mode. In this case rn = 6/7 invariably.

Depolarization ratios for Raman bands

𝟔<𝒎 𝜸
𝟎
′|𝒏> 𝟐

𝟒𝟓<𝒎 𝜶
𝟎′
𝒏>𝟐+𝟕<𝒎 𝜸

𝟎′
𝒏>𝟐 = 

𝟔<𝒎 𝜸
𝟎
′|𝒏> 𝟐

𝟒𝟓<𝒎 (𝜶′
𝒙𝒙

+ 𝜶′
𝒚𝒚

+ 𝜶′
𝒛𝒛
) 𝒏>𝟐+𝟕<𝒎 𝜸

𝟎′
𝒏>𝟐

x2+y2+z2 =r2
Always belongs to totally
smmetric representation
such as A1

< 𝒎 (𝜶′𝒙𝒙 + 𝜶′𝒚𝒚 + 𝜶′𝒛𝒛) 𝒏 > = 0 for all 
Vibrational modes that are not totally symmetric



Example CCl4

The band at 450 cm-1 is missing, as it is not depolarized,
i.e. there is no z-polarization component in the scattered
light emitted in the x-direction. It therefore originates
from a totally symmetric mode with g0‘ = 0.  

: all bands are observed
The band at 450 cm-1 is missing



Instrumentation

Typical excitation wavelengths: 
408 nm (Ar), 532 nm (YAG frequency doubled), 
632 nm (He/Ne),785 nm (semicond) nm
using different lasers: I ~ n4

Preferred for high-temperature work

Wavelength: 1064 nm (Nd:YAG laser)
Preferred for sensitive samples,
Preferred for fluorescent samples
Particularly organic compounds.
Not good for HT work

Important experimental variants: Resonance Raman (involving optical transition)
Dramatically increased signal/noise ratio for those molecules
involved in the transition

Surface enhanced Raman (analyte adsorbed on metal clusters)
Rotational Raman Spectroscopy



Chemical applications:

Informational content: frequencies, force constants, reduced masses of the 3N-6 normal modes
Spectra of gases: rotational fine structure, molecular properties

For molecules, it is often possible to decompose the complex vibrational motion into
- Valence modes: one atom vibrates against the remainder of the molecule (bond stretching)
- Framework modes: giving „fingerprint identification!

Valence modes: atom A vibrates against the remainder of the molecule, R: mA << mR

wi = 2πνi = ki/µi µi =
𝒎

𝑨
×𝒎

𝑹

𝒎
𝑨
+𝒎

𝑹

~  mA

The reduced mass is close to the mass of the single atom. 
Isotope effect for identification, based on the mass effect: 
ν(H)
ν(𝐷) = m𝑫/𝑚𝐻 = 𝟐

Instead of frequencies, one commonly specifies wave numbers (in cm-1):  n = c/l   ->  1/l  =  
n
c

Typical valence mode wave numbers in cm-1 (note the mass dependence)
O-H: 3500 C=C: 1600
C-H; 2900-3100 C=O: 1500-1750
N-H: 3000 C=C, C=N: 2200
S-H: 2500 C=S:  1100

Effect of the
Bond order



An application: Raman spectra of phosphate glasses

1320 1160 1050 950  cm-1

P-O Bond order:   2.0 1.5 1.33 1.25

P-O stretch (nbO)

Q2

Q3Q1
P-O-P

P-O-P 620 680 750 cm-1 x



Hydrogen bond: OH-stretch and O…O distance



Water Speciation in Minerals and Glasses by NIR spectroscopy
Near-infrared region: overtone and combination bands



Raman Spectroscopy of Lithium borate glasses

808 cm-1

1480 cm-1
950 cm-1

770 cm-1

1480 cm-1



IR spectra of gases: rotational fine structure
In the IR spectra of dilute gases one frequently observes multi-peak patterns, which arise from transitions originating
from and arriving at different energy levels associated with the rotational motion of the molecules involved.
The simplest quantum mechanical model system for this motion is the 3D free rigid rotor. For diatomic molecule
the model is called „Particle on  a sphere“. One atom in the center, the other one on the surface of the sphere.
„free“ means: no potential energy. Any position on the sphere is equally probable.
„rigid“ means: the radius of the sphere is not affected by the rotational energy. 

Solution of the Schrödinger equation through separation of variables:

 = Q(q) × F(f) with the eigenvalues

I = µr2
Moment of inertia of a two-atomic molecule. 

E(l ) = 
ћ𝟐

𝟐𝑰
l (l +1)  = 

𝑳𝟐

𝟐𝑰

This corresponds to the quantization of the angular momentum vector

|L2| = l (l +1)ћ2 Size quantization

Lz = m l ћ, with m l e {l , l -1, …..- l } Orientation quantization

2 l +1 degenerate states



The eigenfunctions of the rigid rotor are known as the spherical harmonics



Spherical Harmonics:

l = 0

l = 1

l = 2

l = 3

s-orbital, even

p-orbitals, odd

d-orbitals, even

f-orbitals, odd

g-orbitals, even



Linear molecule: Dl = ±1, rotation about perpendicular axes
Spherical top: no interaction with the
electromagnetic wave

Symmetric top: Erot/h = BJ(J+1) + (A-B)K2

with B = 
ћ

𝟒𝝅𝑰
𝒃

and A = 
ћ

𝟒𝝅𝑰
𝒂

J = quantum number of total angular 
momentum involving rotation about all axes.
K = quantum number of angular momentum
describing rotation about the principal axis.   
K can adopt 2J+1 values within {J, J-1, J-2, …..-J} (sense of rotation), levels for K>0 are doubly degenerate; J=0, K=0 ground state

Rotational Spectroscopy

E(l ) = 
ћ𝟐

𝟐𝑰
l (l +1)  = 

𝑳𝟐

𝟐𝑰

E(l )/h = B l (l +1)

with B = 
ћ

𝟒π𝑰
in units of s-1

with B = 
ћ

𝟒𝒄π𝑰
in units of cm-1

E(l )/h = B l (l +1) - D l 2(l +1)2

Rigid free rotor Non-rigid free rotor (centrifugal distortion)

Ia = 0, Ib=IC

linear

Interaction with electromagnetic wave only possible
for molecules with permanent electrical dipole

D = 4B3/n0
2

Centrifugal distortion ~ 1/(bond rigidity)
i.e. the vibrational force constant



Selection rules in rotational absorption spectroscopy:

Transition Probability ~ <Yl
m(a)|m|Yl

m(b)> µ ~ x, y, z has odd character
-> D l = l ‘ – l = ±1

l = 0

l = 1

l = 2

l = 3

l = 4 

l = 5 

even

odd

even

odd

even

odd



Diatomic molecule (rigid rotor)
Selection rule: D l = l ‘ – l = ±1

Diatomic molecule (non-rigid rotor)

E(l )/h = B l (l +1) - D l 2(l +1)2

DE(l )/h = 2B(l +1) - 4D(l +1)3

Spacing between adjacent peaks decreases
with increasing l .

E(l )/h = B l (l +1)              DE(l )/h = 2B (l +1)  



Spectra of linear triatomic molecules: example O=C=S

one observable: I (moment of inertia), but two unknowns: rCO and rCS

rCO rCS

rO rC rS

I = mOrO
2 + mCrC

2 + mSrS
2

mOrO + mCrC = mSrS

rO = rCO + rC

rS = rCS - rC

mO(rCO + rC) + mCrC = mS(rCS - rC)

rC (mO + mC + mS) = mSrCS - mOrCO

rC = 
mSrCS − mOrCO

mO + mC + mS
=  

mSrCS − mOrCO

M

I = mOrO
2 + mCrC

2 + mSrS
2

I = mO(rCO + rC)2 + mCrC
2 + mS(rCS - rC)2

I = mO(rCO
2 +2rCOrC + rC

2 ) +  mCrC
2 + mS(rCS

2- 2rCSrC +  rC
2 )

I = MrC
2 + 2rC(mOrCO - mSrCS) + mOrCO

2 + mSrCS
2

(mSrCS − mOrCO)2

M +2 
mSrCS − mOrCO

M (mOrCO - mSrCS)

+ mOrCO
2 + mSrCS

2

I =



(mSrCS − mOrCO)2

M + 2 
(mSrCS − mOrCO)

M (mOrCO - mSrCS) + mOrCO
2 + mSrCS

2I =

I = mOrCO
2 + mSrCS

2 -
(mOrCO − mSrCS)

2

M

We then can get the two unknown interatomic distances by studying different isotopologues of the molecule, for
Example by measuring samples with different O isotopes; the distances are mass -independent

I (OCS) = mOrCO
2 + mSrCS

2 -
(mOrCO − mSrCS)

2

M

Experiment with oxygen-16

Experiment with oxygen-18

2 equations with 2 
unknowns

I (OCS) = mOrCO
2 + mSrCS

2 -
(mOrCO − mSrCS)

2

M



Symmetric top molecule (rigid rotor)

Erot/h = BJ(J+1) + (A-B)K2 with B = 
ћ

𝟒𝝅𝑰𝒃
and A = 

ћ

𝟒𝝅𝑰𝒂
• J = quantum number of total angular momentum involving rotation about all axes.

• K = quantum number of angular momentum describing rotation about the principal axis (defined
by Ia).   

• K can adopt 2J+1 values within {J, J-1, J-2, …..-J} (sense of rotation)

Selection rule: DJ = J‘ - J = ±1
DK = 0

DK = 0 means that the rotation around the top axis cannot interact with the electromagnetic wave. This is
because there is no dipole moment of the molecule (and no change thereof) when rotation occurs ┴ rotation axis

DE(J)/h = 2B(J +1) Same as for linear molecule



Rotational Raman spectra
Linear molecules: the allowed transitions are with D l = 0, ±2
Symmetrical top molecules: DJ = 0, ±1, ±2, DK = 0

DJ = ±2, for rotational states K = 0
Stokes and anti-Stokes lines have comparable intensities
Spherical top molecules: no Rotation Raman effect observed, as
the rotation does not create a change in polarizability.

As the polarizability tensor has totally symmetric
transformation properties, only even-> even
and odd-> odd transitions are allowed: DJ = ±2

DK = 0 means that the rotation around the top axis
cannot interact with the electromagnetic wave.

DJ = 0 signifies the Rayleigh band. 

Stimulated Stimulated
Absorption Emission

Transition Probability ~ <Yl
m(a)|a|Yl

m(b)>

linear

Symmetrical top



Apparatus



E(l ) = 
ћ𝟐

𝟐𝑰
l (l +1)  = 

𝑳𝟐

𝟐𝑰

E(l )/h = B l (l +1) with B = 
ћ

𝟒π𝑰

Ro-vibrational energy levels (in frequency units)

E(n,l )/h = (n + ½ ) ν0 + B l (l +1)

For the fundamental vibrational transition we
have the selection rules Dn = 1

D l = l ‘ – l = ±1

In units of s-1

R-branch: D l = 1

DE(n,l )/h =  ν0 + 2B(l +1)

Q-branch: D l = 0 forbidden

P branch: D l = -1

DE(n,l )/h =  ν0 +- 2Bl

This leads to a multi-peak pattern
with peaks spaced at 2B

Dl = 0

Rotational transition in vibrational spectroscopy



Spectrum of CO Spectrum of HCl

Differences in the vibrational frequencies of H-35Cl and H-37Cl detectableIntensity distribution follows the Boltzmann law
I(l) = (2l + 1) exp-E l /kBT.  Band with maximum
intensity depends on temperature The different line spacings between the P- and the R-branch are a 

Consequence of the vibrational anharmonicity (breakdown of the
Born-Oppenheimer approximation).



Complications and special cases

1. Centrifugal distortion: The value of B decreases with increasing quantum number l

This complication is treated by a power expansion of Energy in terms of l .
E(l )/h = B l (l +1) - D l 2(l +1)2 Spacing between adjacent peaks decreases with
increasing l .

2.   Breakdown of the Born-Oppenheimer Approximation: The value of B depends on    
the vibrational state; due to bond lengthening (anharmonicity) in the nv =1 state: 
B1< B0

Peaks of the R-branch are more closely spaced than those of the P-branch.
3. Anharmonicity of vibrations necessitates more in-depth analysis. 
4. Concentrated samples (high pressure): loss of resolution due to intermolecular

collisions („Bjerrum band“)



Selection rules depend on the direction of vibration relative to the Cꝏ axis

Parallel perpendicular
D l = ±1 D l = 0,±1 

Linear polyatomic molecules:

C.N. Banwell, Fundamentals of Molecular Spectroscopy, Mc. Graw Hill 1983

P R

P          Q R



Non-linear Molecules

Symmetric top molecule: Erot/h = BJ(J+1) + (A-B)K2 with B = 
ћ

𝟒𝝅𝑰
𝒃

and A = 
ћ

𝟒𝝅𝑰
𝒂

In this description J is the quantum number of total angular momentum involving rotation about all axes
While K is the quantum number of angular momentum describing rotation about the principal axis.   K can
adopt 2J+1 values within {J, J-1, J-2, …..-J}.
a) Vibration || to the symmetry axis: DJ = 0, ±1, DK = 0 (no change in rotational state): regular PQR branch spectrum
b) Vibration  to the symmetry axis:   DJ = 0, ±1, DK = ±1: complex spectrum, Q-branch exhibits splitting


