Appendix A Some Atomic Constants

Quantity	Symbol	Value in SI (cgs) units ${ }^{\mathrm{a}}$
Speed of light in vacuum	c	$2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}\left(10^{10} \mathrm{~cm} / \mathrm{s}\right)$
Elementary charge	e	$1.6021765 \times 10^{-19} \mathrm{C}\left(4.803242 \times 10^{-10} \mathrm{esu}\right)$
Planck's constant	h	$6.626069 \times 10^{-34} \mathrm{~J} \mathrm{~s}\left(\times 10^{-27} \mathrm{erg} \mathrm{s}\right)$
	\hbar	$1.0545716 \times 10^{-34} \mathrm{~J} \mathrm{~s}\left(\times 10^{-27} \mathrm{erg} \mathrm{s}\right)$
Electron rest mass	m_{e}	$9.109382 \times 10^{-31} \mathrm{~kg}\left(\times 10^{-28} \mathrm{~g}\right)$
Boltzmann constant	k_{B}	$1.380650 \times 10^{-23} \mathrm{~J} / \mathrm{K}\left(\times 10^{-16} \mathrm{erg} / \mathrm{K}\right)$
	$k_{B} / h c$	$\left(0.6950356 \mathrm{~cm}^{-1} \mathrm{~K}^{-1}\right)$
Rydberg constant	R_{∞}	$1.09737315685 \times 10^{7} \mathrm{~m}^{-1}\left(\times 10^{5} \mathrm{~cm} \mathrm{c}^{-1}\right)$
	$R_{\infty} h c$	$2.179872 \times 10^{-18} \mathrm{~J}=13.605691 \mathrm{eV}$
Fine-structure constant	α^{-1}	137.0359997
Bohr radius	a_{0}	$0.529177208 \times 10^{-10} \mathrm{~m}\left(\times 10^{-8} \mathrm{~cm}\right)$
Atomic mass unit	$1 \mathrm{u}=m_{u}$	$1.6605388 \times 10^{-27} \mathrm{~kg}\left(\times 10^{-24} \mathrm{~g}\right)$
Proton rest mass	m_{p}	$1.6726216 \times 10^{-27} \mathrm{~kg}^{\left(\times 10^{-24} \mathrm{gm}\right)}$
	m_{p} / m_{e}	1836.152672
Electron g factor	g_{e}	-2.002319304362
Bohr magneton	μ_{B}	$9.274009 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
	$\mu_{B} / h c$	$\left(4.668645 \times 10^{-5} \mathrm{~cm}^{-1} \mathrm{gauss}{ }^{-1}\right)$
Nuclear magneton	μ_{N}	$5.0507832 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$

Appendix B
 Polynomials and Spherical Harmonics

The associated Laguerre polynomials are defined as

$$
\mathrm{L}_{\lambda}^{\mu}(x)=\frac{1}{\lambda!} x^{-\mu} \mathrm{e}^{x} \frac{\mathrm{~d}^{\lambda}}{\mathrm{d} x^{\lambda}}\left(x^{\lambda+\mu} \mathrm{e}^{-x}\right)
$$

The Legendre polynomials are defined as

$$
\mathrm{P}_{\ell}=\frac{1}{2^{\ell} \ell!} \frac{\mathrm{d}^{\ell}}{\mathrm{d} x^{\ell}}\left(x^{2}-1\right)^{\ell} ; \quad \mathrm{P}_{\ell}(1)=1 \quad \text { for all } \quad \ell
$$

The spherical harmonics are

$$
\mathrm{Y}_{\ell}^{m}(\theta, \phi)=(-1)^{m} \mathrm{e}^{i m \phi}\left[\frac{(2 \ell+1)(\ell-m)!}{4 \pi(\ell+m)!}\right]^{1 / 2} \sin ^{m} \theta \frac{\mathrm{~d}^{m}}{\mathrm{~d} x^{m}} \mathrm{P}_{\ell}(x) \quad \text { for } \quad x=\cos \theta
$$

Orthonormality and completeness are given by

$$
\begin{array}{r}
\int_{0}^{2 \pi} \int_{0}^{\pi} \mathrm{Y}_{\ell}^{m}(\theta, \phi) \mathrm{Y}_{\ell^{\prime}}^{* m}(\theta, \phi) \sin \theta \mathrm{d} \theta \mathrm{~d} \phi=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} \\
\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \mathrm{Y}_{\ell}^{* m}\left(\theta^{\prime}, \phi^{\prime}\right) \mathrm{Y}_{\ell}^{m}(\theta, \phi)=\delta\left(\phi-\phi^{\prime}\right) \delta\left(\cos \theta-\cos \theta^{\prime}\right) \tag{B.2}
\end{array}
$$

$$
\begin{align*}
\mathrm{Y}_{\ell}^{* m}(\theta, \phi) & =(-1)^{m} \mathrm{Y}_{\ell}^{-m}(\theta, \phi) \tag{B.3}\\
\mathrm{Y}_{\ell}^{m}(\pi-\theta, \phi+\pi) & =(-1)^{\ell} \mathrm{Y}_{\ell}^{m}(\theta, \phi) \quad \text { Inversion: } \vec{r} \rightarrow-\vec{r} \tag{B.4}\\
\mathrm{Y}_{\ell}^{0}(\theta, \phi) & =\left(\frac{2 \ell+1}{4 \pi}\right)^{1 / 2} \mathrm{P}_{\ell}(\cos \theta) \quad \text { No } \phi \text { dependence } \tag{B.5}\\
\mathrm{Y}_{\ell}^{m}(0, \phi) & =\mathrm{Y}_{\ell}^{0}(0) \delta_{m 0}=\sqrt{\frac{2 \ell+1}{4 \pi}} \delta_{m 0} \tag{B.6}
\end{align*}
$$

The expansion of $\frac{1}{r_{12}}$ occurs often in this text, and its derivation will be given here:

$$
\begin{equation*}
\frac{1}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{4 \pi}{(2 \ell+1)} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}} \mathrm{Y}_{\ell}^{* m}\left(\theta_{2}, \phi_{2}\right) \mathrm{Y}_{\ell}^{m}\left(\theta_{1}, \phi_{1}\right) \tag{B.7}
\end{equation*}
$$

\vec{r}_{1} and \vec{r}_{2} are arbitrary vectors having the usual spherical coordinate angles θ_{1}, ϕ_{1} and θ_{2}, ϕ_{2}, respectively. Let γ be the angle between these vectors, $\hat{r}_{1} \cdot \hat{r}_{2}=\cos \gamma$, such that if the z-axis of a coordinate system were aligned with either \vec{r}_{1} or \vec{r}_{2}, γ would play the role of θ for that coordinate frame. In that coordinate frame the role of ϕ is played by ω. The first step is to recall that

$$
\nabla^{2}\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|^{-1}\right)=0 \quad \text { except at } \vec{r}_{1}=\vec{r}_{2}
$$

If \vec{r}_{2} is chosen to lie along the z -axis, there is azimuthal symmetry with the solution

$$
\frac{1}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}=\sum_{\ell=0}^{\infty}\left[A_{\ell} r^{\ell}+B_{\ell} r^{-(\ell+1)}\right] P_{\ell}(\cos \theta)
$$

This is the general solution to Laplace's equation in spherical coordinates with azimuthal symmetry. Since this solution is valid everywhere (except at $\vec{r}_{1}=\vec{r}_{2}$), it must be valid for \vec{r}_{1} on the z-axis. Then

$$
\mathrm{RHS}=\sum_{\ell=0}^{\infty}\left[A_{\ell} r^{\ell}+B_{\ell} r^{-(\ell+1)}\right]
$$

$$
\begin{aligned}
\mathrm{LHS}=\frac{1}{\left(r_{1}-r_{2}\right)} & =\frac{1}{r_{1}}\left(1-r_{2} / r_{1}\right)^{-1} \quad r_{1}>r_{2} \\
& =\frac{1}{r_{1}}\left[1+\frac{r_{2}}{r_{1}}+\left(\frac{r_{2}}{r_{1}}\right)^{2}+\left(\frac{r_{2}}{r_{1}}\right)^{3}+\cdots\right] \\
& =\frac{1}{r_{1}} \sum_{\ell=0}^{\infty}\left(\frac{r_{2}}{r_{1}}\right)^{\ell}=\sum_{\ell=0}^{\infty} \frac{r_{2}^{\ell}}{r_{1}^{\ell+1}}
\end{aligned}
$$

which holds whenever $r_{1}>r_{2}$. Whenever $r_{2}>r_{1}$, one obtains

$$
\mathrm{LHS}=\sum_{\ell=0}^{\infty} \frac{r_{1}^{\ell}}{r_{2}^{\ell+1}}
$$

These two possibilities can be combined into the single expression:

$$
\mathrm{LHS}=\sum_{\ell=0}^{\infty} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}}
$$

where $r_{<}\left(r_{>}\right)$is the lesser (greater) of r_{1} and r_{2}. This is compatible with the righthand side. For example, if $r_{1}>r_{2} B_{\ell}=r_{2}^{\ell}$ and $A_{\ell}=0$ while if $r_{2}>r_{1} A_{\ell}=$ $1 / r_{2}^{(\ell+1)}$ and $B_{\ell}=0$. When r_{1} is not along the z-axis, the solution would look like

$$
\frac{1}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}=\sum_{\ell=0}^{\infty} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}} P_{\ell}(\cos \theta)
$$

Finally if r_{2} had not been along the z-axis, θ would have been γ yielding

$$
\begin{equation*}
\frac{1}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}=\sum_{\ell=0}^{\infty} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}} P_{\ell}(\cos \gamma) \tag{B.8}
\end{equation*}
$$

It remains to show that $P_{\ell}(\cos \gamma)$ can be expanded in spherical harmonics. The expression is referred to as the spherical harmonic addition theorem:

$$
\begin{equation*}
P_{\ell}(\cos \gamma)=\left(\frac{4 \pi}{2 \ell+1}\right) \sum_{m=-\ell}^{\ell} \mathrm{Y}_{\ell}^{* m}\left(\theta_{2}, \phi_{2}\right) \mathrm{Y}_{\ell}^{m}\left(\theta_{1}, \phi_{1}\right) \tag{B.9}
\end{equation*}
$$

First consider a function $g(\theta, \phi)$ which will at first be identified with the spherical harmonic having coordinates θ_{1}, ϕ_{1}. It will then be expanded in spherical harmonics using γ, ω coordinates. It's value at $\gamma=0$ will prove to be important, but at that value for γ, it becomes equal to the spherical harmonic having coordinates θ_{2}, ϕ_{2}. Let's see how this unfolds:

$$
\begin{align*}
g\left(\theta_{1}, \phi_{1}\right) & \equiv \mathrm{Y}_{\ell}^{m}\left(\theta_{1}, \phi_{1}\right) \tag{B.10}\\
& =\sum_{m^{\prime}=-\ell}^{\ell} a_{\ell m^{\prime}} \mathrm{Y}_{\ell}^{m^{\prime}}(\gamma, \omega) \tag{B.11}
\end{align*}
$$

No summation over ℓ is needed as the spherical harmonics do not change ℓ value under a coordinate rotation:

$$
\begin{equation*}
\left.g\left(\theta_{1}, \phi_{1}\right)\right|_{\gamma=0}=\sum_{m^{\prime}=-\ell}^{\ell} a_{\ell m^{\prime}}\left[\frac{(2 \ell+1)}{4 \pi}\right]^{1 / 2} \delta_{m^{\prime} 0}=a_{\ell 0}\left[\frac{(2 \ell+1)}{4 \pi}\right]^{1 / 2} \tag{B.12}
\end{equation*}
$$

This follows from property (B.6) of spherical harmonics. Using (B.11), one can see that

$$
\int g\left(\theta_{1}, \phi_{1}\right) \mathrm{Y}_{\ell}^{* 0}(\gamma, \omega) \mathrm{d} \Omega_{\gamma, \omega}=a_{\ell 0}
$$

But from (B.10), this means that

$$
\begin{equation*}
\int \mathrm{Y}_{\ell}^{m}\left(\theta_{1}, \phi_{1}\right) \mathrm{Y}_{\ell}^{* 0}(\gamma, \omega) \mathrm{d} \Omega_{\gamma, \omega}=a_{\ell 0} \tag{B.13}
\end{equation*}
$$

It is now possible to expand $P_{\ell}(\cos \gamma)$ itself in spherical harmonics:

$$
\begin{equation*}
P_{\ell}(\cos \gamma)=\sum_{m^{\prime}=-\ell}^{\ell} b_{\ell m^{\prime}} \mathrm{Y}_{\ell}^{m^{\prime}}\left(\theta_{1}, \phi_{1}\right) \tag{B.14}
\end{equation*}
$$

If one now multiplies both sides by $\mathrm{Y}_{\ell}^{* m}$ and integrates over all space,

$$
\begin{equation*}
\int P_{\ell}(\cos \gamma) \mathrm{Y}_{\ell}^{* m} \mathrm{~d} \Omega=\sum_{m^{\prime}=-\ell}^{\ell} b_{\ell m^{\prime}} \delta_{m m^{\prime}}=b_{\ell m} \tag{B.15}
\end{equation*}
$$

From Equation (B.5), it follows that

$$
P_{\ell}(\cos \gamma)=\left[\frac{4 \pi}{(2 \ell+1)}\right]^{1 / 2} \mathrm{Y}_{\ell}^{0}(\gamma, \omega)
$$

though in this expression ω is irrelevant. Inserting this into (B.15) yields

$$
\left[\frac{4 \pi}{(2 \ell+1)}\right]^{1 / 2} \int \mathrm{Y}_{\ell}^{0}(\gamma, \omega) \mathrm{Y}_{\ell}^{* m}\left(\theta_{1}, \phi_{1}\right) \mathrm{d} \Omega=b_{\ell m}
$$

But from (B.13), it follows that

$$
b_{\ell m}^{*}=a_{\ell 0}\left[\frac{4 \pi}{(2 \ell+1)}\right]^{1 / 2}
$$

Substituting the right-hand side of the above from (B.12) yields

$$
b_{\ell m}^{*}=\left.\frac{4 \pi}{(2 \ell+1)} g\left(\theta_{1}, \phi_{1}\right)\right|_{\gamma=0}
$$

But as stated in the introduction of this derivation at $\gamma=0$, one can write

$$
\left.g\left(\theta_{1}, \phi_{1}\right)\right|_{\gamma=0}=\mathrm{Y}_{\ell}^{m}\left(\theta_{2}, \phi_{2}\right)
$$

from which it follows that

$$
b_{\ell m}^{*}=\frac{4 \pi}{(2 \ell+1)} Y_{\ell}^{m}\left(\theta_{2}, \phi_{2}\right)
$$

Taking the complex conjugate and putting back into Eq. (B.14) yields the result

$$
P_{\ell}(\cos \gamma)=\left(\frac{4 \pi}{2 \ell+1}\right) \sum_{m=-\ell}^{\ell} \mathrm{Y}_{\ell}^{* m}\left(\theta_{2}, \phi_{2}\right) \mathrm{Y}_{\ell}^{m}\left(\theta_{1}, \phi_{1}\right)
$$

where the dummy index m^{\prime} has been replaced by m everywhere. This completes the derivation of Equation (B.7).

Sometimes one sees spherical harmonics redefined to emphasize their relations to the Cartesian coordinates x, y, and z. Define

$$
\mathrm{C}_{\ell}^{m} \equiv\left(\frac{2 \ell+1}{4 \pi}\right)^{1 / 2} \mathrm{Y}_{\ell}^{m}(\theta, \phi)
$$

(eliminates some annoying constants.) Note that $\mathrm{C}_{1}^{0}=\cos \theta=Z / r$:

$$
\begin{aligned}
& \frac{\mathrm{C}_{1}^{-1}-\mathrm{C}_{1}^{1}}{\sqrt{2}}=\sin \theta \cos \phi=x / r \\
& \frac{\mathrm{C}_{1}^{-1}+\mathrm{C}_{1}^{1}}{-\sqrt{2} i}=\sin \theta \sin \phi=y / r
\end{aligned}
$$

These linear combinations have the spatial symmetries of x, y, and z. Wave functions using these combinations are labeled p_{x}, p_{y}, and $p_{z}(p$ because $\ell=1)$.

Similarly for $\ell=2$, one may write

$$
\begin{aligned}
\mathrm{C}_{2}^{0} & =\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}=\frac{1}{r^{2}}\left(z^{2}-\frac{x^{2}+y^{2}}{2}\right) \\
\frac{\mathrm{C}_{2}^{-1}-\mathrm{C}_{2}^{1}}{\sqrt{2}} & =\sqrt{3} \sin \theta \cos \theta \cos \phi=\sqrt{3} \frac{x z}{r^{2}} \\
\frac{\mathrm{C}_{2}^{-1}+\mathrm{C}_{2}^{1}}{-\sqrt{2} i} & =\sqrt{3} \sin \theta \cos \theta \sin \phi=\sqrt{3} \frac{y z}{r^{2}} \\
\frac{\mathrm{C}_{2}^{2}=\mathrm{C}_{2}^{-2}}{\sqrt{2} i} & =\frac{\sqrt{3}}{2} \sin ^{2} \theta \sin 2 \phi=\sqrt{3} \frac{x y}{r^{2}} \\
\frac{\mathrm{C}_{2}^{-2}+\mathrm{C}_{2}^{2}}{\sqrt{2}} & =\frac{\sqrt{3}}{2} \sin ^{2} \theta \cos 2 \phi=\frac{\sqrt{3}}{2} \frac{x^{2}-y^{2}}{r^{2}}
\end{aligned}
$$

These linear combinations are sometimes labeled $d_{x y}, d_{x^{2}-y^{2}}$, etc. This labeling is not usually carried beyond $\ell=2$. Such wave functions are often used for molecular orbital theory.

Appendix C Some Tensor Background

A vector may be defined as any object which transforms like a coordinate point

$$
A_{i}^{\prime}=\lambda_{i j} A_{j}
$$

A coordinate point transforms by coordinate rotation by

$$
x_{i}^{\prime}=\lambda_{i j} x_{j}
$$

where $\lambda_{i j} \equiv \cos \left(x_{i}^{\prime}, x_{j}^{\prime}\right)$.
In n-dimensional space, an m th rank tensor is an object which transforms under coordinate rotations as

$$
T_{a b c d \ldots}^{\prime}=\lambda_{a i} \lambda_{b j} \lambda_{c k} \lambda_{d \ell} \ldots T_{i j k l \ldots}
$$

It has n^{m} components. Such a Cartesian tensor has a rank given by the number of indices. In three dimensions, an ℓ th-rank tensor has 3^{ℓ} components.

A symmetric tensor is invariant to the interchange of any two indices. For an ℓ thrank tensor, this reduces the number of components from 3^{ℓ} to $(\ell+1)(\ell+2) / 2$. (Can you show this?) For example, a 4th rank tensor is reduced from 81 to 15 components.

Now a second rank tensor is traceless whenever

$$
\delta_{i j} T_{i j}=0 \quad \text { or } \quad T_{11}+T_{22}+T_{33}=0
$$

The generalization of this is that

$$
\delta_{m n} T_{i j k \ldots \ell}=0
$$

where m and n are any two indices. Such a tensor is said to be irreducible and has only $(2 \ell+1)$ independent components. So a 4 th rank tensor which started with 81 components would have only 9 .

Most tensors which describe physical phenomena are symmetric, and by being clever, one can usually make them irreducible.

Consider, for example, an electrostatic multipole moment. You may recall that the quadrupole moment is defined as

$$
Q_{i j}=\frac{1}{2} \int \rho\left(\vec{r}^{\prime}\right)\left(3 x_{j}^{\prime} x_{i}^{\prime}-{r^{\prime}}^{2} \delta_{i j}\right) \mathrm{d} \tau^{\prime}
$$

The $2^{\ell \text { th }}$ pole moment is defined as

$$
Q_{i j k \ldots \ell} \equiv \frac{(-1)^{\ell}}{\ell!} \int \rho\left(\vec{r}^{\prime}\right) r^{\prime(2 \ell+1)} \nabla_{i}^{\prime} \nabla_{j}^{\prime} \nabla_{k}^{\prime} \ldots \nabla_{\ell}^{\prime}\left(\frac{1}{r^{\prime}}\right) \mathrm{d} \tau^{\prime} .
$$

Such a moment satisfies $\delta_{m n} Q_{i j k \ldots \ell}=0$ and is symmetric.
Recall that for $\mathrm{Y}_{\ell}^{m} m$ ranges from $-\ell$ to ℓ and takes on $(2 \ell+1)$ values. In this way Y_{ℓ}^{m} can be used as a basis for irreducible tensors or spherical tensors. The spherical tensor analog of $Q_{i j k \ldots \ell}$ is

$$
q_{l m} \equiv \int \mathrm{Y}_{\ell}^{* m}\left(\theta^{\prime}, \phi^{\prime}\right) r^{\ell} \rho\left(\vec{r}^{\prime}\right) \mathrm{d} \tau^{\prime}
$$

Appendix D
 Magnetic Dipole Interaction Energy

Recall that the definition of the magnetic dipole, $\vec{\mu}$, of a current distribution is

$$
\vec{\mu} \equiv \frac{1}{2 c} \int \overrightarrow{r^{\prime}} \times \vec{J}(\vec{r}) \mathrm{d} \tau^{\prime}
$$

But

$$
\vec{J}=N q \vec{v}=N \frac{q}{m} \vec{p}
$$

where N is the number of particles (of mass m and charge q) per unit volume and \vec{p} is the momentum. So

$$
\vec{\mu}=\frac{N q}{2 c m} \int\left(\overrightarrow{r^{\prime}} \times \overrightarrow{p^{\prime}}\right) \mathrm{d} \tau^{\prime}
$$

If there is but one particle in a volume V with charge $q=-e$ whose angular momentum is a constant of the motion, the dipole moment may be written as

$$
\begin{equation*}
\vec{\mu}=-\frac{e \vec{\ell}}{2 c m V} \int \mathrm{~d} \tau^{\prime}=-\frac{e \vec{\ell}}{2 m c} \tag{D.1}
\end{equation*}
$$

The interaction energy (potential energy) of a magnetic dipole moment in an external magnetic field is what is desired. (The analogous result for an electric dipole in an external electric field is $-\vec{p} \cdot \vec{E}$.) Expand the magnetic field about some suitable origin:

$$
\begin{equation*}
B_{i}(\vec{r})=B_{i}(0)+\vec{r} \cdot \vec{\nabla} B_{i}(0)+\cdots \tag{D.2}
\end{equation*}
$$

Now the force on a current distribution in an external field is

$$
\begin{equation*}
\vec{F}=\frac{1}{c} \int \vec{J}\left(\overrightarrow{r^{\prime}}\right) \times \vec{B}\left(\overrightarrow{r^{\prime}}\right) \mathrm{d} \tau^{\prime} \tag{D.3}
\end{equation*}
$$

(This is just an extension of the Lorentz law, $\vec{F}=(q / c) \vec{v} \times \vec{B}$.) Putting (D.2) into (D.3) gives

$$
\vec{F}=\frac{-1}{c} \vec{B}(0) \times \int \vec{J}\left(\overrightarrow{r^{\prime}}\right) \mathrm{d} \tau^{\prime}+\frac{1}{c} \int \vec{J}\left(\overrightarrow{r^{\prime}}\right) \times\left[\left(\overrightarrow{r^{\prime}} \cdot \vec{\nabla}\right) \vec{B}(0)\right] \mathrm{d} \tau^{\prime}+\cdots
$$

The first term is zero for steady-state localized currents. Next note that

$$
\vec{J}\left(\overrightarrow{r^{\prime}}\right) \times\left[\left(\overrightarrow{r^{\prime}} \cdot \vec{\nabla}\right) \vec{B}\right]=\vec{J}\left(\overrightarrow{r^{\prime}}\right) \times \vec{\nabla}\left(\overrightarrow{r^{\prime}} \cdot \vec{B}\right)
$$

This follows by the vector identity

$$
\vec{\nabla}\left(\overrightarrow{r^{\prime}} \cdot \vec{B}\right)=\overrightarrow{r^{\prime}} \times(\vec{\nabla} \times \vec{B})+\vec{B} \times\left(\vec{\nabla} \times \overrightarrow{r^{\prime}}\right)+\left(\overrightarrow{r^{\prime}} \cdot \vec{\nabla}\right) \vec{B}+(\vec{B} \cdot \vec{\nabla}) \overrightarrow{r^{\prime}}
$$

However, $\vec{\nabla} \times \vec{B}=0$ and ∇ do not operate on primed variables, so only the third term on the RHS is nonzero. Next note that

$$
\vec{\nabla} \times\left(\overrightarrow{r^{\prime}} \cdot \vec{B}\right) \vec{J}=\left(\overrightarrow{r^{\prime}} \cdot \vec{B}\right) \vec{\nabla} \times \vec{J}\left(\overrightarrow{r^{\prime}}\right)+\vec{\nabla}\left(\overrightarrow{r^{\prime}} \cdot \vec{B}\right) \times \vec{J}\left(\overrightarrow{r^{\prime}}\right)
$$

This is a vector identity and the first term of the RHS is zero because ∇ does not operate on $\vec{J}\left(\overrightarrow{r^{\prime}}\right)$. So

$$
\begin{equation*}
\vec{F}=-\frac{1}{c} \vec{\nabla} \times \int \vec{J}\left(\overrightarrow{r^{\prime}}\right)\left(\overrightarrow{r^{\prime}} \cdot \vec{B}(0)\right) \mathrm{d} \tau^{\prime} \tag{D.4}
\end{equation*}
$$

Now use the identity

$$
\vec{B} \times\left(\overrightarrow{r^{\prime}} \times \overrightarrow{J^{\prime}}\right)=\overrightarrow{r^{\prime}}\left(\vec{B} \cdot \overrightarrow{J^{\prime}}\right)-\overrightarrow{J^{\prime}}\left(\overrightarrow{r^{\prime}} \cdot \vec{B}\right)
$$

to express the integral as

$$
\begin{equation*}
\int \vec{J}\left(\overrightarrow{r^{\prime}}\right)\left(\overrightarrow{r^{\prime}} \cdot \vec{B}\right) \mathrm{d} \tau^{\prime}=\int \overrightarrow{r^{\prime}}\left(\vec{B} \cdot \overrightarrow{J^{\prime}}\right) \mathrm{d} \tau^{\prime}-\vec{B} \times \int\left(\overrightarrow{r^{\prime}} \times \overrightarrow{J^{\prime}}\right) \mathrm{d} \tau^{\prime} \tag{D.5}
\end{equation*}
$$

On the LHS, there is

$$
B_{i} \int J_{j}^{\prime} x_{i}^{\prime} \mathrm{d} \tau^{\prime}=B_{i} \int\left[\nabla_{\ell}^{\prime}\left(x_{j}^{\prime} J_{\ell}^{\prime}\right)\right] x_{i}^{\prime} \mathrm{d} \tau^{\prime}
$$

(This is easy to get by working on the right to obtain the left.) Now integrate the RHS by parts:

$$
\begin{aligned}
& =-B_{i} \int x_{j}^{\prime} J_{\ell}^{\prime} \nabla_{\ell}^{\prime} x_{i}^{\prime} \mathrm{d} \tau^{\prime} \\
& =-B_{i} \int x_{j}^{\prime} J_{i}^{\prime} \mathrm{d} \tau^{\prime} \\
& =-\int \overrightarrow{r^{\prime}}\left(\vec{B} \cdot \overrightarrow{J^{\prime}}\right) \mathrm{d} \tau^{\prime}
\end{aligned}
$$

So the first term on the RHS of (D.5) is the negative of the LHS. (D.5) becomes

$$
\int \vec{J}\left(\overrightarrow{r^{\prime}}\right)\left(\overrightarrow{r^{\prime}} \cdot \vec{B}\right) \mathrm{d} \tau^{\prime}=-\frac{1}{2} \vec{B} \times \int\left(\overrightarrow{r^{\prime}} \times \overrightarrow{J^{\prime}}\right) \mathrm{d} \tau^{\prime}
$$

Putting this into (D.4) gives

$$
\begin{gather*}
\vec{F}=\vec{\nabla} \times\left[\vec{B} \times \frac{1}{2 c} \int\left(\overrightarrow{r^{\prime}} \times \overrightarrow{J^{\prime}}\right) \mathrm{d} \tau^{\prime}\right] \\
\text { or } \quad \vec{F}=\vec{\nabla} \times(\vec{B} \times \vec{\mu}) \tag{D.6}
\end{gather*}
$$

Now use the vector identity

$$
\begin{align*}
\vec{\nabla} \times(\vec{A} \times \vec{B})= & \vec{A}(\vec{\nabla} \cdot \vec{B})-\vec{B}(\vec{\nabla} \cdot \vec{A})+(\vec{B} \cdot \vec{\nabla}) \vec{A}-(\vec{A} \cdot \vec{\nabla}) \vec{B} \\
& \text { and } \quad \vec{F}=(\vec{\mu} \cdot \vec{\nabla}) \vec{B}=\vec{\nabla}(\vec{\mu} \cdot \vec{B}) \tag{D.7}
\end{align*}
$$

remembering that $\vec{\mu}$ is a constant vector and that $\operatorname{div} \vec{B}=\operatorname{curl} \vec{B}=0$.
So if $\vec{F}=-\nabla W$ where W is the potential energy, it follows that

$$
\begin{equation*}
W=-\vec{\mu} \cdot \vec{B} \tag{D.8}
\end{equation*}
$$

Index

A

Absorption, 100, 110-112
$\mathrm{A}^{\mathrm{k}}, 61,62$
α fine-structure constant, 14
Alternating unit tensor, 4
Angular momentum, 6, 23, 46-48
Anharmonic oscillator, 146-149
Anharmonic vibration, 148
Anomalous Zeeman effect, 84
Anti-bonding orbitals, 137-138
Anticommutator, 25
Antisymmetric, 44
Antisymmetrization operator, 44
Associated Laguerre polynomials, 16
Atomic units, 14
Average energy of a configuration, 67

B

Bohr magneton, 82
Bohr radius, 15
Bonding orbital, 137-138
Born-Oppenheimer
approximation, 116-117, 140
separation, 146
Bosons, 155

C

Center of mass, 140
Central potential, 42
Clebsch-Gordan coefficients (C-G'S), 28, 30, 60, 75
Cm-1, 16
Coefficient $\mathrm{c}^{k}, 60$
Commutator, 5

Correlation energy, 133
Coulomb
integral, 58
potential, 13

D

Degeneracy, 20, 50
Determinantal equation, 87
Dipole moment, 150
Dirac delta function, 97
Dissociation energy, 145
Dummy, 4

E

Eigenstate of hydrogen, 19
Einstein A coefficient, 110
Einstein B coefficient, 110
Einstein summation convention, 4
Electric dipole
approximation, 102
transition, 107
Electric multipole moment, 107
Electron probability density, 122
Electron volt (eV), 15
Emission, 100
Energy density, 100
Equivalent electrons, 49-51
Exchange
integral, 58, 61
interaction, 63

F

Fermi contact term., 91
Fermions, 44, 155

Fermi's golden rule, 97
Fine structure, 35, 73-80
$\mathrm{F}^{\mathrm{k}}, 61,62$
Franck-Condon factor, 151

G

Generalized angular momentum, 27
Gerade, 118
$\mathrm{G}^{\mathrm{k}}, 61$
Grotrian level diagram, 16

H

$\mathrm{H}_{2}^{+}, 117$
Hamiltonian, 9, 27, 35, 42
Harmonic interaction, 98
Hartree, 14-15
Hartree-Fock
procedure, 41
equations, 68-72
Hermite polynomials, 145
Hilbert space, 11, 23-25, 27, 28
Homonuclear molecules, 118
Hönl-London factor, 151, 152
Hund's rule, 65
Hydrogen
atom, 17
molecular ion, 116-129
molecule, 129-134
Hyperfine structure, 89-92

I

Indicial notation, 3-5
Indistinguishability, 44
Internuclear axis, 118
Internuclear separation, 117
Inversion
of coordinates, 157
symmetry, 134
Ionization energies, 36
Isoelectronic sequence, 64

J

3-j symbols, 31, 60

K

Koopman's theorem, 69

L
L+, 11
L_, 11
Ladder operators, 11, 75
Lambda doubling, 156
Landé
approximation, 78
g-value, 83
interval rule, 79
Levels, 47
Lifetime, 103-106
Linear combination of atomic orbitals (LCAO), 119, 127
Linear Stark effect, 86-87
Line strength, 110
LS coupling, 46

M

Magnetic g-factor, 81
Magnetic moment, 81
Matrix elements, 35
Matrix mechanics, 21
Maxwell-Boltzmann distribution, 152
Molecular orbitals (MO), 117-119, 123
Moment of inertia, 144
Morse potential, 146
Multiplicity, 47

\mathbf{N}

Non-rigid rotator, 146-149
Nuclear spin, 155-159
Nuclear spin statistics, 160

0

Occupation number, 58
Off-diagonal matrix elements, 55
One-electron operator, 53-56
Orbital, 27
Ortho, 157
Orthogonality relations, 31
Oscillator strength, 108-110
Overlap probability, 122

P

Para, 157
Parent terms, 47
Parity, 48, 109

Partition function, 152
Pauli
exclusion principle, 49
principle, 44
spin matrices, 26
P-branch, 160
Potential energy
curves, 117
operator, 124

Q

Q-branch, 160
Quadratic Stark effect, 86, 88-89

R

Radial wave functions, 36
R-branch, 160
Rigid rotation, 148
Rotational energy, 144
Rotational partition function, 153
Rotational selection rule, 151
Russell-Saunders, 46
Rydberg constant, 16
Rydbergs, 14

S

Schrödinger equation, 34
Selection rules, 109, 111, 149-152, 159
Self-consistent field, 42, 69
Separated atom limit, 119-120
Shell
model, 42-46
structure, 45
Simple harmonic oscillator, 145
Slater
determinants, 44, 49
sum rule, 63
Spherical coordinates, 9, 143
Spherical harmonic addition theorem, 59
Spherical harmonic functions, 36,38
Spherical harmonics, 10
Spherical tensors, 32
Spheroidal coordinates, 117
Spin
angular momentum, 20-27
orbital, 27
wave functions, 156

Spinor, 130
Spontaneous emission, 98-103
Stark effect, 74, 85-89
State, 47
designations, 134
sum, 152
Statistical weight, 157
Stern-Gerlach experiment, 24
Sturm-Liouville problem, 10
Symmetric, 43
Symmetrization operator, 44

T

Terms, 47
Thermal distribution, 152-155
Time dependent perturbation theory, 93-98
Total energy, 125
Total spin, 157
Transition(s), 149-152
moments, 106-108
probabilities, 93-112
21 cm line, 91
Two-electron operators, 56-62

U

Ungerade, 118
Unitary matrix, 28
United atom limit, 119-120

V

Variational calculation, 120-129
Variation technique, 51
Vector-coupling coefficients, 28

W

Wave mechanics, 21
Wigner-Eckart theorem, 32

Y

Yrast transition, 108

Z

Zeeman effect, 24, 74, 80-85

