
Appendix A
Some Atomic Constants

Quantity Symbol Value in SI (cgs) unitsa

Speed of light in vacuum c 2.99792458 × 108 m/s (1010 cm/s)
Elementary charge e 1.6021765 × 10−19 C (4.803242 × 10−10 esu)
Planck’s constant h 6.626069 × 10−34 J s (×10−27 erg s)

� 1.0545716 × 10−34 J s (×10−27 erg s)
Electron rest mass me 9.109382 × 10−31 kg (×10−28 g)
Boltzmann constant kB 1.380650 × 10−23 J/K (×10−16 erg/K)

kB/hc (0.6950356 cm−1 K−1)

Rydberg constant R∞ 1.09737315685 × 107 m−1 (×105 cm−1)

R∞hc 2.179872 × 10−18 J = 13.605691 eV
Fine-structure constant α−1 137.0359997
Bohr radius a0 0.529177208 × 10−10 m (×10−8 cm)

Atomic mass unit 1 u = mu 1.6605388 × 10−27 kg (×10−24 g)
Proton rest mass mp 1.6726216 × 10−27 kg (×10−24 gm)

mp/me 1836.152672
Electron g factor ge −2.002319304362

Bohr magneton μB 9.274009 × 10−24 J T−1

μB/hc (4.668645 × 10−5 cm−1 gauss−1)

Nuclear magneton μN 5.0507832 × 10−27 J T−1

aP.J. Mohr, B.N. Taylor and D.B. Newell, Rev. Mod. Phys. 80, 633 (2008)
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Appendix B
Polynomials and Spherical Harmonics

The associated Laguerre polynomials are defined as

Lμλ(x) =
1

λ!
x−μex

dλ

dxλ
(
xλ+μe−x

)

The Legendre polynomials are defined as

P� =
1

2�	!

d�

dx�
(
x2 − 1

)�
; P�(1) = 1 for all 	

The spherical harmonics are

Ym� (θ, φ)= (−1)meimφ
[
(2	+1)(	−m)!

4π(	+m)!

]1/2
sinm θ

dm

dxm
P�(x) for x= cos θ

Orthonormality and completeness are given by

∫ 2π

0

∫ π

0

Ym� (θ, φ)Y∗m
�′ (θ, φ) sin θ dθ dφ = δ��′δmm′ (B.1)

∞∑

�=0

�∑

m=−�
Y∗m
� (θ′, φ′)Ym� (θ, φ) = δ(φ − φ′)δ(cos θ − cos θ′) (B.2)
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166 B Polynomials and Spherical Harmonics

Y∗m
� (θ, φ) = (−1)mY−m

� (θ, φ) (B.3)

Ym� (π − θ, φ+ π) = (−1)�Ym� (θ, φ) Inversion: �r → −�r (B.4)

Y0
� (θ, φ) =

(
2	+ 1

4π

)1/2

P�(cos θ) No φ dependence (B.5)

Ym� (0, φ) = Y0
� (0)δm0 =

√
2	+ 1

4π
δm0 (B.6)

The expansion of 1
r12

occurs often in this text, and its derivation will be given here:

1

|�r1 − �r2| =
∞∑

�=0

�∑

m=−�

4π

(2	+ 1)

r�<
r�+1
>

Y∗m
� (θ2, φ2)Y

m
� (θ1, φ1) (B.7)

�r1 and �r2 are arbitrary vectors having the usual spherical coordinate angles θ1, φ1
and θ2, φ2, respectively. Let γ be the angle between these vectors, r̂1 · r̂2 = cos γ,
such that if the z-axis of a coordinate system were aligned with either �r1 or �r2, γ
would play the role of θ for that coordinate frame. In that coordinate frame the role
of φ is played by ω. The first step is to recall that

∇2(|�r1 − �r2|−1) = 0 except at �r1 = �r2

If �r2 is chosen to lie along the z-axis, there is azimuthal symmetry with the solution

1

|�r1 − �r2| =
∞∑

�=0

[A� r
� +B� r

−(�+1)] P�(cos θ)

This is the general solution to Laplace’s equation in spherical coordinates with
azimuthal symmetry. Since this solution is valid everywhere (except at �r1 = �r2),
it must be valid for �r1 on the z-axis. Then

RHS =

∞∑

�=0

[A� r
� +B� r

−(�+1)]

LHS =
1

(r1 − r2)
=

1

r1
(1− r2/r1)

−1 r1 > r2

=
1

r1

[
1 +

r2
r1

+

(
r2
r1

)2

+

(
r2
r1

)3

+ · · ·
]

=
1

r1

∞∑

�=0

(
r2
r1

)�
=

∞∑

�=0

r2
�

r1�+1
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which holds whenever r1 > r2. Whenever r2 > r1, one obtains

LHS =
∞∑

�=0

r1
�

r2�+1

These two possibilities can be combined into the single expression:

LHS =

∞∑

�=0

r<
�

r>�+1

where r<(r>) is the lesser (greater) of r1 and r2. This is compatible with the right-
hand side. For example, if r1 > r2 B� = r�2 and A� = 0 while if r2 > r1 A� =

1/r
(�+1)
2 and B� = 0. When r1 is not along the z-axis, the solution would look like

1

|�r1 − �r2| =
∞∑

�=0

r<
�

r>�+1
P�(cos θ)

Finally if r2 had not been along the z-axis, θ would have been γ yielding

1

|�r1 − �r2| =
∞∑

�=0

r<
�

r>�+1
P�(cos γ). (B.8)

It remains to show that P�(cos γ) can be expanded in spherical harmonics. The
expression is referred to as the spherical harmonic addition theorem:

P�(cos γ) =

(
4π

2	+ 1

) �∑

m=−�
Y∗m
� (θ2, φ2)Y

m
� (θ1, φ1) (B.9)

First consider a function g(θ, φ) which will at first be identified with the spherical
harmonic having coordinates θ1, φ1. It will then be expanded in spherical harmonics
using γ, ω coordinates. It’s value at γ = 0 will prove to be important, but at that
value for γ, it becomes equal to the spherical harmonic having coordinates θ2, φ2.
Let’s see how this unfolds:

g(θ1, φ1) ≡ Ym� (θ1, φ1) (B.10)

=

�∑

m′=−�
a�m′Ym

′
� (γ, ω) (B.11)

No summation over 	 is needed as the spherical harmonics do not change 	 value
under a coordinate rotation:

g(θ1, φ1) |γ=0 =

�∑

m′=−�
a�m′

[
(2	+ 1)

4π

]1/2

δm′0 = a�0

[
(2	+ 1)

4π

]1/2

(B.12)
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This follows from property (B.6) of spherical harmonics. Using (B.11), one can see
that ∫

g(θ1, φ1) Y
∗0
� (γ, ω) dΩγ,ω = a�0

But from (B.10), this means that
∫

Ym� (θ1, φ1) Y
∗0
� (γ, ω) dΩγ,ω = a�0 (B.13)

It is now possible to expand P�(cos γ) itself in spherical harmonics:

P�(cos γ) =

�∑

m′=−�
b�m′ Ym

′
� (θ1, φ1) (B.14)

If one now multiplies both sides by Y∗m
� and integrates over all space,

∫
P�(cos γ)Y

∗m
� dΩ =

�∑

m′=−�
b�m′ δmm′ = b�m (B.15)

From Equation (B.5), it follows that

P�(cos γ) =

[
4π

(2	+ 1)

]1/2

Y0
� (γ, ω)

though in this expression ω is irrelevant. Inserting this into (B.15) yields

[
4π

(2	+ 1)

]1/2 ∫
Y0
� (γ, ω)Y

∗m
� (θ1, φ1) dΩ = b�m

But from (B.13), it follows that

b∗�m = a�0

[
4π

(2	+ 1)

]1/2

Substituting the right-hand side of the above from (B.12) yields

b∗�m =
4π

(2	+ 1)
g(θ1, φ1) |γ=0

But as stated in the introduction of this derivation at γ = 0, one can write

g(θ1, φ1) |γ=0 = Ym� (θ2, φ2)

from which it follows that

b∗�m =
4π

(2	+ 1)
Ym� (θ2, φ2).
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Taking the complex conjugate and putting back into Eq. (B.14) yields the result

P�(cos γ) =

(
4π

2	+ 1

) �∑

m=−�
Y∗m
� (θ2, φ2)Y

m
� (θ1, φ1)

where the dummy index m′ has been replaced by m everywhere. This completes
the derivation of Equation (B.7).

Sometimes one sees spherical harmonics redefined to emphasize their relations
to the Cartesian coordinates x, y, and z. Define

Cm� ≡
(
2	+ 1

4π

)1/2

Ym� (θ, φ)

(eliminates some annoying constants.) Note that C0
1 = cos θ = Z/r:

C−1
1 − C1

1√
2

= sin θ cosφ = x/r

C−1
1 +C1

1

−√
2i

= sin θ sinφ = y/r

These linear combinations have the spatial symmetries of x, y, and z. Wave
functions using these combinations are labeled px, py, and pz (p because 	 = 1).

Similarly for 	 = 2, one may write

C0
2 =

3

2
cos2 θ − 1

2
=

1

r2

(
z2 − x2 + y2

2

)

C−1
2 − C1

2√
2

=
√
3 sin θ cos θ cosφ =

√
3
xz

r2

C−1
2 +C1

2

−√
2i

=
√
3 sin θ cos θ sinφ =

√
3
yz

r2

C2
2 = C−2

2√
2i

=

√
3

2
sin2 θ sin 2φ =

√
3
xy

r2

C−2
2 +C2

2√
2

=

√
3

2
sin2 θ cos 2φ =

√
3

2

x2 − y2

r2

These linear combinations are sometimes labeled dxy , dx2−y2 , etc. This labeling is
not usually carried beyond 	 = 2. Such wave functions are often used for molecular
orbital theory.



Appendix C
Some Tensor Background

A vector may be defined as any object which transforms like a coordinate point

A′
i = λijAj

A coordinate point transforms by coordinate rotation by

x′i = λijxj

where λij ≡ cos(x′i, x
′
j).

In n-dimensional space, an mth rank tensor is an object which transforms under
coordinate rotations as

T ′
abcd... = λaiλbjλckλd� . . . Tijkl...

It has nm components. Such a Cartesian tensor has a rank given by the number of
indices. In three dimensions, an 	th-rank tensor has 3� components.

A symmetric tensor is invariant to the interchange of any two indices. For an 	th-
rank tensor, this reduces the number of components from 3� to (	+1)(	+2)/2. (Can
you show this?) For example, a 4th rank tensor is reduced from 81 to 15 components.

Now a second rank tensor is traceless whenever

δijTij = 0 or T11 + T22 + T33 = 0

The generalization of this is that

δmnTijk...� = 0

where m and n are any two indices. Such a tensor is said to be irreducible and has
only (2	 + 1) independent components. So a 4th rank tensor which started with 81
components would have only 9.

Most tensors which describe physical phenomena are symmetric, and by being
clever, one can usually make them irreducible.
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172 C Some Tensor Background

Consider, for example, an electrostatic multipole moment. You may recall that
the quadrupole moment is defined as

Qij =
1

2

∫
ρ(�r ′)

(
3x′jx

′
i − r′2δij

)
dτ ′

The 2�th pole moment is defined as

Qijk...� ≡ (−1)�

	!

∫
ρ(�r ′)r′(2�+1)∇′

i∇′
j∇′

k . . .∇′
�

(
1

r′

)
dτ ′.

Such a moment satisfies δmnQijk...� = 0 and is symmetric.
Recall that for Ym� m ranges from −	 to 	 and takes on (2	 + 1) values. In this

way Ym� can be used as a basis for irreducible tensors or spherical tensors. The
spherical tensor analog of Qijk...� is

qlm ≡
∫

Y∗m
� (θ′, φ′)r′�ρ(�r ′) dτ ′



Appendix D
Magnetic Dipole Interaction Energy

Recall that the definition of the magnetic dipole, �μ, of a current distribution is

�μ ≡ 1

2c

∫
�r′ × �J(�r) dτ ′

But
�J = Nq�v = N

q

m
�p

whereN is the number of particles (of mass m and charge q) per unit volume and �p
is the momentum. So

�μ =
Nq

2cm

∫
(�r′ × �p′) dτ ′

If there is but one particle in a volume V with charge q = −e whose angular
momentum is a constant of the motion, the dipole moment may be written as

�μ = − e�	

2cmV

∫
dτ ′ = − e�	

2mc
(D.1)

The interaction energy (potential energy) of a magnetic dipole moment in an
external magnetic field is what is desired. (The analogous result for an electric dipole
in an external electric field is −�p· �E.) Expand the magnetic field about some suitable
origin:

Bi(�r) = Bi(0) + �r · �∇Bi(0) + · · · (D.2)

Now the force on a current distribution in an external field is

�F =
1

c

∫
�J(�r′)× �B(�r′) dτ ′ (D.3)

(This is just an extension of the Lorentz law, �F = (q/c)�v × �B.) Putting (D.2) into
(D.3) gives

�F =
−1

c
�B(0)×

∫
�J(�r′) dτ ′ +

1

c

∫
�J(�r′)× [(�r′ · �∇) �B(0)] dτ ′ + · · ·
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174 D Magnetic Dipole Interaction Energy

The first term is zero for steady-state localized currents. Next note that

�J(�r′)× [(�r′ · �∇) �B] = �J(�r′)× �∇(�r′ · �B)

This follows by the vector identity

�∇(�r′ · �B) = �r′ × (�∇× �B) + �B × (�∇× �r′) + (�r′ · �∇) �B + ( �B · �∇)�r′

However, �∇× �B = 0 and ∇ do not operate on primed variables, so only the third
term on the RHS is nonzero. Next note that

�∇× (�r′ · �B) �J = (�r′ · �B)�∇× �J(�r′) + �∇(�r′ · �B)× �J(�r′)

This is a vector identity and the first term of the RHS is zero because ∇ does not
operate on �J(�r′). So

�F = −1

c
�∇×

∫
�J(�r′)(�r′ · �B(0)) dτ ′ (D.4)

Now use the identity

�B × (�r′ × �J ′) = �r′( �B · �J ′)− �J ′(�r′ · �B)

to express the integral as
∫

�J(�r′)(�r′ · �B) dτ ′ =
∫
�r′( �B · �J ′) dτ ′ − �B ×

∫
(�r′ × �J ′) dτ ′ (D.5)

On the LHS, there is

Bi

∫
J ′
jx

′
i dτ

′ = Bi

∫ [∇′
�(x

′
jJ

′
�)
]
x′i dτ

′

(This is easy to get by working on the right to obtain the left.) Now integrate the
RHS by parts:

= −Bi
∫
x′jJ

′
�∇′

�x
′
i dτ

′

= −Bi
∫
x′jJ

′
i dτ

′

= −
∫
�r′( �B · �J ′) dτ ′

So the first term on the RHS of (D.5) is the negative of the LHS. (D.5) becomes

∫
�J(�r′)(�r′ · �B) dτ ′ = −1

2
�B ×

∫
(�r′ × �J ′) dτ ′
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Putting this into (D.4) gives

�F = �∇×
[
�B × 1

2c

∫
(�r′ × �J ′) dτ ′

]

or �F = �∇× ( �B × �μ) (D.6)

Now use the vector identity

�∇× ( �A× �B) = �A(�∇ · �B)− �B(�∇ · �A) + ( �B · �∇) �A− ( �A · �∇) �B

and �F = (�μ · �∇) �B = �∇(�μ · �B) (D.7)

remembering that �μ is a constant vector and that div �B = curl �B = 0.
So if �F = −∇W where W is the potential energy, it follows that

W = −�μ · �B (D.8)
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