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Abstract: In recent years several studies have been made showing artificial intelligence techniques as 

enhancement proposals for real practical systems. One of such approaches is automated planning, in which 

knowledge of the system’s behavior, expressed through a model, is used by a piece of software 

denominated automated planner to infer a sequence of actions capable of bringing the system from some 

initial state to an objective, a so called plan. To do such, the planner relies on some search algorithm 

capable of exploring the possibilities exposed by the model, and several different approaches have been 

used by different planners with varying degrees of success. This paper presents an insight on some of the 

most consolidated ones, both regarding deterministic and probabilistic domains, and focuses on search 

techniques and generic heuristics in order to assist the development of new algorithms focused on 

production and logistics. It also covers the main formal system modeling languages, such as STRIPS, 

PDDL and PPDDL, used by such planners. 

 

1. INTRODUCTION 

Automation is always related to new techniques and 

knowledge application. Nowadays, computer systems are 

mandatory to assist new automation projects. One of 

computer system field is artificial intelligence and automated 

planning is a special branch of it. 

In recent years several studies have been made showing 

artificial intelligence techniques, such as automated planning, 

as enhancement proposals for real practical systems. The AI 

planning community is very committed to apply the 

developments already achieved in this area to real complex 

applications. However realistic planning problems bring great 

challenges not only for the designers during design processes 

but also for the automated planners during the planning 

process itself. (Sette et al., 2008) 

More recently, some works have been developed focusing the 

practical applications for the automated planners using the 

itSIMPLE system (Vaquero, 2007). Several problems were 

already approached by that system, such as logistics problems 

in port systems (Dahal, 2003), the logistic inherent to the load 

and unloading processes of oil in São Sebastian’s port (Sette 

et al., 2008), the pumping of raw oil in pipelines (Li et. al., 

2005) and didactic initiatives (Tavares and Fonseca, 2011). 

This work presents a review about automated planning 

modelling languages and algorithms, and it is a starting point 

for an ongoing research about integrating automated planning 

and the internal logistics of a manufacturing process. 

This paper is structured as follows: first the main modelling 

languages are explained, then the classic planning algorithms, 

followed by a section about probabilistic planning and, 

finally, thoughts about applying these algorithms to logistic 

domains. 

 

2. MODELING LANGUAGES 

2.1  STRIPS 

The formal language known as STRIPS actually borrowed its 

name from the original planner that used it, which is an 

acronym for Stanford Research Institute Problem Solver. 

STRIPS, the planner, is often cited as providing a seminal 

framework for attacking the “classical planning problem” 

(Fikes and Nilsson, 1993). In these classical planning 

problems, the world is defined as a static state that is only 

modified by a single agent that, through each action, brings 

the system from one state to the other. This simple-state 

problem formulation served as basis for automatic planning 

research during many years, and much of it was based 

specifically on the representation framework and reasoning 

methods developed in the STRIPS system. 

The problem space for STRIPS is defined by the initial state 

I, the goal state G, and the operators O and their effects on 

the system model (Fikes and Nilsson, 1972). The planning 

problem can be expressed as follows: 

( )GIOP ,,=   (1) 

The states are defined as arbitrary set of first-order predicate 

calculus well defined formulas (wffs). For example, to define 

a system where a box B sits at the location L, one could 

include the following wff: 

( )LBat ,   (2) 

And then possibly include the following wff to state a box 

cannot be at two places at the same time: 

( ) ( )[ ] ( ){ }cbatcaabatcba ,~^,,, ⇒≠∀  (3) 
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The operators are defined by two main parts: one describing 

the preconditions necessary for execution, and one describing 

the effects. The definition of the effects of an operator is 

simply the lists of wffs the operator adds to the previous 

states, and the list of wffs it removes from said state (Fikes 

and Nilsson, 1972). In a more formal way, the action o can be 

defined as a set of a list of preconditions pre, a list of wffs to 

include in the new state add and the list of wffs to remove del 

as follows (Hoffmann and Nebel, 2001): 

( ))(),(),( odeloaddopreo =  (4) 

These operators can be grouped into families called 

schemata. Each operator schema can take in input 

parameters, upon which the member’s operators are 

parametrized (Fikes and Nilsson, 1972). Extending upon the 

example mentioned earlier, assuming there is a robot to pick 

up boxes, an schema pickup (posr,posb,b), where posr is the 

current position of the robot, posb is the position of the box 

and b represents the box itself, can be defined instead of 

explicitly declaring the operators for every combination 

possible, thus somewhat simplifying the modelling process. 

Overall, though, STRIPS, the planner and the language, are 

very limited both in planning issues it addresses and 

problems it can solve (Fikes and Nilsson, 1993). Even limited 

as it is, the STRIPS representation became one of the basis in 

automatic planning research for many years, most likely 

thanks to the severe simplifying assumptions it made, that 

allowed early progress to be made on the extreme difficulties 

of the general automatic planning problem. 

2.2  PDDL 

PDDL is an action-centred language, inspired by the well-

known STRIPS formulations of planning problems. At its 

core is a simple standardisation of the syntax for expressing 

this familiar semantics of actions, using pre- and post-

conditions to describe the applicability and effects of actions. 

The syntax is inspired by Lisp, so much of the structure of a 

domain description is a Lisp-like list of parenthesised 

expressions. (Fox and Long, 2003). The language, in its most 

basic and early versions, support the following features 

(McDermontt et al., 1998): 

• Basic STRIPS-style actions 

• Conditional effects 

• Universal quantification over dynamic universes 

(i.e., object creation and destruction), 

• Domain axioms over stratified theories, 

• Specification of safety constraints. 

• Specification of hierarchical actions composed of 

subactions and subgoals. 

• Management of multiple problems in multiple 

domains using differing subsets of language features 

(to support sharing of domains across different 

planners that handle varying levels of 

expressiveness). 

An early design decision in the language was to separate the 

descriptions of parametrized actions that characterise domain 

behaviours from the description of specific objects, initial 

conditions and goals that characterise a problem instance. 

Thus, a planning problem is created by the pairing of a 

domain description with a problem description. The same 

domain description can be paired with many different 

problem descriptions to yield different planning problems in 

the same domain. (Fox and Long, 2003) 

Further revisions added several features which enable the 

language to express more elaborate models. Among the most 

important additions are: 

• Numeric expressions, 

• Durative actions, 

• Alternative objective functions (metric) (Fox and 

Long, 2003), 

• Strong and soft problem goals – goals that must be 

achieved or are just desirable, respectively 

• Strong and soft constraints on plan trajectories – 

similarly to the goals, strong ones have to be 

obeyed, whereas it is desired that soft ones are 

observed (Gerevini and Long, 2005). 

The PDDL language is very modular, being factored into 

subsets of features, called requirements. Every domain 

defined using PDDL should declare which requirements it 

assumes. A planner that does not handle a given requirement 

can then skip over all definitions connected with a domain 

that declares that requirement, and won't even have to cope 

with its syntax. 

To better illustrate the language, Figs. 1 and 2 exposes valid 

2.1 PDDL codes that defines a simple domain and problem 

about logistics, taking fuel into account in a very primitive 

way. The fuel level is discretized into three levels (full, half, 

and empty), with each trip between two connected locations 

draining one level through the action drive. Two vehicles, the 

car and the truck, are declared, and each has a separate list of 

locations that are accessible from one another. The car begins 

at Paris with a full fuel tank and the truck starts with half a 

tank and at Rome. The goal of this planning problem is for 

the two vehicles to switch locations. 

(define (domain vehicle) 
  (:requirements :strips :typing) 
  (:types vehicle location fuel-level) 
  (:predicates (at ?v - vehicle ?p - location) 
      (fuel ?v - vehicle ?f - fuel-level) 
      (accessible ?v - vehicle ?p1 ?p2 - location) 
      (next ?f1 ?f2 - fuel-level)) 
  (:action drive 
    :parameters (?v - vehicle ?from ?to - location 
                 ?fbefore ?fafter - fuel-level) 
    :precondition (and (at ?v ?from) 
                       (accessible ?v ?from ?to) 
                       (fuel ?v ?fbefore) 
                       (next ?fbefore ?fafter)) 
    :effect (and (not (at ?v ?from)) 
                 (at ?v ?to) 
                 (not (fuel ?v ?fbefore)) 
                 (fuel ?v ?fafter)) ) ) 

Fig. 1. Transportation domain PDDL code (Fox and Long, 

2003) 
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(define (problem vehicle-example) 
  (:domain vehicle) 
  (:objects 
    truck car - vehicle 
    full half empty - fuel-level 
    Paris Berlin Rome Madrid - location) 
  (:init 
    (at truck Rome) 
    (at car Paris) 
    (fuel truck half) 
    (fuel car full) 
    (next full half) 
    (next half empty) 
    (accessible car Paris Berlin) 
    (accessible car Berlin Rome) 
    (accessible car Rome Madrid) 
    (accessible truck Rome Paris) 
    (accessible truck Rome Berlin) 
    (accessible truck Berlin Paris) 
  ) 
  (:goal (and (at truck Paris) 
              (at car Rome)) 
) 

Fig. 2. Transportation problem PDDL code (Fox and Long, 

2003) 

2.3  PPDDL 

PPDDL1.0 is a first step towards a general language for 

describing probabilistic and decision theoretic planning 

problems, and is essentially a syntactic extension of PDDL 

2.1. Note that, whereas the PDDL definition imposes a 

specific output plan structure for planners, PPDDL does not, 

except that only a single action can be executed at any point 

in time. The problem of plan representation has been left 

entirely to the planning systems, and planning systems may 

even choose to have no plan representation at all. (Younes 

and Littman, 2004). 

PPDDL has been used in the probabilistic track at the 

International Planning Competition from the fourth to the 

sixth editions, and the latest instalment still provides 

automatic translations for PPDDL from the now used RDDL 

(Coles et al., 2012). 

The key extensions PPDDL brought is support for 

probabilistic effects (Younes and Littman, 2004) by the use 

of the syntax shown on Fig. 3 when declaring effects, where 

pn represents the possibility of its associated sub-effect to be 

executed. 

(...) 
    :effect  (probabilistic p

1
 (effect) 

                            p
2
 (effect) 

                            (...) 
                            p

n
 (effect) ) 

(...) 

Fig. 3. Definition of probabilistic effects 

It is worth noting that a single PPDDL action schema can 

represent a large number of actions and a single predicate can 

represent a large number of state variables, meaning that 

PPDDL often can represent planning problems more 

succinctly than other representations. For example, the 

number of actions that can be represented using m objects 

and n action schemata with parity c is m·n·c, which is not 

delimited by any polynomial in the size of the original 

representation (m+n). Grounding is by no means a 

prerequisite for PPDDL planning, so planners could 

conceivably take advantage of the more compact 

representation by working directly with action schemata 

(Younes and Littman, 2004). 

Markovian rewards, associated with state transitions, can be 

encoded using fluents. PPDDL reserves the fluent reward , 

accessed as (reward) or reward, to represent the total 

accumulated reward since the start of execution. Rewards are 

associated with state transitions through update rules in 

action effects. 

PPDDL also makes adjustments to how goals should be 

interpreted. For regular probabilistic planning problems, the 

objective of the planner should be to maximize the 

probability of the stated goals to be achieved, which is stored 

in a special optimization metric defined as goal-achieved. For 

reward oriented planning problems, the default objective is to 

maximize the reward and the defined goals area set of 

absorbing states. There is also a special statement (:goal-

reward f) that associates a one-time reward f is associated 

with entering a goal state (Younes and Littman, 2004). 

2.4  RDDL 

RDDL is a domain modelling language devised to model 

problem which pose a problem to the traditional (P)PDDL 

class of languages. Many important domains are difficult to 

express using (P)PDDL, like multi-elevator control with 

independent random arrivals, logistics domains with 

independently moving vehicles and noise, and UAVs with 

sensors for partially observed state (Sanner, 2010). 

Instead of extending PPDDL, which is an extension to PDDL 

itself (Younes and Littman, 2004), an entirely new language 

was formulated since stochastic effects and concurrency are 

difficult to jointly reconcile in an effects-based language 

(Sanner, 2010). 

Thanks to the expressiveness of the language, it has been 

adopted by the International Planning Competition in its 

seventh version, accompanied by a new variety of planning 

problems (Coles et al., 2012). 

A central design principle of RDDL is that the language 

should be simple and uniform with its expressive power 

deriving from composition of simple constructs. RDDL is 

based on the following principles: 

• Everything is a parametrized variable (fluent or non-

fluent), 

• Flexible fluent types, 

• The semantics is simply a ground Dynamic Bayes 

Net (DBN), 

• General expressions in transition and reward 

functions, 

• Classical Planning as well as General (PO)MDP – 

Partial Observed Markov Decision Process – 

objectives, 

• State/action constraints. 
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Perhaps the most confusing issue for those familiar with 

PPDDL is the semantics of parametrized actions in RDDL. 

Each action fluent is a separate variable taking on a distinct 

value determined by the user. This is in contrast to the 

PPDDL view of actions where all of the action information is 

given in the action name and parameters. Here an action is 

not viewed as a parametrized variable so it does not make 

sense to say a PPDDL action consists of multiple ground 

variables as is the case in RDDL. The view of RDDL actions 

as templates for ground variables directly supports 

concurrency (Sanner, 2010). 

3. CLASSIC PLANNING ALGORITHMS 

3.1  Forward-chaining search 

Forward-chaining search algorithms are very successful in 

the satisficing track of the International Planning 

Competition, so far as that LPG was the only winner in the 

tracks history to not be based on that (Coles et al., 2012). 

The search algorithms of the most prominent forward search 

planners, namely HSP (Bonnet and Geffner, 1998), FF 

(Hoffmann and Nebel, 2001), Fast Downward (Helmert, 

2006), and LAMA-2008 and 2011 (Richter et al., 2011), are 

guided by heuristics. These are estimates of the total cost of 

the solution that can be achieved by following a partial path, 

and are used so that the search algorithm can give priority to 

more promising paths, and are extracted automatically from 

planning domains through several techniques. 

One of the consolidated techniques to extract heuristics from 

a model is to consider a relaxation of the problem into a 

simpler one (Bonnet and Geffner, 1998) by ignoring the 

delete list of STRIPS-based domains, an approach that was 

later adapted to work with numeric state variables as well 

(Hoffman, 2003). Then a solution to this relaxed problem is 

devised, be it by assuming independence between sub goals 

and calculating an additive heuristic (Bonnet and Geffner, 

1998) or by applying a GRAPHPLAN (Blum and Furst, 

1995) algorithm to solve the relaxed plan and use the 

calculated costs of the solution as an estimative (Hoffmann 

and Nebel, 1998). The FF planner goes one step further, and 

not only uses the estimated costs from the relaxed solution, 

but also extracts a list of helpful actions in order to decrease 

the algorithm’s search space. 

Later algorithms based on the Fast Downward planner 

implement additional heuristics through the generation of 

causal graphs. Informally, the causal graph contains an arc 

from a source variable to a target variable if changes in the 

value of the target variable can depend on the value of the 

source variable. Such arcs are included also if this 

dependency is of the form of an effect on the source variable. 

The planner also doesn’t compute the heuristic estimate for 

each generated state, it rather computes them only for closed 

nodes, while computation is deferred for nodes on the search 

frontier (Helmert, 2006). 

The Fast Downward planner also features a translation stage 

that transforms propositional tasks to multi-valued ones, as 

these have better structured causal graphs (Helmert, 2006). 

This concept was inherited by the planner LAMA (Richter et 

al., 2011). 

LAMA also implements its own scheme of heuristics by 

using the concept of landmarks in a multi-heuristic search 

context grouped with the original FF estimates. These 

landmarks are variable assignments that must occur at some 

point in every solution plan, and they are obtained by 

backchaining already known landmarks, starting with the 

goals (that are landmarks by definition). 

HSP and FF are based on variants of the hill climbing 

algorithm, where the best node is expanded and all other ones 

are discarded. While time-efficient, it can get stuck in local 

minima. The HSP planner approaches this issue by restarting 

the search if needed (Bonnet and Geffner, 1998), whereas FF 

deals with it by discarding the hill climbing algorithm 

altogether and resorting to a greedy best-first search 

(Hoffmann and Nebel, 2001), which is also used, with 

adaptations, for Fast Downwards (Helmert, 2006). LAMA 

also uses greedy best-first search to find an initial solution, 

but builds upon that by running a series of weighted A* 

searches with decreased weight using the by-then best known 

solution for pruning the search (Richter et al., 2011). 

3.2  LPG  

LPG is the winner of the third International Planning 

Competition, and is based on stochastic local search (Coles et 

al., 2012). It works basically by generating an initial planning 

graph and iteratively modifying it until a solution graph is 

obtained. 

A planning graph is a directed acyclic levelled graph with 

two kinds of nodes and three kinds of edges. The levels 

alternate between a fact level, containing fact nodes, and an 

action level containing action nodes. An action node at level t 

presents an action (instantiated operator) that can be planned 

at time step t. A fact node represents a proposition 

corresponding to precondition of one or more actions at time 

step t, or to an effect of one or more actions at time step t-1. 

The fact nodes of level 0 represent the positive facts of the 

initial state of the planning problem (every fact that is not 

mentioned in the initial state is assumed false). There is also a 

special action aend, whose preconditions are the goal fact 

nodes, and it represents the last action in any valid plan 

(Gerevini and Serina, 2002). 

To better understand the workings of LPG one also needs to 

define action graphs. An action graph (A-graph) A of G is a 

subgraph of G containing aend and such that, if a is an action 

node of in A, then also the fact nodes of G corresponding to 

the preconditions and positive effects of [a] are in A, together 

with the edges connecting them to a. 

The modifications each search step applies to a planning 

graph consist of adding a new action node to the current A-

graph, or removing an action node from it (together with the 

relevant edges) in order to solve a randomly chosen 

constraint violation, also called inconsistencies, which 

represents either conflicting actions happening on the same 

level or actions lacking supporting preconditions. Which of 

the two actions are executed is chosen based on a special 
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heuristic that estimates the cost to support the chosen 

violation (Gerevini and Serina, 2002). 

3.3  SGPLAN 

SGPlan is different from the planners discussed above in that 

it is not a distinct planning algorithm, but rather a partitioning 

framework that calls other algorithms to solve a batch of 

ordered subproblems which are, in theory, faster to solve. 

(Chen et al., 2004). 

The planner works on two levels. In the global level, we 

select a suitable order for the planner to solve the partitioned 

subgoals, introduce artificial global constraints to enforce that 

the solution of one subgoal solved later does not invalidate 

that of an earlier subgoal, and resolve violated global 

constraints using the theory of extended saddle points. In the 

local level, we perform a hierarchical decomposition of first-

level. 

The ordering in the global level is done through three 

heuristics. The first one is reasonable ordering, where if a 

subgoal can’t be achieved without invalidating another, it 

must come before it. Failing that there is irrelevance 

ordering, where between two subgoals, the one with less 

irrelevant actions is solved first. In case the first two levels 

can’t order two subgoals, precondition ordering is applied, 

giving priority to the one with the larger minimum number of 

preconditions of supporting actions. Pairs of actions not 

ordered in any level are sorted randomly. 

In the local level, with a given subgoal G after first-level 

partitioning, SGPlan identifies intermediate second-level 

subgoals (or facts) that must be true in any plan that achieves 

G from a given initial state. These facts allow the 

construction of an intermediate goal agenda (IGA), which is 

an ordered list of agenda entries, each containing a set of 

intermediate facts. 

Once the tasks are divided and ordered, they are handed to an 

actual planning algorithm. The implementation of SGPlan 

that won the Fourth International Planning Competition uses 

a modified implementation of Metric-FF and, when it fails, 

invokes LPG (Chen et al., 2004). 

4. PROBABILISTIC PLANNING ALGORITHMS 

4.1  FF-REPLAN 

FF-Replan is an action selection algorithm for online 

planning in probabilistic domains. FF-Replan has a very 

simple architecture. Given a new probabilistic planning 

problem, consisting of a domain description, a goal, and 

initial state, FF-Replan first generates a deterministic 

planning problem, removing all probabilistic information, 

then uses the deterministic planner FF (Hoffmann and Nebel, 

2001) to compute a totally ordered plan for the generated 

deterministic problem. During execution of the resulting plan, 

if confronted with an unexpected state, the process is 

repeated with the unexpected state as the initial state, until a 

goal state is reached. Note that the determinization process is 

conducted once before execution begins and there is a 

potential improvement of the system by considering adaptive 

determinization (Yoon et al., 2007). 

Internally, FF-Replan maintains a partial state-action 

mapping using a hash-table which is initially empty. When 

FF-Replan encounters a state that is not in the table, then it 

determinizes the problem and synthesizes a plan using FF. 

FF-Replan then simulates the plan according to the 

deterministic action definitions resulting in a state-action 

sequence whose pairs are put in the hash table. The first 

action of the plan is then executed in the environment, which 

returns a new current state. FF-Replan thus produces a partial 

policy in an online fashion. Of course due to the deterministic 

approximation, the partial policy has no quality guarantees in 

general (Yoon et al., 2007). 

4.2  PROST 

The PROST planning system is based on the upper 

confidence bounds applied to trees (UCT) algorithm (Kocsis 

and Szepesvári, 2006), a state-of-the-art approach for many 

problems of acting under uncertainty. As an anytime 

algorithm, UCT returns a non-random decision whenever 

queried, and terminates based on a timeout given to the 

system as a parameter. In the given time, UCT performs 

rollouts, where, as usual in Monte-Carlo approaches, 

outcomes of actions are sampled according to their 

probability (Keller and Eyerich, 2012). 

The planner uses the detection of reward locks. Reward locks 

are states where where, no matter which action is applied and 

which outcome occurs, we end up in a state where we receive 

the same reward as before, and which is also a reward lock. 

These states can be goals or dead ends, and discerning 

between them is difficult, and PROST merely gives them 

higher priority during searches which effectively serves both 

to guide the search towards goal states and to avoid dead ends 

(Keller and Eyerich, 2012). 

Another important aspect of PROST is how it exploits the 

structure of RDDL during the search process. For chance 

nodes, which are nodes that have several successors for some 

given action, the successor is chosen by sampling the 

outcome according to its transition probability. As transition 

functions for variables are independent from each other, the 

number of outcomes and with it the number of successors of 

a chance node might be exponential in the number of 

variables. Since RDDL provides a separate transition 

probability for each variable, they can be applied 

sequentially, drastically reducing the branch factor of chance 

nodes (Keller and Eyerich, 2012). 

5.  APPLICATIONS ON LOGISTIC DOMAINS 

This work represents a starting point towards applying 

automated planning algorithms to logistic systems in 

manufacturing processes. This requires, beforehand, good 

knowledge of both the system in question and the strength 

and weaknesses of current planners. Classical and 

probabilistic planning algorithms were reviewed. To create a 

new automated planning system focusing on production and 

logistics, first of all, there is a need of requirement analysis. 

The system itself can be divided in several levels, in which an 

upper level’s actions can be expanded to fully-fledged plans 

generated in a lower one. This not only simplifies the 
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modelling process but also ensures modifications to the 

model do not enforce replanning efforts for the whole 

manufacturing system. 
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