
IN DEGREE PROJECT ELECTRICAL ENGINEERING,
SECOND CYCLE, 60 CREDITS

,  STOCKHOLM SWEDEN 2018

Developing a voice-controlled 
home-assisting system for KTH 
Live-in Labs

SHREYANS MALOO

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE



Contents

Acknowledgments 4

Abstract 5

Sammanfattning 6

List of Figures 9

List of Tables 10

1 Introduction 11
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Methodology 14

3 Background 15
3.1 Speech to Text Services . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Communication Protocols . . . . . . . . . . . . . . . . . . . . 20
3.3 Ethics and Society . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Design 24
4.1 Basic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Map of Alternatives . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1 Voice Command . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Speech to Text (STT) Service . . . . . . . . . . . . . . 27
4.2.3 Logic Engine . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.4 Communication Protocol . . . . . . . . . . . . . . . . . 27
4.2.5 Final Output . . . . . . . . . . . . . . . . . . . . . . . 28

2



CONTENTS CONTENTS

4.3 Failure Factors . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.1 Speech to Text . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Text to Keywords . . . . . . . . . . . . . . . . . . . . . 31
4.3.3 Keyword to action . . . . . . . . . . . . . . . . . . . . 32

5 Implementation 34
5.1 Raspberry Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.1 What is Raspberry Pi? . . . . . . . . . . . . . . . . . . 34
5.1.2 Setting up the Pi . . . . . . . . . . . . . . . . . . . . . 35

5.2 IBM Bluemix . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.1 Getting started with Bluemix . . . . . . . . . . . . . . 44
5.2.2 Linking our Pi to our device in Bluemix . . . . . . . . 48

5.3 Node-RED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.1 Setting up Node-RED on our Pi . . . . . . . . . . . . . 49

5.4 Prototype 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5 Prototype 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.6 Prototype 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6.1 Conversation service . . . . . . . . . . . . . . . . . . . 80
5.6.2 Node-RED . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Results and Discussion 95

7 Conclusion and Future Work 99

3



Acknowledgments

I would like to reserve this space to thank my supervisor Elena Malakhatka
for her endless support and dedication and for the brainstorming sessions
that offered me guidance throughout all the stages of the project.

I would also like to express my gratitude towards my thesis examiner
Prof. Carlo Fischione for the subject, the guidance and the opportunity to
work in this field at the KTH Live-in Lab.

Most of all, I would like to thank my family and to all my friends for their
support.

4



Abstract

The following master thesis is conducted on behalf of KTH Royal Insti-
tute of Technology and KTH Live-in Lab with the purpose of developing a
voice-controlled home-assisting system for the KTH Live-in Lab. The lab
is being designed to serve as a testbed for products and services that can
be tested and verified within an optimal space which can simulate a real-
life usage. Being designed as a bridge between industry and academia, it
aims to create a greater ease to which new products are tested and are re-
searched while involving KTH students in the process. Having innovation
at its core the KTH Live-in Lab needs a mode of communication between
the user/occupant and the appliances in the space. That is why this thesis
proposes to design a voice-controlled system that can control the appliances
and execute the commands provided by the user. The system will be created
around a Speech to text service and improving its performance through var-
ious modifications/integrations. The solution will be installed in the KTH
Live-in Lab and integrated with the central controller once the sensor place-
ment and controller installation is done.

To make the system more robust and accurate, a new variable called,
“Failure Factors” were defined for a voice-controlled system. The prototypes
were designed and improved with these factors as a basis. The main aim
of the project is to make a system capable of handling a set of pre-defined
simple commands. For testing purpose, only 3 appliances were considered –
light, heater and music. Also, the output is observed on LEDs rather than
on real appliances for the testing. These limitations were adapted to keep
our focus on the prime motive of this project and that was to make the voice-
recognition as consistent and accurate as possible. Future work will consist of
making the system capable of handling complex user commands and having
an active feedback mechanism such that the user can have conversation with
the system.

5



Sammanfattning

Följande magisteruppsats utförs p̊a uppdrag av KTH Royal Institute of Tech-
nology och KTH Live-in Lab med syfte att utveckla ett röststyrt hemhjälpssystem
för KTH Live-in Lab. Labbet är utformat för att fungera som testbädd
för produkter och tjänster som kan testas och verifieras inom ett optimalt
utrymme som kan simulera en verklig användning. Att vara utformad som
en bro mellan industri och akademi, syftar det till att skapa en större lätthet
för vilka nya produkter som testas och undersöks när de involverar KTH-
studenter i processen. KTH Live-in Lab har en innovation som är kärnan i
ett kommunikationsläge mellan användaren / passageraren och apparaterna
i utrymmet. Det är därför som denna avhandling föresl̊ar att designa ett
röststyrt system som kan styra apparaterna och utföra kommandon som till-
handah̊alls av användaren. Systemet skapas runt ett tal till texttjänsten
och förbättrar dess prestanda genom olika modifikationer / integreringar.
Lösningen kommer att installeras i KTH Live-in Lab och integreras med
centralstyrenheten när sensorplaceringen och kontrollenheten är klar.

För att göra systemet mer robust och noggrant definierades en ny vari-
abel, ”Failure Factors” för ett röststyrt system. Prototyperna utformades och
förbättras med dessa faktorer som grund. Huvudsyftet med projektet är att
skapa ett system som kan hantera en uppsättning fördefinierade enkla kom-
mandon. För teständamål betraktades endast 3 apparater - ljus, värmare och
musik. Dessutom observeras utsignalen p̊a lysdioder i stället för p̊a verkliga
apparater för testningen. Dessa begränsningar var anpassade för att h̊alla
fokus p̊a huvudmotivet för projektet och det var att göra röstigenkänningen
s̊a konsekvent och korrekt som möjligt. Framtida arbete kommer att best̊a
i att systemet kan hantera komplexa användarkommandon och ha en aktiv
återkopplingsmekanism s̊a att användaren kan ha konversation med systemet.

6



List of Figures

2.1 The Methodology Graph . . . . . . . . . . . . . . . . . . . . . 14

4.1 The Basic Model . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 The Map of Alternatives . . . . . . . . . . . . . . . . . . . . . 26
4.3 The Final flowchart to be implemented . . . . . . . . . . . . . 28

5.1 Screenshot of the SDFormatter V4.0 . . . . . . . . . . . . . . 36
5.2 Install screen we get first time we boot the Pi . . . . . . . . . 37
5.3 Configuration Screen of PuTTY . . . . . . . . . . . . . . . . . 40
5.4 Security warning generated by PuTTY . . . . . . . . . . . . . 41
5.5 Screenshot of vncserver command run via SSH (PuTTY) . . . 42
5.6 VNC Viewer welcome screen . . . . . . . . . . . . . . . . . . . 43
5.7 Screenshot of the desktop environment as visible on the remote

device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.8 Screenshot showing the credentials for a Bluemix account . . . 44
5.9 Screenshot of the welcome page for Bluemix service . . . . . . 45
5.10 Adding a new device . . . . . . . . . . . . . . . . . . . . . . . 46
5.11 Creating a device type named raspberryPi . . . . . . . . . . . 46
5.12 Adding new device, using the created device type . . . . . . . 47
5.13 Screenshot of the device information for device01 . . . . . . . 48
5.14 Running node-red-start . . . . . . . . . . . . . . . . . . . . . . 50
5.15 Screenshot of the page with service-credentials . . . . . . . . . 53
5.16 Speech to text node details . . . . . . . . . . . . . . . . . . . . 55
5.17 Editing the switch node for tasks . . . . . . . . . . . . . . . . 56
5.18 Edit switch node for appliances . . . . . . . . . . . . . . . . . 57
5.19 The Node-RED flow for Prototype 1 (version 1.0) . . . . . . . 58
5.20 STT output for commands 1-4 . . . . . . . . . . . . . . . . . . 60
5.21 STT output for commands 5-8 . . . . . . . . . . . . . . . . . . 60

7



LIST OF FIGURES LIST OF FIGURES

5.22 STT output for commands 9-12 . . . . . . . . . . . . . . . . . 61
5.23 Modified Task switch node . . . . . . . . . . . . . . . . . . . . 62
5.24 Modified appliance on (and appliance off) . . . . . . . . . . . 63
5.25 The Node-RED flow for Prototype 1 (version 2) . . . . . . . . 63
5.26 Flow for creating custom language model . . . . . . . . . . . . 65
5.27 Create Customization node . . . . . . . . . . . . . . . . . . . 66
5.28 List customization node . . . . . . . . . . . . . . . . . . . . . 66
5.29 Debug node . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.30 Get Customization node . . . . . . . . . . . . . . . . . . . . . 68
5.31 Node-RED flow for creating custom language model and adding

data from corpora to it . . . . . . . . . . . . . . . . . . . . . . 68
5.32 Add Corpus Node . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.33 Get Corpora Node . . . . . . . . . . . . . . . . . . . . . . . . 70
5.34 Train Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.35 Node-RED flow for adding words and data to custom language

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.36 Add words node . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.37 Node-RED flow for testing customized vs non-customized model 74
5.38 Non-Customized Speech to text node . . . . . . . . . . . . . . 75
5.39 Customized Speech to text node . . . . . . . . . . . . . . . . . 75
5.40 Non-Customized vs Customized example 1 . . . . . . . . . . . 77
5.41 Non-Customized vs Customized example 2 . . . . . . . . . . . 77
5.42 Non-Customized vs Customized example 3 . . . . . . . . . . . 78
5.43 Performance after adding words . . . . . . . . . . . . . . . . . 78
5.44 Conversation service intents . . . . . . . . . . . . . . . . . . . 80
5.45 Conversation service entities . . . . . . . . . . . . . . . . . . . 81
5.46 Contents of the appliances entity . . . . . . . . . . . . . . . . 81
5.47 The conversation service dialog . . . . . . . . . . . . . . . . . 82
5.48 Contents of ”Hello” node . . . . . . . . . . . . . . . . . . . . . 83
5.49 Contents of ”other appliances” node . . . . . . . . . . . . . . . 84
5.50 Contents of ”turn on appliance” node . . . . . . . . . . . . . . 85
5.51 Contents of ”turn on” node . . . . . . . . . . . . . . . . . . . 86
5.52 Contents of ”All appliances on” node . . . . . . . . . . . . . . 87
5.53 Contents of ”appliance on” node . . . . . . . . . . . . . . . . . 87
5.54 Contents of ”Appliance” node . . . . . . . . . . . . . . . . . . 88
5.55 Contents of ”Goodbye” node . . . . . . . . . . . . . . . . . . . 89
5.56 Contents of ”Anything else” node . . . . . . . . . . . . . . . . 89
5.57 Snapshot of a dialog with the conversation service . . . . . . . 90

8



LIST OF FIGURES LIST OF FIGURES

5.58 Node-RED flow for Prototype 3 . . . . . . . . . . . . . . . . . 91
5.59 Conversation service Node . . . . . . . . . . . . . . . . . . . . 92
5.60 Watson Conversation Workspace details . . . . . . . . . . . . 92
5.61 Conversation service handling multiple appliances . . . . . . . 93
5.62 Conversation service handling misinterpretations from customized

STT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9



List of Tables

4.1 Summarized Failure Factors . . . . . . . . . . . . . . . . . . . 33

5.1 Performance - Prototype 1 (version 1) . . . . . . . . . . . . . . 59
5.2 Performance - Prototype 1 (version 2) . . . . . . . . . . . . . . 64
5.3 Performance - Prototype 2 . . . . . . . . . . . . . . . . . . . . 79
5.4 Performance - Prototype 3 . . . . . . . . . . . . . . . . . . . . 94

6.1 Evaluation - Prototype 1 . . . . . . . . . . . . . . . . . . . . . 96
6.2 Evaluation - Prototype 2 . . . . . . . . . . . . . . . . . . . . . 97
6.3 Evaluation - Prototype 3 . . . . . . . . . . . . . . . . . . . . . 98

10



Chapter 1

Introduction

In this chapter, we will get an overview of the factors that will come to shape
the result of this thesis such as the present status of the home automation
sector, and the motivation behind this thesis. It also contains a description
of the problem and the steps needed to be taken in the attempt of solving it.

1.1 Outline

Home automation is evolving into something bigger than a connection be-
tween autonomous devices. It is moving towards systems and processes that
are becoming more intelligent and can communicate with people. This whole
relationship of us users with an autonomous system was foreseen by Mark
Weiser [13], in 1991, where he predicted computers to increasingly enable
the integration of simple objects, such as air conditioners, light switches and
more, in unobtrusive way in the user’s life. This evolution can be partly
explained by the decrease in hardware production costs, the evolution in sci-
entific research and the increase of economic advantages of the sector. The
increase in investments in this sector has made it possible for automation to
expand from just being restricted to high-value domains like industry and
military applications, and enter our day to day life through access control
devices, intelligent parking systems and smartphone applications. The focus
being to provide well-being, to enhance the quality of life and to improve
health and security services. Today, automation systems can combine in-
formation from several distributed sensors and actuators and use it. This
environment, working with such huge amount of data, has led to new con-

11



1.1. OUTLINE CHAPTER 1. INTRODUCTION

cepts and research fields, like Big Data, IoT, Artificial Intelligence and others.
Further, automation is evolving to new application domains like smart cities,
transport, agriculture, and intelligent health. Coming to one of the main
topics for this report, smart homes; it is a domain comprising familiar ap-
plications for users to merge all these new concepts and technology. The
smart home automation is characterized by an infrastructure that enables
intelligent networking of devices and appliances that use various wireless
and wired technologies to provide seamless integration, which facilitate ease
of use of house systems while creating a personalised and safe home space
[14]. The smart home appliance market is projected to grow from 40 million
dollars in 2012 to 26 billion dollars in 2019 [15]. This business opportunity is
attracting several companies including General Electric, Cisco, Google and
others. But no company has yet succeeded to launch home automation as
a popular technology, despite the disparate activities in this industry. Some
of the reasons would be [12], (a) cost: due to low demand, the existing sys-
tems have been expensive, (b) difficult to install: professionals needed to
install and configure the system, (c) difficult to use: not so user-friendly con-
trol interfaces, (d) vendor dependency: different company appliances are not
compatible with same system, (e) less functionality: most of the system are
only able to monitor or control some functions, (f) not customized: very little
possibility to customize with the needs of the user, (g) not secure: there has
always been security issues and multiple-user problems related to such home
automation systems. After looking at the bright prospects and the bottle-
necks for the development of this sector, we will be trying to work towards
developing an affordable, user-friendly, customizable home-assisting system
in this report. With computers becoming more and more cheaper, we can
ensure the affordability of our system by using a cheap yet powerful com-
puter in Raspberry Pi. For making it user-friendly we have opted to go for
a voice-controlled setup. The advances in speech technology and computing
power over the last decade or so has created an increase of interest in the
practical application of speech recognition. Speech being the primary mode
of communication among humans, makes it more user friendly, faster and
less cumbersome mean of communicating than through keyboards or other
devices. For customizable, we will be discussing more as we proceed in this
report.

12



1.2. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

1.2 Problem Statement

The problem statement being tackled in this thesis is, to develop a voice con-
trolled home assisting system. Now, there are already several such products
available in the market. But, the features that will make this project unique
from all of them are as follows,

• This setup will be developed in-house and customized as per the appli-
cation at KTH Live-in labs.

• A new variable named “Failure factor” will be established and using
this, the efficiency of the developed system can be improved.

• Last but not the least, the place where this product will be used in
the future, KTH Live-in Labs, is an exclusive project exempted from
building permit regulations, providing unique possibilities for testing.
The data collected by our setup will be used to come up with innovative
living services. The exemption allows for wider range of data to be
collected and processed than a commercial home-assisting setup.

13



Chapter 2

Methodology

Figure 2.1: The Methodology Graph

The first step is doing the market survey of the existing systems. This
step involves doing a literature review of various studies done in the past on
the speech to text services and the communication protocols available in the
market.

The next step involves designing the basic model of our system. We
use the findings from the market survey to generate a map of alternatives,
comprising multiple options for each step in the basic model. Also, we select
a relevant path for our project in this step; the one which will be used for
implementation.

In the next step, we do some more literature review and define a new
variable, “Failure factor” which represents the factors that may reduce the
performance of our system.

Then we start with the implementation of our first prototype. We observe
the results and then try to improve the design through a more advanced
prototype 2 and 3, which is implemented in the next steps.

Finally, we analyse and evaluate all the results obtained. We also dis-
cuss the possibilities of improvement and implementing the idea in the real
conditions at KTH Live-in Labs in the future.

14



Chapter 3

Background

When designing a voice-controlled home assisting system, there are 2 major
areas where we have a wide range of options to choose from in the market
today – the speech to text service and the communication protocol.

3.1 Speech to Text Services

A study was done on the available STT services in the market today. Based
on this study, we will choose the one best suited for our application. The list
along with a brief description of each is as follows,

• Based on the official web page of Google Cloud Speech API [4], it en-
ables developers to convert audio to text by applying powerful neural
network models in an easy to use API. It claims to recognize over 80 lan-
guages and variants and being able to successfully handle noisy audio
from a variety of environments. Last but not the least, the Speech API
supports any device that can send a REST or gRPC request including
phones, PCs, tablets and IoT devices (e.g., cars, TVs, speakers). On
the downside, it is not free to use this service, as the Cloud Speech API
is priced $ 0.006 per 15 seconds of audio processed after a 60-minute
free tier on personal devices (for embedded devices as in our case, we
need to contact them for approval and pricing). Unfortunately, with
this solution one will not be able to change the “OK, Google” wake-up
word.

• Pocketsphinx is an open source speech decoder developed under the

15



3.1. SPEECH TO TEXT SERVICES CHAPTER 3. BACKGROUND

CMU Sphinx Project. It is quite fast and has been designed to work
well on mobile operating systems such as Android as well as embedded
systems (like Raspberry Pi). The advantage of using Pocketsphinx is
that the speech recognition is performed offline, which means we don’t
need an active Internet connection. However, the recognition rate is on
the poorer side. The most difficult issue mentioned above is: setting a
custom wake-up word. Intuitively, it is better if we can avoid using a
cloud service for this feature because the continuous connection with
the Internet will negatively affect battery life. Instead of cloud services,
we use PocketSphinx - an open source solution for Android. Thus, we
can use PocketSphinx as an offline solution only for keyword recog-
nition. Later, we’ll require some cloud service to handle the request.
Pros:

– With Sphinx, it is possible to set a custom wake-up word.

– Sphinx works offline (lower battery consumption).

Cons:

– PocketSphinx is not accurate enough to get the effect we want to
achieve.

– There is a pause after Sphinx recognizes a keyword and launches
the cloud service.

• A&T STT was developed by AT&T. The recognition rate is good, but
it needs an active connection to work, just like Google STT. AT&T
speech recognition REST API features:

– Registration is required

– Required “Premium Access” payment is $99/year + Usage fees to
access automatic speech recognition

– Per documentation usage limitations is 1 request per second

• Julius is a high-performance, open source speech-recognition engine. It
does not need an active Internet connection, like Pocketsphinx. It is
quite complicated to use because it requires the user to train their own
acoustic models.

16



3.1. SPEECH TO TEXT SERVICES CHAPTER 3. BACKGROUND

• Wit.ai STT is a cloud-based service provided to users. Like AT&T and
Google STT, it requires an active Internet connection to work.

– WIT is more about NLP (Natural Language Processing) than
about plain-speech recognition.

– Main focus, besides speech recognition, is to parse out spoken
phrases and extract valuable information (e.g., some voice com-
mand). The goal is to have the system “understand” voice. For
instance, when the user says, “Hi, robot! Please play me a Christ-
mas song”, it should start playing “Jingle Bells.”

– Github account is all that is needed to access WIT REST API

– No account usage limitation

How wit.ai works:

– Provide a sentence we want the app to understand. Then either
select an existing intent from the Community or create our own.

– Send text or stream audio to the API. In return, Wit.ai gets struc-
tured information.

– Wit.ai learns from usage and helps improve configurations.

Pros:

– Returns JSON.

– Already has many built-in intents.

– Ability to learn from the user.

Cons:

– Not stable enough. During the test, it was shut down after 30 sec
[3].

– Not so comfortable to use.

• Initially known as IBM’s Jeopardy winning AI service, Watson came
forth for commercial applications at the beginning of 2013. With the
growth of cloud and IoT, IBM Bluemix was launched as the go-to
platform for all related services. Although speech analysis capabilities

17



3.1. SPEECH TO TEXT SERVICES CHAPTER 3. BACKGROUND

were only added at the beginning of 2015, early research on Auto-
matic Speech Recognition at IBM dates all the way back to the 60’s.
Currently, Watson’s speech-to-text services provide transcriptions in
9 different languages. As mentioned in their webpage [5], recently it
reached a new industry record of 5.5 percent word error rate (with hu-
man parity being lower than what any STT has yet achieved — at 5.1
percent). IBM STT was developed by IBM and is a part of the Wat-
son division. It requires an active Internet connection to work. IBM
Speech recognition REST API features:

– Registration in Bluemix is required

– Usage limitations of first 1000 minutes per month

• The American Nuance is a top-notch company in the field of speech
recognition and synthesis. Coming forth with an already huge amount
of industry specific solutions, they recently launched Dragon Drive,
which is already implemented in some BMW vehicles. The service that
is referred to here, however, is the Nuance Mix service. Launched at the
end of 2015, the platform comes forth as the IoT and developer solution
for their speech services, currently providing 18 different languages for
speech-to-text analysis. Nuance provides many voice recognition and
natural language processing services. It has a ready solution for mobile
speech-recognition: VoCon Hybrid, which could solve one of our most
difficult issue - custom keyword recognition. Pros:

– A key advantage of this technology is that always-listening mode
with keyword activation removes the need for a push-to-talk but-
ton.

– All-inclusive main menu. Enables all commands to be spoken in
a single utterance on the main menu.

Cons:

– Closed technology. It is not an open source API - if we want to use
it in our project we need to contact Nuance and ask for samples
to test it.

– Complicated documentation and set-up.

– Usage limitations of 5,000 requests per day

18



3.1. SPEECH TO TEXT SERVICES CHAPTER 3. BACKGROUND

• Alexa Voice Service (AVS) is a cloud speech-recognition service from
Amazon. It is used in Amazon’s Echo. Here’s how it works: “Alexa”
is the wake-up word and starts the conversation. Our service [3] gets
called when customers use our invocation name, such as: “Alexa, ask
Lucy to say hello world.” This example is a simple command-oriented
one. ASK also supports more sophisticated multi-command dialogues
and parameter passing. The above example would work like this:

– ”Alexa” is the wake word that starts the conversation.

– ”Ask...to” is one of the supported phrases for requesting a service.

– ”Lucy” is the invocation name that identifies the skill we want (in
our case it’s the name of our app).

– ”Say hello world” is the specific request, question, or command.

Pros

– Alexa provides a set of built-in skills and capabilities available
for use. Examples of built-in Alexa skills include the ability to
answer general knowledge questions, get the current time, provide
weather forecast information and query Wikipedia, among others.

– Returns an mp3 with an answer.

Cons

– To get custom intents within AVS it is necessary to create, register
and test them with the Alexa Skill Kit.

– Complicated documentation.

– To capture the user’s utterances, the device needs to have a but-
ton to activate the microphone (push-to-talk). According to [3],
they contacted Amazon and got information that far-field voice
recognition or using a spoken word to trigger activation of the
Alexa Voice Service is currently unavailable.

• The Api.ai platform lets developers seamlessly integrate intelligent voice
command systems into their products to create consumer-friendly voice-
enabled user interfaces. We made a test application [3] using Api.ai and
it was closest in quality to Amazon Echo. Pros:

19



3.2. COMMUNICATION PROTOCOLS CHAPTER 3. BACKGROUND

– Easy to implement, clear documentation.

– Ability to learn and adapt (machine learning).

– Complete cloud solution (only without keyword activation): Voice
recognition + natural language understanding + text-to-speech.

– Returns a voice answer.

– User friendly.

Cons:

– It has only push-to-talk input.

3.2 Communication Protocols

A study was done on the available communication protocols in the market
today. A couple of studies ([6] and [7]) on this topic were referred to, to get
the basic idea of the communication protocols available. The list along with
a brief description of each is as follows,

• X10 has been around for almost 40 years and uses the home wiring to
communicate. It was supposed to be superseded by UPB but it didn’t
happen. Because of its age, the protocol is limited to simple, nar-
rowband instructions and susceptible to electronic interference. This
interference can be mitigated with filters though.

• UPB or Universal Powerline Bus, while similar to X10, was intended to
be an X10 replacement, given its superior reliability (less susceptible
to power line noise and increased range - it can transmit over one
mile). The technology uses a home’s existing power lines, which reduces
costs a bit, to send signals that will control devices both inside and
outside the home. One of the disadvantages of this technology is, it is
difficult to combine it with the newer wireless technologies such as Wi-
Fi, smartphones, etc. What’s more, while the platform claims a 99%
reliability factor, it offers a relatively low bandwidth, so performance
can be slow. It also provides no encryption, meaning it is not quite as
secure as wireless. The technical complexity of the system makes for
a difficult user-setup experience. And the big downside: There are far
fewer UPB-compatible devices than for other technologies.

20



3.2. COMMUNICATION PROTOCOLS CHAPTER 3. BACKGROUND

• One of the most popular of the wireless home automation protocols, Z-
Wave runs on the 908.42MHz frequency band. Because this is a much
lower band than the one used by most household wireless products (2.4
GHz), it is not affected by their interference and “traffic jams.” A sig-
nificant advantage of Z-Wave is its interoperability. All Z-Wave devices
talk to all other Z-Wave devices, regardless of type, version or brand.
Further, the interoperability is backward- and forward-compatible in
the Z-Wave ecosystem; that is, Z-Wave products introduced today will
work with Z-Wave products from a decade ago and with products in
the future (although possibly with some limits on functionality). There
are currently over 1,200 different Z-Wave -compatible devices on the
market, giving consumers access to a wide range of options when au-
tomating their home. The advantage is that the protocol is simple to
set up, requires very little power and can use each device as a repeater.
The disadvantage is that just like Wi-Fi, some homes suffer from low
reception.

• Introduced in 2005, Insteon devices communicate over both power lines
and wirelessly, ensuring multiple pathways for messages to travel. In-
steon is also X10 compatible, which means that users can add wireless
capability to an existing X10 network; doing so can be an effective and
cost-efficient way to make a full-blown transition to wireless. There are
almost 200 different Insteon-enabled home automation devices avail-
able on the market (including the “hub” controllers). Moreover, these
devices don’t have to be “enrolled” in the home automation network;
they join the network as soon as they’re powered up, simplifying in-
stallation. There’s no practical limit to the size of an Insteon network;
it’s not unusual to have more than 400 devices in a single installation.
On top of all these, its dual-band mesh network turns all powerline-
operated devices into repeaters, greatly extending signal range.

• There are myriad similarities between Z-Wave and ZigBee. Like Z-
Wave, ZigBee is exclusively a wireless home automation protocol. One
of the major drawbacks of this technology is the lack of interoperabil-
ity between ZigBee devices, which often have difficulty communicat-
ing with those from different manufacturers. So, careful consideration
should be made in terms of purchasing and product choice. ZigBee is
a low-cost, low-power technology, meaning that the battery-operated

21



3.2. COMMUNICATION PROTOCOLS CHAPTER 3. BACKGROUND

devices in a ZigBee network will enjoy a long life. Running on the
802.15.4 wireless communication standard, ZigBee also uses a mesh
network structure that provides excellent range and creates rapid com-
munication between ZigBee devices.

• We all know Wi-Fi and use it every day so it needs a very little in-
troduction here. Boasting high bandwidth, Wi-Fi is already pretty
much everywhere, so many manufacturers are enthusiastically making
smart home devices to work with it. However, there are two key draw-
backs: interference and bandwidth issues. If your house is full of Wi-
Fi-connected gadgets (TVs, game consoles, laptops, tablets, etc.) then
your smart devices must compete for bandwidth and may be slower
to respond. Lastly, it is also hungry for power; consequently, battery-
operated smart devices such as locks and sensors get drained much
sooner than in other wireless environments.

• Bluetooth uses less power than Wi-Fi but has a shorter range. It is
also another familiar protocol that we know and use already. The
advantages of Bluetooth are interoperability and security. One of the
advantages is the high data bandwidth (higher than ZigBee and Z-
Wave but lower than Wi-Fi) while sucking up far less power than Wi-
Fi. Conversely, it also has a limited range, so for devices that require
constant connection—think motion sensors, security systems, etc.—it
may not be the ideal platform. However, it has been reported [7] that
the newest version of Bluetooth (Bluetooth Low Energy, or BLE) can
form mesh networks, greatly extending its range. And with no central
hub required, the convenience factor cannot be overlooked.

• Thread is a new wireless protocol for smart household devices. More
than 250 devices can be connected on a Thread network and, be-
cause most devices meant to be connected to the network are battery-
operated, it’s very frugal on power. Using the same frequency and radio
chips as ZigBee, it is intended to provide a reliable low-power and se-
cure network that makes it simple for people to connect more than 250
devices in the home to each other. They can even be connected to the
Cloud for ubiquitous access.

22



3.3. ETHICS AND SOCIETY CHAPTER 3. BACKGROUND

3.3 Ethics and Society

Home automation has been a very sensitive topic when it comes to ethics. A
few of the areas that are of concern here are,

• Letting a machine collect personal data and analyse it. Consumers
are sceptical about the way this data is handled by home-automation
companies.

• The more the machine knows about the user, the more is the risk of
losing it to someone who might for instance, hack the system.

• When it comes to voice-controlled systems, there is an unethical aspect
related to it, about recording personal conversations. Although the
companies claim that they only send the voice recording to their cloud
platform once it captures the keyword, even though it is continuously
recording the sound waiting for the keyword. These ethical issues from
the consumer end has been one of the reasons for the lower acceptance
of smart-home technologies by the consumer and thus slow growth of
the smart home sector.

Coming to the KTH Live-in Labs, this would be a much-needed step stone
for the home-automation companies. Being a testbed with some exemptions
on the data it can work with, allows companies to try out their new ideas
here or even develop ideas based on the research done here. Hence, the whole
sector can bloom with the innovations, which was previously hindered by the
unavailability of test subjects and test beds in this sector. The result would
be a more consumer-centred innovations. Thus, eventually this project will
be contributing to the whole home-automation community, which aims in
making the society more comfortable and life easier for us human beings.

23



Chapter 4

Design

4.1 Basic Model

The basic model for a voice-controlled home-assisting system looks like this,

Figure 4.1: The Basic Model

24



4.1. BASIC MODEL CHAPTER 4. DESIGN

The steps involved are,

• Voice Command: This step involves the user giving a voice command,
which is recorded for further processing.

• Speech to text (STT) service: This step involves converting the speech
recorded in the previous step into text for further processing.

• Logic Engine: In this step, the text is analyzed and the engine looks
for certain keywords to make decisions.

• Communication: The decision made by the logic engine needs to be
communicated to the controller, that is what happens in this step.

• Final Output: In this step the controller, once it receives the decision
from the logic engine, controls the respective appliance to provide the
output to the user. Hence, the loop completes.

25



4.2. MAP OF ALTERNATIVES CHAPTER 4. DESIGN

4.2 Map of Alternatives

Generating a flowchart with the suitable alternatives we have for each step,
we get the following,

Figure 4.2: The Map of Alternatives

Now, we choose the best path suitable for our application before we start
implementing,

4.2.1 Voice Command

The voice command from the user can be recorded by any means, be it an
external USB microphone or an inbuilt microphone of a laptop. The focus
here is to ensure the quality of the recorded voice is good, with least possible
noise or disturbances. Hence, using a USB microphone with good noise
cancellation would be a logical choice.

Another area of personalization here is to have either a push-to-talk tech-
nology or a wake-up word technology. The way they work is, in push-to-talk,

26



4.2. MAP OF ALTERNATIVES CHAPTER 4. DESIGN

you need to press some button or icon in a GUI to start the recording, it is
reliable in the way, it will only record when the user needs it to and there
will not be any irrelevant requests transmitting. On the other hand, the
wake-up word, is always listening for a keyword, and once it records that, it
starts transmitting the information further. The disadvantage with this is,
it consumes a lot of battery to always keep listening for a keyword. But then
again, this technology gives a higher sense of autonomy when the user does
not need to press any button to start the assistant.

The idea will be to first build a system with push-to-talk feature and then
move on to wake-up word.

4.2.2 Speech to Text (STT) Service

Based on the study done in Background section of this report, I would like to
test the IBM Watson STT for our voice-recognition system. Since, it looks
promising, have been breaking records in recent times in this area [5], and
the researchers at KTH Live-in Labs recommend using IBM Bluemix plat-
form and IBM Watson. It even allows for a higher degree of personalization
when compared to all other STT services, which is very important for our
application.

4.2.3 Logic Engine

There is not a lot of choice when it comes to logic engine, as it will be pretty
much decided by our choice of STT service. For instance, if we use IBM
Watson STT, the preferable logic engine will be NodeRED, and the code
can be executed on an embedded device let’s say a Raspberry Pi (tiny and
affordable computer).

4.2.4 Communication Protocol

Choosing a smart home communication protocol can be tricky business. Ob-
viously, we want one that will support many devices, as well as one that
offers the best possible device interoperability (the ability for devices to talk
to each other). But there are also other factors to consider, such as power
consumption, bandwidth and, of course, cost.

Since, we are moving ahead with the IBM cloud platform and the embed-
ded device, Raspberry Pi supports wireless communication, we will be using

27



4.2. MAP OF ALTERNATIVES CHAPTER 4. DESIGN

the WiFi communication protocol.

4.2.5 Final Output

The ultimate output is quite clear, the appliances. But to reach this, we need
to control the controller that handles all the connected appliances. And to
control the controller we need an intermediate device that listens to the logic
engine and must be obviously compatible with the communication protocol
to do that. For instance, going again with the IBM Watson example, we
can use a Raspberry Pi where the NodeRED application will be running
and which receives data from the IOT cloud, to further send signals to the
controller.

For testing purpose, we will be using LEDs receiving signals from the
GPIO pins of Raspberry Pi. These LEDs will be representing different ap-
pliances, for instance, light, music and heater.

Figure 4.3: The Final flowchart to be implemented

28



4.3. FAILURE FACTORS CHAPTER 4. DESIGN

4.3 Failure Factors

Here we will be looking at the various factors which can negatively affect
the performance of our system. We call these factors, “Failure factors”. The
intention is to eventually make our system as immune to these factors as
possible.

4.3.1 Speech to Text

An Automatic Speech Recognition (ASR) is just like any other machine learn-
ing (ML) problem, where the objective is to classify a sound wave into one
of the basic units of speech (also called a ”class” in ML terminology), such
as a word. The factors of failure here could be,

• The problem with human speech is the huge amount of variation that
occurs while pronouncing a word. There are several reasons for this
variation, namely stress on the vocal chords, environmental conditions
and microphone conditions, to mention a few. To capture this variation,
ML algorithms such as the hidden Markov model (HMM) along with
Gaussian mixture models are used. More recently, deep neural networks
(DNN) have been shown to perform better. One way to do ASR is to
train ML models for each word. During the training phase, the speech
signal is broken down into a set of features (such as Mel frequency
cepstral coefficients, or MFCC for short) which are then used to build
the model. These models are called acoustic models (AM). When a
speech signal should be ”recognized” (testing phase), features are again
extracted, and are compared against each word model. The signal is
assigned to represent the word, which has the highest probability value.

• This way of doing ASR works well for small vocabularies. When the
number of words increases, we end up comparing with a very large
set of models, which is computationally not feasible. There is another
problem of finding enough data to train these models. The word model
fails for large vocabulary continuous speech recognition tasks due to
the high complexity involved in decoding as well the need for the high
amounts of training data. To overcome this problem, we divide words
into smaller units called phones. In the English language (and many
Indian languages), there are approximately fifty phones that can be
combined to make up any word. For example, the word ”Hello” can be

29



4.3. FAILURE FACTORS CHAPTER 4. DESIGN

broken in to ”HH, AH, L, OW”. The problem of ASR boils down to
recognizing the phone sequence instead of a word. This requires build-
ing ML models for every phone. These models are called Monophone
models. If one can do a good job of recognizing the phones, a big part of
the ASR problem will be solved. Unfortunately, recognizing phones is
not an easy task. If we plot the Fourier spectrum of a phone utterance,
distinct peaks are visible. The peak frequencies are key indicators of a
phone. If a scatter plot of the vowels are plotted, the spread is large
and very often overlaps with one another, i.e. no clear boundaries can
be drawn to differentiate the vowels. This overlap makes it hard for a
ML algorithm to distinguish between phones.

• Even with good phoneme recognition, it is still hard to recognize speech.
This is because the word boundaries are not defined beforehand. This
causes problems while differentiating phonetically similar sentences. A
classic example for such sentences are ”Let’s wreck a nice beach” and
”Let’s recognize speech”. These sentences are phonetically very similar
and the acoustic model can easily confuse between them. Language
models (LM) are used in ASR to solve this problem.

• Another factor which bugs an ASR system is an accent. Just like hu-
mans, machines too have a hard time understanding the same language
with different accents. This is because the classification boundaries
previously learnt by a system for a particular accent do not stay con-
stant for other accents. This is the reason why ASR systems often asks
for user’s location/speaking style (English-Indian, English-US, English-
UK, for example) during the configuration process.

• The complexities described so far are part of natural speech. Even with
such large complexities, recognizing speech in noiseless environments is
generally considered a solved problem. It is the external influence such
as noise and echoes which are bigger culprits. Noise and echoes are
unavoidable interference while recording audio. Echoes happen due to
the reflections of speech energy from surfaces such as walls, mirrors,
and tables. This is not much of a problem when a speaker is speaking
close to the microphone. But when spoken from a distance, multiple
copies of the same signal are reflected and combined at different time
delays and intensities. This will result in the stretching of phones across
time and will end up corrupting the neighbouring speech information.

30



4.3. FAILURE FACTORS CHAPTER 4. DESIGN

This phenomenon is called as smearing. The process of removing the
smear is called dereverberation, which is a commonly used technique
to address the reverberation problem.

• If the ASR requires internet connection to work, the poor connection
or any problem in connection can be a factor of failure. The solution,
could be to ensure continuous accessibility to internet or even look
for offline options as much as possible but not at the expense of good
performance.

4.3.2 Text to Keywords

The factors of failure here could be,

• The first factor of failure by the logic engine comes from the STT. If
the STT misinterprets the user command, and the keywords provided
by the user are not able to either reach the text phase in the correct
form or not reach at all. The solution lies in making our STT more
robust such that there are minimal misinterpretations.

• Assuming the STT works ideally (words transcribed with 100% accu-
racy), there still could be reasons for the system to fail; if the user
provides fewer or no keywords than required. This can be tackled by
having a feedback mechanism that re-starts the loop, i.e. the user is
asked to rephrase the request with some keywords present, or in case
there are fewer keywords the system could confirm with the user, the
most probable inference made based on the provided keywords.

• Another factor of failure could come from the complexity of the user
command. For instance, if the user gives multiple commands in the
same sentence, like, “Turn on the lights and television”. The logic en-
gine should be equipped to understand and handle such cases where the
“turn on” keyword is used only once but two keywords for appliances
are mentioned.

31



4.3. FAILURE FACTORS CHAPTER 4. DESIGN

4.3.3 Keyword to action

The factors of failure here could be,

• If the output signal from the logic engine cannot reach the receiver, due
to some communication problem, this could lead to the system failing to
perform. The solution could be to firstly, have a stable communication
protocol always; secondly, to have an alert mechanism to alert the user
if the communication is broken and the command would not be able to
reach the intended appliances.

• Now, if the signal reaches the receiver, the failure could occur at the
link between the receiver and the controller. We need to ensure this
link is intact too, and can again have an alert mechanism to notify if
the controller is not listening to the signals from the receiver.

• Some applications may require the system to access certain readings
from the sensor network. For instance, if the user says, “Turn off the
lights if the room is empty”. Here, the recent readings from the occu-
pancy sensor shall be accessed to verify if the room is empty or not.
The factor of failure here could be the instability in communication be-
tween the sensor network and the controller (where we will be reading
the data form). We go with the same solution as before for communi-
cation links; having an alert mechanism to notify broken links.

• Continuing with the same situation as the previous point, if the sensor
itself is poor in quality, the readings can be wrong and thus again,
the whole system might fail to perform in the expected manner. The
solution here is straight, either we get better sensor or find alternative
ways in which our final output would not be so dependent on this
particular sensor.

32



4.3. FAILURE FACTORS CHAPTER 4. DESIGN

Summarizing the failure factors in a table,

Category Failure Factor Solution
Speech to Text - Variations in human

speech
- Large vocabulary contin-
uous speech recognition
- Undefined word bound-
aries
- Accent
- External influence –
noise, echoes
- Poor Internet connection

- Machine Learning
(Acoustic models, Mono-
phone models and Lan-
guage models)
- User-input during config-
uration
- Noise-cancelling micro-
phone
- Ensure better connectiv-
ity

Text to Keyword - Misinterpretation from
STT
- Fewer or no keywords
from user
- Complex user command

- More robust STT
- Feedback mechanism
- More advanced logic en-
gine

Keyword to Action - Communication error
- Poor sensor quality

- Stable communication;
alert mechanism
- Get better sensors

Table 4.1: Summarized Failure Factors

33



Chapter 5

Implementation

The important components for the implementation – both hardware and
software are stated as follows,

1. Raspberry Pi 3

2. IBM Bluemix account

3. Node-RED

4. USB Microphone (The one used in this project is, Yoga EM-310U)

5.1 Raspberry Pi

5.1.1 What is Raspberry Pi?

The Pi is a tiny computer about the size of a credit-card, the board features
a processor, RAM and typical hardware ports we find with most computers.
Even though the basic model costs as low as 35$, the possibilities of using it
in our daily lives are endless. It can be used for controlling of hardware, as a
media center, setting up camera projects, building games or most interesting
of all, physical computing – which involves building systems using sensors,
motors, lights and micro-controllers. The specifications of Raspberry Pi 3 -
Model B (used in this project) are,

• SoC: Broadcom BCM2837

• CPU: 4x ARM Cortex-A53, 1.2GHz

34



5.1. RASPBERRY PI CHAPTER 5. IMPLEMENTATION

• GPU: Broadcom VideoCore IV

• RAM: 1GB LPDDR2 (900 MHz)

• Networking: 10/100 Ethernet, 2.4GHz 802.11n wireless

• Bluetooth: Bluetooth 4.1 Classic, Bluetooth Low Energy

• Storage: microSD

• GPIO: 40-pin header, populated

• Ports: HDMI, 3.5mm analogue audio-video jack, 4x USB 2.0, Ethernet,
Camera Serial Interface (CSI), Display Serial Interface (DSI)

• OS: The primary supported operating system is Raspbian, although
it is compatible with many others. We have used Raspbian in this
project.

5.1.2 Setting up the Pi

The steps are as follows,

1. Format the SD Card: To begin with, it’s always a good idea to make
sure we have formatted our SD card (recommended size at least 8 GB,
we are using 32 GB in this project). We will need to make sure our
computer has a built-in SD card reader, or we can use a USB SD card
reader.

• Firstly, we need to visit the SD Association’s website (https://www.sdcard.org/)
and download SD Formatter 4.0 for either Windows or Mac.

• Then, we follow the instructions to install the software.

• Then, we insert our SD card into the computer or laptop’s SD
card reader and make a note of the drive letter allocated to it, e.g.
F:/.

• Lastly, in SD Formatter, we need to select the drive letter for our
SD card and format it.

35



5.1. RASPBERRY PI CHAPTER 5. IMPLEMENTATION

Figure 5.1: Screenshot of the SDFormatter V4.0

2. Install Raspbian with NOOBS:
NOOBS stands for New Out Of Box Software, and if one has never
played around with GNU/Linux before, then it’s the best place to start.

• Firstly, we need to visit the official Raspberry Pi Downloads page.
(https://www.raspberrypi.org/downloads/)

• Then, we click on NOOBS and then click on the Download ZIP
button under ‘NOOBS (offline and network install)’, and select a
folder to save it to.

• We then, extract the files from the zip.

• Once our SD card has been formatted, we can drag all the files
in the extracted NOOBS folder and drop them onto the SD card
drive. The necessary files will then be transferred to our SD card.

• When this process has finished, we can safely remove the SD card
and insert it into our Raspberry Pi.

3. Powering on the Pi for the first time:
There are some additional hardware required for just the first time we
boot our Pi.

36



5.1. RASPBERRY PI CHAPTER 5. IMPLEMENTATION

• Once the SD card is placed into the SD card slot on the Raspberry
Pi, we plug our keyboard and mouse into the USB ports on the
Raspberry Pi.

• Next, we connect an HDMI cable from our Raspberry Pi to a
monitor or TV. We need to make sure that the monitor or TV is
turned on, and that we have selected the right input (e.g. HDMI
1, DVI, etc).

• If we intend to connect our Raspberry Pi to the internet, we plug
an Ethernet cable into the Ethernet port, or connect a WiFi dongle
to one of the USB ports (unless we have a Raspberry Pi 3).

• Finally, we connect the micro USB power supply. This action will
turn on and boot our Raspberry Pi. We will now have to select an
operating system (select Raspbian from the list) and let it install.

Figure 5.2: Install screen we get first time we boot the Pi

4. Enable SSH and VNC:
We can access the command line of a Raspberry Pi remotely from

37



5.1. RASPBERRY PI CHAPTER 5. IMPLEMENTATION

another computer or device on the same network using SSH (Secure
Shell). The Raspberry Pi will act as a remote device: we can connect
to it using a client on another machine. We only have access to the
command line, not the full desktop environment. For a full remote
desktop, we use VNC (Virtual Network Computing). It is a graphical
desktop sharing system that allows us to remotely control the desktop
interface of one computer (running VNC Server) from another com-
puter or mobile device (running VNC Viewer). VNC Viewer transmits
the keyboard and either mouse or touch events to VNC Server, and
receives updates to the screen in return.

Raspbian generally has the SSH server and VNC disabled by default.
These can be enabled manually from the desktop:

• Launch Raspberry Pi Configuration from the Preferences menu

• Navigate to the Interfaces tab

• Select Enabled next to SSH and next to VNC

• Click OK

Alternatively, raspi-config can be used:

• Enter sudo raspi-config in a terminal window

• Select Interfacing Options

• Navigate to and select SSH

• Choose Yes

• Do the same for VNC

• Select Ok

• Choose Finish

Note: Our Pi is ready for the project now. If we do not have a screen
available always and need to remotely access the Pi, we continue with
the next steps.

5. Finding the IP address of Pi:
As mentioned before, we can access the Raspberry Pi remotely from
another computer or device on the same network. But we first need to
know the IP address of our Pi.

38



5.1. RASPBERRY PI CHAPTER 5. IMPLEMENTATION

• If we have a display at our disposal, we can connect our Pi to
the display just to know the IP and then, we can start accessing
the Pi remotely from our device. For this, we use the terminal
(boot to the command line or open a Terminal window from the
desktop) and simply type hostname -I which will reveal your Pi’s
IP address.

• It is even possible to find the IP address of our Pi without con-
necting to a screen using Router device list. In a web browser, we
navigate to our router’s IP address e.g. http://192.168.1.1, which
is usually printed on a label on the router; this will take us to
a control panel. Then logging in using our credentials (usually
printed on the router or sent to the owner in the accompanying
paperwork), we browse to the list of connected devices or similar
(all routers are different), and we should see some devices that
we recognise. Some devices are detected as PCs, tablets, phones,
printers, etc. so we should recognise some and rule them out to
figure out which is the Raspberry Pi. Also, we should note the
connection type; if our Pi is connected with a wire there should
be fewer devices to choose from.

6. Remotely access the command line of our Pi:
Once we know the IP we can move towards accessing our Pi remotely.
For accessing only the command line, we use SSH. We will need to
download an SSH client for this. Since the remote device used in this
project was running on Windows OS, we have used the most commonly
used client for Windows, called PuTTY.

• PuTTY does not include an installer package: it is a stand-alone
.exe file. When we run it, we will see the configuration screen
below:

39



5.1. RASPBERRY PI CHAPTER 5. IMPLEMENTATION

Figure 5.3: Configuration Screen of PuTTY

• Now, we type the IP address of the Pi into the Host Name field
and click the Open button. If nothing happens when we click the
Open button, and we eventually see a message saying Network
error: Connection timed out, it is likely that we have entered the
wrong IP address for the Pi.

• When the connection works, we will see the security warning
shown below. We can safely ignore it, and click the ’Yes’ but-
ton. We will only see this warning the first-time PuTTY connects
to a Raspberry Pi that it has not seen before.

40



5.1. RASPBERRY PI CHAPTER 5. IMPLEMENTATION

Figure 5.4: Security warning generated by PuTTY

• We will now see the usual login prompt. We need to log in with
the same username and password we would use on the Pi. The
default login for Raspbian is pi with the password raspberry. We
should now have the Raspberry Pi prompt which will be identical
to the one found on the Raspberry Pi itself.

• We can type exit at any moment to close the PuTTY window.

7. Remotely access the desktop environment of our Pi:

• The first step here is to create a virtual desktop. On our Raspberry
Pi (using Terminal or via SSH), we run vncserver and make note
of the IP address/display number that VNC Server will print to
our Terminal (e.g. 192.167.1.42:1).

41



5.1. RASPBERRY PI CHAPTER 5. IMPLEMENTATION

Figure 5.5: Screenshot of vncserver command run via SSH (PuTTY)

• To destroy a virtual desktop, we can run the following command:
vncserver -kill :display-number
This will also stop any existing connections to this virtual desktop.

• Next, we open a VNC Viewer on our remote device and type in
the above address. Once we do this, we get an authentication
screen, where we need to enter the username and password of our
Pi. This will take us to the desktop environment.

42



5.1. RASPBERRY PI CHAPTER 5. IMPLEMENTATION

Figure 5.6: VNC Viewer welcome screen

Figure 5.7: Screenshot of the desktop environment as visible on the remote
device

43



5.2. IBM BLUEMIX CHAPTER 5. IMPLEMENTATION

5.2 IBM Bluemix

Bluemix is a cloud platform provided by IBM, that connects our hardware
setup to the cloud. It makes it possible for us to access the data from our
raspberry Pi from anywhere in the world. We just need the login credentials
of the Bluemix account connected with our Pi. It has a wide range of services
and APIs that can help us scale on virtual servers and build micro services
based on event-driven models.

5.2.1 Getting started with Bluemix

To log into Bluemix, we head to the IBM Bluemix login page. We can sign up
for an IBM ID and BlueMix from there. Once Bluemix loads, we select our
region by clicking the top right-hand corner account icon. Then, if Bluemix
requests that we create a space in that region, we do so. I named my space
“test”.

Figure 5.8: Screenshot showing the credentials for a Bluemix account

Then, we click on “Use Services or APIs” to find a good initial service for
our app. In this screen, we need to find the “Internet of Things Platform”
service and select it for our app. We then click “Create” on the next screen,
we can change the “Service Name” if we want. Since, I started using Bluemix

44



5.2. IBM BLUEMIX CHAPTER 5. IMPLEMENTATION

through Coursera, my service has since been named, IoT-Coursera-test1-iotf-
service and I am continuing with the same service for this project too. We
scroll down on the welcome screen that appears and choose “Launch”.

Figure 5.9: Screenshot of the welcome page for Bluemix service

Now we can add our Raspberry Pi to this new service by clicking “Add
Device”. Then, click to “Create device type” if we are adding some device
type for the first time. Else, we can choose the type from “Choose Device
Type”.

45



5.2. IBM BLUEMIX CHAPTER 5. IMPLEMENTATION

Figure 5.10: Adding a new device

Another screen will appear asking whether we want to create a device
type or gateway type. We want a device type. Finally, we name our device
type (I have named it “raspberryPi”). Underneath that, we can write a
longer and more human readable description.

Figure 5.11: Creating a device type named raspberryPi

The next screen gives us options for our device template, providing fields

46



5.2. IBM BLUEMIX CHAPTER 5. IMPLEMENTATION

we can use for each device to define its characteristics. This is very much
up to us and what device data we would like to record in this device type.
We can add our own custom metadata in JSON format if we like. For this
project, I have skipped this step. Now our device type is ready to be used.
We should be back at the “Add Device” screen. This time, our new device
type should be selected and click “Next”.

Figure 5.12: Adding new device, using the created device type

We now set up our individual device info for our Raspberry Pi into the
Bluemix system. We give our device a unique ID (something that will be
different to all other devices in our system). I have used the ID – device01.
We can add any additional information if we want and then click “Next”.
We can skip the metadata part again, unless there is specific data we want
to store about our device. Then, we set up our authentication token. We
can define a custom one or leave it blank for the system to automatically
generate one for us. I have defined a custom one for my device. Once we
click “Next”, we are asked to check the details to ensure they are correct and
then click “Add”. The final screen will show all the device’s details, including
the generated authentication token (or the one we put down for it). We must
copy these details into a safe and easy to find place. Especially ensure that
we have the authentication token saved somewhere that is easy to access as
we cannot get this value ever again (we would have to delete and create a
new device then). Once we have got all these values saved, close this pop-up

47



5.2. IBM BLUEMIX CHAPTER 5. IMPLEMENTATION

window.

Figure 5.13: Screenshot of the device information for device01

5.2.2 Linking our Pi to our device in Bluemix

Now we want to link up our Raspberry Pi to the device we just set up in
Bluemix. To do so, we need to first stop any Watson IoT service running on
the Pi:

sudo service iot stop
Then, we type in the following to open up the Watson IoT config file for our
Raspberry Pi (it will be created when we save the file if it does not already
exist):

sudo nano /etc/iotsample-raspberrypi/device.cfg
Using the details we saved somewhere safe earlier, which should have looked
like so:

Organization ID abcde
Device Type raspberryPi
Device ID device01
Authentication Method token
Authentication Token YOURTOKENWOULDBEHERE

We input them into our config file in this format:
# Device configuration file
org = abcde

48



5.3. NODE-RED CHAPTER 5. IMPLEMENTATION

type = raspberryPi
id = device01
auth-method = token
auth-token = YOURTOKENWOULDBEHERE
# End of Configuration file

We save those changes by pressing Ctrl + X and then typing “Y” when it
asks if we would like to “Save modified buffer”. We keep the file name as is
to write to the same file (/etc/iotsample-raspberrypi/device.cfg). Then hit
enter if it shows the right filename.
Once that is saved, we are ready to set up Node-RED!

5.3 Node-RED

To do some more advanced things, we will install and run Node-RED, an
environment that lets you work with connected devices and data without
needing to delve into too much coding.

5.3.1 Setting up Node-RED on our Pi

We need to open a terminal on our Raspberry Pi and type in the following to
update everything on our Raspberry Pi to the latest versions. Newer versions
of Raspbian for the Raspberry Pi (Raspbian Jessie), come with Node-RED
and Watson IoT already. However, it is recommended to update them all to
get things to work correctly. So either way, we should update everything to
be safe or install them from scratch if we don’t have them yet.

sudo apt-get update
Then we run this one too:

sudo apt-get dist-upgrade
If we have a Raspberry Pi 3 or any Raspberry Pi with Raspbian Jessie in-
stalled, we would not need to install Node-RED as it should already be there
(and be updated to the latest version through that last command we just
ran). But, if we do not have the latest version of Raspbian, we may need to
install Node-RED. You can do this by first installing all its dependencies:

sudo apt-get install build-essential python-dev python-rpi.gpio
If we receive an error about “sudo: npm: command not found”, we will need
to run the following to install npm first:

49



5.3. NODE-RED CHAPTER 5. IMPLEMENTATION

sudo apt-get install npm
Then, by installing Node-RED itself via npm:

sudo npm install -g –unsafe-perm node-red
In order to have access to the the IBM Watson IoT Node, we run this com-
mand too:

sudo npm install -g node-red-contrib-ibm-watson-iot
For some cases, the above command might not work and fail due to an
error with the script referencing node rather than nodejs — this could be
happening on Raspbian Jessie and if so, we don’t need to worry as this is
already installed for us on that version of Raspbian. If we would like to access
Node-RED from our computer, rather than the Pi — we will need to know
your Pi’s local IP address. This can be found by the methods mentioned
earlier (Finding the IP address of Pi). If all is installed successfully, we
should be able to run Node-RED on our Pi using the following command:

node-red

Figure 5.14: Running node-red-start

If we then go to either http://127.0.0.1:1880 or localhost:1880 on our Pi
itself or http://your-pi-ip-address:1880 from another computer on the same
network, we should see Node-RED ready and waiting. Check that within
the interface, underneath both Input and Output, we should be able to see
Watson IoT as an option.

50



5.4. PROTOTYPE 1 CHAPTER 5. IMPLEMENTATION

Troubleshoot: If we get any error when we launch node-red (for instance,
“connection was closed”), we need to first stop any Watson IoT service run-
ning on the Pi, by typing “sudo service iot stop” in another terminal.

5.4 Prototype 1

Since, the Raspberry Pi, IBM Bluemix account and Node-RED are all set
up, we can start building the first Prototype.
The IBM Speech to Text service provides an API that lets us add speech
transcription capabilities to our applications. To transcribe the human voice
accurately, the service leverages machine intelligence to combine information
about grammar and language structure with knowledge of the composition of
the audio signal. The service continuously returns and retroactively updates
the transcription as more speech is heard. But, this feature would not help
us a lot, as we will be mostly dealing with small sentences rather than long
continuous speech.
In prototype 1, we will test the Speech to Text service of IBM Watson for
converting simple predefined set of voice commands into transcriptions and
further take relevant action, i.e. to turn on/off the correct LED connected
to the Pi.
Note: How to connect an LED to GPIO pins of a Raspberry Pi will not be
covered in this report, these were done just for a visual demonstration. If
you are still interested to implement that, then I would suggest referring to
[10] for building a circuit.
The set of predefined commands are as follows,

• Turn on the light/s

• Turn off the light/s

• Switch on the light/s

• Switch off the light/s

• Turn on the heater/s

• Turn off the heater/s

• Switch on the heater/s

51



5.4. PROTOTYPE 1 CHAPTER 5. IMPLEMENTATION

• Switch off the heater/s

• Turn on the music

• Turn off the music

• Play some music

• Stop the music

Now, we go through the steps taken for developing the Prototype 1:

1. Create Watson Speech to Text service in Bluemix

We go to the Bluemix Services page and find the “Speech to Text”
service (we need to be careful not to choose “Text to Speech” that’s
different). That should take us to the Speech to Text service Bluemix
page. On that page, we’ll see various options for adding this service
to our IBM Bluemix arsenal. We leave the app unbound; we can give
the service a name and give the credentials a name. The only plan I
had available was “Standard”, so I left that one as is too. Once we’re
happy with our settings, we click “Create”. Once the service is created
in our space, we’ll be taken to the page for that service. We click the
“Service Credentials” menu item on the left to access the username
and password we will need to give Node-RED to have access to our
new IBM Watson Speech to Text service. We need to copy down the
username and password from this page.

52



5.4. PROTOTYPE 1 CHAPTER 5. IMPLEMENTATION

Figure 5.15: Screenshot of the page with service-credentials

2. Adding new services to Node-RED
In order to access the IBM Watson Text to Speech service in Node-
RED, we will need to install some new nodes. To do so, we SSH into
our Pi (or open the terminal from our Pi directly) and type in:

cd ∼/.node-red

This brings us to the Node-RED app folder. From within here, we in-
stall a new collection of Node-RED nodes called node-red-node-watson.
This includes access to a whole range of IBM Watson services, includ-
ing the Speech to Text that we need. To install it, we run the following
command on our Pi from the Node-RED folder:

sudo npm install node-red-node-watson

Next we install some additional modules on our Node-Red for audio
recording using USB Microphone. We need to install node-red-contrib-
browser-utils (collection of Node-RED nodes for browser functionality
such as file upload, camera and microphone) and node-red-contrib-
media-utils (collection of Node-RED media nodes using FFmpeg). To
install these, we run the following command on our Pi from the Node-
RED folder:

sudo npm install node-red-contrib-browser-utils
sudo npm install node-red-contrib-media-utils

53



5.4. PROTOTYPE 1 CHAPTER 5. IMPLEMENTATION

For the new Node-RED node changes to come into effect, we need to
restart Node-RED. To do so, we run the following two commands:

node-red-stop
node-red-start

3. Start building the flow
The basic functionalities of our flow should be,

• Turn on/off the lights (represented by the LED connected to Pin
11)

• Turn on/off the heater (represented by the LED connected to Pin
15)

• Turn on/off the music (represented by the LED connected to Pin
18)

Note: These pin numbers are the “Physical pin numbers”, as can be
referred from [10]. Also, if you are not using LEDs then, we can simply
change the functionality to printing different outputs corresponding to
different appliances.
After steps 1 and 2, we can now start building the flow in Node-
RED. We go to either http://127.0.0.1:1880 or localhost:1880 on a
web browser in our Pi or http://{your-pi-ip-address}:1880 from an-
other computer on the same network, we should see Node-RED ready
and waiting.

(a) We select the “microphone” node from the input section and bring
it on our palette. We can either give a name to this node by
double-clicking on the node (I named it “USB Mic”), or leave it
as it is.

(b) From the IBM Watson section of nodes, we drag the “speech to
text” node on to our palette. We double-click the node and give
the node a name if we want; add the username and password
saved earlier (service credentials) to connect it to our Bluemix
service; select a language model (we are using “US English”); and
quality (we are using “Broadband model”). Finally, we check the
continuous speech checkbox, uncheck the speaker labels checkbox
and click on Done. We connect the output from the microphone
node to the input of speech to text node.

54



5.4. PROTOTYPE 1 CHAPTER 5. IMPLEMENTATION

Figure 5.16: Speech to text node details

(c) Next, we drag the “function” node form the function section and
bring it on our palette. We double click on it and add the following
piece of code:

msg.payload = msg.transcription;
return msg;
We give the node a name – “set payload” and click on Done and
connect the output of speech to text node to the input of this
function node.

(d) Now, we bring a “debug” node from the output section on to our
palette and connect it to the output of the “set payload”. This
will help us in seeing the transcription of our speech in the debug
tab of Node-RED environment.

(e) Next, we bring in the “switch” node from the function section
into our palette. We first need to check for the task asked in the
command – if the user has asked to turn on or turn off, be it any
appliance. We do this by putting conditions in the switch node as
follows,

55



5.4. PROTOTYPE 1 CHAPTER 5. IMPLEMENTATION

Figure 5.17: Editing the switch node for tasks

Then we click on Done and connect the output of “set payload”
to the input of the switch node.

(f) Now, we bring 2 more switch nodes in to palette. These are for
checking now, which appliance is the user asking to control. The
edit switch node for both looks the same except the name of the
nodes “appliance on” and “appliance off”.

56



5.4. PROTOTYPE 1 CHAPTER 5. IMPLEMENTATION

Figure 5.18: Edit switch node for appliances

(g) Next we, create 2 function nodes for handling the case - when
our flow reaches the “otherwise” condition in the switch nodes.
These are named, “Error msg 1” (for the “Task” switch node)
and “Error msg 2” (for the “appliances on” and “appliances off”
switch nodes). The “Error msg 1” is connected to the last output
of the “Task” switch node; and the contents are as follows:

msg.payload = ”I did not get you. Please repeat!”;
return msg;
The “Error msg 2” is connected to the last output of the “appli-
ances on” and “appliances off” switch nodes; and the contents are
as follows:

msg.payload = ”I can only control light, heater or music”;
return msg;
Then, we connect both these function nodes to debug nodes, such
that the error message gets printed on the debug tab of the Node-
RED environment.

57



5.4. PROTOTYPE 1 CHAPTER 5. IMPLEMENTATION

(h) Now, we bring in 6 function nodes, 3 setting msg.payload to 1:

msg.payload = 1;
return msg;
We connect these 3 to first 3 outputs of “appliances on” switch
node. And other 3 setting msg.payload to 0:

msg.payload = 0;
return msg;
We connect these 3 to first 3 outputs of “appliances off” switch
node.

(i) Lastly, we connect the function nodes – 1s and 0s (created in
previous step) to “rpi gpio” nodes from the Raspberry Pi section.
We connect them based on the appliances we assigned to each pin.
Pin 11 – Lights, Pin 15 – Heater, Pin 18 – Music. The Node-RED
flow looks like this:

Figure 5.19: The Node-RED flow for Prototype 1 (version 1.0)

Note: If you are not using LEDs, simply replace steps 8 and 9 with
connecting debug nodes to different outlets of “appliance on” and “ap-
pliance off”. Thus, we will see different messages on the screen instead
of LED glowing on/off.

We now click on “Deploy” and we are all set to test our prototype.The
flow goes like this:

58



5.4. PROTOTYPE 1 CHAPTER 5. IMPLEMENTATION

(a) Clicking the “USB Mic” node button toggles recording.

(b) Then we record the voice command using USB Microphone (Play
some music, Turn on light, etc.)

(c) Microphone node sends a buffer of the recorded audio as the
msg.payload object to Watson Speech to Text Node.

(d) Then Watson converts the buffer into text.

(e) “set payload” node moves the string output of speech to text to
the msg.payload object as required by the subsequent nodes.

(f) The text is analysed in “Task” and “appliance on/off” switch
nodes, to look for keywords it might contain.

(g) Based on the keywords, a signal is either sent to a GPIO pin
(representing an appliance here), or to the output screen with
some error message.

After testing numerous times, calling out each command at least 6 times, we
got the following performance.

Command No. of tries Correct output (LED
on/off)

Turn on the light/s 6 4
Turn off the light/s 6 3

Switch on the light/s 6 6
Switch off the light/s 6 6
Turn on the heater/s 6 2
Turn off the heater/s 6 3

Switch on the heater/s 6 5
Switch off the heater/s 6 5

Turn on the music 6 1
Turn off the music 6 2
Play some music 6 6
Stop the music 6 6

72 49 (68.05%)
Table 5.1: Performance - Prototype 1 (version 1)

Let us have a look at a random set of outputs received from the Speech

59



5.4. PROTOTYPE 1 CHAPTER 5. IMPLEMENTATION

to text, when I gave all the predefined commands in order from 1-12.

Figure 5.20: STT output for commands 1-4

Figure 5.21: STT output for commands 5-8

60



5.4. PROTOTYPE 1 CHAPTER 5. IMPLEMENTATION

Figure 5.22: STT output for commands 9-12

After numerous runs, I found some common trends, which are mentioned
as follows,

1. “Turn on” and “turn off” were misinterpreted very frequently, mostly
as “done on”, “don on”, “done off” and “don off”. Hence, I added these
to the Task switch node.

61



5.4. PROTOTYPE 1 CHAPTER 5. IMPLEMENTATION

Figure 5.23: Modified Task switch node

2. “Light” and “Heater” were often misinterpreted as “late” and “heat
does” respectively. Hence, “late” was added and “heater” changed to
“heat” in “appliances on” and “appliances off” switch node.

62



5.4. PROTOTYPE 1 CHAPTER 5. IMPLEMENTATION

Figure 5.24: Modified appliance on (and appliance off)

Now the Node-RED flow looks like this:

Figure 5.25: The Node-RED flow for Prototype 1 (version 2)

63



5.4. PROTOTYPE 1 CHAPTER 5. IMPLEMENTATION

The performance table now can be seen below,

Command No. of tries Correct output (LED
on/off)

Turn on the light/s 6 5
Turn off the light/s 6 4

Switch on the light/s 6 5
Switch off the light/s 6 6
Turn on the heater/s 6 4
Turn off the heater/s 6 5

Switch on the heater/s 6 4
Switch off the heater/s 6 4

Turn on the music 6 4
Turn off the music 6 5
Play some music 6 6
Stop the music 6 6

72 58 (80.55%)
Table 5.2: Performance - Prototype 1 (version 2)

Although the performance did increase after this adjustment, but there
was still a lot of scope for improvement. This prototype (Prototype-1) was
designed for handling a set of pre-defined simple commands only, but it was
not smart and most part of it was hard-coded. The intuition would say that,
we should get 100% accuracy for pre-defined commands, since we can hard-
code all the possible outcomes. But, we need to run a lot of tests to know
the possible outcomes, as we cannot always predict what words are going to
be interpreted by Speech to text service, because of accent or noise or other
reasons. The most common ones were added based on the limited number
of tests run (for instance, “late”, “done on, “done off”, etc.), but not much
effort was put in this area, as we would like to eventually make it interpret
words based on the context also. Another shortcoming of this prototype is
that it cannot handle minor modifications of the command, for instance, if
the user says “turn the heater on”. If “turn” and “on” are separated, this
system would not be able to handle it.
Thus, we move on to Prototype-2, where we plan to use the Watson’s ability
to train itself based on the application, also the knowledge of the English
language, to interpret the words based on the whole sentence (context) rather

64



5.5. PROTOTYPE 2 CHAPTER 5. IMPLEMENTATION

than individual pieces of text.

5.5 Prototype 2

We begin building Prototype-2 with Speech to text customization.
The speech to text customization feature has been introduced so the service
can learn specific input that is unique to one’s use case. We train the service
with sample sentences applicable to our domain. Most of the time the service
will already have the words in its lexicon, but now it has context in which we
use those words. It is then trained based on pronunciations of unusual words
within the input which it otherwise would not know, for example names.
The language model customization interface of the Speech to Text service is
currently only available for US English and Japanese.
The steps for speech to text customization are as follows [11],

1. Create a custom language model
We start by adding 3 inject nodes (from the input section), 3 speech
to text custom builder nodes (from the IBM Watson section) and one
debug node (from the output section). Join them together like the
following example:

Figure 5.26: Flow for creating custom language model

We do not need to configure the inject nodes. The Create Customiza-
tion node is configured like shown below. We need to enter the exact
same credentials as our Speech to text service. But, we can set our own
names for the Custom Model Name and Custom Model Description.
This creates the customization using the desired model.

65



5.5. PROTOTYPE 2 CHAPTER 5. IMPLEMENTATION

Figure 5.27: Create Customization node

The List Customization node is configured like shown below. This node
allows us to view the customizations we have created.

Figure 5.28: List customization node

66



5.5. PROTOTYPE 2 CHAPTER 5. IMPLEMENTATION

The next step is to configure the debug node. The final customization
node will be configured afterwards. We just need to change the output
to ‘complete msg object’ and press ‘Done’. This allows us to view the
full results of the inject nodes.

Figure 5.29: Debug node

Now, we can deploy our application and click the inject node for ‘Create
Customization’ and then ‘List Customizations’.
In the debug tab we should see two ‘msg : Object’s. We look at the
second one (from list customizations) and look for a ‘customization id’.
This is our customization so we shall make a note of the id as we will
be needing it for the following steps.
Now, we can edit the final speech to text custom node by changing the
‘Detect’ field to ‘Get Customization’ and paste in the Customization
ID we made a note of from the debug tab in the last step. Finally, we
deploy the application.

67



5.5. PROTOTYPE 2 CHAPTER 5. IMPLEMENTATION

Figure 5.30: Get Customization node

2. Add data from corpora to the custom language model
In this step, we add 1 file inject node (from input section), 2 inject
nodes (from input section) and 3 more speech to text custom build
nodes (from IBM Watson section) and join them to the debug node to
look like shown below.

Figure 5.31: Node-RED flow for creating custom language model and adding
data from corpora to it

68



5.5. PROTOTYPE 2 CHAPTER 5. IMPLEMENTATION

We do not need to do anything with the file inject or inject node. In
the speech to text custom node next to ’File Inject’, we name it ‘Add
Corpus’, change the ‘Detect’ field to ‘Add Corpus’ and paste in the cus-
tomization ID we used in the previous step. Give the corpus a name in
the final field. Note: The Corpus Name will not work with spaces. We
then check the “Allow Overwrite” checkbox. If we leave it unchecked,
we will not be able to add another Corpus to this customization.

Figure 5.32: Add Corpus Node

In the second speech to text node editor, we call this ‘Get Corpora’ and
change the ‘Detect’ field to ‘Get Corpora’. Again, we need to paste in
the Customization ID and select ‘Done’.

69



5.5. PROTOTYPE 2 CHAPTER 5. IMPLEMENTATION

Figure 5.33: Get Corpora Node

In the third speech to text node, we call this ‘Train’ and change the
‘Detect’ field to ‘Train’ and paste in the Customization ID.

Figure 5.34: Train Node

We now deploy our application. Then, we create a text file named ap-
pliances.txt to use as the Corpus. It contains sample sentences sample
sentences applicable to our domain, providing a context for where the
words can be used. We can keep building this text file and just need to

70



5.5. PROTOTYPE 2 CHAPTER 5. IMPLEMENTATION

add corpus and train, everytime we add more use cases. Some of the
sentences from appliances.txt are shown below,

• Can you please turn on the heater?

• Turn the heaters on.

• Turn on the lights.

• Turn the lights on.

• Turn on the music.

• Stop the heater.

• Switch the heater off.

• Switch off the light.

• Turn the lights off.

• Stop the music.

• My name is Shreyans Maloo.

• I work for KTH Live in labs.

• I study at KTH Royal Institute of Technology.

• My supervisor is Elena Malakhatka.

• My examiner is Carlo Fischione.

We now, inject the appliances.txt file into the file inject node before
‘Add Corpus’. We may have to wait a while for the corpus to be
processed.
Then we click the timestamp before ‘Get Corpora’ and we look at the
debug tab for a status generated by ‘Get Corpora’ and that needs to
read ‘analyzed’. If the status does not say ‘analyzed’ we might have
to wait for few more seconds and then, click the timestamp again to
check whether it is analyzed. This complete the step 2.

3. Add words to the custom language model
For this step, we add 1 file inject node (from the input section) and 1
speech to text custom build node (from IBM Watson section). We join
these together and to the debug node.

71



5.5. PROTOTYPE 2 CHAPTER 5. IMPLEMENTATION

Figure 5.35: Node-RED flow for adding words and data to custom language
model

We do not need to configure the file inject node. For the speech to
text node, we can call it ‘Add Words’, change the ‘Detect’ field to ‘Add
Words’ and paste in the Customization ID. Click ‘Done’ and deploy
our app.

72



5.5. PROTOTYPE 2 CHAPTER 5. IMPLEMENTATION

Figure 5.36: Add words node

Now we create a text file that includes pronunciation of some unusual
words which might not be present in the lexicon of the service. The
content of the file ‘words.txt’ looks like follows,
[ ”word”: ”Shreyans”, ”translation”: [”Shrae yaans”],
”display as”: ”Shreyans”,
”word”: ”Maloo”, ”translation”: [”Maaloo”],
”display as”: ”Maloo”,
”word”: ”KTH”, ”translation”: [”K T H”],
”display as”: ”KTH”,
”word”: ”Malakhatka”, ”translation”: [”Malaa khaatkaa”],
”display as”: ”Malakhatka”,
”word”: ”Fischione”, ”translation”: [”Fiskio nae”],
”display as”: ”Fischione” ]
We will be using this file in step 5.

4. Train the custom language model
Here we just click the timestamp for ‘Train’ and wait for it to finish
processing.
Note: We have not yet added the words, as we first need to compare the
performance improvement just by adding data (sample use-cases) and
then, we will add the words to improve the performance even further.

5. Use the custom language model in a recognition request

73



5.5. PROTOTYPE 2 CHAPTER 5. IMPLEMENTATION

We will now compare the difference between customized and non-
customized results. To do this, we add 2 microphone nodes (from the
input section), 2 speech to text nodes (from IBM Watson section) and
2 debug nodes (from output section) and join them together to look
like the shown below. This can be above or below the existing nodes.
At this point it is a good idea to refresh the page as the speech to text
node may not present the ‘Language Customization’ field which we will
need.

Figure 5.37: Node-RED flow for testing customized vs non-customized model

We do not need to do anything with the microphone nodes. For the
first speech to text node, we name it ’Non-Customized’, choose our
language (US English) and select ’None’ as the language customization.
We select ‘Broadband Model’ for quality and check the continuous box.
This will give us results without the customization.
For the second speech to text node, we must select US English or
Japanese as these are currently only supported for the customization.
We choose US English. Then, we choose the language customization
we created in step 1 from the drop-down box (Bluemix04). We select
‘Broadband Model’ for quality and check the continuous box.

74



5.5. PROTOTYPE 2 CHAPTER 5. IMPLEMENTATION

Figure 5.38: Non-Customized Speech to text node

Figure 5.39: Customized Speech to text node

75



5.5. PROTOTYPE 2 CHAPTER 5. IMPLEMENTATION

For one of the debug tabs, we set the output to msg.transcription. This
will output the text converted from speech. And the other debug tab
output to msg.fullresult. This will output the full result of the speech
to text function including confidence level.
Now we deploy our application and test the speech to text non-customized
function by speaking a line from the appliances.txt file (preferably using
words that are difficult to pronounce). Then we repeat the question us-
ing the customized function. Finally, we take note of the output from
Watson in the debug tab. Here are a few examples passed through
non-customized and customized respectively.

• There were cases where both non-customized and customized got
the correct transcription, but the confidence level in customized
was still higher (0.705 as compared to 0.429), as can be seen below.
Use case: “Turn on the heater”.

• Then there were cases where non-customized misinterpreted some
of the words whereas customized got the correct transcription, also
the confidence level in customized was higher (0.88 as compared
to 0.459), as can be seen below. Use case: “Turn off the light”.

• Then there were cases where we used some words which are out
of vocabulary of the service (such as names). Here again the
non-customized misinterpreted some of the words whereas cus-
tomized got the correct transcription, also the confidence level in
customized was higher (0.848 as compared to 0.781), as can be
seen below. Use case: “My name is Shreyans Maloo and I’m do-
ing my thesis under the supervision of Elena Malakhatka and my
examiner is Carlo Fischione”.

• Finally, to handle such out of the vocabulary words, we can even
train the service with the pronunciations of these words. We inject
the words file (words.txt) as in Step 3 to the ’Add Words’ inject
node and repeat the same sentence. We observe an increase in
the confidence level (it increases to 0.91). Use case: “My name is
Shreyans Maloo and I’m doing my thesis under the supervision of
Elena Malakhatka and my examiner is Carlo Fischione”.

76



5.5. PROTOTYPE 2 CHAPTER 5. IMPLEMENTATION

Figure 5.40: Non-Customized vs Customized example 1

Figure 5.41: Non-Customized vs Customized example 2

77



5.5. PROTOTYPE 2 CHAPTER 5. IMPLEMENTATION

Figure 5.42: Non-Customized vs Customized example 3

Figure 5.43: Performance after adding words

78



5.6. PROTOTYPE 3 CHAPTER 5. IMPLEMENTATION

Finally, we try to measure the performance of prototype 2 for simple com-
mands to see the improvement achieved from the previous prototype. This
was done by, changing the STT in Node-RED flow of Prototype 1 by the
Customized STT discussed above. The results are shown below,

Command No. of tries Correct output (LED
on/off)

Turn on the light/s 6 6
Turn off the light/s 6 5

Switch on the light/s 6 6
Switch off the light/s 6 6
Turn on the heater/s 6 4
Turn off the heater/s 6 6

Switch on the heater/s 6 6
Switch off the heater/s 6 6

Turn on the music 6 6
Turn off the music 6 6
Play some music 6 5
Stop the music 6 6

72 68 (94.4%)
Table 5.3: Performance - Prototype 2

The few errors, were again those of misinterpretation by STT, maybe
due to human variations of accent or external influence of noise. To mention
a few, we got “done on the heater” instead of “turn on the heater” and
“it’s some music” instead of “play the music”. We believe, a knowledge of
language and the context could help here, since the interpreted sentences
makes no sense. Hence, we move to Prototype 3.

5.6 Prototype 3

The main component of prototype 3 is the conversation service module of
IBM Watson. The conversation service integrates natural language under-
standing, to determine intent and entities, with dialog tools which allow for
a natural conversation flow between our application and the users.

79



5.6. PROTOTYPE 3 CHAPTER 5. IMPLEMENTATION

5.6.1 Conversation service

We start with creating a conversation. There is a tutorial available from
IBM, which guides us through the whole process of launching the service,
creating workspace, defining intents and entities and creating a dialog.
We will not be covering the steps of defining intents, entities and creating
the dialog, but only the final conversation model we used in the project is
represented by the pictures below,

• First, we define the intents we will be using in the dialog, “turn on”,
“turn off”, “hello” and “goodbye”. Inside each category, we write vari-
ous ways the user might intend for the task, for instance, for “turn on”,
we write - “turn on the light”, “play some music”, “start the heater”,
“can you switch on the light”, and others.

Figure 5.44: Conversation service intents

• Second, we define the entities we will be using in the dialog, “appli-
ances” and “other appliances”. Inside each category, we write various

80



5.6. PROTOTYPE 3 CHAPTER 5. IMPLEMENTATION

ways the user might mention the entity, for instance, for “music”, we
write - “music system”, “stereo” and “radio”. There is a unique fea-
ture called, “Fuzzy Matching” which is in its BETA phase, we are still
using it, as it is supposed to increase the ability of Watson to recognize
misspelled entity values.

Figure 5.45: Conversation service entities

Figure 5.46: Contents of the appliances entity

81



5.6. PROTOTYPE 3 CHAPTER 5. IMPLEMENTATION

• Now we move on to the dialog creation. The whole dialog looks like
this,

Figure 5.47: The conversation service dialog

We will be looking inside some of these nodes. First, the welcome node,
it is by default a part of every dialog. We need to add some response,
which is shown when a user enters a conversation. This will not be
useful for our application. Second, we move on to the “Hello” node,

82



5.6. PROTOTYPE 3 CHAPTER 5. IMPLEMENTATION

the contents of which are shown below. The purpose of this is to give
a response, when the user greets it, saying, “hi” or “hello” or “good
morning”. We can always add multiple responses to make the response
more random, rather than the same reply everytime.

Figure 5.48: Contents of ”Hello” node

Now, we move on to the “other appliances” node. The purpose of this
node is to handle the commands, when the user asks to control an
appliance other than light, heater or music. Since, the model is being
designed only for these 3 appliances, we will give this feedback to the
user. The contents are shown below,

83



5.6. PROTOTYPE 3 CHAPTER 5. IMPLEMENTATION

Figure 5.49: Contents of ”other appliances” node

We then move to “turn on appliance” node. The purpose of this node
is to check is the user has mentioned an intent of “turn on” along with
one or more “appliances” entity. If yes, then it sends the control to the
node – “All appliances on”, it continues from there on. The contents
are shown below,

84



5.6. PROTOTYPE 3 CHAPTER 5. IMPLEMENTATION

Figure 5.50: Contents of ”turn on appliance” node

Now, we move to the next node, “#turn on”. As the name suggests,
we will look for the condition when, the user only mentions the intent
of “turn on” but no entity along with it. We ask the user to rephrase
the command and include and entity for the desired output.

85



5.6. PROTOTYPE 3 CHAPTER 5. IMPLEMENTATION

Figure 5.51: Contents of ”turn on” node

Now, we handle the “appliance” entities, using the nodes “All appli-
ances on”, “Heat and light on”, “Light and music on”, “Heat and music
on” and “appliance on”. As the names suggest, “All appliances on” is
to turn on all 3 appliances; “appliance on” is to control just one appli-
ance which was mentioned, and other 3 are for controlling 2 appliances
as mentioned in the node name. Below, we can see the contents of 2 of
these nodes.

86



5.6. PROTOTYPE 3 CHAPTER 5. IMPLEMENTATION

Figure 5.52: Contents of ”All appliances on” node

Figure 5.53: Contents of ”appliance on” node

Similarly, we create nodes for turning off the appliances; “turn off appli-
ances” and “turn off” consisting of similar “All appliances off”, “Heat
and light off”, “Light and music off”, “Heat and music off” and “appli-
ance off”.

87



5.6. PROTOTYPE 3 CHAPTER 5. IMPLEMENTATION

Now, we move to the next node, “Appliance”. The purpose of this is
to handle the case when the user just mentions an appliance name, but
no intent attached to it “turn on” or “turn off”. We have a feedback
mechanism, to ask the user to give complete commands.

Figure 5.54: Contents of ”Appliance” node

Finally, we create a “Good bye” node. The purpose being, if the user
gives an intent of “goodbye”, for instance, “goodbye”, “see you later”,
“farewell”, and others, the model should be able to respond to that.

88



5.6. PROTOTYPE 3 CHAPTER 5. IMPLEMENTATION

Figure 5.55: Contents of ”Goodbye” node

Also, there is another node which is quite helpful to handle any com-
mand that does not meet any conditions in the whole dialog flow, called
“Anything else”. Here we add some responses to give a feedback to the
user, so that he rephrases or changes his/her command.

Figure 5.56: Contents of ”Anything else” node

89



5.6. PROTOTYPE 3 CHAPTER 5. IMPLEMENTATION

To conclude this sub-section, we add a snapshot of a small conversation with
our model,

Figure 5.57: Snapshot of a dialog with the conversation service

One of the best features of conversation service, is the option to manually
train the model. For instance, as we can see above (Fig 5.57), there is a
drop-down menu, mentioning the intent or entity the model recognized for
a command. If we think, it is wrong, we can change it to a different intent
or entity or even mark it as irrelevant, the model learns from this, and next
time a similar command appears it responds in the desirable manner.
Once, the service is created, we move to Node-RED to use this service as a
node.

90



5.6. PROTOTYPE 3 CHAPTER 5. IMPLEMENTATION

5.6.2 Node-RED

We now build the flow for prototype 3 in Node-RED. We will be combining
the flow from prototype-1, with using the customized STT as in prototype
2, and finally, we will even include the conversation service in the flow.
Everything is same as the prototype-1, except, we make some changes in
STT node, the Task node and we add a couple more nodes. The Node-RED
flow looks something like this,

Figure 5.58: Node-RED flow for Prototype 3

The Customized STT node is same as the one we created for Prototype 2.
So now, the speech is passed through the “Customized STT”, which is then
passed through “set payload” as before. There is a change from the previous
prototypes now, as we pass the payload through “Conversation Service” node.
The contents of this node look like this,

91



5.6. PROTOTYPE 3 CHAPTER 5. IMPLEMENTATION

Figure 5.59: Conversation service Node

The username and password can be obtained once we login in our IBM
Bluemix dashboard and look for the conversation service in the list of services
we have created. The workspace ID can be obtained, once we launch the
conversation service tool in our browser and then look for the details of the
workspace we are using for our application (Conversation Live-in Labs in our
case).

Figure 5.60: Watson Conversation Workspace details

Once these credentials are added, we are good to go ahead. We add

92



5.6. PROTOTYPE 3 CHAPTER 5. IMPLEMENTATION

another “set payload” node, with contents as follows,
msg.payload = JSON.stringify(msg.payload.output.text);
return msg;
We need to convert the JSON output from the conversation service into
string, for further processing. Now, this string goes in to “Task” node, where
we segregate them based on the strings containing “Turning on” and those
containing “Turning off”. After this, the flow is same as Prototype 1, where
we look for appliances and turn them on/off as per the commands.
Now, the system can handle multiple appliances together, for instance, it can
turn on/off 2 or all 3 appliances together if we want. Moreover, if the STT
misinterprets some command, we can always teach the conversation service
to respond in the desirable manner using the drop-down list and selecting
the desirable entity or intent.

Figure 5.61: Conversation service handling multiple appliances

93



5.6. PROTOTYPE 3 CHAPTER 5. IMPLEMENTATION

Figure 5.62: Conversation service handling misinterpretations from cus-
tomized STT

Following the same simple command table, we run the tests for prototype
3 as well, and the outcome is as follows,

Command No. of tries Correct output (LED
on/off)

Turn on the light/s 6 6
Turn off the light/s 6 6

Switch on the light/s 6 6
Switch off the light/s 6 6
Turn on the heater/s 6 6
Turn off the heater/s 6 6

Switch on the heater/s 6 6
Switch off the heater/s 6 6

Turn on the music 6 6
Turn off the music 6 6
Play some music 6 6
Stop the music 6 6

72 72 (100%)
Table 5.4: Performance - Prototype 3

94



Chapter 6

Results and Discussion

Starting with the very first implementation of Prototype 1, the results were
not good – only 68% success rate. We then moved towards hard coding cer-
tain outliers and could improve the results to 80% success, but still there were
some drawbacks with this method – will fail for most of the variations. The
performance of Prototype 1 against the failure factors is shown in the table
below, In the following chapter the system will be undergoing an analysis by
comparison with one standard used for certifying a healthy building.

Moving on to prototype 2, we included some more machine learning tech-
niques in addition to the basic features available with the IBM Watson STT
service. We added language models and some uncommon words along with
the pronunciations; and trained the system with these. The performance
increased as expected, success rate is 94.4%. The shortcomings remaining
now would be, the system still does not understand the context of the com-
mand, for instance, if the user says “I am feeling cold”, the system should
be smart enough to recommend turning the heaters on; no feedback loop has
been implemented yet, which could make the system capable to ask for more
information if needed. The performance of prototype 2 against the failure
factors is shown below,

Finally, the prototype 3 was a further improvement to previous proto-
types – 100% success rate for simple commands. Firstly, we had a better
language model than before, allowing the system to understand the context
better. Secondly, the option to train manually was a big advantage. We
can now train the model to respond in desirable manner, for some common
misinterpretations observed before. The performance of prototype 3 against
the failure factors are shown below,

95



CHAPTER 6. RESULTS AND DISCUSSION

Category Failure Factor Able to handle

Speech to text

Variations in human speech
Yes. To some extent IBM Watson
STT handles the variations.

Large vocabulary continu-
ous speech recognition

Not Applicable. We only dealt with
short commands.

Undefined word boundaries
Yes. To some extent handled by
IBM Watson.

Accent
Yes. To some extent handled by
IBM Watson.

External influence – noise,
echoes

Yes. Noise-cancelling microphone

Poor internet connection
Yes. Ensured stable connectivity,
throws error if cannot connect to
STT Service.

Text to keyword

Misinterpretation from STT No. More robust STT needed.

Fewer or no keywords from
user

No. Missing Feedback mechanism

Complex user command
No. More advanced logic engine
needed.

Keyword to
action

Communication error
Yes. Ensured stable
communication; LED and debug
mismatch acts as alert mechanism

Poor sensor quality Not Applicable.

Table 6.1: Evaluation - Prototype 1

96



CHAPTER 6. RESULTS AND DISCUSSION

Category Failure Factor Able to handle

Speech to text

Variations in human speech
Yes. Better than prototype 1, due
to language model and uncommon
words added.

Large vocabulary continu-
ous speech recognition

Not Applicable. We only dealt with
short commands.

Undefined word boundaries
Yes. Better than prototype 1, due
to the inclusion of language
model.

Accent
Yes. Better than prototype 1, as
user can add sounds of uncommon
words in his/her accent.

External influence – noise,
echoes

Yes. Noise-cancelling microphone

Poor internet connection
Yes. Ensured stable connectivity,
throws error if cannot connect to
STT Service.

Text to keyword

Misinterpretation from STT
No. But less misinterpretation
than prototype 1, accuracy and
confidence levels have increased.

Fewer or no keywords from
user

No. Missing Feedback mechanism

Complex user command
No. But better than prototype 1,
due to inclusion of language
model.

Keyword to
action

Communication error
Yes. Ensured stable
communication; LED and debug
mismatch acts as alert mechanism

Poor sensor quality Not Applicable.

Table 6.2: Evaluation - Prototype 2

97



CHAPTER 6. RESULTS AND DISCUSSION

Category Failure Factor Able to handle

Speech to text

Variations in human speech Yes.

Large vocabulary continu-
ous speech recognition

Not Applicable. We only dealt with
short commands.

Undefined word boundaries Yes. Better than prototype 1 and 2.

Accent Yes. Better than prototype 1 and 2.

External influence – noise,
echoes

Yes. Noise-cancelling microphone

Poor internet connection
Yes. Ensured stable connectivity,
throws error if cannot connect to
STT Service.

Text to keyword

Misinterpretation from STT
Yes. We can keep training if an
uncommon misinterpretation
occurs.

Fewer or no keywords from
user

Yes. Feedback mechanism

Complex user command Yes. Better than prototype 1 and 2.

Keyword to
action

Communication error
Yes. Ensured stable
communication; LED and debug
mismatch acts as alert mechanism

Poor sensor quality Not Applicable.

Table 6.3: Evaluation - Prototype 3

98



Chapter 7

Conclusion and Future Work

To conclude, we could achieve a good success rate when dealing with pre-
defined short commands. The system could even handle words out of the
common vocabulary, for instance, names of people, by adding them in the
language model. But, there is still a lot of future work that can be done,

1. We can improve the “conversation” service module in IBM Watson
to allow working with complex commands, where it should be able to
remember the previous commands and build on that, for instance, if
the user says “turn on”, the system asks for the appliance, and then if
the user says “light”, it should turn it on, remembering the previous
command was to turn on.

2. We can upgrade the push to talk feature to a wake-up word.

3. We need to improve the Node-RED flow such that we can handle differ-
ent tasks together, for instance, the user asks for controlling 2 different
appliances in different ways, for instance, “turn the lights on and stop
the music”.

4. We can even work on providing a voice feedback mechanism instead of
or in addition to text. Another service of IBM Watson, Text to Speech
can be used for this purpose.

5. The last step, would be to try it on with the real sensors and controller.
This real implementation shall begin with a smart room available at
the “Q-building” in the KTH campus. Once that gets approved, it can
be installed in KTH Live-in Lab.

99



Bibliography

[1] Kudryavtsev A (Jan, 2016). Automatic Speech Recognition Services Com-
parison. [Blog] Available at: http://blog-archive.griddynamics.com/2016/01/automatic-
speech-recognition-services.html [Accessed 03/04/2017]
[2] Vuylsteker B (Feb, 2017). Speech Recognition - A comparison of popular
services in EN and NL. [Blog] Available at: https://blog.craftworkz.co/speech-
recognition-a-comparison-of-popular-services-in-en-and-nl-67a3e1b0cee6 [Ac-
cessed on 03/04/2017]
[3] Averin P (Apr, 2016). Voice Recognition Tools Review. [Blog] Available
at: https://www.netguru.co/blog/voice-recognition-tools-review [Accessed on
03/04/2017]
[4] Google Cloud Speech API. [online] Available at: https://cloud.google.com/speech/
[Accessed on 28/04/2017]
[5] Saon G (March,2017). IBM achieves new record in speech recognition.
[Blog] Available at: https://www.ibm.com/blogs/research/2017/03/speech-recognition/
[Accessed on 28/04/2017]
[6] Kavanagh J (Feb, 2017). Which smart home automation protocol is right
for you? [online] Available at: http://www.tomsguide.com/faq/id-3218019/smart-
home-automation-protocol.html [Accessed on 26/04/2017]
[7] Electronic House (Jan, 2016). Home Automation Protocols: A Round-Up.
[online] Available at: https://www.electronichouse.com/smart-home/home-
automation-protocols-what-technology-is-right-for-you/ [Accessed on 26/04/2017]
[8] Ravishankar, M (May, 1996). Efficient Algorithms for Speech Recogni-
tion. PhD thesis, Carnegie Mellon University.
[9] Pallett, D (Sept, 1985). Performance Assessment of Automatic Speech
Recognizers. National Bureau of Standards.
[10] GPIO: MODELS A+, B+, RASPBERRY PI 2 B AND RASPBERRY
PI 3 B [online] Available at: https://www.raspberrypi.org/documentation/usage/gpio-
plus-and-raspi2/ [Accessed on 20/05/2017]

100



BIBLIOGRAPHY BIBLIOGRAPHY

[11] Speech to Text Customization, GitHub repository [online] Available at:
https://github.com/watson-developer-cloud/node-red-labs/tree/master/basic examples
/speech to text custom [Accessed on 26/06/2017]
[12] Obaid, T. and others (Feb, 2014). ZigBee based voice controlled wireless
smart home system. International Journal of Wireless & Mobile Networks
(IJWMN) Vol. 6, No. 1.
[13] Toschi, G. Campos, L. and Cugnasca, C (Feb, 2017). Home automation
networks: A survey. Computer Standards & Interfaces 50 (2017) 42-54.
[14] A. Kumar, A. Mihovska, S. Kyriazakos, R. Prasad. Visible light commu-
nications (VLC) for ambient assisted living, Wireless Personal Commun. 78
(3) (2014) 1699–1717. Available at: http://dx.doi.org/10.1007/s11277-014-
1901-1 00002. URL - http://www.link.springer.com/article/10.1007/s11277-
014-1901-1
[15] D.J. Fagnant, K. Kockelman. Preparing a nation for autonomous vehi-
cles: opportunities, barriers and policy recommendations, Transp. Res. Part
A: Policy Pract. 77 (2015) 167–181.

101



TRITA EECS-EX-2018:46

ISSN 1653-5146

www.kth.se


