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4.2 miﬁfmmnzo::m Beams

4.2.1 Basic Assumptions
teness, the governing equations of the nonlinear bending
of beams are developed from basic considorations. The classical beam theory
is based on the Euler-Bernoulli hypothesis that plane sections perpendicular
to the axis of the beam before deformation remain (a) plane, (b) rigid (not
deform), and (c) rotate such that they remain perpendicular to the (deformed)
axis after deformation. The assumptions amount to neglecting the Poisson
effect and transverse strains. A refined theory is that due to Timoshenko, and
it will be discussed in the sequel. The principle of virtual displacements will
be used to formulate the variational problem and associated finite element

model.

For the sake of comple

4.2.2 Displacement Field and Strains

The vmu&_.un of beams with moderately large rotations but with small strains
can be derived using the displacement field
&Ec

uj "E\DAHV |Nﬁu ua "Ou ug = EOAHV

(4.2.1)
Mwwﬂwwzﬁ% u3) E% the asE displacements along the coordinate directions
yGr< )y up and wgy denote the ial 1
L gl Ll axial and transverse displacements of 2
Using the nonlinear strain-dis :
subscripts is implied; see Chapter 83@85@5 relations (sum on repeated

W .@l:w mlzul +W Oy, Oy

NG.”M m : Ottn, Oty
T;  Jz; 2\ 0z; 015

(4.2.2)

wum.o_ﬁ.::aum the large strain terms but retainin
which represents the i
obtain rotation of a transverse

g only the square of dus/dz
ormal line in the beam), we
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d
2\ dz _
— E 1 &So 2 % _
dz M e -z IE |

dx =
— 0 1
=€y tze
r = (4.2.3a)

I
|
=
|

d 2
€ze &Me wﬁmscv y €l d*wp

7w ="y (4.2.3b)

and all other strains are zero. Note that the notation z1 = z, 5 = y, and
? ]

z3 =218 used. These strains are known as the von Kdrmdn strains

4.2.3 Weak Forms

The weak form of structural problems can be directly derived (i.e. without
knowing the governing differential equations) using the principle of virtual
displacements. The principle states that if a body is in equilibrium, the ,
total virtual work done by actual internal as well as external forces in |
moving through their respective virtual displacements is zero. The virtual
displacements are arbitrary except that they are zero where displacements !
are prescribed. The analytical form of the principle over a typical element !
Q¢ = (4, 7s) (see Figure 4.2.1) is given by (see Reddy [2])

SWe = §Wf—6Wg =0 (4.2.4)

where §W§ is the virtual strain energy stored in the element due to actual
stresses gy in moving through the virtual strains d¢;j, and SWE is the work

done by externally applied loads in moving through their respective virtual
displacements. Here oy; and €ij denote the Cartesian components .3 the stress
respectively- Due to the assumption of small

and the Green strain tensors,

strains, no distinction will be made here between the Cauchy and second

Piola-Kirchhoff stress tensors (see Chapter 9).
For the beam element, we have

R 7
%—‘QM = i .mﬁG Jij dV Ah.w.mv

6
N ™ ¢ sup dr + 3 Q5 64T
swg= [ adun aw [ 10w LS
Ta
o =gy
r) is the distributed transverse lo
s QM.NHM?:& axial load (measured per

where V¢ denotes the element .
and SAf are the virtual

(measured per unit length), f ?.V.mu,xﬂrcc»_.__ Faoun,
unit length), Qf are the mc:mra:m» nod?

Y
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sce Figure 4.2.1) defined b
lized nodal displacements of the element (sce Figur ) v
generaliz

%.c_ = 0(za)

AS = uo(za)y B2= wo(za)y B3 = T.mm\

_dwol - — g(zy) (4.2.62)

DM doﬁH?u, Dm = ﬂ,.o?‘wv. Dm = ﬁ dr %

Q5 —Nyz(24), @m”ZﬁLH&

Il

1 duwo &}\HH e _ @ZHH i Abﬂ.ﬂhu—
G#V= @mul—.ﬂw =t T W 0 lde dz g,
Qm = IbahHﬁan_ @m = &:HHTJ.OV AQMQUV

In view of the explicit nature of the assumed &%E\%Ema field (4.2.5) in
the thickness coordinate z and its independence of coordinate y, the volume
integral can be expressed as a product of integrals over the length and area of

the element:

B %n\ "[ () dAdz
Ve T4 JA®

Therefore, the expression for the virtual strain energy can be simplified as
follows (only non-zero components of strain and stress are €17 = e, and
an = Q.Hn.v

Ty

Th
§W§ = \n ) 020 027 dA dz = \H .\n Ammmu + Nmmwav Oz dA dz

i dé dwg dé
”.\ \‘n h|=m+|~.cm SOV|NRM%,SD Ozz dA dx

dr dr dz dz?
_ | (déuy  duwy déwy Rwu.go
- .\Hn A’R.H' + lm &.H v ZHH - &HN bNHH AH A%.M.ﬂv
Dm Dm © 5 m ,

(a)

Figure 4.2.1 HHS Euler-Bernoy)j beam
&wwv_momsmn, and force (e
displacements, (b) Nodal fo

(b)

finite element witp generalized

grees of freedom, (a) Nodal
rces.

’

e
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where Nz is the axial force

AEomuE& :
(measured per unit length) per unit _mzmﬂE

and Mg, is the moment

Ny = .\.n Ozz dA y gnu = Ozz2 dA
Ae
The virtual work statement ip Eq. (42.7) becomes

o= [ ]2 dm) g,
Za dzx dr dx S ,R.erw' zz| dz

(4.2.8)

b 5 zp 6
- \H (=) Sun(z) do - \» _ f (@) buo(z) &IMQ A7 (4.2.9)
The above weak form is equivalent to the foll
are obtained by collecting terms involving §u,
definitions in Eqs. (4.2.6a,b)]:

owing two statements, which
0 and Swp separately [see the

% ( dug
0= .\H A g e ouf Ev do—QF 6AT - Q5 6AF  (4.2.10a)

s&s_;g&g
O”,\u...n o mnm HHVI RHN EHHl%.EQQA.\Hw dr

— Q3645 — Q56A3 — Q5 8A% — Q5845

The differential equations governing nonlinear bending of straight beams
can be obtained, although not needed for finite element model development,
from the virtual work statement in (4.2.9), equivalently, the weak forms
(4.2.10a,b), or from a vector approach in which forces and moments are
summed over a typical beam element.

Integration by parts of the expressions in (4.2.9) to relieve fup and Swp of
any differentiation results in

l Hv RLZ.HH | MAE vlTRnbMHH.TQ mﬂ.c R.H
of\u A| dr |&.m§ dz \dz =) Tdr

(4.2.10b)

a

I 6
dM., déwp]™ e
+ _2295 + A%_O 2s+ zv ?_ol?.z& _ |MQ3.

dz dx Ta =1

Since fug and Swy are arbitrary and independent .om each other Ewwn < H < M.o
as well as at + = x, and z = 13 (independently), it follows that the governing

ions, are
equations of equilibrium, known as the Euler equations

dug : = BMMH = f(z) (4.2.11a)
i
d (doy ) o - ) (4.2.11b)
&:6“ IMMA&H Ir dr
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4.2.6b) are obtained as the

4.2.6a), definitions (

¢ definitions ( .
ditions

In view of th
) poundary com

natural (or force
~0, @ Nua(7)=0
&ﬂco &\gunn;
dM, e _ =
u_a =0, &s M&a Nzz + dr g, 0
(4.2.12)

Qi+ ZuHAHL

dwo
@ml_n ﬁﬂ&\,ﬁ\ 2z T dz

Qm + b\ﬁuﬁ.ﬂav =0,

Q6 — Myz(z) =0

The vector approach involves identifying a typical beam element of length
Az with all its forces and moments, summing them, and taking the limit
Az — 0. Consider the beam element shown in Figure 4.2.2, where Ny is
the internal axial force, V(z) is the internal vertical shear force, M, is the

s the external axial force, and g(x) is external

internal bending moment, f (z)
distributed transverse load. Summing the forces in the z and z coordinate

directions, and moments about the y axis, we obtain
MUM.HHOH IZHH+AN<HH+>2HHV+.\.AHVDS"D
Y E=0: —V+(V+AV)+q(z)Az=0
M.\S\ =0: — Mg+ (Mg + AMzz) — VAz + ZHHDH&ME
T

+4q(z)Az(cAz) =0

A A\
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Taking the limit Az — 0, we obtain the following th
ree equations:

dN;,
&z T/@)=0
dv
i = Ta) =0
&nal_\+2 @l Al
T fevie = 74 - Q

dz 0y
g R

which are equivalent to the two e :
. quations i
shear force on a mmoS.OE perpendicular to ﬂrMHmHM~m,w.. 208 that V is the
shear force @(z) acting on the section perpen &QE“M it is not equal to the
In fact, one can show that V = Q + N, (dup/dz) o the deformed beam.
If one starts with the governing equations (4.2.11a,b), thei
be developed using the usual three-step procedure: ,b), their weak forms can

QH.\.sve Al& i
Za . dz l\v&&.

Zo (duy
= \u\\.a A|.N<HH = S.\.v dr — ?HZHLMM

dz
\ ;
TLa
Th
Za

R.E N
AM Tz — S..\,.v dz — vy AHnVMIZHHAanH -n AHwVZHRAHvV Tm.w.—wwv

d &,Eo
2| "4z Aa?ﬁv =gz % dz

__ i dve (dwyg %GN
N .\&.B dr Aﬂ.m/\ﬁﬂv B %h\hﬂﬂ - ﬁ.MQ A&H

0

dx
dwo daM. b d s
— v IZ‘HH T . lldm
o (S ) (22}
_ [ |dv2 (duw a2
h \H e A %ozzv = %ﬂwiﬁ —voq| dz
dw dMiyr dw M,.
— v2(%a) —H| Aﬂm&lozuus == R.Hn VM — va2(z) —,‘%. ez T R“ U_
Za s
dvy ‘ dvo .
ﬁ dz M—Ho ~I>&nn?“n: o MIMM.;..: Mz (3) (4.2.13b)

where v, and v, are the weight functions, whose meaning is obvious if the
present the work done by external forces.

expressions fvdz and quadx are tore
We see that vy ~ Sup and v2 ~ Swg. Clearly, Egs. (4.2.13a,b) are the same,
with the definitions (4.2.6b) or (4.2.12), as those in Eqs. (4.2.10a,b).

The resultant force Nzy and moment M, can be expressed in terms of the
displacements once the constitutive behavior is assumed. Suppose that the
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de of a linear clastic material. Then the total stress is related g
is made O
iyl ain by Hooke's law

the total str Orxr = Eezz E.M.EV
Then we have e. dA
Nzz = .\n S di= Ae ks
2
pe [t 1 (4" Te0 0
= dr 2\ dr dz
. 1 /dwo\> d*wo
e[t ?ﬂov - B (4.2150)
>NHH e 4\.n Orz 2 dA = Ae MQMHH e
. |duo 1 (dwp ¢ d*wo
- /. ﬁJ?L i
. |dug | 1 dwp 4 e &qu
_p, | B0y Aﬂv -5 (4.2.15b)

where A, Bt,, and D, are the extensional, extensional-bending, and
bending stiffnesses of the beam element

(A2, oy, D)= [

For beams made of an isotropic material, the extensional-bending stiffness
B2, is zero when the z-axis is taken along the geometric centroidal axis. We
have By, =0, A5, = E°A°, and D2, = E°I°, where A and I° are the cross-
sectional area and second moment of inertia (about the y-axis) of the beam
element. For simplicity, we shall omit the element label e on the variables.
In general, Ayz, By, and Dy, are functions of z whenever the modulus E
and/or the cross-sectional area is a function of z.
Hw».ﬁ;z& work statements (4.2.10a,b) can be expressed in terms of the
generalized displacements (ug, wy) by using Eqs. (4.2.15a,b). We have
= [™ 4 g (du, 1 fdwg\2? T
0= -4 [ W b
\H.. Az o afal_.mﬁﬂalcv Aal\s f(z)bup dx

E*¢ T, z, va dA

e

~ Quéuo(za) - Q bug(zy) (4.2.17a)
Ty
0= \ A, dbuyg dwo duy 1 duwy 2 2
Tq &H RH wﬂ M Alﬁv l_r bﬂﬁ& Ec &MSQ Qwﬂ
g dz? dz?

- () -
.\u.\.a qowy dr @m.mwccﬂ.ﬁpv = @wmmﬁﬁav - Qs Q,EOAH@V =i %QAH&V

(4.2.17b)

(4.2.16)

~

———n -
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where it is assumed that the couplip, .
choice of the coordinate system; that wm coefficient
the geometric centroidal axis .TN dA

B:; is zero because of the

g .
.l..a%m ¥-8x18 18 assumed to coincide with

4.2.4 Finite Element Mode]

Let the axial displacement ug(z

and :
interpolated as _m = —(dwp / ) ) an transverse deflection wo(z) are

2
-_— . . h A
uo(z) = u.MuH” u%i(z),  wo(z) u“.Mu_ A;p;(z) (4.2.18)

A= .Eoﬁ.ﬂav. Ww = %Aﬁav“ Nww Swy(zy), As= 8(z3) (4.2.19)

and 9; are the linear Lagrange interpolation functions, and é; are the Hermite
cubic interpolation functions. For a linear problem, this mymwumﬁ gives exact
nodal displacements u; and A; for any f(z) and g(z) when A, and D,,
are element-wise constants. Then the element is said to be a superconvergent
element.

Substituting Eq. (4.2.18) for ug(x), (4.2.19) for wo(z), and ug(z) = ¥4(z)
and fwo(z) = ¢i(z) (to obtain the ith algebraic equation of the model) into
the weak forms (4.2.17a,b), we obtain

2 4
0=> Kllu+)Y KijA;-F (i=12) (4.2.20a)
j=1 J=1
2 4 _ )
0= K}uj+ Y KA, -Ff (I=1,234)  (42.20b)
i=1 J=1
where
o dy; d; _Ll[® Ev dvidés
.Nﬂuwu”l\.,“ »bHHM.HlMH.\.N&H“ NﬂC|m e .LHQ&H dr dr
Zb dwo doy di; ~21 _ g pl2
21 _ aor 4vj l=2
.RS. - Ta \_aulm dz dr dr, Kjj i ,
x dw dér doy
w o A 1 [T, ALV Poriel
ﬁwn\a.,, Dezga gz ¥, [**\dr/ | dodo
(4.2.21)

T _
F! .I..\ﬁ.?.?. dz+ Qi .uwu\.: qor dz +Qr

: § HOTQ.&H@?OHHQN.
for (i,5 = 1,2) and ({,J = u.m,w.%,r,m%nw_@.maz for the definitions of Q;.

QMHQEQGHQ?EaQH Qm. ._\.‘.:E.:r.ﬁ_»aman:.oa_ &:5
Note that the coefficient matrices (K", [K |
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Also, note that K ol [K?!); hence, the element direct

unknown wo(z)- .
ix i 5 tric.
iffness matrix 18 unsymme . 3 |
mzﬁﬂmﬁ bove definition of cocfficients K;;~ 18 based on a p articulag
e a

lincarization of Eqs- E.w.SPE , which is _%ovmszmgo Hmma Hm.ocnm.m. Other
. o on are possible. For example, if consider Eq. E.M.Hﬂmv.
forms of :.:85%%: /dz contains & lincar term and a nonlinear term. T
= oommmo_mcﬁﬁ. y r r%H stiffness, the lincar term should be kept as a part of
_:mmﬁ._,% %WLMMMF The nonlinear term can be either included in the stiffnesg
MMMM&@_M%% is done in the definition given in Eq. E.M.MS,. or ﬁ.rm whole
nonlinear term may be assumed to v.o known from the vam..:ocm _.ﬁoamﬂo:.
In the latter case, the term ends up in the load vector {F'}. This chojce
of linearization is known to slow down the o.ozénmouoo. In the case of Eq.
(4.2.17b), we know that the term duwyq/dz o:em.ao the square brackets is dye to
the nonlinear strain. Hence, it was lincarized (i.e. calculated using the solution
from the previous iteration) in defining wﬁ.w.ﬂ of Eq. (4.2.21). One may linearize
Eq. (4.2.17h) such that duo/dz +0.5(dwo/dz)? is calculated using the solution
from the previous iteration. In that case K N._ =0 and me will have additional
contribution. Thus, it is possible to computationally decouple the equations
for {u} and {A} and solve the two equations iteratively, feeding the solution
from one equation to the other. However, such a strategy often results in
nonconvergence.
Equations (4.2.20a,b) can be written compactly as

u u A
meﬁﬁ um..o,s M@.{u +Mukmmwmump E.M.wwv
b p= P=1

In matrix form, we have
(] oo {42} = {0 1229

1_ : =
Al =w, i=1,2 Dw =Ay, §=1,2,3,4 (4.2.24)

Hrmﬁmnﬂw% MMMMMHM_MMQ mmsmsmmm matrix is unsymmetric only due to the fact
(KA [ e M Wﬁﬁwz. _\w Evonom..m [K?'] does not. One way to make
equal parts and tak Pt the linear strain dup/dz in Eq. AP&.HQV into two

¢ one of the two parts as known from a previous iteration:

\JNH@BEE:@Z
Tq dz dzr |dy T3 dr dz

where

=L %, [d
B M\Hn \»m& EI&SQ@ &’z.m AEVN ddwg duyg T

@ dr dz dr dz dr dzx
(4.2.25)

e -

e |

NONLINE
AR
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The first term of the above €quation congtjy,y
1lutes

constitutes a part of [K mu_. The Symmetrized B:mo_m.m“uhwm i
:N:_ ﬁ MNHN_
.NNNA 22 a A ﬁ.—mw V“ *M,HM
(K*] (k%) {A} { EL (4.2.26)
where
P11 _ 1 T i dy);
R - [t
712 - Emuw\a, e dwo\ dyyd
iJ iJ 9 s .&uu.lam. MIW dz
= 1 1= duyg\ d :
NEHI.\. A.Am llov dér dy; % %
572 e & ) i@z & Kij =K}
3 @ A &
B2 = \ pe 201979y
= L, o g2 3,8
1 = o |dug  [dwg\?] do;de,
tal |+ (3) | B wam

Note that in the symmetrized case, we must assume that uo(r) is also known
from a previous iteration.

4.2.5 Iterative Solutions of Nonlinear Equations

The direct iteration and Newton-Raphson methods introduced in Chapter 3
are revisited here in connection with the nonlinear finite element equations of
the EBT. Consider the nonlinear equations (4.2.23), which can be written as

[Ke({AaPHA} = {F°} (4.2.28)
where
$=uy, AS=AS, A§=A5 Aj=uz B5= AS, AS=AF  (4.2.29)
2 _ 2
Fe—F), PR, F=F, F=F =R K=K ({22

The system (4.2.28) of nonlinear Emmwaﬂn Bﬂwn_oﬁmwﬂcﬁwm_wuhﬁmw%_%ﬂ“”
direct iteration and Newton-Raphson iterative ISR may be symmetric
are presented next. Note that the ::E..:N.& B_M:“mmw&ca. an appropriate
or unsymmetric, depending on the mozsaw:on_. m:”_ 5 snaystimetric bandad
equation solver must be used. On the other hand,

equations solver may be used in all cases.
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Direct iteration procedure

ct iteration vaon&_:?
d set of equations

(F} or [RUAYHAY ={F} (4.2.30)

the solution at the rth iteration is determineq
In the dire
from the assemble in

K(ANDHAY =
i E&i matrix [K¢ is evaluated at the clement level using

where the dire ADJ r=1) at the (r — 1)st iteration.

the known solution
Newton-Raphson ileration procedure
In the Newton-Raphson procedure, the lincarized element equation is of the

form
LAY -IHAY = ~{R{AY )} = {F} = (KNHAHD (4231

where the tangent stiffness matrix [T] associated with the Euler-Bernoull
beam element is calculated using the definition

Tw_. ?.H ml mbw T.IC
_j Amﬁbwv y O m._.u.” %Pw AQ.N.QMV

The solution at the rth iteration is then given by

{ay ={a}rb 4 (s} (4.2.33)

Although the direct stiffness matrix [k ?] is unsymmetric, it can be shown
”WMM MWm “mumai mcwomm matrix _nﬁm_ 1s symmetric. Further, it can be shown
€ tangent stifiness matrix is the same wheth 2 i

o B (U et i er one uses [K€] or [K*)
The coefficients of the element tangent stiffness matrix [T¢] can be

computed using the definition in (4
B e (4.2.32). In terms of the components defined

(r-1
T8 _ ORZ )
LN YN (4.2.34)
3

fora,f=12 T
he components of the residual vector can be expressed as

2
B=YYKkoar-

ﬁgu_

uMwaDIMN SA} - PP

2
”hmxpﬂuﬁvz_; M

KZAp_
P Ap - By (4.2.35)

NONLIN
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Note that the range of p is dictated by the size of the matrix [K*P]. We h
. We have

dRe
T8 — i
¥ " \oaf) = ga M > KA - pe

T=1p=1

2
. m% oK™
= K% i
W:W % a8 * 5ar S}
2
9 Mﬂnu =
= o7 (55") wp+ M PTY (k) ap  (1236)

P=]

=K%+
Immm

We compute the tangent stiffness matrix coefficients ﬂnu

_umHoé explicitly as shown
2 11
OK; 4
T — g1 ﬁ i M
o v u ﬁ.ﬁ m.:q

L el A
=K} +Wmo.$+mo.bv (4.2.37)

Since
oKy’

mw.z_ k

=0forall a,f3,i,j and k (4-2.38)

the coefficients [T'!] and [T%!] of the tangent stiffness matrix are the same as
those of the direct stiffness matrix:

_u..HJ L _“.mm:u . ?ﬂm“_ - Tw\mﬂ_ (4.2.39)
Next consider
2 mm: 4 OK12
m._ |Mm1mm
= LA\ ) vt @Pv
Lo dug dy; d
=Ki+0+ % @»z A :ov N % dz|Ap
poilza 2 o
ATl 0 (o~; dox)dvidee | |5
— 712 i _a= — | ———dr|A
= 4hJ + MH s M%ﬁhh@bh M.D dr dr dr =
g Wl désdyidée |
= .mf_.w + M A Ibhhﬂ]ﬂﬂlﬂ . P

A
Ty ] d) &Gg L._vm..v v dr
S P

+. &».ﬂh nm.H ﬁm.n. *.M
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7 /1 duo WW\\N@ &.&.
\>s+\ Am\_uumw\ml dr dr
=NniJ Ta 12— Nﬂ\wn AA.M.QOV
=KY L K12 =260 =i
aK2\ «
2 m&«w«__ %) a,
Yl ) o, +
%uaﬁm ) w W i
f 4
-5 \ A= h, @m K | dz dz p
ot
4 [ o] 7} @vwmmﬁmglmaﬁww
+ M mkﬁ@N‘.\. = L
P= Za
2
Th m&ﬁ\ Q.&_\ mﬂ\hﬂ D«
Hw\w.w.f.\nv \nhnMH\ﬁ s = Up 5
a “I
4
T n_z_c &ﬁﬁ@ ) mﬂlﬁ
+\H-n kﬁhﬂ A.m.u.lv Q.ﬁ D_.H P Dﬁ &H R.\H
i (0 i b S
= t+\un LHHA%. FIs dr dzr / dzr dx dzx ]

4.2.6 Load Increments

Examining the expression (4.2.15a) for the internal axial force Ny, it is clear

that a:.w rotation of a transverse normal contributes to tensile component

of Nz irrespective of the sign of the load. As a result, the beam becomes

wﬂ%“ﬁmmw. stiff with an increase in load. Hence, for large loads the

e %wwﬂwﬂow% ”.Mo. large for the HE.Soanm_ scheme to yield convergent

smaller load Eﬁmsm,u_g _mmm_”,mwm.mmma. iy the motalToad. B o eRERy
y0F2,...,6Fx such that

N
F=3 4R, (4.2.42)
t=1
For the first Joag
. ste 7 :
determine the %mm&ow . www_wﬂmsﬁ procedure outlined earlier can be used to
lterations, it m, . 06 not converge within a reasonable number of

ay be ne
On . cessary to f
c@ the solution fo ¢p, ?MH _ome mrow reduce the load increment Fy = 6F1-
. ner

initial “gyegs” 7 . .
ct ement -
the total Joaq i SMMTWM the next Joag F=¢R Mamwgﬁmﬁ .n . Mm " Hhﬁ
. 2. This is continue

Another v,
. "y t0 acce]
the solutiopg from the rmﬂﬁ a.s convergence is to yge a weighted average of
O lterationg ip evaluating the stiffness matrix at
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the rth iteration:
* —
{8 =Ak2+ (1 -9{a), o0<y<t (4.2.43)

where 7y is called the acceleration parameter. A value of 4 = 0.5 is suggested
when the iterative scheme experiences convergence difficulty. Otherwise, one
5 )

should use y = 0.

4.2.7 Membrane Locking

For the linear case, the axial displacement ug is uncoupled from the bending
deflection wp, and they can be determined independently from the finite

element models [see Eqgs. (4.2.20a,b)]

= (7Y, K= [T a2
KPOYB) = (%), KHO = [ pe LorLes (4.2.45)

respectively. Here the superscript L signifies the linear stiffness coefficients.
Under the assumptions of linearity, if a beam is subjected to only bending
forces and no axial loads, then ug(z) = 0 when ujg is specified to be zero at (at
least) one point. In other words, a hinged-hinged beam and a pinned-pinned
beam (see Figures 4.2.3(a) and (b), respectively) will have the same deflection
wo(x) under the same loads and ug(x) = 0 for all z. However, this is not the
case when the beam undergoes nonlinear bending. The coupling between up
and wp will cause the beam to undergo axial displacement even when there
are no axial forces, and the solution (ug, wp) will be different for the two cases
shown in Figure 4.2.3.

First, we note that the hinged-hinged beam does not have any end
constraints on wug. If the geometry, boundary conditions, and loading are
symmetric about the center, then up = 0 there. Consequently, the beam does
not experience any axial strain, 0 = 0 (because the beam is free

that is, €3z =
to slide on the rollers to accommodate transverse deflection). On the other
hand, the pinned-pinned beam is constrained from axial movement at T =

0
and z = L. As a result, it will deve

lop axial strain to wnnoEBomwﬁmaro
transverse deflection. The former beam will have larger transverse deflection
drmzﬁrm_m:mbngc_m:maom,ma axial stiffn

ess to stretching, and the axial
stiffness increases with the load. T ]
Thus, for a hinged-hinged beam, the element should experience no
stretching:

2
0 — mmhlo o 1 Ahw&m_mv = 0 (membrane strain) (4.2.46)
2 T

mHH - N&.H
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Nonlinear bending of (a) hinged-hinged and (b) Pinned—

i 4.2.3
Figure pinned beams.

satisfy the constraint in (4.2.46), we must have

m:o &Eo m
i AMV (4.2.47)

In order to

The similarity is in the sense of having the same degree of polynomial variation
of dug/dz and (duwp/dz)?. For example, when wg is interpolated using linear
functions and wy with cubic, the constraint in Eq. (4.2.47) is clearly not
met and the resulting element stiffness matrix is excessively stiff (hence,
results in zero displacement field), and the element is said to lock. This
phenomenon is known as the membrane locking. In fact, unless a very higher-
order interpolation of ug is used, the element will not satisfy the constraint.
> Emnﬁ.mo& way to satisfy the constraint in Eq. (4.2.47) is to use the
MM”MMWM hwmﬂwﬂ.wm_mzo_z of up and wy (i.e. linear interpolation of ug and
8 Cotact. M MMMWMWS ﬁom wp) but treat mma as a oonmnm:a.. Since &ﬁu\c\&a
evaluating the element .<.mo i EE.O\ dr)* as a constant in numerically
all nlingar ai. stiliness coefficients. Thus, if A, is a constant,
quadrature, that Mm mcmwmm_emgm mroci be evaluated using one-p ombﬁ. Calsg
K2, ﬁp_ TV, ﬂf_g 1 :Hm 1&:0& integration. These coefficients include
may be evalreo ¢ nonlinear parts of K22 and Hm.m. All other terms

uated exactly ysi .
Az and D, ¥ using two-point quadrature for constant values of

8 Computep HSEmSmEmn.

Tt for nonlipegy b

an outer Jogp o ending of beams jg shown in Figure 4.2.4. Note

load incrementg (N LS=number of load mn%.mv.

_ Mmﬁw 0 Bq. (4.2.99) is defined by submatrices
{u} ) ptior, vector ADW is vms.asouo& into the
and vector {A} of transverse &mw_pomn_m:&m.

NONLINE,
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Initialize global N:H_

<D0 1107 >

Transfer global information

(material properties, geometry, and solution)
to element

CALL ELKEF to calculate Nq?v
and /1", and assemble to form
global K and F;

Impose boundary non&moum
and solve the equations

¢t for the nonlinear finite element analysis

Figure 4.2.4 A computer flow char
of beams.

i —
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ange the solution vector as
C

= Ag,02=A4)T (4.2.48)

pre Bllc IT
i L I8 )
n Tal 11C€, it 18 CS —-.—— (d to rea

*DW = T:.ﬁ.; = DTQH = Dm.ﬁmqew

rangement of the stiffness coefficients such that the
preserved. For linear miono_mrow of up(z) and
: e olation of yo(z), the submatrix _r\ ] is of zmm order 2x 2,
Hermite e | :ﬁj is 4 x 4. Therefore, the total size of the stiffness matrix
_ K12 s 2x 4, ane he specific matrix form

1 requires Tear

This in tur i s
original symmetrys if any, 18

is 6 % 6. Thus Eq. :.m.muv has t
12 12 e 1
}.: >q: Mﬂ?m x“w Nr“..w .NA:_ uy M«Jﬁ
11 12733 512 Kl2 K12 Ul Fl
Kl Rl K Ky Hay Bod Uz 2
il DB % i pi K22 e P2
K2 K3 K§ Kig 13 14 =18 — 1 (4.2.49
i BIE Ty e 22 a2 e F2 -2.49)
K3 KA K Ky Ky Kol | o2 2
21 22 b /92 22 22 e mu_m
R R e S
a2 g 3 A >
K3 ki Kif Ki Ki Ki 4 Fj
Rearranging the equations according to the displacement vector in Eq.
(4.2.48), we obtain
12 12 el g2 12 1
RS Rt B A R R
i s R T B o I
Ky Ky Ky Ky Ky Kij sl _ ) s (4.2.50
>~: >;m ?Hm -11 12 Nﬂwm € = .m.JH L) v
A B R AR - T
il 1 _:w_m Ky K Kip| | A3 £
K§§ Ki KB K3} K# K2 e F?

~ The computer implementation of such rearrangement of element coefficients

is ?mmcusm‘_: Box 4.2.1, where NDF denotes the degrees of freedom per node

(=3) and NPE the nodes per element (=2). This rearrangement is carried

MM Mmﬁ,ﬁ. the n._a:.EE coefficients (K11, (K], (K], {F1} = {0}, and .ﬁuﬁ.

full EHMMMMM_H_W_M@ loops on Gauss quadrature. There are two loops, one for
nd another for reduced integration.

The number of full Carce oo ,
polynomia %n:“ ull Gauss points (NGP) is determined by the highest

that reduced inte Wﬂ.cm all integrands of the linear stiffness coefficients (recall

mﬂopwow _pm to be ﬁ.ﬁma for the nonlinear terms): ZDH.HQ+C\ 2.
:_sm.hmhamzu% F:os.cm up and Hermite cubic interpolation of
ing vo_vﬂoswaﬁwm stiffness coefficients defined in Eq. (4.2.21)
€y are Sumﬁmseunﬁemm (assuming that the nonlinear terms ar¢

.W‘_,_.ﬂ_ = de|
gree of 4
NW.WEV =3 ZI, .\A-n“—_w = aummﬂﬂo of \A.Hﬂu
Brec of DE o, g202)
Fl - b v K =d e
2 n_mm_.g Om. .WAHV + H & QWHOQ Om. \MHH + O

2
F = degree of g(z)+3

For example, if )ip
Wo is used, the
have the follow
treated as if ¢,

——
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Box 4.2.1 Fortran statements to rearrange stiffness coefficients.

Rearranging of the element matrix coefficients for
the EULER-BERNOULLI beam ¢lement (EBE)

s NoNoNe]

11=1
DO 200 T=1,NPE
10=2*1-1
ELF(II+1)=ELF2(I0)
ELF(I1+2)=ELF2(I0+1)
1=1
DO 100 J=1,NPE
10=2*J-1
ELK(ILJ)) =ELKII(L))
ELK(ILJJ+1) =ELK12(1,J0)
ELK(ILJJ+2) =ELKI2(1,J0+1)
ELK(II+1,77) =ELK21(10,J)
ELK(TI+2,J]) = ELK21(10+1,)
ELK(II+1,JJ+1) = ELK22(10,J0)
ELK(II+1,JJ+2) = ELK22(10,J0+1)
ELK(T+2,J1+1) = ELK22(10+1,10)
ELK(T1+2,J1+2) = ELK22(10+1,J0+1)
100  JJ=NDF*J+1
200  M=NDF*I+1

In particular, for constant values of AXX = As,, DXX =D, ,FX = f, and
QX = g, we have NGP = (3+1)/2 = 2 (dictated by F?) and the number of
reduced integration points is LGP = 1. The full Gauss azp&m:.ﬁm is :m..m& to
evaluate [K11], [K22(V)], {F'}, and {F?}, whereas the reduced integration is

used to evaluate [K'?] and [K 22(2)],
The computation of the direct stiffness coefficients and force vectors defined

in Eq. (4.2.21) is straightforward. For example, we have
ELF1(i) = ELF1(i) + FX « SFL(i) * CNST
ELF2(I) = ELF2(I) + QX + SFH(I) s CNST
ELK11(, j) = ELK11(i, j)
+ AXX * GDSFL(i) * GDSFL(j)*CNST
ELK22(I,J) = ELK22(1,J) ]
+ DXX » GDDSFH(I)» GDDSFH(J) + CNST
in the full integration loop, and

ELK12(i,J) = ELK12(i,J) + 05+ AXX + DWW
« GDSFL(i) * GDSFH(J) x CNST
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N AXX +« DW
= ~ — ELK21(1,5) + !
BLKAUI) = 0 oH(1) » GDSFL(j) s CNST
(1, J) = ELK2(1,J) + 05+ AXX « DW « DW
ELRESI ™ apsFH(T) * GDSFH(J) x CNST

; Here, SFL(i) = i, SFH(I) = 4
. integration loop. ) . ; 1,
in the reduecl R DSEH() = £%, GDSFL() = %%, and Dy =
Qbmhﬂimv M.ﬁ.ﬁ,rw and 1,J = 1,2,3,4. Similarly, the extra terms that
E:M_\whwao”:_”_ od to the direct stiffnesses can be computed in the reduced
ced to
ma_:_mma:cz loop as [see Eq. (4.2.41))
TANG12(i,J) = TANG12(i, J) + 0.5 * AXX x DW
«GDSFL(i) + GDSFH(J) * CNST
TANG22(1,J) = TANG22(1,J) + AX X * (DU + DW x DW)
+GDSFH(I) * GDSFH(J) * CNST

where DU = (dug/dx).

Example 4.2.1

Consider a beam of length L = 100 in., 1 in. x 1 in. cross-sectional dimensions, hinged
at both ends, made of steel (E = 30 msi), and subjected to uniformly distributed load of
intensity gy Ib/in. Using the symmetry about = L/2, one-half of the domain is used as the

computational domain. The geometric boundary conditions for the computational domain
are

s.;gui&&u @%v =0 a.u.mc

: |~__,wm_o&amm divided into load increments of equal size Agy = 1 Ib/in. A tolerance of
=103 and max R . .
The initial Sucsoshwca allowable iterations of 30 (per load step) are used in the analysis.

ector is chosen to b § ion solution
cortesponds to the lincar solutioy e the zero vector, so that the first iteration

U(e)=0, wy(z)= DL (z ,23 ot 4.2.52)
- =aup (I-2F+ & (
Particular, the cepger deflection ig (for g = 1)
L 5qq L4
vo(3) = 202 — 05208 in. (4.2.53)
For the § 384D,,
. € lour elemep mesh .
Solution vegy 1 the linea

T stiffness matrix, force vector, and the m_OUE linear

OT are pi R
A = Eiven _u% ﬁgﬂf ’
= the specifieq boundary conditions Ay =0,A13= 0 and

2 0.0000
g 000 —
0 0153 _ggg 24 0.0000 0.00

K)<1p5| o0 - 0 -0.1536 -0.96
Leig -2 W%cgm 800 0 9600 4.00
0 01535 % 24 00000 0.00

0 0950 % 0 01536 096

. 400 0 pggo0  8.00
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43 -0.01666

0.000 As 0.20223

HM.NWA__ Ag ~0.01523

Fey={ ~1% Ag | _} 037109
Sk 0.000 (* ) Ag [ T\ -0.01146
6.250 Agy 0.48218

13.021 D_u —0.00612

Ay 0.52083

Table 4.2.1 contains the results of the nonlinear analysis obtained with the direct jteration
procedure as well as the Newton-Raphson iteration (acceleration parameter, ¥ = 0). The
Gauss rule M x N has the meaning that M Gauss points are used for the evaluation of linear
stiffness coefficients as well as the force components, and N Gauss points are used to evaluate
the nonlinear stiffness coefficients. As discussed earlier, the problem should not exhibit any
nonlinearity. The correct solution (4.2.53) is predicted by the use of 2 x 1 Gauss rule (see the
last column of Table 4.2.1). Both 4 and 8 element meshes and direct and Newton—Raphson
methods predicted the same result. The 2 x 2 Gauss rule not only yields incorrect results,
but it takes more iterations to converge.

Table 4.2.1 Finite element results for the deflections of a hinged-hinged
beam under uniformly distributed load.

Load gy Direct iteration (DI) Newton-Raphson (NR) DI-NR
(2x2) (2x2) 2x1

4 elem. 8 elem. 4 elem. 8 elem. 4 and 8
10 0.5108 (3)*  0.5182(3) 05108 (4) 05182 (4) 05208 (3)
2.0 0.9739 (5) 1.0213 (3) 09739 (4) 10213 (4) 10417 (3)
3.0 1.3763 (6) 1.4986 (4)  1.3764 (4) 14986 (4)  1.5625 (3)
4.0 1.7269 (7) 19451 (4)  1.7265(4) 10453 (d) 20833 (3)
5.0 2.0356 (9)  2.3609 (5)  2.0351 (4) 23607 (4)  2.6042(3)
6.0 2.3122 (11) 2.7471(5)  2.3116(3) 27467 (3)  3.1250 (3)
7.0 2.5617 (14)  3.1054 (6)  2.5630 (2)  3.1074(2) 36438 (3)
8.0 27936 (17) 34418 (7) 27930 (2)  3422(2) 41667 (3)
9.0 3.0049 (22)  3.7570 (7) 3.0060 (3)  3.7564 ..m. h.maww m:
10.0 3.2063 (29) 4.5013 (8)  3.2051 (3)  4.0523(2) 52083 (3)

* Number of iterations taken to converge.

Example 4.2.2
beam of Example 4.2.1 with (a) pinned ends, and (b) clamped

i > symmetry of the solution
ends, and under uniformly distributed transverse load. Zc:“i:-.””.w u_omwaww _ﬂw Sl
about z = L2, one-half of the domain is used as the computa X

. i ‘0 problems are
ro:.:r:.u- conditions for the computational domain of the two p

Next, we consider the straight

Ly_dw)  _g (4.2.54)
pinned: ugy(0) = wp(0) = ..san =TI =%
dy )= 3 =0 (4.2.55)
clamped: ug(0) = wp(0) = Mnl_uuo =ugly iz ==
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’ fe =103, and maxi
= b/in., a tolerance © 10 : mum ga]],
d increments of Ag0 = u.oq“i\wu the analysis. The initial solution vectoy is nw_qw_u_m
The loa _« per Joad step) ar¢ :.w‘ inear problems are Osep
jterations of nu,.mn.,o_.. Solutions to the line
to be the 2610 @t 2 T - mvm
v_.b:a&.. .S;Hv =0, zéﬂ.ﬁv = 924D;:z 12 L AA.M.mmv
Q:h.__ x _ wm + HIA
&E‘Eq&.. :.QAHV =0, .EQAHV T 24D, L L3 LA gwmd
aximum deflections occurs at L/2. M_o_. go=11b/in., L=100in., and £ = 30x 106
e m I3 =
M_ma ”_H“MJ are given by (Dzz = 1T (=N
Ly_ 50l _ 5908 5
pinned: Eaﬁw.u = 384D, : in. Q.m.mwv
L ol _ :
clamped: =5ﬁmv = D 0.1042 in. Q.m.mcv
The linear nodal displacements obtained using four elements in half beam are
{ —| 3\
B mm%ww As 0.01994
& : Ag ~0.00273
Ag ~0.01523 i 5
0.37109 8 -
i = b, 4 A ={ ~0.00313
A -0.11458 (' 9 s
™ 0.48218 A 0.09155
& ~0.00612 By ~0.00195
z : A 0.10417
A14) pinnea L 0.52083 14 7 clamped .

Tables 4.2.2 and 4.2.3 contain the results of the nonlinear analysis of pinned—pinned and
m_»sw.&.n_m.s_u& beams, respectively; the results were obtained with the Newton-Raphson
iteration method. The direct iteration method did not converge even for 100 iterations per

load step when Ag = 1.0. It is possible to find a value of Ag and ITMAX for which one
can obtain converged solutions.

Table 4.2.2 Finite clement results for the deflections of a. pinned-p. inned
beam under uniform load (N-R).

2x2 2x1
Load T E——
T & “M““mMM 8 elements 4 elements 8 elements
20 05424 M._W L) 0.3687 (5) 0.3685 (5)
30 06601 (3 0.5446 (4) 0.5466 (4) 0.5457 (4)
40 07510 (3) 0.6629 (3) 0.6663 (4) 0.6645 (4)
5.0 08263 (3) 0.7543 (3) 0.7591 (4) 0.7564 (4)
6.0 05012 (3) 0.8299 (3) 0.8361 (4) 0.8324 (4)
i 03185 (3) oo () 0.9027 () 0.8979 (4)
4 10002 (3) _.&Ma (3) 0.9617 (4) 0.9558 (4)
0 L0473 (3) i 3 (3) 1.0150 (4) 1.0080 (4)
. 10908 (3) it 10638 (4) 1.0557 (4)
Number of iterationg taken 10 ¢, il i) 1.1089 (4) 1.0997 (4)

nverge,
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There is no significant difference between ;
rules for this problem. Figure 4.2.5 shows ﬂr”..rﬂv”w__mu:m:m
the axial displacement degrees of freedom are s e
at every point of the beam) in the nonlinear
«tiff, and the deflections experienced will be |

and Figure 4.2.5.

o.vna:ma_ with the two integration
s :‘on curves for the two beams. If
S e _uc.m. equivalent to setting uy = 0
= Ol beams, the beam will behave very

an those shown in Tableg 4.2.2 and 4.2.3

Table 4.2.3 Finite element results for the deflecti

beam under uniform load (N-R E&onm of a clamped-clamped

2 x 1 Gauss rule).

Direct iteration Newton-Raphson iteration

Load qo 4 elements 8 elements 4 elements 8 elements
1.0 0.1033 (3)" 0.1034 (3) 0.1034 (3) 0.1034 (3)
20 0.2022 (4) 0.2023 (4) 0.2022 (3) 0.2023 (3)
3.0 0.2938 (4) 0.2939 (4) 0.2939 (3) 0.2939 (3)
40 0.3773 (5) 0.3774 (5) 0.3773 (3) 0.3774 (3)
5.0 0.4529 (5) 0.4531 (5) 0.4528 (3) 0.4530 (3)
6.0 0.5213 (6) 0.5215 (6) 0.5214 (3) 0.5216 (3)
7.0 0.5840 (7) 0.5842 (7) 0.5839 (3) 0.5841 (3)
8.0 0.6412 (8) 0.6412 (8) 0.6413 (3) 0.6414 (3)
9.0 0.6945 (9) 0.6944 (9) 0.6943 (3) 0.6943 (3)
10.0 0.7433 (10) 0.7431 (10) 0.7435 (3) 0.7433 (3)

* Number of iterations taken to converge.

1.20
1.10
1.00

=
%)
=)

0.80
0.70
0.60
0.50
0.40 Clamped-clamped

Deflection, w,

0.30
0.20
0.10
0.00

7.0 8.0 9.0 10.0

6.0
0.0 1.0 2.0 3.0 4.0 5.0
Load, g,

Figure 4.2.5 Load versus deflection curves.
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