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If a force F(1) acts on a viscously damped spring-mass system as shown in Fig. 3.1, the
equation of motion can be obtained using Newton’s second law:

mx + cx + kx = F(1) (3.1)
Since this equation is nonhomogeneous, its general solution x(t) is given by the sum of the

homogeneous solution, x;(f), and the particular solution, x,(¢). The homogeneous solu-
tion, which is the solution of the homogeneous equation

mx +cx +kx=0 (3.2)
represents the free vibration of the system and was discussed in Chapter 2. As seen in Section
2.6.2, this free vibration dies out with time under each of the three possible conditions of
damping (underdamping, critical damping, and overdamping) and under all possible initial

conditions. Thus the general solution of Eq. (3.1) eventually reduces to the particular solu-
tion x ,(¢), which represents the steady-state vibration. The steady-state motion is present
as long as the forcing function is present. The variations of homogeneous, particular, and
general solutions with time for a typical case are shown in Fig. 3.2. It can be seen that
xp(t) dies out and x(r) becomes x,(t) after some time (7 in Fig. 3.2). The part of the
motion that dies out due to damping (the free-vibration part) is called transient. The rate at
which the transient motion decays depends on the values of the system parameters k, ¢, and
m. In this chapter, except in Section 3.3, we ignore the transient motion and derive only the
particular solution of Eq. (3.1), which represents the steady-state response, under harmonic
forcing functions.
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FIGURE 3.1 A spring-mass-damper system.
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FIGURE 3.2 Homogenous, panicular, and general solutions
of Eq. (3.1) for an underdamped case.



Resposta de um sistema sem amortecimento e de 1GL a uma excitacao harmoénica

Before studying the response of a damped system, we consider an undamped system sub-
jected to a harmonic force, for the sake of simplicity. If a force F(1) = F cos wt acts on
the mass m of an undamped system, the equation of motion, Eq. (3.1), reduces to

mix + kx = Fycos wt (3.3)
The homogeneous solution of this equation is given by
xp(1) = C) cos wyt + Casin @yt (3.4)

where @, = (k/m)'/? is the natural frequency of the system. Because the exciting force
F(t) is harmonic, the particular solution x () is also harmonic and has the same frequency
w. Thus we assume a solution in the form

xp(rj = X cos wt (3.5)

where X is an constant that denotes the maximum amplitude of.rp(r}. By substituting
Eg. (3.5) into Eq. (3.3) and solving for X, we obtain

F 5
X=—>"2_= st (3.6)

k — maw? ® )2
| — | —
Wy

where 8;, = Fyy/ k denotes the deflection of the mass under a force F; and is sometimes
called static de fection because Fj is a constant (static) force. Thus the total solution of
Eq. (3.3) becomes

Fi
x(t) = Cjcos wt + Cssinw,t + — _cos et (3.7)
B k — mw

Using the initial conditions x(t = 0) = xgand x(7 = 0) = x;, we find that

Fy Xp

O = x5 — ———, O, =
: 0 k — mw® Ty

and hence

Fy Xp ) .
(1) =|xp— ——= |coswyt + | — |sinwyt
k — mw”™ iy,

Fy
+ —2 cCOs
k — mw

(3.8)

(3.9)



The maximum amplitude X in Eq. (3.6) can be expressed as

X |
X__ 1t (3.10)
Bt

()

The quantity X /&, represents the ratio of the dynamic to the static amplitude of motion
and is called the magni fcation jactor, ampli fcation fictor, or amplitude ratio. The vari-
ation of the amplitude ratio, X /8. with the frequency ratio r = w/w, (Eq. 3.10) is
shown in Fig. 3.3. From this figure, the response of the system can be identified to be of
three types.
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FIGURE 3.3 Magnification factor of an undamped system, Eq. (3.10).
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https://www.youtube.com/watch?v=sH7XSX10QkM glass break
https://www.youtube.com/watch?v=BE827qwnnk4 glass break



https://www.youtube.com/watch?v=BE827gwnnk4
https://www.youtube.com/watch?v=sH7XSX10QkM

Casel. When(0 < w/w, < 1, the denominator in Eq. (3.10) is positive and the response
is given by Eq. (3.5) without change. The harmonic response of the system x (1) is said to
be in phase with the external force as shown in Fig. 3.4.
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FIGURE 3.4 Harmonic response when
0 < wfw, <.



Case 2. When w/w, = 1, the denominator in Eq. (3.10) is negative, and the steady-state
solution can be expressed as
xp(:) = —X cos w! (3.11)

where the amplitude of motion X is redefined to be a positive quantity as

X = —j (3.12)
w \2
Wy

The variations of F(t) and x (1) with time are shown in Fig. 3.5. Since x (r) and F(1) have
opposite signs, the response is said to be 1 80° out of phase with the external force. Further,
as w/w, — 00, X — (. Thus the response of the system to a harmonic force of very high
frequency is close to zero.
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FIGURE 3.5 Harmonic response when
w/w, = 1.




Case 3. When @/w, =1, the amplitude X given by Eg. (3.10) or (3.12) becomes
infinite. This condition, for which the forcing frequency w is equal to the natural frequency

of the system w,, is called resonance. To find the response for this condition, we rewrite
Eq. (3.9) as

Xy . COS ! — COS w, !
x(1) = xpcos wyt + —sinwyt + 8

o) Y (3.13)
' e,

Since the last term of this equation takes an indefinite form for w = w,, we apply L'Hos-
pital’s rule [3.1] to evaluate the limit of this term:

d
(cos wt — cos w,t)
) COS wl — COS w,! . dew
lim = lim »
0 by ] w 2 0 * iy d ] °
w, _ dw w
) { sin w! wyl
= lim = ——sin Wyl (3.14)
(o —* [i1] 2
25
L LU
Thus the response of the system at resonance becomes
X Oyt !
x(t) = xpcos @yt + =0 §in w,! + SZU" sin w,t! (3.15)
Wy

It can be seen from Eq. (3.15) that at resonance, x(1) increases indefinitely. The last term of

Eq. (3.15) is shown in Fig. 3.6, from which the amplitude of the response can be seen to
increase linearly with time.
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FIGURE 3.6 Response when o/,
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The total response of the system, Eq. (3.7) or Eq. (3.9), can also be expressed as

i}
x(1) = Acos (w4 — ¢) + ————cos of; for— < 1 (3.16)
w 2 ey
Wy
Sg[ i1
x(1) = Acos (wt — ¢) — cos wr; for— =1 (3.17)

w \2 Wy
-1 + =
Wy

where A and ¢ can be determined as in the case of Eq. (2.21). Thus the complete motion
can be expressed as the sum of two cosine curves of different frequencies. In Eq. (3.16),
the forcing frequency w is smaller than the natural frequency, and the total response is
shown in Fig. 3.7(a). In Eq. (3.17), the forcing frequency is greater than the natural fre-
quency, and the total response appears as shown in Fig. 3.7(b).
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FIGURE 3.7 Total response.
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Resposta de um sistema com amortecimento e de 1GL a uma excitacao harmonica

If the forcing function is given by F(t) = F; cos wt, the equation of motion becomes
mx + ¢x + kx = Fycos wt (3.24)

The particular solution of Eq. (3.24) is also expected to be harmonic; we assume it in
the form!

xp(1) = X cos (wt — ¢) (3.25)

where X and ¢ are constants to be determined. X and ¢ denote the amplitude and phase angle
of the response, respectively. By substituting Eq. (3.25) into Eq. (3.24), we arrive at

X[(k — mw?) cos (wt — ¢) — cosin(wt — ¢)] = Fycos wt (3.26)
Using the trigonometric relations

cos (wlf — ¢b) = cos wt cos b + sin wt sin ¢

sin (@t — &) = sin wt cos ¢ — cos wi sin ¢

in Eq. (3.26) and equating the coefficients of cos wt and sin @t on both sides of the result-
ing equation, we obtain

X[(k — mw®) cos ¢ + cwrsin d] = F,
X[(k — mo?®) sind — cocos ] =0 (3.27)

Solution of Eq. (3.27) gives

X = (3.28)

and

(3.29)



By inserting the expressions of X and ¢ from Eqgs. (3.28) and (3.29) into Eq. (3.25), we
obtain the particular solution of Eq. (3.24). Figure 3.10(a) shows typical plots of the forc-
ing function and (steady-state) response. The various terms of Eq. (3.26) are shown vecto-
rially in Fig. 3.10(b). Dividing both the numerator and denominator of Eq. (3.28) by k and

making the following substitutions

¢ c ¢ ¢
= — = = : — = 2w .
¢ . 2mw, I\ mk m L
Fy , .
d,; = — = deflection under the static force Fj;. and
o .
r = — = frequency ratio
iy
we obtain
X 1

and

Hi1), x(1)

NN

(a) Graphical representation

FIGURE 3.10 Representation of forcing function and response.

(3.31)
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Reference

cwX
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me- X

(b) Vectorial representation

12



As stated in Section 3.3, the quantity M = X/ 8,, is called the magni fcation fictor, ampli-
feation fictor, or amplitude ratio. The variations of X /&, and ¢ with the frequency ratio
r and the damping ratio { are shown in Fig. 3.11.

The following characteristics of the magnification factor (M) can be noted from

Eg. (3.30) and Fig. 3.11(a):

1.

b

Sk

For an undamped system (£ = 0), Eq. (3.30) reduces to Eq. (3.10), and M — 20 as
r—1.

Any amount of damping ({ > () reduces the magnification factor (M) for all values
of the forcing frequency.

For any specified value of r, a higher value of damping reduces the value of M.

In the degenerate case of a constant force (when r = 0), the value of M = 1.

The reduction in M in the presence of damping is very significant at or near resonance.
The amplitude of forced vibration becomes smaller with increasing values of the forc-

ing frequency (that is, M — 0 as r — ©0). =00
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FIGURE 3.11 Variation of X and ¢ with frequency ratio r.
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7. For) < { < ?12- the maximum value of M occurs when (see Problem 3.32)

r=\V1 -2 or o = w, V1 — 2 (3.32)

which can be seen to be lower than the undamped natural frequency w, and the
damped natural frequency w; = 0, V1 — %

. The maximum value of X (whenr = V1 — 2{%) is given by

(1) I S
Sst max ?,g' 1 — gE {333}

and the value of X at w = w, by

(i) _ 1
5, oo, 2 (3.34)

Equation (3.33) can be used for the experimental determination of the measure of
damping present in the system. In a vibration test, if the maximum amplitude of the
response ( X) ., is measured, the damping ratio of the system can be found using Eq.
(3.33). Conversely, if the amount of damping is known, one can make an estimate of
the maximum amplitude of vibration.

. For{ = VI—E % = Owhenr = 0. For{ = *.,I_E' the graph of M monotonically decreases
with increasing values of r.
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The following characteristics of the phase angle can be observed from Eq. (3.31) and
Fig. 3.11(b):

1.

tn

For an undamped system ( { = 0), Eq. (3.31) shows that the phase angle is 0 for

(0 < r <1 and 180° for r = 1. This implies that the excitation and response are in
phase for 0 << r << | and out of phase forr = 1 when { = 0.

For{ = Oand 0 < r < 1, the phase angle is given by 0 < ¢ << 90°, implying that
the response lags the excitation.

For{ = O and r = 1, the phase angle is given by 90° << ¢ <I 180°, implying that
the response leads the excitation.

For { = 0 and r = 1, the phase angle is given by ¢¢ = 90°, implying that the phase
difference between the excitation and the response is 90°.

For ¢ = (0 and large values of r, the phase angle approaches 180°, implying that the
response and the excitation are out of phase.

X and ¢ are given by Egs. (3.30) and (3.31), respectively, and X and ¢ [different from
those of Eq. (2.70)] can be determined from the initial conditions. For the initial condi-
tions, x(1 = 0) = xyand X(t = 0) = x;, Eq. (3.35) yields

xp = Xpgcos g + X cos

Xg = — {w, X cos ¢y + wyX,sin ¢y + wX sin ¢ (3.36)

The solution of Eq. (3.36) gives Xj and oy as

X, = I:{xn — X cos )? + ]—z(gmnxﬂ + &y — {w,X cos ¢ — wX sin qf)}ﬂT

tan (ﬁn =

Wy
{wxg + X — {w, X cos ¢ — wX sind
wg xo — X cos @)

(3.37)
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3.4.2
Quality Factor
and Bandwidth

For small values of damping ({ < 0.05), we can take

I A =57 = 3.38
(ast)mnx (55[>m=f—i’n Ef Q ( .}

The value of the amplitude ratio at resonance is also called Q fictor or quality fictor of the
system, in analogy with some electrical-engineering applications, such as the tuning circuit
of a radio, where the interest lies in an amplitude at resonance that is as large as possible
[3.2]. The points Ry and R, where the amplification factor falls to Q/ V2, are called hal F
power points because the power absorbed ( AW) by the damper (or by the resistor in an
electrical circuit), responding harmonically at a given frequency, is proportional to the
square of the amplitude (see Eq. (2.94)):

— 2
AW = mewX X/(S“

Bandwidth \

| w

R: L0 R, “n
Half-power points

FIGURE 3.12 Harmonic-response curve showing half-
power points and bandwidth.
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The difference between the frequencies associated with the half-power points K| and R, is
called the bandwidth of the system (see Fig. 3.12). To find the values of R; and R», we set

X/8,, = 0/ V2 in Eq. (3.30) so that
1 Q

_ 1
\/(1 — rlj2 + (2;,”1‘)2 - \/2_ - 2\/2_5

or
=2 -4 +(1 -8 =0
The solution of Eq. (3.40) gives
R=1-20-24V1+0, rB=1-22+24\V1+7

For small values of 7, Eq. (3.41) can be approximated as

where w; = w|R] and wy = w|h-2. From Eg. (3.42),

w3 — wf = (0 + @y)(w; — 0) = (R} — R)wj = 4{w;

Using the relation
wy + w = 2w,
in Eq. (3.43), we find that the bandwidth Aw is given by
Aw = wr — ay = 2w,
Combining Eqgs. (3.38) and (3.45), we obtain

U S
20 @y — wy

0

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

It can be seen that the quality factor O can be used for estimating the equivalent viscous

damping in a mechanical system.’
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Exercicios selecionados [RAO]

match the items in the two columns below:

2
1. Magnification factor of an undamped system a. u
W, — ®
I+ (2¢r)2 1/2
2. Period of beating b.
(1 — r?)?% + (2¢r)?
3. Magnification factor of a damped system C. “n
W —
1
4. Damped frequency d. 5
1l —r
5. Quality factor e. w, V1 — (;2

| 1/2
6. Displacement transmissibility £ |: (1 2) )2}
.



3.1

3.2

3.3

3.8

3.26

A weight of 50 N is suspended from a spring of stiffness 4000 N/m and is subjected to a har-
monic force of amplitude 60 N and frequency 6 Hz. Find (a) the extension of the spring due
to the suspended weight, (b) the static displacement of the spring due to the maximum
applied force, and (c) the amplitude of forced motion of the weight.

A spring-mass system is subjected to a harmonic force whose frequency is close to the nat-
ural frequency of the system. If the forcing frequency is 39.8 Hz and the natural frequency is
40.0 Hz, determine the period of beating.

Consider a spring-mass system, with k = 4000 N/m and m = 10 kg, subject to a harmonic
force F(t) = 400 cos 10¢ N. Find and plot the total response of the system under the follow-
ing initial conditions:

d. JC(]='U.1 I'l'l._.i?[}zﬂ
b. Inzﬂ,i[}zl{}m,@
c. xg =01 m, x5 =10m/s

A mass m is suspended from a spring of stiffness 4000 N/m and is subjected to a harmonic
force having an amplitude of 100 N and a frequency of 5 Hz. The amplitude of the forced
motion of the mass is observed to be 20 mm. Find the value of m.

Consider a spring-mass-damper system with k = 4000 N/m, m = 10 kg, and ¢ = 40 N-s/m.
Find the steady-state and total responses of the system under the harmonic force
F(t) = 200 cos 10t N and the initial conditions x; = 0.1 m and x;, = 0.
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3.37

A video camera, of mass 2.0 kg, is mounted on the top of a bank building for surveillance.
The video camera is fixed at one end of a tubular aluminum rod whose other end is fixed to
the building as shown in Fig. 3.50. The wind-induced force acting on the video camera, f1),
is found to be harmonic with f(#) = 25 cos 75.3984¢ N. Determine the cross-sectional
dimensions of the aluminum tube if the maximum amplitude of vibration of the video camera
is to be limited to 0.005 m.

Video camera

/

D ~— [, cos wt

0.5m

L Tubular aluminum rod

Building

FIGURE 3.50

20



3.44

The landing gear of an airplane can be idealized as the spring-mass-damper system shown in
Fig. 3.52. If the runway surface is described y(t) = yp cos wt, determine the values of k and
c that limit the amplitude of vibration of the airplane (x) to 0.1 m. Assume m = 2000 kg,
Yo = 0.2 m, and w = 157.08 rad/s.

Housing with
strut and
viscous damping

Mass of
aircraft, m

! 1
Wheel —> ; [ -] | |

WASHH

(a)

x(1)

FIGURE 3.52 Modeling of landing gear.
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