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Light Scattering by
Polymer Solutions

Nature, and Nature’s Laws lay hid in Night.
God said, Let Newton be! and All was Light.

Epitaph for Isaac Newton, Alexander Pope

10.1 Introduction

This chapter is the narrowest in scope of any chapter in this book. In it we
discuss a single experimental procedure and its interpretation. It is appropriate
to examine light scattering in considerable detail, since the theory underlying
this method is relatively unfamiliar to students and the interpretation yields
information concerning a variety of polymer parameters.

There are really only two major conclusions presented in the chapter, and
even these can be consolidated into a single analysis when applied to experimen-
tal data. First, we shall develop the Rayleigh theory for the scattering of light
by molecules whose linear dimensions are small compared to the wavelength of
the light. For visible light Rayleigh scattering applies to gases and low molecular
weight liquids, and we discuss these applications as part of the process for
gaining understanding of this powerful technique. Next we derive the Debye
theory for scattering by particles whose dimensions are no longer insignificant
compared to the wavelength of light. This theory corrects Rayleigh scattering
for interference effects and therefore includes the assumptions and limitations
of Rayleigh scattering, plus some added features of its own.

Although we take a while before eventually casting these theories in forms
which are directly applicable to polymers, the final results are highly practical.
Throughout the chapter the presentation is aimed toward these eventual applica-
tions. We begin by comparing and contrasting the turbidity of solutions which
scatter light with the absorbance of solutions which absorb light. We describe
the experiments whereby scattering data are collected, and discuss the extrapo-
lation procedures that must be followed to match experimental results with
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660 Light Scattering by Polymer Solutions

theoretical models. Although we develop the various stages stepwise, we
conclude by describing the Zimm method for combining all extrapolations in a
single graphical method. Through these manipulations of light-scattering data.
absolute values of the molecular weight, the second virial coefficient, and the
radius of gyration can all be determined. Thus a single procedure can be used
to evaluate several different parameters which would otherwise entail more than
one kind of experiment. In contrast with osmometry, light scattering is rapid
and free from complications associated with finding a suitable membrane. In
contrast with viscometry and GPC, light scattering is absolute and does not
require prior calibration. In spite of these advantages, light scattering has some
limitations of its own which we shall discover as the theory unfolds. Leaving
their respective limitations aside, we see that light scattering and osmometry
complement each other, since each gives a different kind of molecular weight
average; therefore, taken together, they provide information about the width
of the molecular weight distribution.

This chapter is the only place in this volume that we encounter electrical
units. Certain equations in electrostatics differ by the factor 4, depending on
whether they are written for SI or c¢gs units. To help clarify this situation, the
chapter contains an appendix on electrical units which may be helpful, particu-
larly when references based on other units are consulted.

10.2 The Intensity of Scattered Light and Turbidity

Chemistry students are familiar with spectrophotometry, the qualitative and
quantitative uses of which are widespread in contemporary chemistry. The
various features of absorption spectra are due to the absorption of radiation to
promote a particle from one quantized energy state to another. The scattering
phenomena we discuss in this chapter are of totally different origin: classical
not quantum physics. However, because of the relatively greater familiarity of
absorption spectra, a comparison between absorption and scattering is an
appropriate place to begin our discussion.

We begin with a consideration of notation, defining I, as the intensity of light
incident (subscript 0) upon a sample and I, as the intensity of the light trans-
mitted (subscript t) through a sample of thickness x. There are two different
mechanisms that can account for the fact that I, <1I:

1. When the energy of the light matches the spacing of quantum states, some

light is absorbed. In this case I - 1, = I, ..

When light interacts with the electrons in molecules in a nonquantized

fashion, some of the incident light is redistributed in all directions, that is,

scattered. As a result of this redistribution, I, < 1,, with I ~ I, =1, .

3. It items (1) and (2), the effects are considered separately, although they
may both occur together. When absorption is the primary interest, it is
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The Intensity of Scattered Light and Turbidity 661

rarely necessary to consider the accompanying scattering, since the latter
contributes far less than absorption to the attenuation of intensity. When
scattering is the primary interest, it is generally investigated in a portion
of the spectrum which is free from absorption peaks. We shall always
assume the latter situation, although scattering theories for absorbing
particles are also available.

Figure 10.1 schematically illustrates the relationship between 1, I,, and L.
In spectrophotometry the absorbance per unit length of path through the
sample e is defined as

€= - ln(l«t) (10.1)
Iy

In the absence of absorption, scattering alone is responsible for any attenuation;
therefore

I -1 | I
€ = - ln(gogs) = - In (l -~ j) S (102)
Iy 0 Iy

where the last approximation is justified since the scattering intensity is ordinar-
ily quite small. It does not make much sense to call this quantity “absorbance”
when no absorption is involved; the scattering equivalent is called turbidity
and given the symbol 7. These ideas enable us to write (1,/1),, = exp(- €x),
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Figure 10.1  Relationships between I, I, and I . The light scattered per unit
volume i is also shown.
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(1/19)sca = exp(- 7x) and (1;/13),, = exp[-(e + 7)x] for the situations item-
ized above. The turbidity of a specimen, then, is experimentally equivalent to
absorption, except it is a small (7 < ¢), classical effect which is generally ignored
in absorption studies. To prevent it from being overshadowed by absorption,
we consider nonabsorbing systems for which € = 0.

Like €, 7 is the product of two contributions: the concentration N/V of the
centers responsible for the effect and the contribution per particle to the
attenuation. It may help us to become oriented with the latter to think of
the scattering centers as opaque spheres of radius R. These project opaque cross
sections of area mR? in the light path. The actual cross section is then multiplied
by the scattering efficiency factor Q,, so that mR? Q, ., gives the optical cross
section of the particle. The fact that the actual particle may not be opaque or
spherical is taken into account by Q Thus we can think of the turbidity
as the product of three factors:

sca’

T = (mR*) Q,, (s) (10.3)

At this point it is instructive to examine the units of each of the terms in
Eq.(10.3):

1. 7 has units of length™. By analogy with Eq. (10.1), it is the “absorbance”
per unit path length.

2. wR? has the units of length?, since it is an area. This is the case regardless
of the geometry of the actual particle.

3. N/V has units of length =3 | since it is a concentration.

It is apparent from these considerations that Q,., is dimensionless. It is also
clear that neither 7R? nor N/V have anything to do with the wavelength X of
the light used in the experiment. In spite of this, 7 is wavelength dependent,
showing a broad, smooth variation with A—as opposed to sharp peaks—for non-
absorbing particles. What this means is that the wavelength dependence of r
enters Eq. (10.3) through Q, ,. Furthermore, since Q ., is dimensionless, X
must enter Q, ., in the form of a ratio, with some other variable having units of
length. A fairly obvious choice for the latter is R, since Q,., is a property of
the scattering center.

An important aspect of the realization that Q, ., can be represented by
f(R/\) is the fact that the function has the same value for any particles with the
same R/A ratio. Thus x rays interacting with atoms and microwaves interacting
with fog drops have about the same R/ ratio as polymer molecules interacting
with visible light. As far as the size dependence of Q,, is concerned, all of these
systems are described by the same value of Q,.,, provided that the wavelength
of the illumination is scaled to make the R/ ratio the same in all cases.
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The purpose of these qualitative remarks is to show that turbidity experi-
ments are potential sources of information concerning both the spatial extension
(¢ R) of the scatterers and their molecular weight (since N/V « ¢,/M). We
anticipated these conclusions earlier in this volume by noting elsewhere that
light scattering provides absolute values for the radius of gyration and the weight
average molecular weight of a polymer.

In developing these ideas quantitatively, we shall derive expressions for the
light scattered by a volume element in the scattering medium. The symbol i_ is
used to represent this quantity; its physical significance is also shown in
Fig. 10.1. [Our problem with notation in this chapter is too many i’s!] Before
actually deriving this, let us examine the relationship between i and I  or,
more exactly, between i /I and I /1.

In order to do this, we anticipate the form of the expression for i//I.
Equation (10.31) will show that i /I, can be written as the product of two
terms: an optical-molecular factor we symbolize as R, and a geometrical factor
1 + cos® ¢x/r2, where r is the distance from the scattering molecule and ¢, is
the angle between the x axis and a specific line of sight. The unscattered—that is,
incident and transmitted—light beam in Fig. 10.1 is assumed to travel in the x
direction. Accordingly, the total scattered intensity I is equal to the summation
over all angles of the scattering per unit volume, i;. The factor R, does not
affect this summation and can be factored out. For the present we are only
concerned with the summation:

2= 3 2= f";ﬁ 27rsin ¢, (rdg,) (104)

0 all l0 0 0
angles

—

The justification for replacing the summation with this integral is seen by exam-
ining Fig. 10.2. An element of area on the surface of a sphere of radius r hasa
circumference 27r sin ¢, and a thickness r d¢, . Integration of these increments
of area gives the light scattered at all angles. As noted above, i /I, = Ry(1 +
cos? ¢, )/r*. Substituting this into Eq. (10.4) and canceling the r2’s gives

IS

C - 27R, Of (1 +cos? ¢, )sin ¢, d¢, (10.5)

(=]

This standard integral is readily evaluated to give the numerical factor 8/3;
therefore

T=2 =__R, (10.6)
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Figure 10.2 Definition of an element of area for the purpose of integrating
ig (1, ¢, ) over all angles to evalute I,. (Reprinted from Ref. 2, p. 178.)

In Sec. 10.5 we shall consider the derivation of i /I, and the factor R, which
appears in Eq. (10.6). First, however, it is worthwhile to review some basic
ideas about light itself.

10.3 Electric Fields and Their Interaction with Matter

The scattering of visible light by polymer solutions is our primary interest in
this chapter. However, since Q,_, is a function of the ratio R/, as we saw in
the last section, the phenomena we discuss are applicable to the entire range
of the electromagnetic spectrum. Accordingly, a general review of the proper-
ties of this radiation and its interactions with matter is worthwhile before a
specific consideration of scattering.

In this discussion we define the x direction to be the direction of propaga-
tion of the light waves. This means that the yz plane contains the oscillating
electrical and magnetic fields which carry the energy of the radiation. Only
the electric field concerns us in scattering. Since the oscillation is periodic in
both time t and location x, the electric field can be represented by the equation
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E = Eq cos [27r (m + %)] (10.7)

in which the following applies:

1. v is the frequency and at a fixed location—say, x = O—one full wave is
traced out in a time 1/v.

2. A is the wavelength and at a fixed time—say, t = O—one full wave is traced
out over a distance A.

3. E, is the maximum amplitude of the field, since the cosine factor which
modifies it oscillates between -1 and +1.

4. E oscillates in sign, as described by Eq. (10.7), yet the wave manifests itself
with an intensity which is always positive. This suggests that E? rather than
E itself be used as a measure of light intensity.

5. E causes a particle of charge q to experience a force and hence a displace-
ment. Both the force and the displacement are proportional to E; therefore
the energy of the field~charge interaction-—the product of the force and the
displacement —is proportional to E?.

6. The combination of items (4) and (5) leads to the important conclusion that
light intensity is the measure of the flux of energy through a surface perpen-
dicular to the direction of propagation—the yz plane in our convention—and
this is proportional to E?.

Under vacuum, the velocity of propagation ¢ of an electromagnetic wave is
3.0 X 10® m sec™!, and this is related to the frequency and wavelength by

¢ = vl (10.8)

In a medium of refractive index i, both ¢ and A\, are decreased to 1/ of their
value under vacuum: v =c¢/fi and A = A\, /ii:

v = v (10.9)

Note that ¢ and A are used as symbols for velocity and wavelength, respectively,
under vacuum, and that v and X signify their counterparts in some medium. In
addition, we observe that the frequency v is not affected by the passage from
one medium to another. As the light passes through a substance, its electric field
interacts with the electrons of that substance, inducing oscillations in them at
the same frequency as the frequency of the original field. Since no change in
frequency is involved in going from vacuum into matter, it is the wavelength
that must also adjust along with velocity. Figure 10.3 illustrates this by showing
successive crests of electromagnetic waves traveling in the direction of the arrow
as they pass from vacuum into a substance of refractive index fi. At the surface



666 Light Scattering by Polymer Solutions

Medium of
refractive index

n

Vacuum, = 1.0

Figure 10.3 Schematic illustration showing the bending of light and the
decrease in wavelength as the radiation passes from a vacuum to a medium of
refractive index 1.

between the two media, there is a continuity in E with respect to frequency.
That is, from whichever side of the surface it is viewed, the trace of E on the
boundary is the same. To achieve this ““fit,” the wave front bends, as shown in
Fig. 10.3, and the spacing between the wave crests, the wavelength, decreases.
Both the bending of light and the change in wavelength are required by the
continuity of E at the interface.

As our discussion of scattering proceeds, we shall examine the coupling
between the oscillating electrical field of light and the electrons of the scatterer
in detail. First, it is useful to consider the interaction of an electric field with
matter, as this manifests itself in the dielectric behavior of a substance. This
will not only introduce us to the field-matter interaction, but will also provide
some relationships which will be useful later.

For this purpose we compare a parallel plate capacitor under vacuum and one
containing a dielectric, as shown in Figs. 10.4a and b, respectively. The plates
of the capacitor carry equal but opposite charges +Q which can be described as
+0 A, where o is the surface charge density and A is the area of the plates. In
this case, the field between the plates is given by

B, = 2 (10.10)
€o

where € is the permittivity of vacuum, 8.85 X 10712 C? J-! m~!_If the space
between the plates is filled with a dielectric as shown in Fig. 10.4b, the field
is decreased to a value
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(a) (b)
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Figure 10.4 Parallel-plate capacitor with surface charge density o. (a) The
field is Eo with no dielectric present. (b) The field is reduced to E by a dielectric
which acquires a surface charge of its own, 0;,,,.

(10.11)

m
I
mlQ

where the ratio €/e, = €, is called the relative dielectric constant of the medium
and is measured as the ratio of the capacitances of the apparatus with and
without the substance. Sometimes the term relative permittivity and the symbol
K, are used instead of €, to describe this ratio.

Since € > €y, we seek to explain the smaller field in the presence of the
dielectric in terms of molecular properties and the way in which they are
affected by the electric field. An easy way to visualize the effect is to picture
an opposing surface charge—indicated as g;;,, in Fig. 10.4b—accumulating on the
dielectric. This partially offsets the charge on the capacitor plates to a net
charge density ¢ - oy, so that E; becomes E and is given by

g- 0.
E=_— 1t (10.12)
€

Next we can eliminate o from Egs. (10.11) and (10.12) to obtain

Oint = €o(6,- 1E (10.13)

int

Now let us examine the molecular origin of o, ,. Molecular polarity may be
the result of either a permanent dipole moment y or an induced dipole moment
M, 4, Where the latter arises from the distortion of the charge distribution in a
molecule due to an electric field. We saw in Chap. 8 that each of these types of
polarity are sources of intermolecular attraction. In the present discussion we
assume that no permanent dipoles are present and note that the induced dipole
moment is proportional to the net field strength at the molecule:
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Hing = aE ., (10.14)

where a is called the polarizability of the molecule. It is apparent from this
definition that the larger a is, the greater is the induced dipole moment per
unit field. Thus « is aptly named, since it measures the ability of a molecule to
undergo polarization.

Next we consider the net field at the molecule. This turns out to be the sum
of two effects: the macroscopic field given by Eq. (10.12) plus a local field that
is associated with the charge on the surface of the cavity surrounding the mole-
cule of interest. The latter may be shown to equal (1/3)(0;,,/€,)- Hence the
net field at the molecule is

= E + }, GIILE = vol,n_'v* + l ._Oﬂ = g'i{ ii
€ € (e, - 1) 3 € 3eq e -1
(10.15)

All that remains to be done is to connect g;,, with y; 4. This is done by the
observation that o;,, = Q;, /A, where Q,, is the charge on the surface of the
dielectric. Next, Q;,,/A can be written (Qim/V)d, where V and d are the volume
and the thickness of the dielectric, respectively. The product of a charge and the
distance that separates it from its opposite charge defines a dipole moment. This
means that g;,, has the significance of a net dipole moment per unit volume for
the sample. If only induced dipole moments operate, as we have specified, this
net dipole per unit volume is simply the product of the number of molecules
per unit volume pN,/M and the induced dipole moment of each: o;,, =

(N /M)y, 4. Combining this idea with Eqs. (10.14) and (10.15) gives

PNja oy, (€ +2 ‘!
o= A pomtgy e o 10.16
Tint M ‘~3e0 € -1 ( )

-

or

N,«a e -1
1 PRAx &7 7 (10.17)
3 Mg, € +2

This result, called the Clausius-Mosotti equation, gives the relationship
between the relative dielectric constant of a substance and its polarizability,
and thus enables us to express the latter in terms of measurable quantities. The
following additional comments will connect these ideas with the electric field
associated with electromagnetic radiation:

1. If molecules have permanent dipole moments and can orient themselves
with respect to the field, then Eq. (10.17) must be modified by inclusion
of a term associated with u.
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2. In discussing capacitance, we implied nothing about the frequency of the
field. The results given are general, applying equally to the frequencies of
alternating current and of the electric field in electromagnetic radiation.

3. At the high frequencies of visible light, any permanent dipoles present
cannot respond rapidly enough to contribute to the dielectric behavior;
hence Eq. (10.17) applies to polar molecules also under the influence of
light.

4. Under the same conditions, Maxwell’s theory of radiation shows that the
refractive index and the relative dielectric constant are simply related by

€ = i’ (10.18)

Both € and i are clearly frequency dependent, since the foregoing argu-
ment shows that various effects contribute to the polarity of a molecule at
different frequencies.

Equations (10.17) and (10.18) show that both the relative dielectric constant
and the refractive index of a substance are measurable properties of matter that
quantify the interaction between matter and electric fields of whatever origin.
The polarizability is the molecular parameter which is pertinent to this inter-
action. We shall see in the next section that « also plays an important role in
the theory of light scattering. The following example illustrates the use of
Eq. (10.17) to evaluate a and considers one aspect of the applicability of this
quantity to light scattering.

Example 10.1

The refractive index of CCl, at 20°C and 589 nm, the D line of the sodium
spectrum, is 1.4607. At this temperature the density of this compound is 1.59 g
cm ™3, Use this information to calculate « for CCl,. Criticize or defend the
following proposition: The prediction that Q. , = f(R/\) may have been pre-
mature. The consideration of Eq. (10.3) which led to this conclusion could
just as well predict Q_.. = f(a3 /).

sca

Solution

According to Eq. (10.18), ¢, = ii* = (1.4607)* = 2.1336 at »=5.09 X 10" Hz
(589 nm). The number of CCl, molecules at 20°C is given by

PNy (1.59gecm™) (6.02 X 10** molecules mol ")
M ~ 153.8 gmol-!

6.245 X 10! molecules cm 3
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Therefore, by Eq. (10.17),

3eo (6~ /(e +2) _ 3(885Xx 1071272 €2 m-l)(o_EWQ?

PN, /M 6.245 X 10?! molecules cm >

1}

1.166 X 107 C? J~! m? molecule™!

This is the correct value for a in SI units, as can be verified by examining the
units in Eq. (10.14): «E_,, has units (C2 J™! m?)(V m™') = C m, which is
correct for y;,,. In this instance cgs units are also informative: to effect the
transformation we divide by 4me, as described in the appendix, Sec. 10.12:

_a  _ 1.166 X107 C? I m? molecule™!
Qegs = 7 T ° T10 2 -1 o1
4me, 1.113X 1077 C*J7" m

1

1.05 X 1072 m? molecule™! = 10.5 A3 molecule !

Expressed in these units, a resembles a molecular volume; hence a'’3 has units
of length and is thus a length which characterizes the interaction between a
molecule and the field. In view of this, it may be true that Q_., = f(a!3/\),
since all we can say about Q___ is that it is dimensionless.

sca
sca
[ J
With this as background, we are finally in a good position to look at the
scattering process itself,

10.4 Light Scattering by an Isolated Molecule

Ordinarily, light-scattering experiments are conducted with unpolarized light,
but the following discussion is more easily visualized in terms of light which is
linearly polarized. For light propagating in the x direction, the electric field
lies in the yz plane and may be resolved into y and z components. Polarizing
filters have different absorption coefficients in perpendicular directions, and
hence absorb light in which the field oscillates in one direction and pass the
perpendicular component. For convenience, we speak of vertically and hori-
zontally polarized light when the oscillations are parallel to the z and y axes,
respectively .

To quantify the interaction between a molecule and an incident ray of light,
we imagine the molecule situated at the origin of a coordinate system as shown
in Fig. 10.5 and consider its interaction with vertically polarized light traveling
in the x direction. Since it is the mobile charge in the molecule that couples
with the light, we represent the molecule as a quantity of charge q. As discussed
in the last section, the oscillating field induces an oscillation in the charge g,
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\“‘ﬁ r

d’y o/ bx

Figure 10.5 Definition of the variables used to describe the electric field
produced by the oscillation of the charge q under the influence of vertically
polarized light. (Reprinted from Ref. 2, p. 164.)

and it is a basic fact of electromagnetism that this situation is a source of
radiation. On a molecular scale this molecule behaves like an antenna, sending
out a signal along a line of sight represented by the arrow in Fig. 10.5. The
radial distance from the radiating dipole is r and the angles between the line of
sight and the coordinate axes are designated ¢, , ¢, ,and ¢,, respectively.

Since the charge becomes coupled with the oscillating field, q undergoes
a periodic acceleration which we represent by a,. Next we borrow a relationship
from electromagnetic theory to describe the field produced by an oscillating
dipole such as the molecule we have described:

_ qa, sin ¢,

E 2
477600 r

(10.19)

Since we have introduced this relationship without proof, it will be helpful to
consider its components with respect to their plausibility :

1. It is reasonable that the field produced by the accelerating charge should
be proportional to the magnitude of both the charge and the acceleration.

2. The energy that is radiated spreads out over a solid angle and is therefore
proportional to r~2. We saw in Sec. 10.2 that this energy is proportional
to E?: hence E varies with r~!.

3. The factor 4ne, arises from the choice of SI units. Since a, has units
time =2, the acceleration is divided by c¢? to convert the units of the
denominator to length? | as required by the definition of the field.

4. The sin ¢, factor shows that the field produced by the oscillator is maxi-
mum in the xy plane, zero along the z axis, and symmetrical with respect
to the z axis. This geometry is consistent with the vertical polarization of
the field which is driving the dipole and producing the field described by

Eq. (10.19).
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Next we look for a substitution for ag, the acceleration experienced by the
charge. A convenient device for doing this originates from considering the
oscillating dipole produced by the driving field. Since u = «E ,we can describe
the periodic (subscript p) dipole moment of a molecule by

u, = aEgycos(2mvt) (10.20)

where we have used Eq. (10.7) with x = 0 to describe the incident field. Since
the dipole moment also equals the charge times the distance of charge separation
and it is the latter that is periodic, we identify the displaced charge q as a E and
£ = cos (2mvt) as the separation, Therefore the acceleration is

d*s

a, = i = - 47%? cos(2mrt) (10.21)
Substituting these results into Eq. (10.19) gives

_ (@Eg) [- 4n*v? cos(2mvt)] sin ¢,

‘4neoczr (10.22)

for the field produced by the oscillating dipole.
As noted previously, the intensity of light is proportional to the square of
the field; hence the intensity of the light radiated by the dipole is given by
2,4 2 2 2 a2
7 v o E ° cos® (2nvt)sin® ¢,
i,ox - 2 7572,,,,,),,.‘,,& (10.23)
Go cr
while the intensity of the driving radiation incident (subscript 0) on the mole-
cule is given by squaring Eq. (10.7):

Iy, = Eg? cos® 2mut) (10.24)

The subscript v is attached to both of these intensities as a reminder that the
foregoing analysis is based on the assumption of vertical polarization for the
incident light beam. The ratio of these intensities gives the fraction of light
scattered per molecule by vertically polarized light:

H 2,4 .2 .2 2.2 a2

i, _mvatsin®g, 7o’ sin® @,

LT T T gan T T g (10.25)
0,v GO cr Go 0 r

Since the vertically polarized light postulated in the derivation of Eq. (10.25)
involves both the z component of the electric field and the angle ¢,, it is
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apparent that the corresponding expression for horizontally (subscript h) polar-
ized light—which involves the y component of the field—is identical to Eq.
(10.25), except for the sin? ¢ term:

i n?a? sin? ¢
L T (10.26)
lo,h € Ao I

Note that this also involves the assumption of isotropic molecules, which have
the same polarizability in all directions. Unpolarized light consists of equal
amounts of vertical and horizontal polarization, so the fraction of light scattered
in the unpolarized (subscript u) case is given by

—

o 126G, +i)  rtdd (sin? ¢, + sin? ¢y)

= _ 10.27
) RPN ( )

O,u [O, u

ot

It is awkward to use two different angles to describe the intensity of light
scattered along a particular line of sight, but this situation is easily remedied
by referring back to Fig. 10.5. It is apparent from Fig. 10.5 that r cos ¢ is the
projection of r along either the x, y, or z axis, depending on the choice of ¢.
We therefore see that

r? (cos? ¢, +cos® o, + cos? ¢,) = r? (10.28)

Replacing cos? ¢, by 1 - sin? ¢, and cos* ¢, by 1 - sin? ¢, leads to the
relationship

sin® ¢, +sin? ¢, = 1 +cos® ¢, (10.29)

in terms of which Eq. (10.27) becomes

b LT s o) (10.30)
Y= + cos .
Iy 2 €)ingtr? X

The sin? ¢ terms in Eqs. (10.25) and (10.26) arise from the consideration of
polarized light. The light scattered by polarized incident light is also polarized
in the same direction, so the term 1 + cos® ¢, in Eq. (10.30) describes the
overall polarization of the scattered light, Before we lose sight of the individual
contributions to this, it will be helpful to consider this polarization somewhat
further. This is done in the following example.
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Example 10.2

Describe the angular dependence of the vertically and horizontally polarized
light scattered by a molecule and their resultant by considering the intensity
as a vector anchored at the origin whose length in various directions is given
by the trigonometric terms in Egs. (10.25),(10.26), and (10.30).

Solution

The intensity of the vertically polarized scattered light is proportional to sin? ¢,
which, in polar coordinates, is described by a figure 8-shaped curve centered at
the origin and having maximum values of £l at ¢, = 90°. Because ¢, is sym-
metrical with respect to the z axis, this component of scattered light is described
in three dimensions by a doughnut-shaped surface in which the hole has shrunk
to a point - centered symmetrically in the xy plane.

The horizontal component is identical except for its orientation in space.
In the horizontal case the “doughnut’ lies in the xz plane.

Since the intensities are additive, we can make the following statements about
their resultant:

1. Along the z axis, sin? ¢, contributes nothing but sin? ¢, = 1, so the net
scattered light is horizontally polarized.

2. Along the y axis, sin? 9, contributes nothing but sin? ¢, = 1, so the net
scattered light is vertically polarized.

3. Along the x axis, both sin® ¢, and sin? ¢, equal unity. The light consists
of equal amounts of horizontally and vertically polarized components, that
is, it is unpolarized, and has twice the intensity observed in the perpendicu-
lar directions.

{

This situation is summarized by the term 1 + cos? ¢, in kq. (10.30), which
we now consider. The following table lists some values for this factor for various
values of ¢ :

) 0 15 30 45 60 75 90
I +cos® ¢,  2.00 193 1.75 1.50 1. 107 100

t9
N

These are plotted in Fig. 10.6, which shows the net intensity envelope in the xy
plane as a solid line and represents the horizontally and vertically polarized
contributions to the resultant by the broken lines. Since ¢, is symmetrical
with respect to the x axis, the three-dimensional scattering pattern is generated
by rotating the solid contour around the X axis.
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Figure 10.6 Two-dimensional representation of i, and i, (broken lines) and
their resultant i, (solid line) for scattering by a molecule situated at the
origin and illuminated by unpolarized light along the x axis. The intensity in
any direction is proportional to the length of the radius vector at that angle.
(Reprinted from Ref. 2, p. 168.)

From now on we shall describe the scattered light by Eq. (10.30) exclusively,
rather than considering the separate components. We shall also consider ¢, only
in the xy plane, in which case we use the symbol 8 to describe this angle. By
convention, the incident light approaches the scattering dipole from § = 180°,
and the transmitted light leaves the sample at § =0°.

The equations we have developed in this section describe scattering originat-
ing from a point charge located at the origin. Since the charge is, in fact, the
electron cloud of a molecule, we must consider the implications of treating a
molecule as if it had no spatial extension. The way this consideration explicitly
enters the relationships of this section is through the assumption that the dipole
“sees’’ the same field throughout [see Eq. (10.20)]. In visible light, the wave-
length is on the order of 500 nm. If the linear dimension of a molecule is small
compared to this—as is the case for low molecular weight compounds—then the
field is approximately uniform over the dimensions of the molecule and the
assumption is valid. For polymer molecules, on the other hand, the dimensions
of the molecule may not be insignificant compared to the wavelength of the
radiation. In larger particles different parts of the molecule experience signifi-
cantly different fields, oscillate independently, and produce light which inter-
feres with itself. One way to circumvent this complication appears to be in
working with radiation of longer wavelength, but the latter (e.g., infrared) can
be absorbed in more ways, so this approach simply trades one source of
difficulty for another. It turns out, however, that extrapolating i; measured
at different angles to @ = 0° also eliminates this interference effect. In
Sec. 10.10 we shall discover how the additional complexity of interference can
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be interpreted to yield additional information about the scattering source.
Before considering this, however, let us further examine the implications of
Eq. (10.30) for molecules which are small compared to the wavelength of light.

10.5 Rayleigh Scattering

The scattering formula we have derived in Eq. (10.30) applies to an isolated
molecule whose dimensions are small compared to A. A gas molecule satisfies
this description, so we expect that this relationship applies to gases. Since the
molecules are far apart in that case, each molecule behaves as an independent
scattering center. Therefore the light scattered per unit volume of gas is given
simply by the number of molecules per unit volume pN, /M times iu/lo’u.
Using the symbol i /1, for the light scattered per unit volume (unpolarized light
is assumed, and the subscript u is dropped), we obtain

i oN, 1 7n%a®> l+cos’f .,
s =0A - - T (10.31)

This is precisely the same quantity we discussed in Sec. 10.2 and illustrated
in Fig. 10.1. As anticipated in that section, i /I, can be written as the product
R,(1 +cos? 6)/r*. In the xy plane, R, becomes R,
1 nta®pN
Ry = = —5a ot (10.32)
2 e\ M
which is called the Rayleigh ratio and is given for a gas by Eq. (10.32). By
combining Egs. (10.6) and (10.32), we obtain

;= o X PRA (10.33)

as the turbidity of a gas. Recall from Sec. 10.2 that the turbidity is the analog
of absorbance, the light attentuation per unit path through a substance, in
the absence of absorption. Equation (10.33) shows that this quantity does the
following:

1. It increases with the concentration of scattering centers, which is equivalent
to Beer’s law.

It depends on the nature of the molecules through the factor &, where «
measures the ability of the molecules to be polarized by an electric field.
3. It varies with the wavelength of the incident radiation as )\0‘4.

(]

The application of this last result to light scattered by the earth’s atmosphere is
especially interesting. The wavelengths of light at the red and blue ends of the
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visible spectrum differ in A, by about a factor of 2, which means that bluish
light is scattered about 16 times as much as reddish light. If there were no
atmosphere around the earth, the sky would look black, except along direct
lines of sight toward the sun or other stars. Instead, we see blue sky overhead
where the earth’s atmosphere scatters light toward an earthbound observer.
This situation is illustrated in Fig. 10.7. Figure 10.7 also shows why sunsets
have a reddish hue. In that case the light we see is essentially transmitted light
from which the blues have been more effectively removed by scattering. Several
additional comments about the color of the sky are pertinent to this discussion:

1. We are explicitly excluding absorption effects: Light-absorbing pollutants
modify this description.

2. Skylight is polarized to an extent that depends on the angle between [ and
I, in Figs. 10.6 and 10.7.

3. Water drops condensed in the atmosphere have much larger dimensions than
gas molecules; hence they are subject to the interference phenomena men-
tioned at the end of the last section. This alters the color of the scattered
light. Smoke and dust particles are also larger and may absorb as well.

The scattering relationships we have considered in this section were published
by Lord Rayleigh in 1871 as an explanation for the color and polarization of
skylight. Light scattering by small, nonabsorbing particles is known as Rayleigh
scattering and is characterized by the \=* dependence on wavelength. The factor
R, is known as the Rayleigh ratio of a substance; additional expressions for this
quantity in terms of other variables will be developed below.

Before attempting further development of Eq. (10.33), it is useful to examine
the dimensions of the various terms in that expression in SI units:

\\C'D/’
lo ~

VAR
G i
\"

\\ // lo Iy
SO~
N
Sunset (—1g) Earth

Figure 10.7 Schematic of light reaching an earthbound observer from different
regions of the sky.
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7 is expressed per length of path and has units of meter~!.
pN, /M is a concentration and has units of meter -3,

o is the wavelength, so A, ™% has units of meter =%.
The equation is dimensionally consistent if o? /eo2 has units of meter®.
Example 10.2 shows that a/4me, has units of meter® | so the relationship
has the proper dimensions.

S W -

For the moment, let us define o/47e, as ay,, where the subscript V reminds us
that the polarizability is being expressed in volume units. Multiplying the
numerator and denominator of Eq. (10.33) by (4m)? gives

1287° ay® pN,
30N M

(10.34)

If we think of ay, as a parameter which is proportional to the cube of some kind
of molecular “radius” R, then a,? o R® and ay,*/A,* « R?(R/\)*, which is the
form predicted by Eq. (10.3).

The Clausius-Mosotti equation with i written for e, can be used to
eliminate « from Eq. (10.33). For gases the refractive index is close to unity,
so the factor i? - 1/fi% + 2 is approximately

(n+1)@{@-1) 2
= (-]

iz +2 3 @-1
Therefore Eq. (10.17) becomes

2¢gM
o= "0 -y (10.35)
pNA
and Eq. (10.33) is given by

83 2Me, 2pN, 327 M
P @-D) —2 =22 @G- —— (1036)
3Ny € PN, M 3N PN,

An important historic application of this relationship was the determination of
Avogadro’s number from measurements of light scattered by the atmosphere
(see Problem 3).

Next let us consider the light scattered by liquids of low molecular weight
compounds. We are actually not directly interested in this quantity per se,
but in scattering by solutions—polymer solutions eventually, but for now
solutions of small solute molecules. The solvent in such a solution does scatter,
but, in practice, the intensity of light scattered by pure solvent is measured
and subtracted as a ‘“blank” correction from the scattering by the solution.
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Therefore we do not need a theory for scattering by pure liquids to be able to
deal with solutions experimentally. The theory for scattering by homogeneous
liquids is somewhat simpler to visualize than that for solutions, and the same
principles are involved for each. Accordingly, we shall develop the results for
pure liquids up to a point and then apply the result to solutions by drawing the
appropriate analogy.

The first thing to realize about scattering by liquids is that individual mole-
cules can no longer be viewed as independent scatterers. If a liquid were
perfectly uniform in density at the molecular level, its molecules could always
be paired in such a way that the light scattered by each member of a pair would
be exactly out of phase with the other, resulting in destructive interference.
No net scattering results in this case. The second thing to realize, however, is
that density is not perfectly uniform at the molecular level.

Molecules are in continuous random motion, and as a result of this, small
volume elements within the liquid continuously experience compression or
rarefaction such that the local density deviates from the macroscopic average
value. If we represent by 8p the difference in density between one such domain
and the average, then it is apparent that, averaged over all such fluctuations,
8p = 0: Equal contributions of positive and negative 8’s occur. However, if we
consider the average value of §p?, this quantity has a nonzero value. Of these
domains of density fluctuation, the following statements can be made:

1. The domain has slightly different properties than its surroundings and can
be considered a scattering center itself.

2. Their random, fluctuating nature prevents these domains from destructively
interfering with each other’s scattered light.

3. The domain is small compared to the wavelength of visible light, so Eq.
(10.33) describes the scattering, provided that we can find appropriate
values for the concentration and polarizability of these domains.

In the next section we shall pursue the scattering by fluctuations in density.
In the case of solutions of small molecules, it is the fluctuations in the solute
concentration that plays the equivalent role, so we shall eventually replace §p
by 6c, . First, however, we must describe the polarizability of a density fluctua-
tion and evaluate §p itself.

10.6 Fluctuations and Rayleigh Scattering

We define the concentration of fluctuation domains at any instant by the
symbol N*. In addition, we assume that the polarizability associated with one
of these domains differs from the macroscopic average value for the substance



680 Light Scattering by Polymer Solutions

by 8a. As with §p, we expect a to equal zero, but §a? to have a nonzero
value. Accordingly, we can write an expression which is equivalent to Eq.
(10.33) for the fluctuations:

Y S—
Sa? N* 10.37
3602)\4 ( )

T =

Note that the wavelength in vacuum has been replaced by the wavelength in the
medium, since it is the latter that drives the oscillations in the fluctuation
domain. Now what can we say about §aZ?

The Clausius-Mosotti equation relates the polarizability of a substance to

-1 e-¢

€ t2 €+2¢

where € is the permittivity of the substance and €, is the permittivity of the
vacuum that surrounds it. Applied to a fluctuation, we replace € by € + 8¢ and
use € itself rather than €, to describe the surroundings. Therefore (e - €)/
(e + 2€o) becomes d6¢/(3e + b¢), and if we assume that §e is small compared to
3¢, Eq. (10.17) becomes

da = — — (10.38)
de = — &p (10.39)

b€ = €20 — 6p (10.40)

Combining Egs. (10.38) and (10.40) gives

2 P 2
— _ €0 €o2fidi/dp \* ___

€

where the method of averaging is based on the considerations presented above.
Recognizing that A% (ep/€)> =A% n™* =2,7*, Eq. (10.41) can be substituted
into Eq. (10.37) to yield
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3 a\? ___
T = LA (2ﬁ dn) ép (10.42)

Next we consider how to evaluate the factor §p2. We recognize that there
is a local variation in the Gibbs free energy associated with a fluctuation in
density, and examine how this value of G can be related to the value at equilib-
rium, G, . We shall use the subscript O to indicate the equilibrium value of free
energy and other thermodynamic quantities. For small deviations from the
equilibrium value, G can be expanded about G, in terms of a Taylor series:

3G
G=06Go+2) 6o+ L (2] sp2+--- (10.43)
90 /o 21\ 9p? o

The quantity G - G, = §G is the change in G associated with the fluctuation,
and the term (0G/dp)o 8p = O because of the cancellation of positive and
negative density fluctuations. Therefore we obtain

2
5G =~ L [20) 5,2 (10.44)
2
2\ ap"),

Now we evaluate the probability of a fluctuation 8p in terms of a Boltzmann
factor:

P(8p) = Aexp (— i?) (10.45)

where normalization requires that the constant A be given by

-1
|:f exp (— i?) dﬁp]

integrated over all fluctuations, that is, from 8p = 0 to oo. Using the definition
of an average provided by Eq. (1.9), we write

fmﬁpz ¢ 8GIKT 45,
0

8p? =
f e—ﬁG/kT dép
0

8% exp [- (1/2)(8*G/p* Yo 80 /KT] dbp
0

({“exp [- (1/2) (3% G/ap? Yo 80%/kT] dbp (10.46)
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By letting y = 8p and a = (82G/0p?)o/2kT, these rathzer formidable-looking
integrals are recognized as gamma functions: [ y™e ™" dy. Using tabulated
values for these integrals for m = 0 and m = 2, we obtain

6p? = __ KT (10.47)
(3°G/op*)o
Substitution of this result into Eq. (10.42) yields
3 ~\2
= 3ﬂ, 1‘ fi d_n mz_ﬂ_ﬂ (10.48)
3N N* dp | (8*GJ/ap?),

As it stands, Eq. (10.48) is not an encouraging-looking result, but it is actually
very close to a highly useful form.

Rather than continuing to discuss the scattering of pure liquids at the theoret-
ical level, let us consider an example to illustrate the application of these ideas.

Example 10.3

By an assortment of thermodynamic manipulations, the quantities dfi/dp and
[N*(32G/9p?)o] ™' can be eliminated from Eq. (10.48) and replaced by the
measurable quantities a, 8, and dii/dT: the coefficients of thermal expansion,
isothermal compressibility, and the temperature coefficient of refractive index,
respectively. With these substitutions, Eq. (10.48) becomes

327° kTg  dn 2
T -_ e —— n —
3Nt a? dT
For benzenet, a =121 X 1073 deg™!,8=9.5X 107 m? N~', and dii/dT =

6.38 X 10™* deg™'. At 23°C, i = 1.503 for benzene at \, = 546 nm. Use these
data to evaluate 7 for benzene under these conditions.

Solution
Direct substitution into the equation given provides the required value for 7:
3273(1.38 X 1072 JK™')(296 K)(9.5 X 1071 m? N!)

(1.503)%(6.38 X 107* deg™"')?
3(546 X 1079 m)*(1.21 X 10-3 deg™")?

=907x 1073 m! (since J =N m)
°

tM. Kerker, The Scattering of Light and Other Electromagnetic Radition, Academic,
New York, 1969.
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Experimentally the Rayleigh ratio for benzene at 90° has been observed to
equal about 1.58 X 10™* m™! under the conditions described in this example.
By Eq. (10.6), 7 = (16m/3) R, so the value of R, corresponding to this calculated
turbidity is Ry calc =541 X 10™* m~!. The ratio between the observed value
of R, and that calculated in the example is called the Cabannes factor and
equals about 2.9 in this case.

The origin of this enhanced scattering is understood to originate from the
anisotropy of the scattering centers. In terms of the analysis we have presented,
this amounts to some scrambling of horizontally and vertically polarized compo-
nents of light. This means that the light scattered at 90° is not totally polarized
as suggested by Fig. 10.6. By using polarizing filters with the detection system,
the intensities of the horizontally and vertically polarized components of the
scattered light can be measured. The ratio of i, (6) to iy (8) is called the
depolarization ratio and is given the symbol p,(8) (u unpolarized incident
light; 8, angle at which measured). The Cabannes factor which corrects for this
effect can be evaluated from the measured depolarization ratio. Applied to
turbidity, the Cabannes factor C as a function of p,(90)is C, = [6 + 3p,(90)] /
[6 - 7p,(90)] and applied to the Rayleigh ratio at 90°, Cryg = [6 +6p,(90)]/
[6 - 7p,(90)]. Note that for the isotropic scatterers we have assumed, p,(90) =
0, so the Cabannes factor equals unity. Corrections of this sort are also required
for scattering by solutions. When the turbidity value calculated in Example 10.3
is multiplied by the appropriate Cabannes factor, the calculated and experimen-
tal results agree very well. We shall not pursue this correction any further, but
shall continue to assume isotropic scatterers; additional details concerning the
measurement and use of the Cabannes factor will be found in Ref. 3.

As noted at the end of the last section, it is fluctuations in concentration 8¢,
rather than density which act as the scattering centers of interest for solutions
of small molecules. There is nothing in the forgoing theory that prevents us from
placing 8p by &c,, the solute concentration in mass volume™! units. Therefore
we write for a solution of small molecules

3 di \?
SR P R R R - (1049)
3N N* de, | (8% GJoc, %)
In the next section, we consider the application of Eq. (10.49) to scattering
from fluctuations in concentration.

10.7 Light Scattering by Solutions

We saw in Example 10.3 that Eq. (10.48) for the turbidity of pure liquids could
be converted to a usable expression by suitable thermodynamic manipulations.
The corresponding relationship for solutions can also be transformed into the
following useful form:
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3 \2
T = 32”4 kr(n d0) S (10.50)
3N, de, | (311/dcy)o

where (dI1/0c,), describes the concentration dependence of the equilibrium
(subscript 0) osmotic pressure. The following outline summarizes the steps
involved in this transformation:

1. From the definition of the partial molar quantities [Eq. (8.8)] we write
8G = u,8n, +u,8n, and 8V = V,8n, + V,6n,, where the &’s refer to
an individual fluctuation. The changes in concentration in a fluctuation
arise from changes in the number of moles of solvent (subscript 1) and
solute (subscript 2), not because of volume changes. Hence 8V = 0;
therefore 8n, = - (V,/V{)6n, and 8G = [u; - (V;/V,) u,] 6n,.

Since c, is expressed as mass volume™', N* can be related to the §c, by
the relationship 8¢, /M = N*8n,. Therefore 6G = [u; - (Vz/\_/,) My
(8¢co /MN*) or 3G/dc, = [uy = (V1/V2) kg | /MN*,

3. Differentiating item (2) again with respect to c, gives

) —
¥e (. (V2 / MN*

aC22 dCz Vl dC2

The Gibbs-Duhem equation also follows from the definition of partial

molar quantities: nydu, + n,du, = 0. With the Gibbs-Duhem equation,
92G/dc,? becomes

_ n_x +173 (_alll/acz)o
n, \71 MN*

(3]

4. The factor [N*(82G/oc,%)e] "' in Eq. (10.49) can therefore be written
_(n1 + ?j) (01 /3c2)o |" or (_ fllvl +ni\,72, (8;11/602)0)'1

n,M v,

M

n, Vl

Since ¢, =n,M/(n, V, + n, \_/2 ), this is more concisely written as

(_ 1 (Ouy/0cz)o )~l

c, Vv,

5. Equation (8.79) gives u; = u® - 1V, at equilibrium, so (du,/0¢c, ) =
- V{(811/dc; o, and the factor in item (4) becomes

L Ge))

Substituting this result into Eq. (10.49) gives Eq. (10.50).
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Although Eq. (10.50) is still plagued by remnants of the Taylor series expan-
sion about the equilibrium point in the form of the factor (311/3c,),, we are
now in a position to evaluate the latter quantity explicitly. Equation (8.87)
gives an expression for the equilibrium osmotic pressure as a function of con-
centration: I1=RT(cz/M + Bc,? + -+ +). Therefore

oIl 1
) =RT[- + 2Bcy +--- (10.51)
ocs Jo M

in terms of which Eq. (10.50) becomes

32n® (i di/dcy)? ¢,

T = (10.52)
3N* N, (1/M +2Bc;)

This is the result toward which we have been working. Representing the follow-
ing cluster of constants by the symbol H, we have

H - 32m* (i dfi/dc,)?

= _ 10.53
3No* Ny ( )
Eq. (10.52) can be written
Hc, 1
- = _ + 2BC2 (1054)
T M

This is the equation of a straight line and indicates that a plot of Hc, /7 versus
¢, has the following properties:

slope = 2B (10.55)
and
intercept = 1 (10.56)
M .

Thus we have finally established how light scattering can be used to measure
the molecular weight of a solute. The concentration dependence of 7 enters
Eq. (10.54) through an expression for osmotic pressure, and this surprising
connection deserves some additional comments:

1. In Chap. 8 we saw how the equilibrium osmotic pressure of a solution is
related to AG for the mixing process whereby the solution is formed. Any

difference in the concentration of the solution involves a change in AG_;,
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and would be reflected by a change in II. Since the occurrence of a fluctua-
tion in concentration depends on the value of the associated §G, the
fluctuation can also be expressed in terms of an equivalent §11.

2. The value of B given by Eq. (10.55) has exactly the same significance that
we discussed for the second virial coefficient in Chap. 8.

3. The limiting value of Hc, /7 is proportional to 1/M, which shows that 7/c,
increases with increasing M, at least if interference effects are ignored.
This is just the opposite of the molecular weight dependence of the colliga-
tive properties and makes light-scattering experiments ideally suited for
polymeric solutes. We shall discuss in Sec. 10.10 the implications of inter-
ference effects for solute particles whose dimensions are comparable to A.

4. For polydisperse systems the molecular weight obtained from light scatter-
ing is a weight average value, rather than the number average value obtained
from an osmotic pressure experiment. This is an unexpected result in view
of the role of Eq. (10.51) in relating 7 to M.

It is easy to show that a light-scattering experiment “sees” a polydisperse
system in such a way as to average the different molecular weights in terms of
their mass rather than their number. We only need to consider the leading term
of Eq. (10.54) to see the origin of this effect. For a polydisperse system we
write He,, /7., = 1/M, with ¢, = Z¢; and 7., = Zr;, where the summations
extend over all molecular weight categories. For any one molecular weight
category it is also true that Hc;/7; = 1/M,. Combining these various results gives

Moo Tex ZT

_ HZeM; ZmM;
Hc HZc, HZc, Zm,

ex 1 1 1

(10.57)

which is the weight average as defined by Eq. (1.12).

Since the development of a method for polymer characterization has been
spread over several sections and since the literature contains several variations
in the manner data is displayed, a summary of some pertinent definitions and
relationships will be helpful at this point:

1. The relative intensity of light scattered per unit volume ij/I is a function
of factors of three different origins: geometrical (r and 6), optical (A, i,
and di/dc,), and thermodynamic (c,, M, and B).

2. The Rayleigh ratio combines the intensity factors with those associated
with the geometry of the experiment:

Rg = > — (10.58)
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Thus R, is a constant in any particular experiment where Rayleigh scatter-
ing is obtained, since the entire angular dependence of the light intensity
is correctly contained in the 1 + cos? @ term.

3. As the attenuation of the incident beam per unit path through the solution,
the turbidity is larger than the Rayleigh ratio by the factor 16m/3, since
7 is obtained by integrating R, over a spherical surface. Thus, if Eq. (10.54)
is written in terms of Ry rather than 7, the proportionality constant H
must also be decreased by 16m/3, in which case the constant is represented
by the symbol K:

‘- 2n® (A dAfdc, )

10.59
TN, (10.59)
and
Kc, 1
—- = — + 2Bc, (10.60)
Ry M

4. If turbidity itself is the quantity which is used to characterize a polymer
solution, then Egs. (10.53) and (10.54) are used as derived above:

i - 3273 (i dii/dc, )?

10.53
Me* N, (10.53)
and
Hc 1
—2= " 4 2Bc, (10.54)
T M

Figure 10.8 shows two sets of data plotted according to these conventions,
after correction for the effect of interference. In Fig. 10.8a, Hc,/7 is plotted
against ¢, for three different fractions of polystyrene in methyl ethyl ketone.
Figure 10.8b shows Kc,/R, versus ¢, for solutions of polystyrene in cyclo-
hexane at five different temperatures. These results are discussed further in the
following example.

Example 10.4

In both parts of Fig. 10.8, c, is expressed in grams per cubic centimeter, with
H (or K) and 7 (or Ry) in cgs units also. Verify that the units of the intercept
are appropriate units for M~!. Evaluate IVIW and B for the data in Fig. 10.8a,
and M,, and © from the data in Fig. 10.8b. (K is independent of temperature
over the range of T’s studied in Fig. 10.8b.)
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Figure 10.8 Light-scattering data plotted to give slope-intercept values which can be interpreted in terms of M and B.
(a) Polystyrene in methyl ethyl ketone. [From B. A. Brice, M. Halwer, and R. Speiser, J. Opt. Soc. Am. 40:768 (1950),
used with permission.] (b) Polystyrene in cyclohexane at temperatures indicated. Units of ordinates are given in
Example 10.4. [Reprinted with permission from W, R. Krigbaum and D. K. Carpenter, J. Phys. Chem. 59:1166 (1955),
copyright 1955 by the American Chemical Society.]
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Solution

Since ¢, has units of grams per cubic centimeter, fi dii/dc, has units of cubic
centimeters per gram, because fi is dimensionless. This means that H (and K)
has the cgs units centimeter’ mole gram™. 7 (and R,) has units of
centimeter ™', hence Hec,/7 (and Kc,/Ry) has the units moles per gram, which
are appropriate for the interpretation of this quantity given by Eq. (10.56).
The three lines in Fig. 10.8a have the following intercepts, and the correspond-
ing molecular weights are simply the reciprocals of these values:

(Hez /7)o X 105 (mol g=!) 0.862 0.556 0370
M,, (g mol™!) 116,000 180,000 270,000

Each fraction in Fig. 10.8a has the same slope, and therefore the same value of
B is expected. The slope of the lines is approximately (13 X 10~7 mol g~')/
6 X 1072 gem™3)=22X 10"* cm® g"2 mol and B= 1.1 X 107* cm?® g2
mol. These are also the correct cgs units for B, as seen by comparison with, say,
Eq. (8.97). In Fig. 10.8b the lines for the different temperatures meet at a
common intercept of about 3.1 X 1077 mol g~!, which means that M, =
3.2 X 10% g mol~! for the polystyrene sample under investigation. The slopes
and B values for the various temperatures are tabulated below:

T (°C) 55 45 38 34 325
T (K) 3282 3182 3112 3072  305.7
Slope X 10% (cm® g"2 mol) 1076 624 226 -168 -3.06
BX 105 (cm® g~2 mol) 5.38 3.12 113 -084 -1.53

The © temperature is that value of T for which B = 0; therefore ® can be deter-
mined from the results above by graphical interpolation. Although there is some
scatter in such a graph, the best value for the temperature at which B = 0 appears
to be 308.4 K, which agrees well with values determined for this system by other
methods.

Figure 10.8 and Example 10.4 show that light-scattering experiments can be
interpreted to yield much the same information as obtained from an osmotic
pressure experiment. The fact that the latter yields Mn while light scattering
gives M,, prevents the two methods from being redundant, however. When we
discuss interference phenomena in Sec. 10.10, we shall see that the radius of
gyration can also be obtained from scattering experiments. Now that the utility
of light-scattering experiments in polymer chemistry is well established, let us
consider the experimental aspects of this topic.
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10.8 Experimental Aspects of Light Scattering

We initiated our discussion of light scattering at the beginning of this chapter by
comparing turbidity with the (more familiar) absorbance of a solution. The
comparison of these two quantities is also a useful place to begin a consideration
of the experimental aspects of light scattering. The components of a spectro-
photometer and a light-scattering photometer are largely identical, the primary
difference being that absorbance is always measured at § = 0°, while it is advan-
tageous to measure scattering at various different angles. There are several
reasons for using the Rayleigh ratio evaluated at various angles in reporting
scattering results:

1. Since iy is a small quantity, it is better to measure it directly and report it
as R, rather than by difference, as in the case when turbidity is reported.

2. If experimental values of R, are observed to be independent of 6, then
Rayleigh scattering is established and Eq. (10.60) can be applied to the data
with confidence.

3. If the experimental values of Ry vary with 6, then the effects of interfer-
ence are demonstrated. We shall see later in this section that these effects
can be eliminated by extrapolating R, values to § = 0°, at which limit
Eq. (10.60) also applies.

4. We shall see in subsequent sections that measuring R, as a function of ¢
can be used to evaluate the radius of gyration of the scattering molecules,
thereby providing more information about the polymer in addition to M
and B.

As a result of these considerations, the primary difference between a spectro-
photometer and a light-scattering photometer is the fact that the photodetector
is mounted on an arm which pivots at the sample so that intensity measurements
can be made at various angles.

Figure 10.9a is a schematic top view of such a photometer, and Fig. 10.9b is
a cutaway view of a commercially available instrument which operates on the
principles we describe here. The apparatus shown is the Brice-Phoenix universal
scattering photometer. Like spectrophotometers, these light-scattering
photometers consist of a light source, a sample cell, and a detector, as well as
filtering and collimating systems for both the incident and scattered light. The
interior of the photometer is painted black and the transmitted beam is absorbed
in a light trap to prevent stray light from reaching the detector.

In contrast to spectrophotometry, light-scattering experiments are generally
conducted at constant wavelength. Mercury vapor lamps are the most widely
used light sources, since the strong lines at 436 and 546 nm are readily isolated
by filters to allow monochromatic illumination. Polarizing filters are also
included for both the incident and scattered beams so that depolarization can
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Figure 10.9 Light-scattering photometers. (a) Schematic top view showing
movable photodetector. (Reprinted from Ref. 2, p. 176.) (b) Cutaway
photograph of commercial light-scattering instrument, the Brice-Phoenix
Universal Scattering Photometer. (Photo courtesy of the Virtis Co., Gardiner,

New York.)
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be studied. The usual assortment of lenses and slits assures that the beams are
properly collimated, but these details need not concern us here.

The scattering of laser light is also of considerable importance in contempo-
rary light-scattering practice. As a source of high-intensity monochromatic light,
the laser source makes it possible to carry out light-scattering experiments on
samples of greatly reduced volume. This means that laser light scattering can be
used as a detection system in GPC and also aids in minimizing the scatter
produced by dust particles, gas bubbles, and so on, which can invalidate
measurements made on larger volumes of solution. Incidentally, as a detection
system in GPC, light scattering offers sensitivity to both concentration changes
and differences in molecular weight. Combined with refractive index measure-
ments—to supply values for dii/dc, —laser light-scattering detectors provide data
which allow for calibration with respect to molecular weight, as well as measure
the relative concentrations of the various components.

A variety of cell designs have been successfully employed in light-scattering
experiments. Cylindrical cells offer symmetry with respect to viewing angle, but
care must be exercised in their use because of reflection from cell walls. This
difficulty is not encountered when intensity measurements are made normal to
planar cell windows. Cells of octagonal cross section have planar viewing surfaces
at # = 0, 45, 90, 135, and 180°; these are especially convenient for light-
scattering experiments.

The solutions must be carefully prepared so as to be free of dust particles
and other extraneous scatterers. Filtration through sintered glass or centrifuga-
tion is widely used to clarify solutions of particles which would compete with
polymeric solutes. This concern for cleanliness also extends to glassware,
especially scattering cells. A fingerprint on the viewing window is disastrous!

Photomultipliers are used to measure the intensity of the scattered light.
The output is compared to that of a second photocell located in the light trap
which measures the intensity of the incident beam. In this way the ratio i/l
is measured directly with built-in compensation for any variations in the source.
When filters are used for measuring depolarization, their effect on the sensitivity
of the photomultiplier and its output must also be considered. Instrument
calibration can be accomplished using well-characterized polymer solutions,
dispersions of colloidal silica, or opalescent glass as standards.

The Rayleigh ratio is not the only optical measurement that must be made in
order to interpret light-scattering experiments. In addition, the factor i dii/dc,
must also be accurately measured. The refractive index itself is easily deter-
mined at the temperature and wavelength of the experiment and requires no
further comment. The refractive index gradient dii/dc,, by contrast, presents
more of a challenge. Although nominally the slope of a plot of the solution
refractive index versus c,, the gradient is not determined in this manner, since
acceptable precision could not be achieved by differences: The solutions
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involved are too dilute and the solvent and solute are often not too different in
their respective refractive indices.

Instead, the difference between the refractive index of the solvent and that of
a solution can be measured directly by one of several designs of differential
refractometer. It is apparent that solute and solvent must differ in refractive
index, otherwise the solute and its concentration fluctuations are effectively
“invisible’” in the solvent. The intrinsic difference in the fi values of the con-
stituents as well as the concentration of the solution, therefore, determine the
small differences in refractive index that must be accurately measured. What is
sought is an optical measurement that compares the light interacting with both
the solvent and the solution to produce an effect which is sensitive to the refrac-
tive index difference. One instrument design for a differential refractometer
passes light through a divided cell, the two halves of which contain solvent and
solution, respectively. The amount by which the light beam deviates in passing
through such a cell is measured by a position-sensitive photodetector. Alterna-
tively, another design uses a split beam to reflect light off the surface of another
divided cell, so that part of the beam is reflected by the solvent and part by the
solution. The two reflected beams are compared by a dual-element photo-
detector, and the difference in intensity is related to the difference in fi. By
amplification of the small signals involved, each of these methods is capable of
measuring down to 1077 refractive index units under optimum conditions.
The usefulness of dii/dc, as the basis for a detection system in liquid chroma-
tography has contributed to the development of instrumentation in this area.

As noted at the beginning of this section, extrapolation of Ry to 6 = 0° is
one way to correct light-scattering data for interference effects. Interference
becomes troublesome for particles whose dimensions are larger than about A/20,
because light scattered from one portion of the molecule interferes with that
scattered by another portion. This situation is shown schematically in Fig. 10.10,
which shows the incident light in phase as it passes the surface AA’, but shows
different phase relationships in the scattered light at the (distant) surface BB'. It
is typical of interference phenomena (think of the colors displayed by a soap
film) to show different intensities depending on the angle of observation. Thus
in Fig. 10.10 the light scattered at the smaller value of 6 remains more nearly
in phase than that scattered at the larger angle, where significant destructive
interference occurs. This situation is generally true and constitutes the basis
for extrapolating to § = 0° to eliminate interference effects. The data in
Fig. 10.8b were “corrected” in this way.

In the last sentence the word corrected is in quotation marks to emphasize
the point that the observation is corrct: Rather, we are not in a position to
deal with the information it tells us, namely, that these particles do not have
negligible dimensions compared to A. Until now we have lacked theory for
dealing with this fact. It should be recognized that, by circumventing the
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Figure 10.10 Interference of light rays scattered by segments j and k in a
polymer chain. Destructive interference increases with increasing 6.

interference effect by extrapolation, we are wasting potentially usable informa-
tion. Interference occurs in Fig. 10.10 because the light scattered at site j and
that scattered at k travel different distances between AA’ and BB'. The wave-
length of the light is the “yardstick’ that measures this difference in distance
traveled. Of course, the latter difference is somehow related to the dimensions
of the scattering molecule taken as a whole. Therefore, to bypass this effect by
extrapolation is to ignore light as a probe of molecular dimensions. In the next
section we shall examine the theory of interference per se, and in Sec. 10.10
we apply the resulting theory to the interpretation of light-scattering data.

10.9 Optical Interference

The Rayleigh scattering theory which culminates in Eq. (10.60) as its most
pertinent form for our purposes is based on the explicit assumption that inter-
ference effects are absent. The objective of the present section is to correct the
Rayleigh theory to allow for interference effects. There are several assumptions-
limitations that are implied by our approach:

1. We assume that the Rayleigh theory can be corrected by subdividing the
actual solute particle into an array of scattering sites which, considered
individually, obey the Rayleigh theory. It can be shown that this approach
is a valid approximation so long as (47R/A)(fi,/f; - 1) <€ I, where R is
the radius of the overall molecule and i, and fi, are the refractive indices
of the solute and solvent, respectively. This shows that the validity of the
model involves a trade-off: To apply to progressively larger molecules, the
difference in refractive index between solute and solvent must decrease.
This particular limitation is not especially severe in polymer applications
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of light scattering, but can be a real problem in applications to still larger
colloidal particles.

2. We assume that the observed interference is the cumulative effect of the
contributions of the individual polymer molecules and that solute-solute
interactions do not enter the picture. This effectively limits the model to
dilute solutions. This restriction is not particularly troublesome, since our
development of the Rayleigh theory also assumes dilute solutions.

3. We assume that there exists a function which we represent by P(8)—in
recognition of the fact that it is angle dependent—which can be multiplied
by the scattered intensity as predicted by the Rayleigh theory to give the
correct value for i , even in the presence of interference. That is,

1
P(g) = —actual (10.61)
ls,Rayleigh

4. Based on considerations we have encountered earlier in this chapter, we can
anticipate two limiting cases of this function: P(8) approaches unity both
in the limit of small particles and in the limit of small angles of observation.
Interference is absent in both of these cases.

Equation (10.61) suggests how Eq. (10.60), which is valid in the absence of
interference, should be corrected. Using Eq. (10.58) for R, Rayleigh> Eq.
(10.60) is corrected for interference by dividing both sides of the equation by
P(8):

Kc, (1 +cos? 8) 1, 1 {1
0 = —— | =+ 2Bc, (10.62)
ls,Rayleigh P(G)r P(@) M

Since P(0) ig gayjeign 8ives the observed scattering intensity at 6 —the value that
is actually used in the evaluation of Ry—Eq. (10.62) can be simply written as

Kc 1 1
—2 = " (- + 2Bq (10.63)
R, P@)\M

Our objective now becomes finding an expression for P(6).
The theory for P(8) proceeds through three stages:

1. We must describe the light scattered with interference in terms of phase
differences that develop as the waves pass through a molecule consisting of
multiple scattering sites.

2. We must find a way to describe these phase differences in terms of the
distances traveled through the array of scattering sites, since this is how
the size of the molecule enters the theory.
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3.  We must average the effect described in item (2) so that no assumed orienta-
tion of the scattering sites remains in the final result.

We shall take up these various steps in the following paragraphs.

Figure 10.10 shows that interference is the result of phase differences which
arise as the incident light—initially in phase—is scattered by different sites in
the molecule. In principle, any particle can be subdivided into a number of
hypothetical sites whose isolated behavior is described by the Rayleigh theory.
For polymers it is convenient to use the repeat unit of the polymer as the
individual scattering site. Thus a polymer whose degree of polymerization is n
consists of n independent scattering sites. We can describe each of these by an
index number and describe the electric field scattered by the jth using Eq.
(10.7), including a phase angle §; which is characteristic of the jth repeat unit:

E; = E, cos (2wt +8)) (10.64)

The net field produced by n such sites is given by

m
]
e
m
]
L

E, cos 2t +4;) (10.65)
=1

A very useful way to simplify Eq. (10.65) involves the complex number ¢! in
which i =+/~1; ¢! equals cos y + i sin y. Therefore cos y is given by the real
part of elY, Since exponential numbers are easy to manipulate, we can gain
useful insight into the nature of the cosine term in Eq. (10.65) by working with
this identity. Remembering that only the real part of the expression concerns
us, we can write Eq. (10.65) as

. n ‘
EO,net el(2nut+6net) =3 Eo e|(21wt+6j) (10.66)
=1
Dividing both sides by e2™! gives
i5 . i6
Egner € et = I Eg e (10.67)

=1

It is the net intensity, not the electric field, which concerns us. We previously
used the fact that intensity is proportional to E? to evaluate i;. Using complex
numbers to represent E requires one slight modification of this procedure.
In the present case we must multiply E by its complex conjugate--obtained by
replacingy/~1 by -+/-1—to evaluate intensity:
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n o n .
i, o (2 E, e‘%)( T E, e-'ék) (10.68)
=1 k=1

where we have introduced k as the index simply to distinguish between the two
summations. Equation (10.68) can be written

n n X
i, @ E? T T &Gt (10.69)
=1 k=1

For every term §; - 8, in this double summation, there is a term 8, - §; which
equals - (§; - 6, ); therefore Eq. (10.69) is equivalent to

n n . T
i, o % E T 3 (€@K 4 ¢i6i00) (10.70)
=1 k=1

By using this form, we can take advantage of the identity that cosy = 1/2(e'Y +
e~ ), from which it follows that

n n
iy « Eg2 £ X cos(8;-6y) (10.71)
=1 k=1

For Rayleigh scattering, §; - 6, = O-there are no phase differences—and each
of the cosine terms in Eq. (10.71) equals unity. In this case, which corresponds

to is Rayleign the right-hand side of Eq. (10.71) equals E,?n?, and we can write

S =P@) =L T cos(s-5y) (10.72)
j k

This expression formalizes the anticipated conclusion that it is the difference in
phase between light scattered by different segments that is responsible for the
interference effect we seek to analyze. Equation (10.72) completes the first of
the three stages in the development of P(6).

In the next stage of the derivation we replace the difference in phase angles
by the difference in the distance traveled by the light in reaching the observer
via site j compared with site k. We shall develop this connection for the specific
geometry of Fig. 10.11, but in the third stage of the derivation an average for
all possible geometries is performed. Hence we need not worry about the specific
model for which the second stage is obtained.
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Y

Figure 10.11 Definition of variables required to describe interference of light
scattered from points O and P.

Equation (10.72) shows that it is the difference in phase between light
scattered by two sites that determines the interference. Hence in Fig. 10.11
we construct two surfaces OA and OB which are perpendicular to the incident
and scattered light, respectively. These lines might represent wave crests and,
since they meet at O, any segment situated at O is defined to have a phase angle
of zero. Suppose we consider a second segment situated at P. To reach a distant
observer in the scattering direction, light scattered by a segment located at P
must travel a distance d, farther in the incident direction compared to a scat-
terer located at O. In addition, light scattered by a segment at P would have to
travel a distance d, less than light scattered from O to reach the observer. The
difference in the distance traveled by light scattered from this pair of sites is
therefore given by d, - d,. These distances are illustrated in Fig. 10:11. Since
there is no phase angle for a scattering segment located at O, the difference in
phase angles between O and P can be written

2m(d, - d
b - bp = ;_(;'szl (10.73)
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Next we look for a relationship between d; - d, and the geometry of the
experiment.

The easiest way to proceed is to use vectors to describe this part of the
probleri’We represent the distance between the pair of scattering sites by tﬂe
vector OP the length of which g simply r. To express d,; and d, in terms of OP
we construct the unit vectors a and b which are pﬂerllel to the incid_e)nt and
scattered directions, respectively. The projection of OP into direction a, given
byih}e dot product_gf these two vectors, equals d,. Likewise, the projection
of OP into direction b gives d,. Therefore we can write

dy-d, =OP -2 -OP b =0P-(a-b) (10.74)

The vector a - b is also shown in Fig. 10 11 and may be described as the
product of a unit vector ¢ in the direction a -b tlmes the scalar length of
2 - b. This length is easily evaluated, since 2 and b are both of unit length
and are separated by the angle 6. Therefore a_Perpendrcular toa - b through O
bisects both the angle § and the length ofa - b. The length ofa - b is therefore
2 sin (6/2) and we can describe a - b as

-> > g\~
a-b = 2sin (2) c (10.75)
Combining Egs. (10.73)-(10.75) gives

5 - bp = 47” sm( )(op $) = s(0F 3) (10.76)

where the scalar quantity s is defined by

_ 4m 0
S5 s1n(2) (10.77)

The phase difference 6, - 8p given by Eq. (10.76) describes a particular
geometrical arrangement between scatterers. This difference can be substituted
for the phase difference 8; - 8, between an arbitrary pair of segments in
Eq. (10.72), provided that a suitable averaging is carried out to allow for all
possible orientations between segments j and k. We shall take up this averaging
in the final stage of the derivation. For now we simply anticipate the average
by using an overbar and substitute Eq. (10.76) for §; - &, in Eq. (10.72):

P@6) = niz Zj:% cos(s[ry -c]) (10.78)



700 Light Scattering by Polymer Solutions

In writing this last result, we have replaced 6[; by the vector a: between the
generalized pair of segments j and k.

In the final stage of this involved derivation, we have to free Eq. (10.78)
from the dependence it contains on the geometry of Flg 10.11. The problem

hes in the dot product of the vector rJk —which replaces OP in Fig. 10.11—and

c the unit vector in the direction a - b in Fig. 10.11. In Fig. 10.11 these two
vectors have a specific orientation with respect to each other, but between an
arbitrary pair of segments the vectors are separated by a general angle we call 7.
The dot product 1 Tk - then becomes Ij €Os 7y, where 1, is the (scalar) distance
between j and k smce the vector ¢ has unit length With this substitution,
Eq. (10.78) becomes

PO) = 5 T Z cos (5, <05 7) (10.79)
j

Now we consider how the averaging implied by the overbar is carried out. What
this involves is multiplying cos (sr;, cos v) by P(y) dy—the probability that
a particular angle is between v and 7y + dy—and then integrating the result over
all values of v in keeping with the customary definition of an average quantity.

We can describe the function P(y) dy in terms of the same geometrical
arrangement shown in Fig. 10.2, with v replacing ¢, . That is, P(y) dv is propor-
tional to the area traced on the surface of a sphere by angles in the range vy to
v +dy:

P(y)dy = Arsiny (rdy) (10.80)

where A = (Jg r? sin y dy)™' satisfies the normalization criterion. Using this
as the expression for P(y) dvy gives

1 f ZjZy cos (st cos y)sin y dy
P(0) = k Ik (10.81)
n? ™
o Siny dy

This unattractive integral is readily solved by introducing a change of variable
in the numerator, If we let y = STj €os 7, then dy = STy, sin vy dy. The
corresponding limits for y--after dividing the range of integration in half and
multiplying the integral by 2—are y = STjx for y=0and y = 0 for y = /2.
With this change of variable, Eq. (10.81) becomes
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0
-2/st5) | Z;Zy cosydy

P () = y=srik _ (2/stj) Z; Zy sin (s )
n??2 f"/zsin'ydy 2
v=0
sin (sry))
=gz (10.82)
i kST

This is the result we have sought, although it needs a bit of additional
manipulation to make its usefulness evident. The derivation we have followed
in this section was developed by Debye in the context of x-ray scattering by the
individual atoms of small molecules. Since s « \~!, this function again empha-
sizes the idea that R/A ratios rather than absolute distances themselves are the
pertinent quantities in the discussion of optical phenomena. We shall call this
theory and its subsequent developments the Debye scattering theory. (Remem-
ber that Chap. 2 contains the Debye viscosity theory.) In the next section we
examine how Eq. (10.82) can be converted into a practical form.

10.10 The Radius of Gyration

Equation (10.82) is a correct but unwieldy form of the Debye scattering theory.
The result benefits considerably from some additional manipulation which
converts it into a useful form. Toward this end we assume that the quantity
sTj) is not too large, in which case sin (sr;) ) can be expanded as a power series.
Retaining only the first two terms of the series, we obtain

~ 3
sin (sr; sr., - (sr;,)°/3!
PO) = - =3 sin (1) =1 gy T (Srip)"/3*
n* j kst n? j k ST
st )2
-1lss <1 - 6w ) (10.83)
n® j k 6
Since Z;Z, 1 = n?, this becomes
s2
P@) =1 - — ZZr,° (10.84)

6n? j «k

At this point it is useful to compare the result we have obtained with the
expected behavior of P(@) that we anticipated from the definition of this
quantity:
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1. The smaller the overall dimensions of a molecule, the smaller will be the Tik
value for any pair of sites in the molecule. As the values of Tik approach
zero, P(6) —> 1, as required.

2. Equation (10.77) shows that s o sin (8/2); therefore sin (6/2) and s
approach zero as § = 0. This means that P(§) - 1 in this limit also, as
required.

3. Since the product sr;, appears in Eq. (10.84), there is a trade-off possibility
between particle size and the angle of observation. That is, the Debye
scattering theory applies with the same level of accuracy to larger molecules
at smaller angles and to smaller molecules at larger angles.

Since Eq. (10.63) contains 1/P(@), since we have already assumed sr;, to be
small, and since 1/(1 - y)=1 +y, Eq. (10.84) can be rewritten as

s St T gl (10.85)

At this point we return to Chap. 1 to connect Eq. (10.85) with the radius of
gyration. Although we have not encountered the form Z;Z, r;, 2 explicitly
before, a moment’s reflection will convince us that it is identical to the
bracketed quantity in Eq. (1.54):

n n
2 =
> 2z Iy

j=1 k=1

e
2

( 2P+ T P(r)r’) (10.86)
k=1 k=1

To clarify this identification we note the following:

1. The bracketed summations span the full range of k values from 1 ton and
hence can be combined into a single summation.

2. The probability P(r) times r? gives a particular value of r? which, in the
context of Eq. (10.86), is equivalent to r;,>.

3. Therefore it follows from Eq. (1.54) that

iF=— 2 % i (10.87)
J

in the present notation.

Combining Eqgs. (10.84)and (10.87) gives

1 _ 52 —— 16‘"2 =5 . 2 (]
=1 +__rg2 =1 + % 1, sin ) (10.88)
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Finally, we can incorporate this result into Eq. (10.63) to obtain

Kec 1 167 ]
2o = 1+ 20 ez | (10.89)
Ry Jooo M KDL 2

where the concentration term on the right-hand side of Eq. (10.63) has been
omitted, since the Debye scattering theory applies in the limit of ¢, - 0. We
see that there is a certain analogy in the way the Rayleigh and the Debye
theories must be “corrected”:

1. In applying the Rayleigh theory to large polymer molecules, we had to
extrapolate results measured at different 6’s to § = O to eliminate the
interference effect.

2. In applying the Debye theory to concentrated solutions, we must extrapo-
late the results measured at different concentrations to ¢, = 0 to eliminate
the effects of solute-solute interactions.

3. Experimentally, R, is measured at a series of different c,’s and @’s, which
makes the extrapolations of Kc, /R, at constant 8 to ¢, =0 and of K¢, /R,
at constant ¢, to 8 =0 equally feasible. In the next section we shall examine
a specific graphical technique which combines these two extrapolations in a
single procedure.

Assuming that concentration effects have been eliminated by extrapolating
Kc;/Rg to ¢, = 0 (subscript ¢ = 0), we see that Eq. (10.89) is the equation of a
straight line if (Kc,/Rg).-o is plotted against sin® (8/2). The characteristic
parameters of the line have the following significance:

16m* __

Slope = ——— 1.2 10.90
Pe = oy 8 ( )
1
Int t = — 1091
ntercep M ( )
or

2
o7 Sh [ slope (10.92)
& 16n* \intercept | ._,

Figure 10.12 shows data for cellulose nitrate in acetone measured at Ay =
436 nm, and plotted in the manner suggested in Eq. (10.89). The following
example completes the analysis of these data.
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Figure 10.12 Light-scattering data in the limit of ¢, = 0 plotted according to
Eq. (10.89) for cellulose nitrate in acetone. [Data from H. Benoit, A. M.
Holtzer, and P. Doty,J. Phys. Chem. 58:635 (1954).]}

Example 10.5

Interpret the slope and intercept values of the line in Fig. 10.12 in terms of the
molecular weight and radius of gyration of cellulose nitrate in this solution.
At 436 nm the refractive index of acetone is 1.359.

Solution
Examination of the graph shows that the line is characterized by the following
parameters:

Slope = 6.78 X 107% mol g™!

Intercept = 7.87 X 1077 mol g™
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The units of these quantities are determined solely by the ordinate, since the
abscissa is dimensionless. Example 10.4 verifies that moles per gram are the units
for Kc;/R,. The molecular weight is given by the inverse of the intercept:

M, = 1.27 X 10 g mol™
Since the intercept corresponds to the Rayleigh limit also (ie., 6 = 0°), Eq.
(10.57) demonstrates this to be the weight average value of M.

In acetone A = A, /fi = 436/1.359 = 321 nm; therefore

— 3A*M (slope)c_zg

r ———

£ 1672

_ 3321 nm)* (1.27 X 10° gmol~*)(6.78 X 107° mol g~*)

- 167

-
Tg

1.69 X 10* nm? or (" = 15 ims = 130nm

This distance parameter which characterizes the polymer is about 40% of A at
Ao =436 nm.

For a polydisperse system not only M but also the radius of gyration will be
an average value. Let us next consider the type of average that is obtained for
this quantity from light scattering. For this purpose it is sufficient to consider
the kind of average obtained for P(6): Eq. (10.84) shows that the weighting
factor used to average P(6) is also that for rgz. We proceed as in Sec. 10.7,
where we considered the same question for M:

1. We begin with Eq. (10.89)—that is, we neglect solute-solute interactions—

and write
Kc 1 1
LI R (10.93)
RO Mw P(e)

This result uses the already established fact that M = M, when the molecu-
lar weight is determined by light scattering for a polydisperse system.

2. Equation (10.93) can be written for both the individual components and
the mixture as a whole, yielding K¢;M;P;(8) = R, ; and Kc, M P(6) =
R respectively.

6,ex?
3. Since cex = Zjc; and Ry o, = Z;Ry ;, these results can be combined to give
_ R KZ,M;c;P,(6)
M, P() = -2 = 17 10.94
w PO Kc KZ;c, ( )

ex
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4. Because ¢; « m;, My, = ZMi/Zic;; therefore (Z,cM;/Z;c;)P(6) =
z:icihiiPi(e)/ZiCi or
_ TeMPi(6) _ T;mM;Pi(0)

P(6 b 10.95
@ ZieM; ZmM; ( )

5. Finally, m; = n;M;; therefore

- Z.n,M.2P,(6

Py = 1L _‘(___) (10.96)
ZinM;?

which shows that the weighting factor for each of the categories averaged

is m;M; = n,M,?. This kind of average is known as a z average. The similarly

defined z-average molecular weight, M, = Z.n.M3/Z.n.M2, is given as

Eq. (1.19)in Chap. 1.

Although we presented the derivation for P(8) in terms of a random coil, the
result is applicable to particles of other geometries—for example, rigid spheres or
ellipsoids—provided that the particles fall in the size range where the Debye
theory is applicable. The radius of gyration thus obtained is an exact measure
of this parameter for the particle in question, regardless of its shape, although
its relationship to the physical dimensions of the scatterer does depend on the
geometry of the particle. Relationships between the radius of gyration and the
dimensions of bodies of various geometries are derived in elementary physics
textbooks. Several of these are listed in Table 10.1 for some geometries that are
encountered among polymeric solutes. Thus if a particle is known to possess
some specific geometry, the radius of gyration can be translated into a geometri-
cal particle dimension through these relationships. It should be emphasized,
however, that this type of conversion merely helps us picture the molecule;
r, itself is an equally valid way to describe its dimensions.

In Example 10.5 we extracted both the molecular weight and the radius of
gyration from light-scattering data. There may be circumstances, however, when
nothing more than the dimensions of the molecule are sought. In this case a
simple alternative to the analysis discussed above can be followed. This tech-
nique is called the dissymmetry method and involves measuring the ratio of
intensities scattered at 45° and 135°. The ratio of these intensities is called the
dissymmetry ratio z:

(10.97)

Is, 135°

This parameter should also be extrapolated to ¢, = 0, so the amount of experi-
mental data required in this approach is not significantly less than in the method
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Table 10.1 Relationships Between the Radius of Gyration and Geometrical
Dimensions for Some Bodies Having Shapes Pertinent to Polymers

Radius of gyration
through the center
Geometry Definition of parameters of gravity

2 2 -

. T
Random coil r?: mean-square end-to-end o= 3
distance (< n)

2
Sphere R: radius of sphere rg2 =5 R?
. L2
Thin rod L: length of rod (approxima- fg2 =5
tion for prolate ellipsoids
for which a/b> 1)
Cylindrical disk R: radius of disk (approxima- rg2 = % R?

tion for oblate ellipsoids
for which a/b € 1)

described above. The advantage of working with this quantity, however, is that
it can yield a particle dimension with very little calculation through the use of
published tables and graphs. To see how this is possible, consider the following
points:

1. The factor 1 + cos? 8 in R, has the same value at 6 = 45° and 135°; hence
the ratio iy 450/i 350 is the same as Ry /R 350 [Eq. (10.58)].

2. Equation (10.63) shows that in the limit of ¢, = O this ratio also equals
the ratio P(45°)/P(135°).

3. By Eq.(10.88), this becomes

P(45%)  1+(167%/3)(r,/N)? sin® 67.5

‘T P(135°) R +(16n2/3)(rg/)\)2 sin? 22.5 (10.98)

and a master curve can be drawn which shows z for different ratios rs/)\.
Of course, this result is subject to the limitations of Eq. (10.88). Especially
pertinent is the idea that the particles should not be too large if Eq. (10.98)
is used, since large angles are involved.

4. Taking the concept of a master curve a step further, the relationships in
Table 10.1 can also be incorporated into such curves so that graphs of z
versus a characteristic dimension relative to A are plotted for various
geometries.
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6.0
Spheres
5.0 —
Monodisperse
40— coils

Dissymmetry Ratio, z

Figure 10.13 Variation of the dissymmetry ratio z with a characteristic dimen-
sion D (relative to A) for spheres, random coils, and rods. (Data from Ref. 4.)

Figure 10.13 shows such plots of z versus D/A, where D is r_ . for random coils,
R for spheres and disks, and L for rods. More detailed theories permit these
curves to be extended to larger values of 1 /A than is justified by consideration
of Eq. (10.97) alone. In the following example we illustrate an application of
this simple method for estimating particle dimensions.

Example 10.6

Poly (y-benzyl-L-glutamate) is known to possess a helical structure in certain
solvents. As part of an investigationt of this molecule, a fractionated sample
was examined in chloroform (CHCl;) and chloroform saturated (~0.5%) with
dimethyl formamide (DMF). The following results were obtained:

T P. Doty, J. H. Bradbury, and A. M. Holtzer, J. Am. Chem. Soc. 78:947 (1956).
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CHCl, CHCl; + DMF
M,, (g mol™") 144,000 73,000
(2)e=q at 436 nm 1.30 1.11

Taking i = 1.446 as the refractive index in both media, estimate the length of
the helix in these two situations. Propose a possible interpretation of the results.

Solution

The helix can be approximated as a rod; therefore values of L/A which are
consistent with the observed dissymmetries can be read from Fig. 10.13 or
equivalent sources. Also, A = Ao/fi = 436/1.446 = 302 nm in each of these
systems. In view of these considerations, the following results are obtained:

CHCl, CHCl, + DMF
LA 0.31 0.19
L (nm) 94 57

The observed molecular weight suggests that this polymer associates into a
“dimer” in CHCl;, but that this aggregation is effectively blocked by small
amounts of DMF. The particle lengths are not quite in the 2:1 ratio indicative
of end-to-end association, but the increase in length is sufficiently large to make
such a mechanism worthy of additional study.

[ ]

Until now we have looked at various aspects of light scattering under several
limiting conditions, specifically, ¢, = 0, 8 = 0, or both. Actual measurements,
however, are made at finite values of both ¢, and 6. In the next section we
shall consider a method of treating experimental data that consolidates all of
the various extrapolations into one graphical procedure.

10.11 Zimm Plots
If we substitute Eq. (10.88) into Eq. (10.63) we obtain

Kc, 1 16731 2 3)
— ={= + 2Bc 1+ E_sin?| = 10.99
S PR PR (1099)

and, since R, is measured as a function of both ¢, and 6, this relationship brings
together all of the experimental variables and molecular parameters that are
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related through light scattering. In the development of this chapter we have
looked at special cases of this general function:

1. In the limitof c; =0and 6 =0°,(Kc,/Ry)p=c=o = 1/M
2. In the limit of 6 = 0°, (K¢, /Ry)y= = 1/M,, + 2Bc,.

3. In the limit of ¢, =0, (Kc,/Rp) oo = (1/M,) [1 + (1677/3) (1/N? sin?
6/2)].

The assumptions made in deriving the two factors in Eq. (10.99) restrict the
validity of the respective parts of the general expression to these limiting cases.
A method for extrapolating experimental data to the limits itemized above has
been devloped by Zimm, and the resulting graph—called a Zimm plot—has
become a standard way of representing light-scattering data.

There is really nothing in this method that we have not already considered,
one aspect at a time, in this chapter. The Zimm plot simply brings it all together
in a single analysis.

We shall presently construct a Zimm plot in detail in an example. In antici-
pation of this, we label each of the paragraphs describing Zimm’s procedure for
ease of cross-referencing in the example.

w*

1. The method consists of plotting Kc,/R, as the ordinate and sin? (6/2) +
ke, as the abscissa, where k is a number which is chosen to give a good
distribution of data points in the graph. We assign to this constant reciprocal
concentration units so that kc, can be added to the dimensionless sin?
(6/2). When a suitable scale has been selected, the experimental points are
spread over a large area in the graph.

2. Next the points at constant values of ¢, are connected. Likewise, points at
constant values of 6 are also connected. This produces a grid of intersecting
lines that may be straight but which are not necessarily so.

3. On each of the lines that has been drawn, a mark is made at the value of the
abscissa corresponding to one of the limiting cases above. Specifically,
along the line where ¢, = c*, a mark is placed where the abscissa has the
value kc*. Since the abscissa is sin® (6/2) + kc,, this mark corresponds
to 8 = 0° for this concentration. Similarly, along a line for which § = 6%,
a mark is placed where the abscissa equals sin? (8*/2). This corresponds
to the ¢, = 0 limit at this angle.

4. When each of the constant ¢, and constant 8 lines has been marked off in
this way, the various derived points can be connected. One of these groups
of points gives values of Kc,/R, for a range of ¢’s at § = 0°. The other
group of points gives Kc, /R, for arange of 6’s at ¢, = 0. The two lines thus
derived should meet at a common intercept which equals 1/M,,, and their
slopes are given by Egs. (10.55) and (10.90), respectively.
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Table 10.2  Values for K¢, /R, at the Indicated Values of 6 and c, for
Solutions of Polystyrene in Benzene at 546 nm

¢ X 10° 6 (dee)

(gcm™3) 30 37.5 45 60 75 90 105 120
2.00 318 326 325 345 356 372 3.78 4.01
1.50 273 276 2.8l 294 308 3.27 340 3.57
1.00 229 233 237 253 266 285 296 3.12
0.75 2,10 214 217 232 247 264 279 293
0.50 192 195 198 216 233 251 266 2179

Source: Data from D. Margerison and G. C. East, An Introduction to Polymer Chemistry,
Pergamon, Oxford, 1967.

For a sample of polystyrene in benzene, experimental values of Kc, /R, are
entered in the body of Table 10.2. The values are placed at the intersection of
rows and columns labeled c, and @, respectively. In the following example
these values are used to construct a Zimm plot.

Example 10.7

Prepare a Zimm plot using the data in Table 10.2 and evaluate M, B, and_r? for
this solution of polystyrene in benzene. The effective wavelength in the medium
is A\y/fi = 546/1.501 = 364 nm for this experiment.

Solution

We follow the procedure outlined above, cross-referencing the individual steps
with the labels introduced above.

1. The abscissa values for the Zimm plot are given by sin? (6/2) + ke, . For
these data, k = 100 cm® g~! gives a good array of points. Table 10.3 shows
the values of the abscissa in the same format used in Table 10.2.

2. Figure 10.14a shows a plot of these data with the lines drawn between
points of constant ¢, . Likewise, Fig. 10.14b shows the same data with lines
drawn between points of constant 6.

3. When 6 = 0°,sin? (8/2) = 0 and the abscissa in Fig. 10.14a is simply ke, .
For the solution with ¢, = 0.5 X 1073 gem™3, kc, = 0.05, and this point
is marked by an x on the line through the points at this concentration.
The x’s on other lines in Fig. 10.14a correspond to the § = 0° limit for
each concentration. When ¢, = 0, the abscissa in Fig. 10.14b becomes
sin? (§/2). For the measurements at 6 = 30°, sin® 15 = 0.067, and this
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Figure 10.14 Construction of a Zimm plot from the

¢, =0, and (c) derived lines.
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data of Tables 10.2 and 10.3: (a) extrapolation to 8 = 0°, (b) extrapolation to
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Table 10.3  Values of sin? (8/2) + 100 ¢, for the Data in Table 10.2 (used
as Abscissa Coordinates in the Construction of Fig. 10.14)

d
Ca X 103 0( eg)
(gem™3) 30 37.5 45 60 75 90 105 120

2.00 0.267 0.303 0.346 0.450 0571 0.700 0.829 0.950
1.50 0.217 0.253 0.296 0.400 0.521 0.650 0.779 0.900
1.00 0.167 0.203 0.246 0.350 0.471 0.600 0.729 0.850
0.75 0.142 0.178 0.221 0.325 0.446 0.575 0.704 0.825
0.50 0.117 0.153 0.196 0.300 0.421 0550 0.679 0.800

point is marked by an x on the line through the points at 30°. The x’s on
the other lines in Fig. 10.14b correspond to the ¢, = 0 limit for each angle.

4. Figure 10.14c shows the two limiting lines defined in Figs. 10.14a and b.
The derived lines in Fig. 10.14c have the following properties: common
intercept = 1.35 X 107¢ mol g™!, slope ¢, = 0 line = 1.25 X 10~% mol
g™, slope 8 = 0° line = 9.0 X 107 mol g~! (as drawn), slope 6 = 0° line =
9.0 X 10* cm?® mol g~? (corrected for k). Using Eqgs. (10.56) and (10.91),
we have

M,, = intercept™ = 7.41 X 10° g mol™*

Using Eq. (10.55), we have

B = (slope)y_g _ 9.0X 1074

5 5 = 45X 107* cm® mol g2

Using Eq. (10.92), we have

—_ 2 2 -6

ng - 37\2 . slope - 3(3641) 125X 10 = 2330 nm?
167 intercept [ _, 167 135X 10°

(tg)Y? = 1y e = 48.2nm

L ]

The objective of the Zimm plot is to conduct all extrapolations on a single
graph. The three-stage development of Fig. 10.14 is not typical, but it is
intended to clarify the discussion.

Not all Zimm plots show the same grid of essentially parallel straight lines
found in Fig. 10.14. In some cases there is considerable curvature, and quite
a bit of “interpretation” is required to extract the molecular parameters from
the data. In this connection we note that the reciprocal of Eq. (10.83)
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., 0
Sin? >

~

Figure 10.15 Schematic showing alternative limits in the plot of Kc,/Ry
versus sin? (6/2) and their interpretation. [Reprinted with permission from
H. Benoit, A. M. Holtzer, and P. Doty, J. Phys. Chem. 58:635 (1954), copyright
1954 by the American Chemical Society.]

approaches an asymptotic value for large values of sr;, . Instead of Eq. (10.88),
the reciprocal of P(6) for large values of s, r;, , or both (indicated by a prime)
is given by

2
13'(_;)' = % (T7), sin® (g) (10.100)

In addition, the intercept obtained by extrapolating this asymptote back to
sin (8/2) = 0 equals (2M,)™". Note that both Mand r,? are number averages
when this asymptotic limit is used. This is illustrated schematically in
Fig. 10.15 and indicates that even more information pertaining to polymer
characterization can be extracted from an analysis of the curvature in Zimm
plots.

10.12 Appendix: Electrical Units

At one time or another, all of us have tangled with problems of units, but
generally these decrease in severity and frequency with experience. Advanced
students juggle kilograms and grams, centimeters and angstroms, joules and
calories, and rarely fumble in the process. Electrical units are sometimes more
troublesome.

In 1785 Coulomb showed that the force between two charges q, and q,
separated by a distance r is proportional to q;q,/r?, a result we know as
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Coulomb’s law. This relationship poses no particular difficulties as a qualitative
statement; the problem arises when we attempt to calculate something with it,
since the proportionality constant depends on the choice of units. In the cgs
system of units, the electrostatic unit of charge is defined to produce a force
of 1 dyne when two such charges are separated by a distance of 1 cm. In the
cgs system the proportionality factor in Coulomb’s law is unity and is dimen-
sionless. For charges under vacuum we write

9192
chs = “a (10.101)

By contrast, in SI units, the coulomb (C) is the unit of charge and is defined as
an ampere second (A sec). To reconcile this with newtons and meters, the
units of F and r, respectively, a proportionality constant that is numerically
different from unity and which has definite units is required. For charges under
vacuum we write

1 qq;
Fo; = — 10.102
s1 4me, r? ( )

where ¢, the permittivity of vacuum, is 8.854 X 10712 C* N~! m~2 (or C?
J7' m~! or kg=! m~3 sec?)and 1/4me, is 8.988 X 10° Nm? C~2.

In a medium where the relative dielectric constant is €., the force between
fixed chages at a definite separation is decreased by the dimensionless factor
€,. This is true regardless of the system of units and is incorporated into
Egs. (10.101)and (10.102) by dividing the right-hand side of each by ¢, .

So far, so good. The situation is really no different, say, than the ideal gas
law, in which the gas constant is numerically different and has different units
depending on the units chosen for p and V. The unit change in Example 10.1
is analogous to changing the gas constant from liter-atmospheres to calories;
it is apparent that one system is physically more meaningful than another in
specific problems. Several considerations interfere with this straightforward
parallel, however, and cause confusion:

1. The fact that the proportionality factor in Eq. (10.101) is numerically
equal to unity and is dimensionless makes us tend to forget that any such
factor is needed.

2. The fact that the proportionality constant in Eq. (10.102) is not written
as, say, k but also includes the factor (4m)~! is a recognition of the fact
that 4n arises frequently in equations from geometrical considerations
and can be conveniently eliminated by this device.
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3. In media other than vacuum, the product €€, is sometimes written € (no
subscript), where € is the permittivity of the medium. Thus in a specific
substance, F o « 1/e, and Fgy « 1/47e e, = 1/4me.

4. In calculation, however, €, and e are quite different. We must remember
that €, is dimensionless, while e is the product of €, and ¢,, with the latter
having definite units.

5. Since the factor 47 is introduced into Eq. (10.102) to encourage cancella-
tion, we frequently find expressions for the same quantity differing by
this factor, depending on the system of units used by the author. For
example, the Clausius-Mosotti equation [Eq. (10.17)] is written
(4n/3) (N a/M) = (e, - 1)/(e, + 2) in the cgs system,

Since an electric field E in space is defined as the force experienced by a unit
test charge q, (strictly, in the limit of q, > 0), it follows that the field produced
by q, is obtained by letting q, = g, = 1 in Coulomb’s law:

Eegs = 5 (10.103)
r
and
q, q
Eq; = = 10.104
S1 4me e, 12 4mer? ( )

Even when we discuss the electric field of light without reference to any particu-
lar charge, we must be aware of these differences. When that field interacts with
a charge, as in light scattering, we will be in trouble unless a self-consistent set
of units has been employed.

Problems

1. The geometry of Fig. 10.3 leads to a result known as Snell’s law, which
relates the refractive index of the medium to the angles formed by two
wave fronts with the interface. Defining 6, and 6, respectively, as the angles
between the phase boundary and the wave front under vacuum and in the
medium of refractive index fi, show that Snell’s law requires fi = sin 64/sin 6.

2. Use the expression given in Example 10.3 to evaluate the compressibility of
CCl; from the factt that Rgy =5.38 X 107* m™! at room temperature for
Ao = 546 nm. The depolarization ratio p,(90) is 0.042 for this liquid and
fi = 1460, a = 1,21 X 1073 deg™?, and dii/dT = 58.6 X 10™° deg™!.
Compare the light-scattering value with a literature value for ﬁCC|4; be
sure to cite the reference consulted.

T Data from Ref. 3.
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3. Fowlet measured the turbidity of air at Mt. Wilson, California, on a clear
day in 1913. Values of 7x for dry air at different wavelengths are tabulated
below, where x is essentially the thickness of the atmosphere corrected to
standard temperature and pressure (STP) conditions:

A (um) TX A (um) >
0.3504 0.459 0.5026 0.122
0.3600 0.423 0.5348 0.108
0.3709 0.377 0.5742 0.100
0.3838 0.338 0.5980 0.091
0.3974 0.285 0.6238 0.074
04127 0.245 0.6530 0.064
0.4307 0.213 0.6858 0.0419
0.4516 0.174 0.7222 0.0304
0.4753 0.147 0.7644 0.0212

Prepare a log-log plot of Tx versus A and evaluate the slope as a test of the
Rayleigh theory applied to air. The factor M/pN4 in Eq. (10.36) becomes
6.55 X 10° /Ng, where Ng is the number of gas molecules per cubic centi-
meter at STP and the numerical factor is the thickness of the atmosphere
corrected to STP conditions. Use a selection of the above data to determine
several estimates of Ng, and from the average, calculate Avogadro’s number.
The average value of fi ~ 1 is 2.97 X 104 over the range of wavelengths
which are most useful for the evaluation of N4 .

4. Bhatnagar and Biswasi measured the turbidity at 436 nm of a single sample
of poly(methyl methacrylate) in several solvents, including acetone and
methyl ethyl ketone (MEK):

dﬁ/d02 (HC2 /T)Czo M
In acetone 0.13914 1.75 X 10-6 571,000
In MEK 0.0138s5 260X 108 38,400,000

Working with different samples of the same polymer, other researchers have
published conflicting values for the refractive index gradient in these

solvents:

di/dc, in acetone di/dc, in MEK
Cohn and Schuele § 0.137 0.113
Tremblay et al.# 0.107 0.093

TF. E. Fowle, Astrophys. J. 40:435 (1914).

tH. L. Bhatnagar and A. B. Biswas, J. Polym. Sci. 13:461 (1954).

§E.S. Cohn and E, M. Schuele, J. Polym. Sci. 14:309 (1954).

#R. Tremblay, Y. Sicotte, and M. Rinfret, J. Polym. Sci. 14:310 (1954).
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Using the original Hc,/7 values, recalculate M using the various refractive
index gradients. On the basis of self-consistency, estimate the molecular
weight of this polymer and select the best value of dii/dc, in each solvent.
Criticize or defend the following proposition: Since the extension of the
Debye theory to large particles requires that the difference between fi for
solute and solvent be small, this difference should routinely be minimized
for best results.

5. Various amounts of either ethanol or hexane were added to polystyrene
solutions in benzene and 7 was measured for several concentrations of
polymelr. The following results were obtainedt (c, in g liter™!; Hc,/7 in
mol g™ ):

Pure benezene

cy Hey /T X 108
0.73 1.47
1.21 1.82
2.00 2.38

Benzene + percent ethanol

20% 28.5%
cy Hc, /1 X 108 cy Hc, /1 X 106
052 0.75 0.52 0.51
1.06 0.87 1.00 0.56
1.60 1.00 - -

Benzene + percent hexane

50% 58%
c2 Hc, /7 X 108 cy Hc, /T X 108
0.28 0.95 0.28 0.89
0.66 1.00 0.66 0.89
0.88 1.06 0.88 0.91

Evaluate M and B for each of the five runs on this polymer sample and
comment on the following points:

a. What is the significance of the runs for which B = 0?

b. What is the significance of the difference in the amount of the two
diluents needed to produce the B = 0 condition?

c¢. What is the significance of the different behavior with respect to M for
the two diluents?

T E. D. Kunst, Rec. Trav. Chim. Pays Bas 69:125 (1950).



Problems 719

6. Zimmt has reported the intensity of scattered light at various angles of
observation for polystyrene in toluene at a concentration of 2 X 107 g
cm 3. The following results were obtained (values marked * were estimated
and not measured):

0 (deg) ig (arbitrary units)
0 4.29%
25.8 3.49
36.9 2.89
53.0 2.18
66.4 1.74
90.0 1.22
113.6 0.952
143.1 0.763
180 0.70*

Draw a plot in polar coordinates of the scattering envelope in the xy plane.
How would the envelope of a Rayleigh scatterer compare with this plot?
By interpolation, evaluate igs, iy35, and z. Use Fig. 10.13 to estimate the
value of 1y, to which this dissymmetry ratio corresponds if A (in toluene)
is 364 nm. What are some practical and theoretical objections to this proce-
dure for estimating rymg?

7. The effect of adenosine triphosphate (ATP) on the muscle protein myosin
was studied by light scattering in an attempt to resolve conflicting interpre-
tations of viscosity and ultracentrifuge data. The controversy hinged on
whether the myosin dissociated or changed molecular shape by interaction
with ATP. Blum and Moralest} reported the following values of (Kc,/Rg)c=g
versus sin? (8/2) for myosin in 0.6 M KCl at pH 7.0:

sin® (8/2) 0.15 0.21 0.29 0.37 0.50 0.85
Hc, /7 X 107
(Before ATP) 0.9 1.1 1.5 1.8 2.2 2.7
(During ATP) 1.9 2.8 3.7 4.6 6.0 6.8

Which of the two models for the mode of ATP interaction with myosin do
these data support? Explain your answer by quantitative interpretation of
the light-scattering data.

TB. H. Zimm, J. Chem. Phys. 16:1093 (1948).
1J.J. Blum and M. F. Morales, Arch. Biochem. Biophys. 43:208 (1953).
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Aggregation of fibrinogen molecules is involved in the clotting of blood.
To learn something about the mechanism of this process, Steiner and Lakit
used light scattering to evaluate M and the length of these rod-shaped
molecules as a function of time after a change from stable conditions. The
stable molecule has a molecular weight of 540,000 g mol™! and a length
of 840 A. The following table shows the average molecular weight and
average length at several times for two different conditions of pH and ionic
strength u:

pH = 840 and u = 035M pH = 635 and u = 048 M
MX 10~ MX 10-6
t(sec)  (gmol-1) length (A) t(sec) (gmol-1) length (A)
650 1.10 1300 900 1.10 1100
1150 1.65 1600 1000 2.0 1200
1670 2.20 1900
2350 3.30 2200

Criticize or defend the following proposition: The apparent degree of
aggregation x at various times can be obtained in terms of either the
molecular weight or the length. The ratio of the values of x based on M to
that based on length equals unity for exclusively end-to-end aggregation and
increases from unity as the proportion of edge-to-edge aggregation increases.
In the higher pH-lower u experiment there is considerably less end-to-end
aggregation in the early stages of the process than in the lower pH-higher u
experiment.

Zimm plots at 546 nm were prepared for a particular polystyrene at two
temperatures and in three solvents. The following summarizes the various
slopes and intercepts obtainedi :

T=122°C
slope slope
Solvent Intercept intercept ) -, intercept/y-o
Methyl ethyl
ketone 0.896 0.608 260
Dichloroethane 1.61 1.16 900
Toluene 3.22 1.14 1060

T R. F. Steiner and K. Laki, Arch. Biochem. Biophys. 34:24 (1951).
tP. Outer, C. I. Carr, and B. H. Zimm, J. Chem. Phys. 18:830 (1950).
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T=67°C
slope slope
Solvent Intercept (intercept)c=0 (&?&Z&?)e =0
Methyl ethyl
ketone 0.840 0.551 230
Dichlorethane 1.50 1.05 870
Toluene 2.80 1.09 800

The slope-intercept ratios have units of cubic centimeters per gram, and the
intercepts are C/Ro,v’ where the subscript v indicates vertically polarized
light. In this case K, = 4 (i1%%/dc,)? /A¢* N, . The following values of i
and dii/dc, can be used to evaluate Ky:

T=120°C==22°C T=67°C
i dfi/dc, fi di/dc,
Methyl ethyl
ketone 1.378 0.221 1.359 0.230
Dichloroethane 1.444 0.158 1.423 0.167
Toluene 1.496 0.108 1.472 0.118

Evaluate M, (r, 12 "and B from each piece of pertinent data and comment
on the following points:

a. Agreement between M values.

b. Correlation of (1g%)"? and B with solvent “goodness.”

For polystyrene in butanone at 67°C the following values of Kc,/Rg X 10°
were measuredt at the indicated concentrations and angles. Construct a
Zimm plot from the data below using k = 100 cm® g~! for the graphing
constant. Evaluate M, B, and (1,2)"? from the results. In this experiment
Ao = 546 nm and fi = 1,359 for butanone at this temperature.

cy (g cm'3)
6(deg) 19X 10°* 38X 10°*
25.8 - 1.48
36.9 1.84 1.50
53.0 1.93 1.58
66.4 1.98 1.62
90.0 2.10 1.74
113.6 2.23 1.87
143.1 2.34 1.98

TB. H. Zimm, J. Chem. Phys. 16:1093 (1948).
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11. Benoit et al.t prepared a mixture of two different fractions of cellulose
nitrate and determined the molecular weight of the mixture by light
scattering. The mixture was 25.8% by weight fraction A and 74.2% fraction
B, where the individual fractions have the following properties:

Fraction M, Mw
A 635,000 1,270,000
B 199,000 400,000

Calculate M, and My, for the mixture on the basis of this information con-
cerning the components and their proportions. The following light-

scattering data for the mixture allow M, and M,, to be evaluated by the
procedure shown in Fig. 10.15:

(Kc,/Rg) X 107 (Kcy/Rg) X 107

0 (deg) (mol g~1) 8 (deg) (mol g~1)
30 19.6 80 42.2
35 21.7 90 48.7
40 24.4 100 53.0
45 26.4 110 57.0
50 28.3 120 61.3
55 31.0 130 64.9
60 33.0 140 67.4
70 37.4

Evaluate Mn and Mw from the light-scattering data and compare the values
with those calculated from the preparation of the mixture.

Bibliography

1. Dover, S. D., in An Introduction to the Physical Properties of Large
Molecules in Solution, by E. G. Richards, Cambridge University Press,
Cambridge, 1980.

2. Hiemenz, P. C., Principles of Colloid and Surface Chemistry, Marcel Dekker,
New York, 1977,

3. Kerker, M., The Scattering of Light and Other Electromagnetic Radiation,
Academic, New York, 1969.

4. Stacey, K. A., Light Scattering in Physical Chemistry, Butterworths,
London, 1956.

5. Tanford, C., The Physical Chemistry of Macromolecules, Wiley, New York,
1961.

T H. Benoit, A. M. Holtzer, and P. Doty, J. Phys. Chem. 58:635 (1954).



