Random Forests

Inteligência Artificial PCS3438

Anna Helena Reali Costa Escola Politécnica da USP Engenharia de Computação (PCS)

Bootstrap

- Bootstrapping is any test or metric that depends on random sampling with replacement.
- Bootstrapping allows estimating a sampling distribution of almost any statistic.
- Generally, it falls into the broadest class of resampling methods.

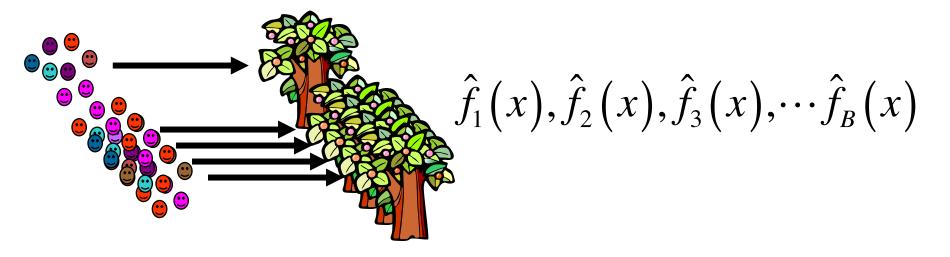
Bagging

A name derived from "bootstrap aggregation".

Bagging decision trees: builds multiple decision trees by repeatedly resampling training data with replacement, and voting the trees for a consensus prediction.

Bagging decision trees

- Select a bootstrap sample, L_B from L.
- Grow a decision tree from L_B. Repeat B times.



- Estimate the class of x_n:
 - Majority vote (Classification Tree)

Bagging decision trees

- Leads to better model performance because it decreases the variance of the model, without increasing the bias.
 - While the predictions of a single tree are highly sensitive to noise in its training set, the average of many trees is not, as long as the trees are not correlated.
 - Bootstrap sampling is a way of de-correlating the trees by showing them different training sets.
- The number of samples/trees, B, is a free parameter.

Random Forests

Random Forests

- It is a specific type of bagging
- As in bagging, we build a number of decision trees on bootstrapped training examples
- But when building these decision trees, each time a split in a tree is considered, a random sample of mcandidates from the full set of p predictors ("feature bagging")
- A fresh sample of m predictors is taken at each split (in bagging, m = p):
 - typically $m = p^{-1/2}$ for CT and m = p/3 for RT.

- Boosting is an ensemble technique that attempts to create a strong classifier from a number of weak classifiers.
- This is done by building a model from the training data, then creating a second model that attempts to correct the errors from the first model. Models are added until the training set is predicted perfectly or a maximum number of models are added.

- Similar to bagging, except that the trees are grown <u>sequentially</u>: each tree is grown using information from previously grown trees.
- Boosting does not involve bootstrap sampling.
- Form an ensemble whose joint decision rule has higher accuracy.

Basic procedure

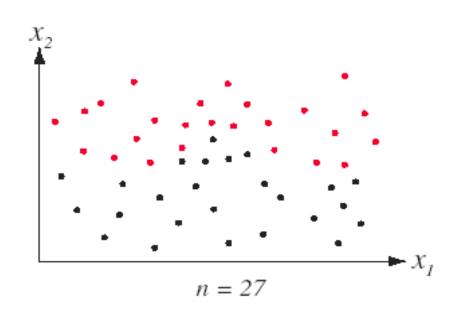
(using a linear classifier)

Problem

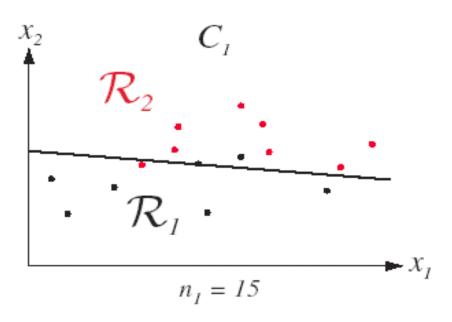
- 2-dimensional
- 2-category

Final classification

Voting of 3 component classifiers



Train classifier C₁ with D₁

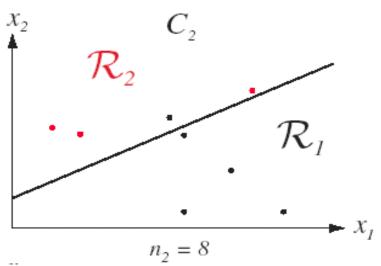


Randomly select a subset of samples from the training set.

Train the first classifier C₁ with this subset.

Classifier C₁ is a weak classifier.

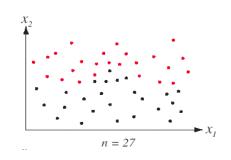
Train classifier C₂ with D₂



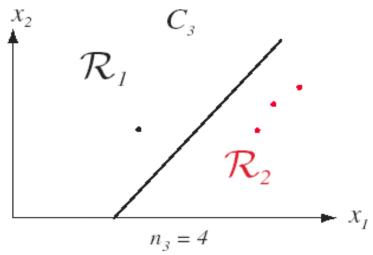
Find a second training set that is the "most informative" given C₁:

- ½ should be correctly classified by C₁.
- ½ should be incorrectly classified by C₁.

Train a second classifier, C₂, with this set.

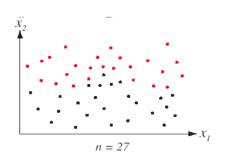


Train classifier C₃ with D₃

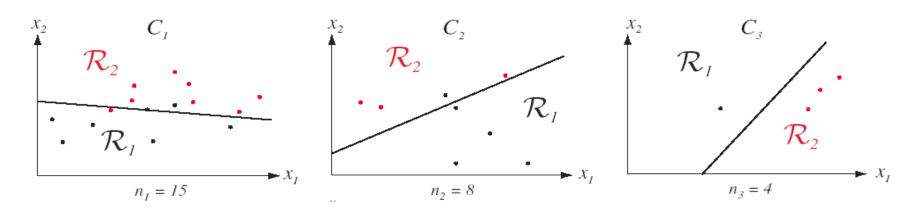


Seek a third data set which is not well classified by voting by C₁ and C₂.

Train the third classifier, C_3 , with this set.

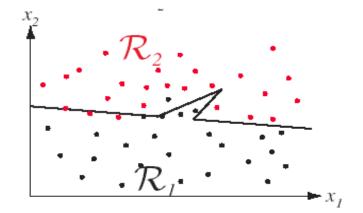


Ensemble of classifiers



Classifying a test pattern based on votes:

- If C₁ and C₂ agree on a label
 → use that label.
- If disagree
 - \rightarrow use the label given by C_3 .



- You are given $\{(x_1,y_1), (x_2,y_2), ... (x_n,y_n)\}$, and the task is to fit a model f(x) to minimize error.
- Suppose your friend wants to help you and gives you a model f.
- You check his model and find the model is good but not perfect. There are some mistakes: $f(x_1) \neq y_1$ and $f(x_2) \neq y_2$;
- How can you improve this model? But: you are not allowed to remove anything from f or change any parameter in f.

- You can add an additional model (classification tree) h to f, so the new prediction will be f(x) + h(x).
- You wish to improve the model such that:

$$f(x_1) + h(x_1) = y_1;$$
 $f(x_2) + h(x_2) = y_2;....$
 $f(x_n) + h(x_n) = y_n$

Or, equivalently, you wish:

$$h(x_1) = y_1 - f(x_1);$$
 $h(x_2) = y_2 - f(x_2); ...$
 $h(x_n) = y_n - f(x_n)$

AdaBoost

- AdaBoost, short for <u>Adaptive Boosting</u>, is a machine learning meta-algorithm formulated by Yoav Freund and Robert Schapire, who won the 2003 Gödel Prize for their work.
- It can be used in conjunction with many other types of learning algorithms to improve performance.
- The output of the other learning algorithms
 ('weak learners') is combined into a weighted
 sum that represents the final output of the
 boosted classifier.

AdaBoost

- AdaBoost is adaptive in the sense that subsequent weak learners are tweaked in favor of those instances misclassified by previous classifiers.
- AdaBoost is sensitive to noisy data and outliers.
- In some problems it can be less susceptible to the overfitting problem than other learning algorithms.
- The individual learners can be weak, but as long as the performance of each one is slightly better than random guessing, the final model can be proven to converge to a strong learner.

References

- Mitchell, T.M. Machine learning. McGraw-Hill, 1997. Cap. 3
- James, G.; Witten, D.; Hastie, T; Tibshirani, R. An introduction to statistical learning. Springer, 2013. Cap. 8.
- www.wisdom.weizmann.ac.il/~vision/courses/2003_2/multiple
 eTrees.ppt
- www.cse.lehigh.edu/~munoz/CSE497/classes/Storey_Decision
 nTrees.ppt
- http://www.saedsayad.com/decision_tree.htm
- https://class.stanford.edu/c4x/HumanitiesScience/StatLearnin g/asset/trees.pdf
- https://machinelearningmastery.com/boosting-and-adaboostfor-machine-learning/