
Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

MDSE PRINCIPLES

Chapter #2

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDSE Principles
Contents

 Concepts

 Approaches

 Adoption

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Models
What is a model?

Mapping Feature A model is based on an original (=system)

Reduction Feature A model only reflects a (relevant) selection

of the original‘s properties

Pragmatic Feature A model needs to be usable in place of an

original with respect to some purpose

ModelrepresentsSystem

Purposes:

• descriptive purposes

• prescriptive purposes

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDSE aim at large

 MDSE considers models as first-class citizens in software

engineering

 The way in which models are defined and managed is

based on the actual needs that they will address.

 MDSE defines sound engineering approaches to the

definition of

 models

 transformations

 development process.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Concepts
Principles and objectives

 Abstraction from specific realization technologies
 Requires modeling languages, which do not hold specific concepts of

realization technologies (e.g., Java EJB)

 Improved portability of software to new/changing technologies – model
once, build everywhere

 Interoperability between different technologies can be automated (so
called Technology Bridges)

 Automated code generation from abstract models
 e.g., generation of Java-APIs, XML Schemas, etc. from UML

 Requires expressive und precise models

 Increased productivity and efficiency (models stay up-to-date)

 Separate development of application and infrastructure
 Separation of application-code and infrastructure-code (e.g., Application

Framework) increases reusability

 Flexible development cycles as well as different development roles
possible

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDSE methodology ingredients

 Concepts: The components that build up the methodology

 Notations: The way in which concepts are represented

 Process and rules: The activities that lead to the

production of the final product

 Tools: Applications that ease the execution of activities or

their coordination

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDSE Equation

Models + Transformations = Software

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

The MD* Jungle of Acronyms

 Model-Driven Development (MDD) is a development paradigm that
uses models as the primary artifact of the development process.

 Model-driven Architecture (MDA) is the particular vision of MDD
proposed by the Object Management Group (OMG)

 Model-Driven Engineering (MDE) is a superset of MDD because it
goes beyond of the pure development

 Model-Based Engineering (or “model-based development”) (MBE) is a
softer version of ME, where models do not “drive” the process.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Target of MDSE

 The Problem Domain
is defined as the field
or area of expertise
that needs to be
examined to solve a
problem.

 The Domain Model is
the conceptual model
of the problem domain

 Technical Spaces
represent specific
working contexts for
the specification,
implementation, and
deployment of
applications.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling Languages

 Domain-Specific Modeling Languages (DSMLs, DSLs):

languages that are designed specifically for a certain

domain or context

 DSLs have been largely used in computer science.

 Examples: HTML, Logo, VHDL, Mathematica, SQL

 General Purpose Modeling Languages (GPMLs, GMLs,

or GPLs): languages that can be applied to any sector or

domain for (software) modeling purposes

 The typical examples are: UML, Petri-nets, or state

machines

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Metamodeling

 To represent the

models themselves as

“instances” of some

more abstract models.

 Metamodel = yet

another abstraction,

highlighting properties

of the model itself

 Metamodels can be

used for:

 defining new languages

 defining new properties

or features of existing

information (metadata)

Class

Attribute

Video

Meta-metamodel

M3

M2

M1

M0

«instanceOf»

«instanceOf»

Class

«instanceOf»

+ title: String

«instanceOf»«instanceOf»

«instanceOf»

Metamodel

Model

Real

world

objects

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Transformations

 Transforming items

 MDSE provides appropriate languages for defining model

transformation rules

 Rules can be written manually from scratch by a developer, or

can be defined as a refined specification of an existing one.

 Alternatively, transformations themselves can be produced

automatically out of some higher level mapping rules between

models

 defining a mapping between elements of a model to elements to another

one (model mapping or model weaving)

 automating the generation of the actual transformation rules through a

system that receives as input the two model definitions and the mapping

 Transformations themselves can be seen as models!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Concepts
Model Engineering basic architecture

R
e
a

liz
a

ti
o

n
M

o
d
e

lin
g

Model

Artifacts

(e.g. code)

Modeling

language

Platform

Meta-

modeling

language

Transformation

definition

Transformation

language

uses

defined using

defined by

Application domainApplication Meta-Level

A
u

to
m

a
ti
o

n

Transformation /

Code generation

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modelware vs. Grammarware

 Two technical spaces

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

InstanceOf vs. ConformsTo

 Conformance is between models

 Instantiation is between model elements

Metamodel

class

«instanceOf» «conformsTo»

Model

object

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Transformations
MOF and transformation setting

MMM

MT LanguageMMa MMb

Ma Mb

«conformsTo»

«conformsTo»

«conformsTo»

«conformsTo»

«conformsTo» «conformsTo»«conformsTo»

MT
Execution Engine

MT Definition

«uses» «uses»

«executes» «writes»«reads»

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Types of models

 Static models: Focus on the static aspects of the system in

terms of managed data and of structural shape and

architecture of the system.

 Dynamic models: Emphasize the dynamic behavior of the

system by showing the execution.

 Just think about UML!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDSE industry
Adoption and acceptance (hype)

 Not yet mainstream in all industries

 Strong in core industry (defense, avionics, …)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDSE Industry (2)
Adoption Lifecycle

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Tool support

 Drawing vs. modeling

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Tool support

 Drawing vs. modeling

getAllRectangularShapes vs. getAllClasses

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model-based vs. Programming-based

MDSE Tools

 Model-based: developed using MDSE principles  one

should apply the principles ones advocates

 Programming-based: developed using traditional coding

techniques

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Eclipse and EMF

 Eclipse Modeling Framework

 Full support for metamodeling and language design

 Fully MD (vs. programming-based tools)

 Used in this course!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Conclusion
Modeling in the last century

 Critical Statements of Software Developers

 »When it comes down to it, the real point of software
development is cutting code«

 »Diagrams are, after all, just pretty pictures«

 »No user is going to thank you for pretty pictures;
what a user wants is software that executes«

M. Fowler, ”UML Distilled”, 1st edition, Addison Wesley, 1997

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Conclusion
Modeling in the new millennium – Much has changed!

 »When it comes down to it, the real point of software development is cutting
code«
 To model or to program, that is not the question!

 Instead: Talk about the right abstraction level

 »Diagrams are, after all, just pretty pictures«
 Models are not just notation!

 Instead: Models have a well-defined syntax in terms of metamodels

 »No user is going to thank you for pretty pictures;
what a user wants is software that executes«
 Models and code are not competitors!

 Instead: Bridge the gap between design and implementation by model transformations

M. Fowler, ”UML Distilled”, 1st edition, Addison Wesley, 1997
(revisited in 2009)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

MODEL-DRIVEN SOFTWARE

ENGINEERING IN PRACTICE
Marco Brambilla,

Jordi Cabot,

Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

www.morganclaypool.com

or buy it on www.amazon.com

http://www.mdse-book.com
http://www.morganclaypool.com
http://www.amazon.com

