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Contents
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 Approaches

 Adoption
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Models
What is a model?

Mapping Feature A model is based on an original (=system)

Reduction Feature A model only reflects a (relevant) selection 

of the original‘s properties

Pragmatic Feature A model needs to be usable in place of an 

original with respect to some purpose

ModelrepresentsSystem

Purposes:

• descriptive purposes

• prescriptive purposes
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MDSE aim at large

 MDSE considers models as first-class citizens in software 

engineering

 The way in which models are defined and managed is 

based on the actual needs that they will address. 

 MDSE defines sound engineering approaches to the 

definition of 

 models

 transformations

 development process.
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Concepts
Principles and objectives

 Abstraction from specific realization technologies
 Requires modeling languages, which do not hold specific concepts of 

realization technologies (e.g., Java EJB)

 Improved portability of software to new/changing technologies – model 
once, build everywhere

 Interoperability between different technologies can be automated (so 
called Technology Bridges)

 Automated code generation from abstract models
 e.g., generation of Java-APIs, XML Schemas, etc. from UML

 Requires expressive und precise models

 Increased productivity and efficiency (models stay up-to-date)

 Separate development of application and infrastructure
 Separation of application-code and infrastructure-code (e.g., Application 

Framework) increases reusability

 Flexible development cycles as well as different development roles 
possible
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MDSE methodology ingredients

 Concepts: The components that build up the methodology

 Notations: The way in which concepts are represented

 Process and rules: The activities that lead to the 

production of the final product

 Tools: Applications that ease the execution of activities or 

their coordination
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MDSE Equation

Models + Transformations = Software
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The MD* Jungle of Acronyms

 Model-Driven Development (MDD) is a development paradigm that 
uses models as the primary artifact of the development process. 

 Model-driven Architecture (MDA) is the particular vision of MDD 
proposed by the Object Management Group (OMG) 

 Model-Driven Engineering (MDE) is a superset of MDD because it  
goes beyond of the pure development 

 Model-Based Engineering (or “model-based development”) (MBE) is a 
softer version of ME, where models do not “drive” the process. 
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Target of MDSE

 The Problem Domain 
is defined as the field 
or area of expertise 
that needs to be 
examined to solve a 
problem.

 The Domain Model is 
the conceptual model 
of the problem domain

 Technical Spaces 
represent specific 
working contexts for 
the specification, 
implementation, and 
deployment of 
applications. 
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Modeling Languages

 Domain-Specific Modeling Languages (DSMLs, DSLs):

languages that are designed specifically for a certain 

domain or context

 DSLs have been largely used in computer science.

 Examples: HTML, Logo, VHDL, Mathematica, SQL

 General Purpose Modeling Languages (GPMLs, GMLs, 

or GPLs): languages that can be applied to any sector or 

domain for (software) modeling purposes

 The typical examples are: UML, Petri-nets, or state 

machines
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Metamodeling

 To represent the 

models themselves as 

“instances” of some 

more abstract models.

 Metamodel = yet 

another abstraction, 

highlighting properties 

of the model itself 

 Metamodels can be 

used for:

 defining new languages 

 defining new properties 

or features of existing 

information (metadata)

Class
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Video
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Model Transformations

 Transforming items 

 MDSE provides appropriate languages for defining model 

transformation rules

 Rules can be written manually from scratch by a developer, or 

can be defined as a refined specification of an existing one. 

 Alternatively, transformations themselves can be produced 

automatically out of some higher level mapping rules between 

models

 defining a mapping between elements of a model to elements to another 

one (model mapping or model weaving)

 automating the generation of the actual transformation rules through a 

system that receives as input the two model definitions and the mapping

 Transformations themselves can be seen as models!
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Concepts
Model Engineering basic architecture
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Modelware vs. Grammarware

 Two technical spaces
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InstanceOf vs. ConformsTo

 Conformance is between models

 Instantiation is between model elements

Metamodel

class

«instanceOf» «conformsTo»

Model

object
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Model Transformations
MOF and transformation setting
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Types of models

 Static models: Focus on the static aspects of the system in 

terms of managed data and of structural shape and 

architecture of the system.

 Dynamic models: Emphasize the dynamic behavior of the 

system by showing the execution.

 Just think about UML!
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MDSE industry
Adoption and acceptance (hype)

 Not yet mainstream in all industries

 Strong in core industry (defense, avionics, …)
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MDSE Industry (2)
Adoption Lifecycle
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Tool support

 Drawing vs. modeling
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Tool support

 Drawing vs. modeling

getAllRectangularShapes vs. getAllClasses
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Model-based vs. Programming-based 

MDSE Tools

 Model-based: developed using MDSE principles  one 

should apply the principles ones advocates

 Programming-based: developed using traditional coding 

techniques
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Eclipse and EMF

 Eclipse Modeling Framework

 Full support for metamodeling and language design

 Fully MD (vs. programming-based tools)

 Used in this course!
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Conclusion
Modeling in the last century

 Critical Statements of Software Developers

 »When it comes down to it, the real point of software 
development is cutting code«

 »Diagrams are, after all, just pretty pictures« 

 »No user is going to thank you for pretty pictures; 
what a user wants is software that executes« 

M. Fowler, ”UML Distilled”, 1st edition, Addison Wesley, 1997
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Conclusion
Modeling in the new millennium – Much has changed!

 »When it comes down to it, the real point of software development is cutting 
code«
 To model or to program, that is not the question!

 Instead: Talk about the right abstraction level

 »Diagrams are, after all, just pretty pictures« 
 Models are not just notation! 

 Instead: Models have a well-defined syntax in terms of metamodels

 »No user is going to thank you for pretty pictures; 
what a user wants is software that executes« 
 Models and code are not competitors!

 Instead: Bridge the gap between design and implementation by model transformations

M. Fowler, ”UML Distilled”, 1st edition, Addison Wesley, 1997
(revisited in 2009)
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