
Systems-of-Systems

Rosana T. Vaccare Braga

Part of the slides produced by:

Milena Guessi Margarido

Prof. Dr. Elisa Yumi Nakagawa

Prof. Dr. José Carlos Maldonado

System of Systems: systems that are
composed of independent constituent
systems, which act jointly towards a common
goal through the synergism between them
(Nielsen, 2012)

A system is considered a SoS when (Maier,
1998):

(1) Its components fulfilled valid purposes
in their own right and continued to operate
to fulfill those purposes if disassembled
from the overall system, and

(2) the component systems are managed
(at least in part) for their own purposes
rather than the purposes of the whole

Definitions

2Image Source: https://ec.europa.eu/digital-single-market/system-systems

Systems-of-Systems are large-scale
integrated systems that are
heterogeneous and independently
operable on their own, but are
networked together for a common goal
(Jamshidi, 2008)

A set or arrangement of systems that
results when independent and useful
systems are integrated into a larger
system that delivers unique capabilities
(DoD, 2008)

Definitions

3Image Source: https://ec.europa.eu/digital-single-market/system-systems

System-of-Systems is any system that:
 results from the interoperation of organizational and managerial

independent constituents, which have their individual mission

and participate aware or not to comply with a global mission;

 has evolutionary development resulting from evolution of

constituents and/or changes in the environment;

 presents emergent behaviors, expected or non-expected in

design time, resulting from the interaction among constituents at

runtime; and

 depends on software as an enabling technology to its design

and evolutionary development.

[Nakagawa, Maldonado, Oquendo 2016]

4

SoS Definition

Independent constituent
systems

oAction and decision making

Geographic distribution

Evolutionary development

Emergent behavior

SoSs

5Image Source: https://ec.europa.eu/digital-single-market/system-systems

Examples of SoS

Examples of SoS
7

Examples of SoS

Source: (European Commission)

8

Examples of SoS

 Source: (OQUENDO, 2014)

9

SoSs

10

Open systems
oTop

Continually open for addition of new

applications and systems, without any top-level

system defining the SoS

Emergent behavior

oBottom

The lowest level of the SoS (e.g.,

communication stack) may be changed at any

time

Interoperability

oContinually evolving

An SoS is never complete as it evolves at run-

time according to changes in the surrounding

environment
Source: Abbott, 2006.

11

SoS main characteristics

Characteristics related to the nature of constituents:

 Operational independence

 Constituents operates independently, having its own
mission and resources

 Managerial independence

 Constituents present independent management and
evolve in ways not foreseen when they originally joined
to particular SoS

12

SoS Characteristics

Characteristics related to the nature of constituents:

 Emergent behavior

 New behaviors from constituents

 Behaviors non-predictable in design time emerge only at
runtime

 Evolutionary development

 Constituents continually evolve, implying evolution in SoSs

 SoSs evolve due to changes in their environment

13

SoS Characteristics

Characteristics related to the nature of constituents:

 Distribution

 Distributed constituents, geographically or not

 Software-intensity

 Influence to the design, construction, deployment, and
evolution of SoSs and constituents

Consequence of SoS characteristics: dynamic architectures

14

SoS Characteristics

SoS distinguishing characteristics

SoS distinguishing characteristics (Boardman and Sauser, 2006) 15

A SoS is a system, too!!!

We can have a System of Systems of Systems!!!

16

Relating Systems and SoS

 Directed SoS

 SoS that are centrally managed

 Constituents are developed or acquired to fit specific purpose

 Constituents operate under tight subordination

 Acknowledged SoS

 SoS that are centrally managed

 Constituents retain their operational independence

 Constituents operate under loose subordination

17

Types
(Tentative)

 Collaborative SoS

 There is no central management

 Constituent systems voluntarily agree to fulfill central purposes

 Virtual SoS

 There is no central authority or centrally agreed purpose

18

Types
(Tentative)

19

Types
(Tentative)

20

Types
(Tentative)

Do traditional SEng processes/practices work on SoS?

 What works? What does not work? What needs adaptation?

How to manage SoS evolution?

 How to manage the SoS emergent behaviors?

 How to manage the SoS dynamic architectures?

One of the solutions: Software Architecture

21

Challenges/Questions on the
SoS Development and Evolution

SE x SoSE

Traditional x SoS engineering (Keating et al., 2003)

 Traditional SE practices are often not sufficient to engineer a SoS .

22

 Software architectures

 Backbone for software-intensive systems

 Fundamental in determining the system quality

 Considerable amount of research, mainly regarding their
design, representation, and evaluation

Software architectures for SoS is
a new, important research area!!

23

SoS Software Architecture

 “The software architecture of a SoS is a dynamic structure
or structures of a system, which comprise the independent
constituent systems, the externally visible properties of
those constituents, the relationships among them, and the
principles and constraints that guide both its initial design
and its evolution imposed by the emergence of expected
and non-expected missions at runtime.”

(NAKAGAWA et al., 2016)

24

SoS Software Architecture

25

Application domains:

SoS Software Architecture

Global Earth

Observing System

of Systems

(GEOSS)

26

SoSs

Example

GEOSS is to be a global, coordinated,

comprehensive and sustained system of Earth

observing systems

o Promote coordinated access to data and

products produced amongst all contributing

systems

 Introduces consistency of content through

guidelines to data providers for the

appropriate characterization of the observing

systems and their derived products

o Adoption of standardized best practices

GEOSS

27Source: http://earthobservations.org

Variety of users

Various communities with their own cultures

Distributed system

o No new single architecture imposed to everyone

o Preserve the existing infrastructures as much as

possible

o Enforce simple and robust interfaces and formats

Dynamic, open system

o Grow and attract third-party data and service

providers and accepts intermitent participation

with disconnected/connected modes without

disruption

Comprehensive information flow

o End-to-end: product order, planning, acquisition,

processing, archiving, and distribution

28

SoSs

Example

GEOSS

Source: http://earthobservations.org

29

SoSs

Example

GEOSS

Architecture

Implementation

Pilot (AIP)

Use Cases

Engineering components with services

Source: https://www.earthobservations.org/documents/cfp/201501_geoss_cfp_aip8_architecture.pdf

SoSs

Example

 Interoperability through open interfaces and

reference methods

o Interoperability specifications agreed to among

contributing systems

o Access to data and information through

service interfaces

Open standards and intellectual property

rights

o Preference for formal international standards

o Multiple software implementations compliant

with the open standards should exist

GEOSS

30Source: http://earthobservations.org

Build upon existing systems and historical data

o National, regional or international agencies

that subscribe to GEOSS but retain their

ownership and operational responsability

 Implementation plan must address cost

effectiveness, technical feasibility, and

institutional feasibility

To be sustained over a long period of time,

GEOSS needs to be adjustable, flexible,

adaptable, and responsive to changing needs

o Capture future capabilities through open

architecture

31

SoSs

Example

GEOSS

Source: http://earthobservations.org

SOA is configurable and scalable to customer

needs and leverages robust systems and

processes for global interoperability

SoSs

Description

32

Two levels

o Mission

 Identifies required capabilities for constituents,

operations, connections, emergent behavior, etc.

o Architecture

 Describes structure, behavior, and properties

about the SoS

SoSs
Description

33

Definition

o Higher functionality that cannot be performed by

any constituent alone

 Accomplished by emergent behaviors

o Guides the whole SoS development process

mKAOS

o Language for describing mission models

o Tool: mKAOS Studio

Mission

34Source: Silva, E. et al., 2015.

Mission

Conceptual

model

35Source: Silva, E. et al., 2015.

Mission

36Source: Silva, E. et al., 2015.

Mission model in

mKAOS

Emergent behavior

model in mKAOS

Higher-priority

missions

“To gain confidence that an SoS

architecture will respect key

properties, it is paramount to have

a precise model of the constituents

and the connectors between them,

the properties of the constituents,

and the SoSs environment.”

Nielsen et al. (2015)

SoSs
Architectural
Description

37

SoSs
Architectural
Description

How has the literature addressed the
architecture description of SoS?

Which are the techniques used in the
description of software architectures of SoS?

Does the primary study focuses on a specific
type of SoS?

38Source: Guessi, M. et al. 2015a.

Techniques
Used for
Describing
SoSs
Architecture

Formal languages:
oCML, CFML, FSM,

OWL, VDM-SL,

among others

Semi-formal

languages:
oUML, SysML, and

UPDM

Combination of

formal and semi-

formal languages:
oUML/SysML + Petri

nets

o SysML + VDM-SL

39Source: Guessi, M. et al. 2015a.

 [ADLs] provide mechanisms for expressing

composition, abstraction, reusability,

configuration, and analysis of software

architectures (Shaw and Garlan, 1994)

 An ADL must explicitly model components,
connectors, and their configurations;

furthermore, to be truly usable and useful, it must

provide tool support for architecture-based

development and evolution (Medvidovic and

Taylor, 2001)

ADLS

TRADITIONAL DEFINITIONS
40

 Architecture building blocks

 Components

 Connectors

 Configurations

 Tool Support

 Enable automated analyses on the architecture

description

ADLS

CHARACTERISTICS

41

 Components and
Connectors

 Interface

 Type

 Semantics

 Constraints

 Evolution

 Non-functional
properties

 Tool Support

 Active
specification

 Multiple views

 Analysis

 Refinement

 Implementation
generation

 Dynamism

 (Architectural)

Configuration

 Understandability

 Compositionality

 Refinement and

traceability

 Heterogeneity

 Scalability

 Evolution

 Dynamism

 Constraints

 Non-functional

properties

Source: Medvidovic, N. and Taylor, R. N., 2000.

42

ADLS

CHARACTERI

STICS

ADL

CONCEPTUAL MODEL

 An ADL is any form of expression
for use in architecture

descriptions

ISO/IEC/IEEE 42010

43

ADL

FORMALISM

LEVEL
44

Informal

• Present
neither
defined
syntax or
semantics

• Main
usage:

•Illustrating or
exemplifying
concepts

Semi-formal

• Present
defined
syntax but
lack a
complete
semantics

• Main
usage:

•Supporting
communicatio
n among
stakeholders

Formal

• Present
formally
defined
syntax and
semantics

• Main
usage:

•Verifying and
validating
models
against
properties
and quality
attributes

 Many, many, many ADLs...

 123!!

ADL

EXAMPLE
45

Source: http://www.di.univaq.it/malavolta/al/

INFORMAL

ADL

EXAMPLE
46

Source:

1,2 Clements, P. et al., 2011

3 Weyns, D. An Architecture-Centric Approach for Software Engineering with Situated Multiagent Systems. PhD Thesis. 2006. Available at:

http://www.cs.kuleuven.be/publicaties/doctoraten/cw/CW2006_09.abs.html

2. A bird’s-eye-view of a
system as it appears at

run-time.

1. Modules can (a) provide
interfaces, hiding other modules,

or (b) exposing some interfaces of
internal modules

3. Shared data view of an
agent

Source:

1 http://www.omg.org/spec/UML/2.5/

2 http://www.omg.org/spec/SysML/1.4/

SEMI-FORMAL

ADL

EXAMPLE
47

2. SysML 1.x diagram
types

1. UML 2.x diagram types

UML diagram of a
pipe-and-filter view

48

Source: Clements, P. et al., 2011

UML package diagram
(left)
and Dependency
Structure
Matrix (DSM) (right)

Substructure of a
UML component

SEMI-

FORMAL

ADL

EXAMPLE

49

Source: http://www.omgsysml.org/

SEMI-

FORMAL

ADL

EXAMPLE:
SYSML

50

Source: http://www.omgsysml.org/

SEMI-

FORMAL

ADL

EXAMPLE:
SYSML

51

EXAMPLES

(FORMAL)

A composite component
specified in Darwin (top) and

(bottom) the graphical view of
the component

The pipes-and-filters style declared
in Wright.

Dynamic insertion of a component into
a C2SADEL architecture.

Declaration in ACME of a family of
architectures, fam, and its subfamily,

sub_fam, which has new components
and properties

Source: Medvidovic, N. and Taylor, R. N., 2000.

Formal ADL Example

ADLS FOR SOS

52

SoS

characteristics

Do Single System ADLs cope with

SoS characteristics?

Operational

independence of

constituent systems

No, they do not. Single system ADLs are based on the
notion that components’ operation is totally controlled
by the system, which is not the case for constituents.
Moreover, the concrete
components of single systems are known at design-
time, which is not necessarily the case of SoSs either.

Managerial

independence of

constituent systems

No, they do not. Single system ADLs are based on the
notion of components whose management is totally
controlled by the system, which is not the case of SoSs.

Geographical

distribution of

constituent systems

No, they do not. Single system ADLs are based on the
notion of logically distributed components. None
supports the notion of physical mobility, in particular
regarding unexpected local interactions among
components that physically move near to each other,
as it is the case of SoSs.

Evolutionary

development of

SoS

No, they do not. Single system ADLs are based on the
principle that concrete components are known at
design-time and that they may possibly enter or leave
the system at run-time under the control of the system
itself, which is not necessarily the case of SoSs.

Emergent behavior

drawn from SoS

No, they do not. Single system ADLs have been defined
based on the principle that all behaviors are explicitly
defined (including global ones). None supports the
notion of emergent behavior required in SoSs.

Source: Guessi, M. et al. 2015b. Oquendo, F. 2016a.

 Description of an abstract architecture
for SoS

 It can be evolutionarily concretized at

run-time by identifying and incorporating

concrete constituent systems

SOSADL
AN ARCHITECTURE

DESCRIPTION

LANGUAGE FOR SOS

53

Source: Oquendo, F. 2016a. Oquendo, F. 2016b.

Coalition represents on-the-fly

composition of systems (i.e., constituents)

SoSs
Research
Directions

54

 Some challenges:

 Deal adequately with SoS software architectures

 Investigate how to develop SoS for diverse domains

 Propose solutions to different types of SoS

 What are the fundamental challenges we need to
address in the SEng Community?

55

A Roadmap for SoS

Research
Directions

Formal ADLs for SoSs
o Promote correctness, consistency, and

completeness of architecture descriptions

o Support evolutionary development of SoSs

Desired properties of ADLs for SoSs
oUnderstandability,

o Scalability,

o Refinement,

o Traceability, among others others

Support different phases of SoS life cycle
o Enforce correctness, consistency, and

understandability of architecture descriptions

o Ensure semantic consistency among heterogeneous

models of constituents

o Interchangeable, complementary techniques should

be explored for supporting different

abstraction/formalism levels
56

57

Main Publications and Venues

 B. Boehm and L.A. Lane, “21st Century Processes for Acquiring 21st Century Software-
Intensive Systems of Systems”. The Journal of Defense Software Engineering, vol. 19, no. 5,
2006, pp. 4-9.

 Department of Defense, “Systems Engineering Guide for Systems of Systems”. Aug. 2008;
www.acq.osd.mil/se/docs/SE-Guide-for-SoS.pdf.

 D. Firesmith, “Profiling Systems Using the Defining Characteristics of Systems of Systems
(SoS)”,. Techinical Report CMU/SEI-2010-TN-001, Software Engineering Institute, Carnegie
Mellon University, 2010.

 M. Jamshidi, ed., “System of Systems Engineering: Innovations for the Twenty-first
Century”. Wiley & Sons, 2009, p. 616.

 M.W. Maier, “Architecting Principles for Systems-of-Systems”. Systems Engineering, vol. 1,
no. 4, 1998, pp. 267-284.

 C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Peleska, “Systems of systems
engineering: Basic concepts, model-based techniques, and research directions”. ACM
Computing Survey, 48, 2, 2015.

Literature on SoS
58

 Bass, L., Clements, P., and Kazman, R. 2003. Software Architecture in Practice (2ed.). Addison-

Wesley Longman Publishing Co.

 Gorton, I. 2006. Essential Software Architecture. Springer-Verlag New York, Inc.

 Kruchten, P. What do software architects really do? In: Journal of Systems and Software, v.81,

p.2413-2416. 2008

 Hofmeister, C., Kruchten, P., Nord, R. L., Obbink, H., Ran, A. and America, P. A general model of

software architecture design derived from five industrial approaches. In: Journal of Systems and

Software, v.80, n.1, p. 106-126. 2007.

 Garland, J. and Anthony, R. 2003. Large-Scale Software Architecture: A Practical Guide Using

UML. John Wiley & Sons, Inc., New York, NY, USA.Hofmeister

 ISO/IEC/IEEE 42010:2010 International Standard for Systems and Software Engineering --

Architectural description

 Malavolta, I.; Lago, P.; Muccini, H.; Pelliccione, P. and Tang, A. What Industry Needs from

Architectural Languages: A Survey IEEE Transactions on Software Engineering, 2013, v. 39, n. 6,

869-891.

 Lago, P.; Malavolta, I.; Muccini, H.; Pelliccione, P. and Tang, A. The road ahead for architectural

languages. IEEE Software, 2014, 32, 98-105.

 Medvidovic, N. and Taylor, R. N. A classification and comparison framework for software

architecture description languages. In: IEEE Transactions on Software Engineering, 2000, v. 26,

n.1, 70-93.

 Oquendo, F. pi-ADL: An Architecture Description Language based on the Higher Order Typed

pi-Calculus for Specifying Dynamic and Mobile Software Architectures. In: ACM Software

Engineering Notes, 2004, v. 29, n.3, 15-28.

 Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.; Little, R.; Merson, P.; Nord, R.; and

Stafford, J. Documenting Software Architectures: Views and Beyond. Addison-Wesley, 2011.

 Shaw, M. and Garlan, D. Characteristics of Higher-Level Languages for Software Architecture.

Carnegie Mellon University, 1994. http://www.sei.cmu.edu/reports/94tr023.pdf

Bibliography
Part I

59

 Boehm, B.; Brown, W.; Basili, V. & Turner, R. Spiral Acquisition of Software-Intensive

Systems-of-Systems. In: Crosstalk, 2004, p. 4-9

 Guessi, M.; Neto, V. V. G.; Bianchi, T.; Felizardo, K. R.; Oquendo, F. & Nakagawa, E. Y. A

systematic literature review on the description of software architectures for systems of

systems. In: ACM/SIGAPP SAC' 2015, 2015a, p. 1442-1449

 Guessi, M., Cavalcante, E., and Bueno, L.B.R. Characterizing ADLs for Software-Intensive

SoS. In: SeSoS at ICSE’ 2015. 2015b. p. 12-18.

 Medvidovic, N. and Taylor, R. N. A classification and comparison framework for software

architecture description languages. In: IEEE Transactions on Software Engineering, 2000, v.

26, n.1, 70-93.

 Nielsen, C. B.; Larsen, P. G.; Fitzgerald, J.; Woodcock, J. & Peleska, J. Systems of Systems

Engineering: Basic Concepts, Model-Based Techniques, and Research Directions. In: ACM

Comput. Surv., 2015, v. 48, p. 1-41

 Oquendo, F. Formally Describing the Software Architecture of Systems-of-Systems with

SosADL. In: SoSE' 2016, 2016a, p.1-6

 Oquendo, F. π-Calculus for SoS: A Foundation for Formally Describing Software-intensive

Systems-of-Systems. In: SoSE' 2016, 2016b, p. 1-6

 Silva, E.; Batista, T. & Oquendo, F. A Mission-Oriented Approach for Designing System-of-

Systems. In: SoSE' 2015, p. 346-351.

 Ulieru, M. & Doursat, R. Emergent engineering: a radical paradigm shift. In: Int. J.

Autonomous and Adaptive Communications Systems, 2011, v. 4, n.1, p. 39-60.

Bibliography
Part II

60

