
Architecture
Description

Tiago Volpato

SCC-0527 Engenharia de Software – 2017

Profa. Dra. Elisa Yumi Nakagawa

Crédits: Carlos Diego D. e Milena Guessi

1. Introduction

2. Architecture modeling elements

3. ISO/IEC/IEEE 42010

4. Formalism levels

5. Examples

6. Tools

7. State-of-the-practice

8. Future Directions

Program

2

Traditional Definitions

Provide mechanisms for expressing composition,
abstraction, reusability, configuration, and
analysis of software architectures (Shaw and
Garlan, 1994)

An ADL must explicitly model components,
connectors, and their configurations;
furthermore, to be truly usable and useful, it
must provide tool support for architecture-based
development and evolution (Medvidovic and
Taylor, 2001)

Introduction

3

Characteristics

Architecture building blocks
o Components

o Connectors

o Configurations

Tool Support
o Automated analyses on the architecture

description

Architecture
modeling
elements

4

Architecture
modeling
elements

Components
o Unit of computation or a data store. May be as small

as a single procedure or as large as na entire
application.

 Interface

 Types

 Semantics

 Constraints

 Evolution

 Nonfunctional Properties (safety, security, performance, etc.)

Source: Medvidovic, N. and Taylor, R. N., A Classification and Comparison Framework for Software Architecture Description Languages, IEEE Trans. Softw.

Eng. 26, 1, 70-93, 2000.
5

Architecture
modeling
elements

Connectors
o Architectural building blocks used to model

interactions among componentes and rules that
govern those interactions.

 Interface

 Types

 Semantics

 Constraints

 Evolution

 Nonfunctional Properties

Source: Medvidovic, N. and Taylor, R. N., A Classification and Comparison Framework for Software Architecture Description Languages, IEEE Trans. Softw.

Eng. 26, 1, 70-93, 2000.
6

Architecture
modeling
elements

 (Architectural) Configuration
o Connected graphs of components and connectors that

describe architectural structure. Is needed to:

 Ensure that appropriate components are connected

 Interfaces match

 Connectors enable proper communication

 Features:
o Understandability

o Compositionality

o Refinement and traceability

o Heterogeneity

o Scalability

o Evolution

o Dynamism

o Constraints

o Non-functional properties

Source: Medvidovic, N. and Taylor, R. N., A Classification and Comparison Framework for Software Architecture Description Languages, IEEE Trans. Softw.

Eng. 26, 1, 70-93, 2000.
7

Architecture
modeling
elements

 Tools Support
o Active specification

o Multiple views

o Analysis

o Refinement

o Implementation generation

o Dynamism

Source: Medvidovic, N. and Taylor, R. N., A Classification and Comparison Framework for Software Architecture Description Languages, IEEE Trans. Softw.

Eng. 26, 1, 70-93, 2000.
8

ISO/IEC/
IEEE 42010

Source: ISO/IEC/IEEE 42010:2011 Systems and software engineering - Architecture description, p.1-46, Dec. 1 2011.

Conceptual model of an architecture description language

9

• Stakeholder: system, individual, team, organization, or classes thereof, having na

interest in a system.

• Concern: interest in a system relevant to one or more of its stakeholders

• Model Kind: conventions for a type of modelling (data flow diagrams, class

diagrams, balance sheets, organizations charts, etc)

• Architecture viewpoint: work product establishing the conventions for the

construction, interpretation and use of architecture views to frame specific systems

concerns

• Correspondence rules: are used to enforce relations within na architecture

description (or between architecture descriptions)

ISO/IEC/
IEEE 42010

Source: ISO/IEC/IEEE 42010:2011 Systems and software engineering - Architecture description, p.1-46, Dec. 1 2011. 10

• Viewpoint

• An abstraction of the system made from a set of

rules established in a given viewpoint.

• Specifies the conventions (such as notations,

languages and types of models) for constructing a

certain kind of view

• Viewpoint can be applied to many systems. Each

view is one such application.

view : viewpoint :: program : programming language

ISO/IEC/
IEEE 42010

Source: ISO/IEC/IEEE 42010:2011 Systems and software engineering - Architecture description, p.1-46, Dec. 1 2011. 11

view : viewpoint :: map : legend

ISO/IEC/
IEEE 42010

Source: ISO/IEC/IEEE 42010:2011 Systems and software engineering - Architecture description, p.1-46, Dec. 1 2011. 12

Every architecture view should have an architecture

viewpoint specifying the conventions for interpreting

the contentes of the view.

Formalism
levels

13

Informal

• Present

neither

defined

syntax or

semantics

• Main usage:

• Illustrating or

exemplifying

concepts

Semi-formal

• Present

defined

syntax but

lack a

complete

semantics

• Main usage:

• Supporting

communication

among

stakeholders

Formal

• Present

formally

defined

syntax and

semantics

• Main usage:

• Verifying and

validating

models against

properties and

quality

attributes

Examples

14

Many, many, many ADLs...
o 123!!

Examples

15Source: http://www.di.univaq.it/malavolta/al/

http://www.di.univaq.it/malavolta/al/

Examples

Informal

16

Source:

1,2 Clements, P. et al. Documenting Software Architectures: Views and Beyond. Addison-Wesley, 2011

3 Weyns, D. An Architecture-Centric Approach for Software Engineering with Situated Multiagent Systems. PhD Thesis. 2006. Available at:

http://www.cs.kuleuven.be/publicaties/doctoraten/cw/CW2006_09.abs.html

2. A bird’s-eye-view of a

system as it appears at run-

time.

1. Modules can (a) provide interfaces,

hiding other modules, or (b) exposing

some interfaces of internal modules

3. Shared data view of an agent

Source:

1 http://www.omg.org/spec/UML/2.5/

2 http://www.omg.org/spec/SysML/1.4/

Examples

Semi-formal

17

2. SysML 1.x diagram types

1. UML 2.x diagram

types

http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/SysML/1.4/

UML diagram of a

pipe-and-filter view

Examples

Semi-formal

UML

18Source: Clements, P. et al. Documenting Software Architectures: Views and Beyond. Addison-Wesley, 2011

Substructure of a

UML component

Examples

Semi-formal

SysML

19Source: http://www.omgsysml.org/

http://www.omgsysml.org/

20

Examples
(Formal)

A composite component specified

in Darwin (top) and (bottom) the

graphical view of the component

The pipes-and-filters style declared in

Wright.

Dynamic insertion of a component into a

C2SADEL architecture.

Declaration in ACME of a family of

architectures, fam, and its subfamily, sub_fam,

which has new components and properties

Source: Medvidovic, N. and Taylor, R. N., A Classification and Comparison Framework for Software Architecture Description Languages, IEEE Trans.

Softw. Eng. 26, 1, 70-93, 2000.

Examples
Formal

Examples

Formal

π-ADL

21Source: Cavalcante, E., Oquendo, F., Batista, T. Architecture-Based Code Generation: From π-ADL Architecture Descriptions to Implementations in the

Go Language. ECSA 2015.

Description of a simple pipeline architecture

Tools

22

Tools

Description:
o Eclipse-based solution for SysML and UML

modeling

Features:
o Model-based simulation, formal testing, safety

analysis, performance/trade-offs analysis,
architecture exploration

o Free and open source

Support:
o UML

o SysML

o ISO/IEC 42010

Homepage:
o https://www.polarsys.org/

PolarSys

23

https://www.polarsys.org/

24

Tools

Description:
o High performance modeling, visualization, and

design platform based on the UML 2.5

 Features:
o Business Modeling, Requirements Traceability,

Document Generation, Source Code Generation,
Reverse Engineering, Systems Engineering and
Simulation

o Trial version (Academic price)

Support:
o UML 2.5

o BPMN

o SysML

o MDA

o C/C++

o Java

Homepage:
o http://www.sparxsystems.com.au/products/ea/ind

ex.html

Enterprise

Architect

25

http://www.sparxsystems.com.au/products/ea/index.html

26

Tools

Description:
o An all-in-one software and system

development tool for end-to-end IT system
modeling

Features:
o Enterprise Modeling, Document Production,

Project Management

o Full-featured trial for 30 days

Support:
o UML

o SysML

o ArchiMate

o Entity Relationship Diagram (ERD)

o Data Flow Diagram (DFD)

Homepage:
o http://www.archimetric.com/

ArchiMetric

27

http://www.archimetric.com/

28

Tools

Description:
o A proven solution for modeling and design

activities.

 Features:
o Visual software development environment,

Collaborative development, Model-based testing,
Management and traceability for integrated
requirements

o 90 day trial or Academic license

Support:
o UML

o SysML

o AUTOSAR

o DoDAF

o MODAF

Homepage:
o http://www-

03.ibm.com/software/products/en/ratirhapfami

IBM Rational

Rhapsody

29

http://www-03.ibm.com/software/products/en/ratirhapfami

30

State-of-
the-practice

48 practitioners

Use of ADLs:
o 86% use UML or an UML profile,

o 9% use ad hoc or in-house languages (e.g.,
AADL, ArchiMate)

o 5% do not use any ADL

Needs of ADLs:
o Design (~66%), communication support (~36%),

and analysis support (~30%)

o Code generation and deployment support (~12%
percent) and development process and methods
support (~18%)

 Limitations of ADLs:
o Insuficient expressiveness for non-functional

properties (~37%)

o Insuficient communication support for
nonarchitects (~25%)

o Lack of formality (~18%)

What industry

needs from

architectural

languages?

31
Source: Malavolta, I.; Lago, P.; Muccini, H.; Pelliccione, P. and Tang, A. What Industry Needs from Architectural Languages: A Survey IEEE Transactions

on Software Engineering, 2013, v. 39, n. 6, 869-891.

28

Future Directions

28

Future
Directions

Additional perspectives for describing software
architectures

o Runtime

o Dynamic

o Mobile

 Language features
o Support multiple views

o Customizations

o Programming facilities

Tools
o Automated analysis

o Architecture-centric development

o Large-view management

o Collaboration

o Versioning

o Knowledge management

34

 ISO/IEC/IEEE 42010:2010 International Standard for Systems and Software

Engineering -- Architectural description

 Malavolta, I.; Lago, P.; Muccini, H.; Pelliccione, P. and Tang, A. What

Industry Needs from Architectural Languages: A Survey IEEE Transactions

on Software Engineering, 2013, v. 39, n. 6, 869-891.

 Lago, P.; Malavolta, I.; Muccini, H.; Pelliccione, P. and Tang, A. The road

ahead for architectural languages. IEEE Software, 2014, 32, 98-105.

 Medvidovic, N. and Taylor, R. N. A classification and comparison

framework for software architecture description languages. In: IEEE

Transactions on Software Engineering, 2000, v. 26, n.1, 70-93.

 Oquendo, F. pi-ADL: An Architecture Description Language based on the

Higher Order Typed pi-Calculus for Specifying Dynamic and Mobile

Software Architectures. In: ACM Software Engineering Notes, 2004, v. 29,

n.3, 15-28.

 Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.; Little, R.; Merson, P.;

Nord, R.; and Stafford, J. Documenting Software Architectures: Views and

Beyond. Addison-Wesley, 2011.

 Shaw, M. and Garlan, D. Characteristics of Higher-Level Languages for

Software Architecture. Carnegie Mellon University, 1994.

http://www.sei.cmu.edu/reports/94tr023.pdf

Bibliography

35

