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Relativity and the wave equation

* As we saw earlier, Maxwell’s Equations can be reduced to a very simple set of equations for the potentials (in the
Lorentz gauge):

e = £ , and —DX: MT
€
1 0%
where the D'Alembertianis []=———+4+V
c2 or?

- The D’Alembertian can in fact be written in terms of the Mikowski metric, 7, = diag{—1,1,1,1} , as:
O=-——+V*=1,0,0,

where x* = {ct, X'} ,0, = [0/9(ct), V }.

* As aresult of using this “covariant notation’, many of our expressions are also further simplified, e.g. Green’s function
becomes (Ax* = {ct—ct, X — X'} ):

d4k —ik, Ax* O(A 0
G(x/,{;x/'u) — [ € _ ( X ) 5(A7:2) ’
Qo) |1k[1? +m? 2n

where kﬂAx” = nﬂyk”Ax” = —wcAt+ k - AX , and AT? = — nﬂyAx”Ax” = c2At?> — AX? is the proper
time (invariant) interval between two events, which also determines the light cone.
X

Einstein sum convention:
repeated indices are
assumed to be summed

Ha Ha
Y A,B"*—A,B
Y7
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Relativity

* At this point it is clear that we must start taking relativity into account into everything that we do regarding Electrodynamics. Here is a brief review.

* First, let's remember the notion of a 4-vector:
“Regular” notation V¥ = (VO vl v2 v3)
" " . _ v _ 1_v0 vl 2 3
Dual” notation : V,=n, V' ={=-V,V, V5, V]

“2xDual” notation : V¥ =n#*V,

* The 4-norm of a vector is then written as:
2 _ HYJV — 5o HY — VI — 1
1|V —nﬂVVV—r] VMVU—VVﬂ—VﬂV

Notice that, depending on the vector, we could have || V| |2 > 0 (space-like vector), || V]| |2 < 0 (time-like vector)
or [[V|I’=0 (light-like, or null, vector).

- The inverse of the Minkowski metric, n#¥, is identical to the Minkowski metric:

-1 0 0 0
. 0 1 0 0

W=y =dag{-1,1,1,1} , %y, =35 —
=y, g{ } n"n n 0 0 1 0
0 0 0 1
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Relativity

! Z
Z
A
* Special Relativity is built around the notion of invariance: the invariance of the 4-norms of 4-vectors.
- E.g. consider the light cone, which defined by the condition that Az? = — nﬂyAx”Ax” = 0 (a null vector). The statement, xl = RS. x/
then, is that in any reference frame this 4-norm is zero — in other words: if two events are on the light cone of each other in : \
a coordinate frame, they are on the light cone in all frames. y’
* A general, linear coordinate transformations will change the components of a 4-vector as: /
‘ >
Uo— AM
VE — VE= ARV Y
where the transformation matrix A* is a function only of things like the rotation between the x ¥
two frames, or a relative velocity between the two frames.
/
* In particular, for a pure rotation, < { <
4
N, — AOO =1, A"0 = AOl =0, Ail. = Rij where Ri/. is the Euler matrix.
* For a pure“boost" in the x-direction we have the usual Lorentz transformations:
—_—> A
Y =38 0 0 T
AF = _’VB g 0 0
v 0 0 1 0
0 0 01 / y
w '3
where f=v/c,y = (1 — ,52)_1/2 . You can check that, with this matrix, you will get that: / y
xt = xF=ANx" = ct'=y(ct—px) , X' =yx—pfct) x ¥
xl
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Lorentz invariance

* The invariance of the “norms" in this 1+3-dimensional “spacetime” is at the core of Modern Physics, and has been verified
experimentally with astonishing precision (see, e.g., https://en.wikipedia.org/wiki/
Modern_searches_for Lorentz_violation)

* Let’s see what this means for a general coordinate transformation. We have that a change of coordinate frame leads to:
Vi —  VE= ALV

* But the norm of that object is invariant, i.e.,

HVIP=1VIP = n,VV=n, V"

’ ’ 2
VAV = g, (ALV) (Avﬁvﬂ> =, N VAV = V]|
* Now, remember that the indices inside these sums are arbitrary, we can always write:
VI =5, VAV = 5 VVP, ete, -

* Therefore, we can rephrase the equation above as:
N VIVY = 1, NNy VOVP = 1,5 VOVP

In other words,

MmNy = Mgy which we could write in matrix notationas A’ -n-A =1p X
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Minkowski tensors

* Vectores in Minkowski space (4-vectors) transform in the usual way:

Vi =NV

We can conceive of objects (“tensors") such as §#¥ = U¥P" , which transform as:
S = SH = N A S

* We can also think about objects such as 7,, = d,A, , which transformam as:

T, = T, =Af AP T

« And let’s not forget about scalars, such as g = aﬂw , which do not transform at all:

!
q—q =4
* Notice, however, that the transformation matrix A is not a tensor: while the tensor components

change under a coordinate transformation, the matrix A*, is the transformation itself, so it is
doesn’t act on itself!
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Manipulating Minkowski tensors

« Some 4-vectors are intrinsically “normal” (e.g., x¥ , Ax* ), and some others are intrinsically “dual”, e.g.:

0_()
oxt #

* OK, sure, this is a rather peculiar “vector": but in order to make it more “real", just make it act on some
function, like:

A,=0,¢ or aﬂx”=60x0+61x1+02x2+03x3:4
In this latter case we get something which is obviously invariant.

¢ Let’'s check how this object changes under a Lorentz transformation:

0 0 0 4, 0
— 5 — = = (A")
OxH ox* A, oxv oxV

* But this is just the transformation for the dual vectors:

M =A S g =AL, A(dual) = A = Aw — —u, R~ R¥)
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Manipulating Minkowski tensors

* OK, But how about those indices up or down? And how do we
compare that with the matrix notation?

* The following “tips" are simply a tool to help you visualize the
operations, as you grow more familiar with tensor notation.

* Let's start by recalling how we operate with regular matrices, in

Euclidean space, when V = V(dual):

* AigByg + AigByg = Cy4
1t 1t 1

* AgByg, + AgBp, = (45
1t 1t 11

A21 A22 021 022 )
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Manipulating Minkowski tensors

* OK, but what about the correspondence with the tensor notation?

 First, bear in mind that you must always know if your vector is a “normal” or a
“dual" vector, since they behave differently.

* In tensor notation, we denote this distinction by showing the indices on the top
for “normal” vectors (dr — dr"), and on the bottom for dual vectors (0 « Gﬂ)

* It is now possible to make an analogy in terms of the lines and columns of matrix
notation.

dr?
(1) Associate normal vectors to the column vectors of matrix o dr
notation (i.e., the index denotes the lines of the column vector); dr?
dr3
(2) Associate dual vectors to line vectors in matrix notation (i.e., the
index denotes the columns inside the line vector) B (G0, 01, B2, O3)
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Manipulating Minkowski tensors

|t is useful to think of the Minkowski metric as an operator, which not only generates
the norm of a vector, but that takes a regular (column) vector into a dual (line) vector,
and vice-versa

* Notice that in matrix algebra, this exchange of lines/columns is the transpose:
o« dr,=n,dr’ < dr(dual) = (n-dr)"
* Or, equivalently:

« drt =n"dr, < dr=[dr(dual)-y]"
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Manipulating Minkowski tensors

« Some operations are easy that way, e.g.:

ar" \ Ay A AG A%\ [
- ™ | i
dr A.dT‘ = A2 > A? A/;hQ ? hZ . d:;
\dr“) \Am 1¥1 MM/ \drf’)

« Now consider the dual vector, which transforms under the dual transformation:
- v
a, = A8,

* Note that, in matrix notation, the first index is usually for the lines, and the second is usually for the columns.
Well, we have a bit of an ambiguity there, right? If in tensor notation the upper index is for the lines, and the

lower one for the columns, how do we operate on the matrix A ;?

 First, bear in mind that in true tensorial notation (where we only deal with indices), there is no ambiguity.
When in doubt, go back to the tensor notation!

* In order to proceed with our analogy, let’s remember that, with matrices, the transpose exchanges lines <

columns .
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Manipulating Minkowski tensors

* Using the transpose we can write:

0, =0, A} , which in matrix notation is d, = d,(A})" < 0" =0 - A"(dual)

Y | / / / - \
a,u - A,u % < (C{ia a1 ) 627 83) - (W AQO A21 A22 A23

 This can also be written as:

0, = (O 01, 03, 03) = (Oomnbmnammds) -
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Manipulating Minkowski tensors

» Some other simple examples using this analogy:

(a) Two Lorentz transformations, one on top of the other:
dr* =N dr* = NV N, dr* < dr'=A-dr=A-A-dr
(b) Lorentz transformation for the dual:

A, =NA, o A=A A"(dual)

(c) Lorentz invariance:

Aﬂa 7]/41/ Aya =Noq A' - " - A= Ji
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Currents and densities

* We can think of mass or charge distributions in terms of densities and currents:

high

low
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Currents and densities

e But how do they transform between different frames?
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Currents and densities

e But how do they transform between different frames?
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Currents and densities

* Let's start by establishing the relationship between the two
(densities and currents) — the continuity equation:

0 y .
—p+V - J =0 , orbetterstill: 0, p+0,J'=0

0t

* We should immediately realize that the equation above can be
recast in the following way:

9, J" =10,

where the 4-current is given by:

JH = {,OC,T}
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Currents and densities

* The 4-current is a true 4-vector, just like:

. drH — 1
4-velocity UH = o =y(V){c, V} dr = —dt
T Y

4-momentum P¥ =mU¥ = {E/c, F}
4-current JF = {pc, T}

* With that clear, the continuity equation becomes even more simple and elegant:
d,Jf =0

* Notice that we could even write this equation in the rather contrived way:

0“J, =0, where 0"=n"0,= {—(')O,V} e J,={-pc, T}
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Currents and densities

* In a more concrete way, we can think of charge densities and currents as

distributions:
/an w

. 3 > > dt 3Ir— —
Density: p,=q,0°[x — x ()] = ancS [x — x (D]

Current: J,=q,Vv,0[x —x (] =gq, 7 o’ x — x ()]

ELECTRODYNAMICS | / IFUSP / LECTURE 11

19



Currents and densities

* A charge distribution can be expressed in such a way that the kinematic properties are
manifestly relativistic:

%./'

X (t .42
i 53 % - %, (1] J dx, 8% =%, (0]
=q,— 0| X — X , 0= q, X — X,
Pn = n dt " 1 dt
L ogp g d ST - 7. (0]
= X — X

« Exercise 1: show that we can write the 4-current as:

JH(x) = de g, U" 8 [x —x,(7)] , where for simplicity x — x%, x

n

ELECTRODYNAMICS | / IFUSP / LECTURE 11
4D DIRAC DELTA FUNCTION

EXERCISE 2: SHOW THAT IT IS A SCALAR



Back to Electrodynamics

* OK, now let’s try to work our way back to Electrodynamics, but using
our acquired knowledge about relativity, and how to work with its
objects (vectors, tensors etc.)

* In vacuum, the Maxwell equations are (in Gauss units ©):
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Back to Electrodynamics

* Let's consider the problem of an infinite wire with a linear charge density,
and its electric field:

Vb,

W { 4
® X

S: observer T = Epﬁ
at rest
— 4SS =2npdzp
— B
> 2xpLE,=4rx\l |= E=—p
p

h
<
S T A
J
|
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Back to Electrodynamics

* This same wire, as seen by an observer in motion parallel to the wire (S'):

S’: observer
in motion

vbay
N

o+ + + + + + + + o+
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Back to Electrodynamics

* This same wire, as seen by an observer in motion parallel to the wire (S'):

;) , dgq
Py = A'6(x)5(y) ﬂ=2§

i\

T

1 T =Avé(x)é(»); I'=Av
t

$

S’: observer
in motion

\\“‘i

¢

& B2
> B'=—¢

Circuit C
: 22,
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Back to Electrodynamics

* But the two frames are just related by a Lorentz transformation — so, the fields
should also be related by something like a coordinate transformation...

S @ E+0.B=0
’ 29
fiy "’Q
S ¥ E'+0,B #0
v

+ + + + + + + + +

The fields E and B are 3D vectors, and

= Y
so are E'and B'.

But they are different fields!
How can we connect the two in the
same transformation??
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Next class:

- Relativistic electrodynamics
- The Faraday tensor
- Jackson, Ch. 11; Zangwill, Ch. 22; your favorite Special Relativity book.

» (See also Bo Thidé’s book: http://docente.unife.it/guido.zavattini/allegati/
251023059-electromagnetic-field-theory-bo-thide.pdf , Ch.5)
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