
UNIVERSITY OF SOUTHAMPTON

Faculty of Mathematical Studies

Analysis of Mathematical Discourse:
Multiple Perspectives

by

Seiji Hariki

Thesis submitted for the degree of Doctor of Philosophy

January 1992



UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF MATHEMATICAL STUDIES

Doctor of Philosophy

ANALYSIS OF MATHEMATICAL DISCOURSE: MULTIPLE PERSPECTIVES

by Seiji Hariki

Textbooks have a powerful influence on mathematical education in

developing countries like Brazil, where many poorly prepared teachers

use them as the only source of information and activities for their

teaching. In this context the investigation of the discourse conveyed

by mathematics textbooks is very important.

As my interest at the present moment is on mathematics education for

the undergraduate level, I have chosen the discourse of undergraduate

mathematics textbooks as the theme of investigation, giving particular

attention to the discourse of Complex Analysis textbooks.

In the first two parts of this thesis, I develop the theoretical

frameworks necessary to make discourse analysis into an effective

educational tool. The philosophical perspectives and analytical tools

developed there are expected to be helpful for the discursive

investigation of textbooks on other areas of mathematics and other

levels of teaching as well.

In the third part, I show that, contrary to common expectation, the

discourse of Complex Analysis is neither standardized, nor objectively

neutral. By applying the theoretical tools developed in the first two

parts of this thesis, I demonstrate that this discourse is, globally

and locally, permeated by frequent conflicts between logical,

heuristic, and rhetorical schemes.

The main aim of the discourse analysis I have developed is to give

awareness to the teachers that in mathematical discourse heuristic,

intuition and rhetoric are necessary complements of logic, and,

consequently, mathematical discourse cannot be reduced to logical

reasoning at all.
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INTRODUCTION

The main aim of this thesis is to develop and apply theoretical

frameworks for the analysis of the discourse conveyed by undergraduate

mathematics textbooks.

Mathematical discourse seems not to have been given a great deal of

attention in mathematics education; few books ([Pimm 87], [Davis &

Hersh 88]) and few papers ([Fauvel 88], [Fauvel 89], [McBride 89])

deal with this theme.

David Pimm in his book Speaking Mathematically: Communications in

Mathematics Classrooms (1987) has focused on spoken communication in

mathematics classrooms, that is, on classroom discourse. He has also

treated some features of the mathematical writing system, however his

overall approach is delimited by the metaphor he wants to explore:

mathematics as a language. In my view, if metaphor is to be used,

mathematics is a discourse rather than a language.

Philip J. Davis and Reuben Hersh wrote in their book Descartes' Dream

(1988) an interesting section on the relation between mathematics and

rhetoric. They argue that rhetoric is present in mathematical papers

and treatises:

... within the practise of mathematics itself, among the

professional mathematicians, continual and essential use is

made of rhetorical modes of argument and persuasion in

addition to purely formal or logical procedures.

[Davis & Hersh 88, p. 58]



This suggests that authors of undergraduate mathematics textbooks,

with greater reason, will resort to rhetorical devices as well.

John Fauvel's perspective is historical: he has made rhetorical

criticism of ancient mathematical texts and textbooks, analysing texts

written by Euclid, Descartes and Robert Recorde.

Maggie McBride is concerned with a feministic critique of mathematical

discourse; she has denounced the domination of mathematical discourse

by the 'masculine' point of view:

Within the four discursive practices I have described

[textbooks, teaching methods, examination process, and use

of space in classroom], masculine gender biases clearly

predominate. Students and teachers usually are not conscious

of these tendencies and many times cannot articulate gender

as an issue and its connection to power relations.

[McBride 89, p. 45]

The understanding of the discourse of mathematics textbooks is of

paramount importance in the context of developing countries like

Brazil, where I am from.

In Brazil, textbooks, for several reasons (government educational

policy, influence of the cultural industry, poor education and

training of teachers, teachers' conformism, etc.), have a central role

at all levels of mathematics education. Textbooks are at the heart of

mathematics instruction, moulding practically all aspects of teaching

and learning of mathematics, in schools and at universities.

Just to have a picture of the 'industrial' dimension of textbooks, it

should be known that nearly 240 million books are published each year

in Brazil; half of them are school textbooks for a population of one

million teachers and 30 million pupils [Freitag et al 89, p. 62]. For

the sake of numerical comparison, in the United Kingdom nearly 30

million school textbooks are sold each year, for a population of

400,000 teachers and 8 million pupils [Newton 90, p. 9].

l i



Many Brazilian educationalists are concerned with the role of

textbooks on the modelling of educational practices and their

influence on teachers and pupils. For example, Barbara Freitag and her

colleagues say that

School textbook does not function in the classroom just as a

tool of teaching and transmission of knowledge, but as the

standard model, the supreme authority, the ultimate

criterion of truth.

[Freitag et al 89, p. Ill]

Researchers have shown that the majority of teachers of primary and

secondary schools in Brazil are uncritical and conformist; they

appreciate the adopted textbooks (all educationalists recognise that

textbooks have a great amount of errors and are educationally and

ideologically biased), and regard them as the vehicle of ultimate

truth:

The teacher is not only satisfied with the textbook she has

but idealizes it, using it not as one among many pedagogic

tools, but as the only tool. Textbook is considered as the

definitive source of knowledge in the area, being treated in

classroom as the vehicle of the absolute truth. Lack of

information, self-indulgence, and conformism of the majority

of teachers give strength to the 'omnipotence' and

'omniscience' of the textbook. Teachers proceed to respect

the written word in the textbook considering it as the great

authority, submitting themselves docilely to its

psycho-pedagogic and ideological contents.

[Freitag et al 89, p. 131]

Textbooks can become (in Brazil I believe they are) an instrument of

cultural domination and imposition, even in the first world countries.

I interpret the following passage of the Cockcroft report, Mathematics

Counts (1982), as a warning against uncritical acceptance of

textbooks:

i n



it is always necessary to use any textbook with

discrimination, and selections should be made to suit the

varying needs of different children ... It should not be

expected that any textbook, however good, can provide a

complete course or meet the needs of all children;

additional activities of various kinds need to be provided.

[Cockcroft 82, p. 91]

Therefore, it seems to me educationally relevant to undertake the

analysis of the discourse of mathematics textbooks: how authors

negotiate meanings, perspectives, and values with the readers.

As my interest is on undergraduate mathematics education, I have

delimited the investigation of mathematical discourse to undergraduate

mathematics textbooks.

This thesis is divided into three distinct parts. In the first part, I

will develop the general theoretical features of mathematical

discourse aiming to establish theoretical foundations for the practice

of discourse analysis.

In the second part, I will make a detailed analysis of the negotiation

author-reader: negotiation of mathematical objects, truth,

comprehension, activities and ambiguity.

In the third part, I will apply the perspectives and methods developed

in the first two parts to the analysis of the discourse on complex

numbers, and the discourse on Riemann surfaces. This section ends with

the discourse analysis of a whole textbook on Complex Analysis.

IV



PART I

THEORETICAL FRAMEWORKS

FOR THE

ANALYSIS OF MATHEMATICAL DISCOURSE



CHAPTER 1

THEORETICAL PRELIMINARIES

Introduction

Mathematical discourse is the discourse that moulds communication of

mathematical knowledge.

I distinguish three varieties of mathematical discourse:

(i) the discourse of mathematicians (scientific discourse),

(ii) the discourse of teachers and learners of mathematics (pedagogic

discourse), and

(iii) the discourse of authors of mathematics textbooks.

In this thesis I am particularly interested in establishing

perspectives and developing techniques for the analysis of the latter

discourse. This discourse reveals itself to be a complex amalgamation

of the scientific and pedagogic discourses.

In the first section I will discuss the general concept of discourse,

in order to make clear what I understand by discourse and discourse

analysis.

In section 2 I will deal with the functions of discourse. After

presenting several classificatory schemes of the functions of

discourse, I will propound a functional perspective for the analysis

of mathematical discourse.

In section 3, as a preparation for the investigation of the discourse

conveyed by mathematics textbooks, I will point out similarities and

differences between scientific and pedagogic discourses.



1.1 THE CONCEPT OF DISCOURSE

Discourse is a concept used in several areas such as linguistics,

semiotics, rhetoric, literary studies, philosophy, sociology, social

psychology, and education. It is a controversial concept, perhaps due

to the fact that specialists have biased perspectives whatever the

issue.

THE CONCEPT OF DISCOURSE IS CONTROVERSIAL

According to the linguist Janos S. Petofi, there is no consensus at

all about the use of the terms discourse and text in linguistics; the

panorama, even within this restricted area, is blurred:

The research field, the objects of which are generally

called text or discourse, involves a two-fold terminological

problem: neither the research objects nor the research .field

itself has generally accepted, unequivocal denomination.

"Being" text or "being" discourse is not an inherent

property of certain objects, but is rather a property

assigned to objects by those producing or analyzing them.

[Petofi 86, p. 1080]

In order to illustrate this chaotic situation, Petofi presents a list

of fields that deal with discourse or text as a specific subject

matter: language processing, text processing, discourse processing,

text analysis, discourse analysis, analysis of conversation, text

linguistics, text grammar, discourse grammar, text theory, theory of

discourse, science of texts, text semiotics.

In short, linguists do not agree about what discourse is and what

discourse analysis is.

DISCOURSE HAS NON-LINGUISTIC FEATURES

In my view, discourse analysis should be broader than the analysis of

linguistic features of written and spoken texts: discourse transcends

linguistics. Discourse is intimately related to text and language, but

cannot be reduced to any of them.



I agree with the philosopher John B. Thompson who says that 'to

introduce the concept of discourse is to open an avenue for the

investigation of the relation between language and ideology' [Thompson

84, p. 8]. In other words, discourse has ideological features.

I also agree with the literary critic Tzvetan Todorov, who affirms

that discourse should necessarily be linked to its social and cultural

context:

Starting from vocabulary and grammar rules, language

produces sentences; but sentences are only the point of

departure of discursive functioning. Sentences are

articulated among themselves and uttered in a given

sociocultural context; they are transformed into utterances,

and language is transformed into discourse.

[Todorov 90, p. 9]

ORDINARY MEANINGS OF DISCOURSE

The Oxford Advanced Learner's Dictionary (1989) gives two different

meanings for the term discourse. First, in ordinary language,

discourse means 'a LENGTHY AND SERIOUS treatment of a subject in

speech or writing' [my emphasis]; second, in linguistics, discourse

means 'a continuous piece of spoken or written language'.

Despite the tedium of some mathematical texts, I will try not to use

the term discourse in the first derogatory meaning (lengthy and

serious ...), but in a more 'objective' sense. However, the second

meaning (a continuous piece ... ) seems too neutral to be applied to

discourse; it is perhaps more appropriate to text.

The Chambers Dictionary of Synonyms and Antonyms (1989) furnishes a

list of sixteen synonyms of discourse: address, chat, communication,

conversation, converse, dialogue, discussion, dissertation, essay,

homily, lecture, oration, sermon, speech, talk, treatise.



According to this dictionary, discourse can be formal like a sermon or

a treatise, or otherwise informal like a chat; it is not necessarily

'lengthy and serious'.

Thus, the term discourse can be used to designate (a) SPEECH EVENTS

such as address, chat, conversation, converse, dialogue, discussion,

homily, lecture, oration, sermon, speech, and talk as well as (b)

PIECES OF WRITING such as dissertation, essay, and treatise. All these

terms are in fact instances of discourse and not 'synonyms', except

the term communication.

DISCOURSE IS COMMUNICATION

Communication seems to be the keyword for the deciphering of the

concept of discourse: it is a concept sufficiently general and

abstract to incorporate all other cited items as its instances as

well. Therefore it seems quite natural at this juncture to regard

discourse as a synonym of communication, or at least intimately

related to communication. In the following I will attempt to link the

concept of discourse to the concept of communication.

WHAT IS COMMUNICATION?

According to the media expert John Fiske, communication means social

interaction through messages [Fiske 90, p.2]. He points out the

existence of two divergent schools in the study of communication.

The first school sees communication as the transmission of messages.

It defines social interaction as the process by which one person (the

sender) relates to others, or affects the behaviour, s tate of mind or

emotional response of another. It sees a message as that which is

transmitted by the communication process. Many of its followers

believe that intention is a crucial factor in deciding what

constitutes a message. This school emphasizes transmission and the

addresser's role [Ibidem, p. 2].

The second school sees communication as the production and exchange of

meanings. It is concerned with how messages, or texts, interact with

people in order to produce meanings; that is, it is concerned with the



role of texts in our culture. The message is a construction of signs

which, through interacting with the receivers, produce meanings. The

sender, defined as transmitter of the message, declines in importance.

This school emphasizes reception and text 's role [Ibidem, p.3].

The opposition between these two conceptions of communication recalls

the analogous opposition between two conceptions of education: one

centred on the teacher (transmission of messages) and the other

centred on the learners (production and exchange of meanings).

CONNECTING DISCOURSE WITH COMMUNICATION

The dictionarist of stylistics Katie Wales gives us the clue to the

desired connection between discourse and communication:

One prominent and comprehensive sense [of discourse], for

which there is indeed no other direct equivalent, covers all

those aspects of communication which involve not only a

message or text but also the addresser and addressee, and

their immediate context of situation. Leech & Short (1981)

emphasize its interpersonal or transactional nature, and

also its social purpose.

[Wales 89, p. 129]

Furthermore, Wales suggests that text can be conceived as a component

of discourse:

very commonly now discourse is used in a very

comprehensive way for all those aspects of the situation or

context of communication, not only the message (written or

spoken), but also the relations between addressers and

addressees. In this sense, discourse would subsume the text,

as comparable to the 'message'.

[Ibidem, p. 459]

DISCOURSE AND TEXT

According to the linguists G.N. Leech and M.H. Short, discourse and

text are two different facets of linguistic communication:



A distinction may be drawn between communication as

discourse and as text. Discourse is linguistic communication

seen as a transaction between speaker and hearer, as an

interpersonal activity whose form is determined by its

social purpose. Text is linguistic communication (either

spoken or written) seen simply as a message coded in its

auditory or visual medium.

[Leech & Short 87, p. 209]

In my view, Leech & Short have dissolved the dichotomy posed by Fiske

between communication as transmission of messages and communication as

production and exchange of meanings. Instead of dichotomy, Leech &

Short affirm the dual nature of communication: communication implies

production and exchange of meanings, because it is (or has) a

discourse; communication implies transmission of messages, because it

is (or has) a text.

DISCOURSE IS A COMMUNICATION PROCESS

Leech & Short represent discourse as a process that works according to

the flow chart shown in figure 1.1.

DISCOURSE

addresser »- addressee

initiates^

i MESSAGE I T M E S S A G E I
i 1 i 1

encoded \ / decoded
into \ / into

TEXT

Figure 1.1 Leech & Short's model



Observe that this diagram does not reflect exactly what Leech & Short

have said in the quotation above. Observe the role of discourse and

text in the flow chart.

On the one hand, they use 'discourse' as the heading of the figure.

This means that the notion of discourse was enlarged: discourse is no

more a facet of communication; it is synonymous to linguistic

communication; discourse is then any process of communication mediated

by a text.

On the other hand, the notion of text was reduced: text is no more a

facet of communication; it is only the linguistic (or semiotic)

vehicle of discourse; it is a mere component of the discourse.

MY CONCEPT OF DISCOURSE

In this thesis I will simply adopt Leech & Short's concept of

discourse, and Fiske's concept of communication. In short,

• Discourse means social interaction through messages.

Even though discourse is clearly a sociocultural process, I will

consider it, for the convenience of expression, as an interpersonal

activity, a negotiation between two 'persons': the addresser and the

addressee. Therefore,

• Discourse is a negotiation of messages between writer and reader (or

between speaker and hearer).

1.2 FUNCTIONS OF DISCOURSE

In linguistics, the word function usually means purpose, role, use.

Functions of language are then the purposes for which people use

language [Halliday & Hasan 90, p. 15], or the communicative roles of

language [Wales 89, p. 195].



I will often use the expression function of discourse instead of

function of language because discourse is nothing more than language

seen as a system of communication. My long-term objective is the

investigation of the functions of mathematical discourse.

In view of the great amount and variety of the purposes of language,

researchers of different areas have attempted to classify them,

according to their interests and perspectives. In the following I will

describe briefly five general schemes of classifying linguistic

functions due to Biihler, Popper, Jakobson, Leech and Halliday. They

will be useful as a source of ideas for the construction of a

functional perspective of mathematical discourse.

BUHLER'S SCHEME

The psychologist K. Biihler (1934) has propounded a triadic

classification of linguistic functions: Darstellung, Ausdruck, and

Appell.

• Darstellung: language is used to describe a certain state of

affairs, to represent the real world, or to transmit information about

something. The discourse is then orientated towards the context, the

referent, or the subject matter. This function is called in English

representational, referential or informational function.

• Ausdruck: language serves to express the addresser's feelings,

emotions and thoughts, his or her attitude towards what he or she is

speaking about. This function is called in English expressive or

emotive function.

• Appell: the addresser uses language to appeal to the addressee, to

influence the addressee in some way. This function is called in

English conative or directive function.

POPPER'S SCHEME

The philosopher Karl Popper has devised a scheme with four functions

of language: expressive, signalling, descriptive and argumentative

functions [Popper 86, p. 234].



• expressive or symptomatic function: language consists of symptoms or

expressions; it is symptomatic or expressive of the state of the

organism which makes the linguistic signs. It corresponds to Biihler's

Ausdruck.

• signalling or releasing function: the symptomatic expression of the

sender releases or stimulates a reaction in the receiver, which

responds to the sender's behaviour, thereby turning it into a signal.

It corresponds to Biihler's Appell.

• descriptive function: description of facts, including the

description of conjectured states of affairs, which we formulate in

the form of theories or hypotheses. It corresponds to Buhler's

Darstellung.

• argumentative function: presentation and comparison of arguments in

connection with certain definite questions or problems.

The first two functions are common to the languages of animals and

men; the last two functions are exclusive of the human language.

According to Popper, these functions constitute a hierarchy, in the

sense that each of the higher ones cannot be present without all those

which are lower, while the lower ones may be present without the

higher ones. Popper illustrates the many purposes an argument can

have:

An argument serves as an EXPRESSION in so far it is an

outward symptom of some internal state (whether physical or

psychological is here irrelevant) of the organism. It is

also a SIGNAL, since it may provoke a reply, or agreement.

In so far as it is about something, and supports a view of

some situation or state of affairs, it is DESCRIPTIVE. And

lastly, there is its argumentative function, its giving

REASONS for holding this view, e.g., by pointing out

difficulties or even inconsistencies in an alternative view.

[Popper 85, p. 295]



This viewpoint is interesting because it establishes that there are no

'neutral ' descriptions, or 'objective' arguments, since descriptions

and arguments are affected by its expressing and signalling

components. My overall approach to discourse analysis is based on the

assumption that even mathematical argumentation has 'subjective' or

'interactive' features.

JAKOBSON'S SCHEME

The linguist Roman Jakobson has developed a model of verbal

communication, which involves six constituents. According to him,

Language must be investigated in all the variety of its

functions ... An outline of these functions demands a

concise survey of the constitutive factors in any speech

event, in any act of verbal communication. The ADDRESSER

sends a MESSAGE to the ADDRESSEE. To be operative the

message requires a CONTEXT referred to, seizable by the

addressee, and either verbal or capable of being verbalized;

a CODE fully, or at least partially, common to the addresser

and the addressee; and, finally a CONTACT, a physical

channel and psychological connection between the addresser

and the addressee, enabling both of them to enter and stay

in communication.

[Jakobson 86, p. 150]

Jakobson schematizes his model using the diagram shown in figure 1.2.

CONTEXT

MESSAGE

ADDRESSER ADDRESSEE

CONTACT

CODE

Figure 1.2 Jakobson's model of communication
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Jakobson associates a linguistic function to each component of his

communicative scheme. Jakobson's scheme of functions can be

represented by the diagram shown in figure 1.3.

REFERENTIAL

POETIC

EMOTIVE CONATIVE

PHATIC

METALINGUAL

Figure 1.3 Jakobson's scheme

Referential, emotive, and conative functions are borrowed from

Biihler's scheme.

• poetic function: the focus is on the MESSAGE for its own sake.

Jakobson suggests that 'this function, by promoting the palpability of

signs, deepens the fundamental dichotomy of signs and objects'.

• phatic function: the discourse is orientated towards the CONTACT.

The addresser intends to keep the channels of communication open: he

or she attracts addressee's attention, to confirm his or her continued

attention, in order to prolong communication.

• metalingual function: the discourse is focused on the CODE. This

means that language is used as a metalanguage, that is, to tell us

something about the language itself.

In order to decipher Jakobson's abstract scheme I will compare it with

the scheme devised by the linguist G. Leech in his book Semantics

(1974).

LEECH'S SCHEME

The table 1.1 shows the relationship between Leech's and Jakobson's

schemes [Leech 74, p. 42].

11



LEECH JAKOBSON

FUNCTION

informational

expressive

directive

aesthetic

phatic

COMPONENT

subject-matter

speaker/writer

listener/reader

message

channel

FUNCTION

referential

emotive

conative

poetic

phatic

metalingual

COMPONENT

context

addresser

addressee

message

contact

code

Table 1.1 Comparing Leech's and Jakobson's schemes

I interpret Jakobson's and Leech's schemes in the following way.

The discourse of a mathematics textbook can be analysed by focusing on

different features. For example, when we focus on the subject-matter,

that is, on the 'mathematical content' of the message, we are

analysing its informational or referential function. When we focus on

the author's personal viewpoints, we are analysing the expressive or

emotive function of the messsage, etc. According to Jakobson, six

features or components worth attention, while Leech chooses only five

features.

Leech schematizes his model of communication with the diagram shown in

figure 1.4.

srnAKHR

/WRITER

CHANNEL
LISTENER/

-+-+--Y-

Functions: expressive phalic informational aesthetic directive

Figure 1.4 Leech's model of communication
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HALLIDAY'S SCHEME

The linguist M.A.K. Halliday propounds only three functions:

(i) ideational function (split into experiential and logical

functions), which corresponds to Buhler's referential function;

(ii) interpersonal function , which is the sum of Buhler's expressive

and conative functions, and

(iii) textual function [Halliday 79, p. 48].

MY SCHEME

In the first section I have characterized discourse as an interaction

between author and reader (or between speaker and listener) through

messages. In this characterization, it is implicit that discourse (or

communication) has two fundamental purposes: transmission of

information and negotiation of meanings.

This means that I recognise the INFORMATIONAL function [propounded by

Leech] and the INTERPERSONAL function [propounded by Halliday] as two

fundamental functions of discourse.

In the next section, for the specific case of mathematical discourse,

I will accept the HEURISTIC function as the third fundamental

discursive function.

FUNCTIONAL APPROACH

Halliday summarises his functional approach to language in the

following masterly way:

Every sentence in a text is multifunctional; but not in such

a way that you can point to one particular constituent or

segment and say this segment has just this function. The

meanings are woven together in a very dense fabric in such a

way that, to understand them, we do not look separately at

its different parts; rather, we look at the whole thing

simultaneously from a number of different angles, each

perspective contributing towards the total interpretation.

That is the essential nature of a functional approach.

[Halliday & Hasan 90, p. 23]
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What I want to do is to analyse mathematical discourse using a

functionalist approach. Until now several aspects of discourse have

been seen at an abstract level. Later on they will acquire a richer

meaning through the many examples and the uses of particular

mathematical texts.

1.3 SCIENTIFIC DISCOURSE VS. PEDAGOGIC DISCOURSE

As I said in the introduction of this chapter, besides the discourse

of mathematics textbooks' authors, there are two other mathematical

discourses: (i) the scientific discourse, that is, the discourse by

which mathematicians communicate with other members of their

community, and (ii) the pedagogic discourse, that is, the discourse by

which teachers and learners communicate with each other.

SCIENTIFIC MATHEMATICS VS. PEDAGOGIC MATHEMATICS

For ease of reference, I will distinguish two 'kinds' of mathematics:

scientific mathematics and pedagogic mathematics.

Scientific mathematics is the mathematics of RESEARCH. It is the

knowledge that mathematicians produce and communicate to their

colleagues through the many specialized journals such as Ada

Mathematica, Journal of Algebra, Journal of Differential Equations,

etc., through treatises and monographs, and through research seminars

and conference lectures. Only a small part of this new mathematics

will be transformed in the future into pedagogic mathematics.

Pedagogic mathematics is the mathematics negotiated by INSTRUCTION,

that is, by TEACHING AND LEARNING. This kind of mathematics is what

teachers and pupils negotiate at primary and secondary schools, and

lecturers and students negotiate at colleges and universities. It is

also the mathematics propagated by undergraduate mathematics

textbooks, in which I am interested.

It is obvious that the contents of scientific and pedagogic

mathematics are very different, however it is not so clear whether

their discourses are different.
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1.3.1 Scientific Discourse

Scientific discourse is usually identified with the discourse of

written texts: papers, treatises and monographs. However, in order to

understand the characteristics of this textual discourse, it is

necessary to take into account not only other forms of communication

but the whole process of construction and communication of scientific

mathematics.

CONSTRUCTION OF MATHEMATICS

Mathematicians solve problems and invent new theorems or algorithms,

develop new concepts and theories; afterwards they transform these

things into cultural products: papers, treatises, monographs.

However they do not create out of nothing. The process of construction

of mathematics involves two aspects: personal aspects (personal

inventiveness, personal experience; here I include previous

education), and social aspects (contact with other mathematicians;

here I include the reading of mathematical texts).

COMMUNICATION OF MATHEMATICS

After creating new theorems, concepts, or a new theory, the

mathematician communicates them to other mathematicians in two forms:

(i) orally, in seminars and congresses, and (ii) in written form,

through papers in specialized journals or advanced books.

The process of construction and communication of scientific

mathematics can then be represented by the flow chart shown in figure

1.5.
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Figure 1.5 Scientific process

This scientific process has then three components: (a) construction of

mathematics, (b) textual communication, and (c) oral communication.

Each subprocess is dominated by a particular logic.

HEURISTIC IS THE DOMINANT 'LOGIC OF CONSTRUCTION OF MATHEMATICS

Mathematics is mainly constructed by the use of heuristic schemes

(techniques, methods, rules). According to George Polya, 'the aim of

heuristic is to study the methods and rules of discovery and

invention' [Polya 71, p. 112]. Induction and analogy are the main

heuristic schemes used by mathematicians.

FORMAL LOGIC IS THE DOMINANT 'LOGIC OF TEXTUAL COMMUNICATION

The discourse conveyed by papers in journals and by advanced books on

mathematics is basically the discourse of formal mathematics; it is

governed by schemes of formal logic. Through this discourse,

mathematicians introduce new concepts, and prove theorems about these

concepts or otherwise they prove new theorems on known concepts.

Rigour in argumentation, generality of the results and conciseness of

expression seem to be the most esteemed values in formal mathematics.

In general, mathematicians write their papers aiming to maximize

generality and rigour, with the minimum of description, explanation

and argumentation. Details are often omitted and examples are scarcely

given. A great educational problem is that some authors transfer these

values to undergraduate mathematics textbooks.
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RHETORIC IS THE DOMINANT 'LOGIC OF ORAL COMMUNICATION

According to Polya: 'everybody prefers intuitive insight to formal

logical arguments, including professional mathematicians' [Polya 81,

p. 127]. However, mathematicians in general do not communicate

intuitive insight in their papers, or treatises. This is only done in

spoken communication.

As the interlocutors are at the same level of knowledge, they are

allowed to exchange conjectures, or transmit intuitive knowledge and

provide insight, by means of models, diagrams, figures, examples,

particular cases, instead of formal proofs; specialists consider an

excess of 'elementary' details boring or even offensive.

Mathematicians negotiate intuition and use rhetoric to persuade

colleagues of the truth of a proposition without formally proving it.

Therefore, in the context of oral communication between

mathematicians, mathematics is never imposed, but negotiated.

Note: the model of production and communication of scientific

mathematics I presented is a very simplified one. For example, it does

not take into account the interplay between mathematicians and other

scientists, such as physicists, economists, biologists, etc., or

between mathematicians and their "disciples". Nevertheless, it is

sufficient to show that three types of discursive schemes

(logico-formal, heuristic and rhetorical) are used in scientific

discourse.

1.3.2 Pedagogic Discourse

Here I call pedagogic process the process of teaching and learning

mathematics. It can be seen as a process of communication and

construction of mathematical knowledge, where meanings are produced

and negotiated by the mutual interaction between the teacher, the

learner, and the text, as it is illustrated in figure 1.6.
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LEARNER

Figure 1.6 Pedagogic in terac t ions

By analogy with the scientific process, we can model the pedagogic

process by a flow char t (see f igure 1.7).

TEACHER
teaches

LEARNERS
interact with

TEXTS a r e u s e d

LEARNER

informs
TEACHER

interacts with
LEARNERS

"produces"
TEXTS

Figure 1.7 Pedagogic process

From the viewpoint of the learner, pedagogic process should then

comprise the following three activities: (i) the learner negotiates

with the teacher, and with their peers, (ii) the learner interacts

with texts, and (iii) the learner does mathematical activities,

propounded by the teacher or by the text.

NEGOTIATION BETWEEN TEACHER AND LEARNER

The negotiation teacher-learners is a face-to-face interaction: they

negotiate meanings, behaviour and values in the classroom. Negotiation

does not mean that there is equilibrium of forces between the

participants. The imbalance of forces between teacher and learners is

indeed one of the principal characteristics of the pedagogic process.
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The mutual interaction between learners is nowadays very important for

this process; it can be done in cooperation or in competition.

TEXTUAL COMMUNICATION

The text, besides chalk and talk, is the most used tool of pedagogic

process. According to M. Kline,

Curriculum and teachers are the most important factors in

education. But there are also texts from which students

might learn and which, at the very least, can reinforce the

teachers' contribution.

[Kline 77, p. 208]

As I said in the introduction to the thesis, in developing countries

like Brazil, where the education and training of the majority of

teachers are poor, the text becomes the ruler of the pedagogic

activities; teacher is then just the 'tool' textbook authors use in

order to affect the students.

In Brazil first year university students are often supposed to possess

textbooks and use them, since they are adopted by the lecturer; this

means that the lecturer uses them as the only source of knowledge and

activities.

CONSTRUCTION OF KNOWLEDGE

In order to do mathematical activities the learner uses heuristic and

logical techniques analogous to those used by the mathematician in the

construction of original mathematics. According to J. Hadamard:

Between the work of the student who tries to solve a problem

in geometry or algebra and a work of invention, one can say

that there is only a difference of degree, a difference of

level, both works being of a similar nature.

[Hadamard 54, p. 104]
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Whatever the philosophical orientation of mathematics teaching,

liberal or authoritarian, progressive or traditional, the learner is

always in charge of some learning tasks, that is, the learner is to

some extent constructing his or her own knowledge.

Learners are often involved in mathematical activities, either

suggested by the teacher or found in textbooks, such as solving

routine exercises, plotting, drawing, computing, constructing and

manipulating objects, making observations and calculations, discussing

themes with other learners, explaining, posing problems and questions

to the teacher or to other learners, attempting to solve challenging

problems, giving examples or counterexamples, proving propositions or

refuting them, guessing, conjecturing, etc.

1.3.3 Constrasting Scientific and Pedagogic Discourses

In this section I will explore similarities and differences between

the discourses of scientific and pedagogic mathematics.

SIMILARITIES

Scientific and pedagogic processes are analogous in the sense that

both have the same "structure": construction of mathematical

knowledge,'textual communication, and oral negotiation of meanings.

DIFFERENCES

There are three crucial differences between scientific and pedagogic

discourses.

• THE QUALITY OF THE ADDRESSER AND ADDRESSEE

On the one hand, communication of scientific mathematics involves

specialists or quasi-specialists. In the scientific discourse, the

addresser is a mathematician, who is the creator of the mathematical

message. The addressees are experts or quasi-specialists:

mathematicians, other scientists and graduate students. This means

that there is not much imbalance between addresser and addressees,

that is, the gap in mathematical knowledge and competence, domain of

language, worldview, etc., between the addresser and the addressee is
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relatively small. For this reason, papers in specialized journals and

advanced books are written in an esoteric form, proper to the

comprehension of initiates. Consequently, the consumption of.

scientific mathematics is restricted; no layman is qualified to read

it.

On the other hand, the communication of pedagogic mathematics involves

three different classes of persons: teachers, learners and authors of

textbooks. In general the addresser is a teacher, who is the creator

of the pedagogic message, but not of the mathematical message. The

addresser, teacher or author, is a transmitter, a re-producer, a

re-creator, an explanator, a performer. The addressees in general are

the learners, who are by no means specialists. On the contrary, they

are supposed to be more or less ignorant of the mathematical message.

Then, the gulf between the addresser (teacher or author) and the

addressees (learners) is relatively deep.

• THE QUALITY OF THE MESSAGE

On the one hand, scientific mathematics is original, completely new.

It is still in a fluid state, that is, it is not established

mathematics. Papers and advanced books are essentially vehicles of

innovations; their aim is to divulge new theorems, new theories.

On the other hand, pedagogic mathematics is sedimented, solidified,

well-structured mathematics. The presentation of new theorems and

concepts is counter-balanced by particularizations, exemplifications,

exercises.

• THE ROLE OF THE TEXT

On the one hand, the scientific text is OUTPUT; it is the result of

mathematician's work. It is an instrument of communication.

On the other hand, the pedagogic text is INPUT; it is the reference

for the mathematical activities within a classroom; sometimes it

governs completely the process of teaching and learning.

In my view, the analogy between scientific and pedagogic processes, or
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between scientific and pedagogic discourse is almost destroyed by

these differences. The problem is that many authors do not agree with

this; they write to learners as if they were mathematicians.

MATHEMATICS TEXTBOOKS

Mathematics textbooks are still one of the most popular vehicles of

communication of pedagogic mathematics. They are helpful for the

teachers and learners, since they constitute a source of information

and inspiration for classroom activities. However, they can also be

seen as powerful cultural artefacts whereby society regulates

mathematical education.

It is convenient for the purposes of discourse analysis to classify

pedagogic mathematics according to the level of instruction: (i)

primary school mathematics, (ii) secondary school mathematics, (iii)

undergraduate mathematics, and (iv) graduate mathematics.

There should be differences between the discourses of these different

categories of pedagogic mathematics. First of all, because the

learners are at different stages of intellectual development. Second,

the teachers have different levels of mathematical knowledge. Third,

because the aims of mathematical education vary with the level of

instruction. Fourth, because the organisation of teaching and learning

varies according to this categorisation.

This thesis is concerned with the analysis of the discourse underlying

undergraduate mathematics textbooks.

Undergraduate mathematics textbooks are in general written by

mathematicians who are at the same time lecturers. It is therefore

difficult if not impossible to know whether they write as

mathematicians or as lecturers, that is, whether they write

"scientifically" or "pedagogically".

Due to the functional duality of the authors (they are both

mathematicians and lecturers) one can expect that their discourse is

an amalgamation of both scientific and pedagogic discourses.
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CHAPTER 2

THE DIALECTICS OF MATHEMATICAL DISCOURSE

Introduction

My aim in this chapter is to show that mathematical discourse as well

as the construction of mathematical knowledge is a dialectical

process.

In section 1 I will argue that the construction of mathematical

knowledge is a dialectical process, in the sense that it is governed

by flows and counterflows, provoked by the tensions between several

contrasting forces or tendencies.

In section 2 I will discuss the two ways authors of mathematics

textbooks cope with the tension between two contrasting forces or

concepts: (a) monistic way (eliminating one of the concepts) or (b)

complementaristic way (maintaining the tension, seeking a balance

between the two concepts).

In section 3 I will describe and classify the main conflicts that

affect mathematical discourse. Conflicts arise because mathematical

discourse has simultaneously three different purposes: transmission of

information, construction of knowledge, and negotiation of meanings.

In section 4 I will suggest that dichotomies and dualities are to some

extent associated with the way the human brain works. In the last

section, I will discuss how the different options faced with the

several dichotomies and dualities crystallize forming great currents

within the philosophy of mathematics and mathematics education.
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2.1 TENSIONS

Construction of scientific knowledge is essentially dialectical: its

logic, according to the philosopher of science Karl Popper, is the

logic of conjectures and refutations:

The way in which knowledge progresses, and especially our

scientific knowledge, is by unjustified (and unjustifiable)

anticipations, by guesses, by tentative solutions to our

problems, by conjectures. These conjectures are controlled

by criticism; that is, by attempted refutations, which

include severely critical tests. They may survive these

tests; but they can never be positively justified: they can

neither be established as certainly true nor even as

'probable' (in the sense of the probability calculus).

[Popper 85, preface]

Therefore, construction of mathematical knowledge is a dialectical

process. According to George Polya, 'mathematics in the making, in

statu nascendi, in the process of being invented, appears as an

experimental, inductive science* [Polya 71, preface].

The philosopher of mathematics Imre Lakatos made the missing

connection between Polya's and Popper's viewpoints:

Informal, quasi-empirical, mathematics does not grow through

a monotonous increase of the number of indubitably

established theorems but through the incessant improvement

of guesses by speculation and criticism, by the logic of

proofs and refutations.

[Lakatos 87, p. 5]

This is in line with the epistemologist Jean Piaget, who says that

'the most suitable interpretation of contemporary mathematics seems to

be a dialectical interpretation. The two central ideas of all

dialectics are development and synthesis' [Piaget 80, p. 487].
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POPPERIAN DIALECTICS

To avoid any misunderstanding, I want to make clear that I use the

term dialectics in the sense propounded by Karl Popper:

Dialectic [or dialectics] (in the modern sense, i.e.,

especially in the sense in which Hegel used the term) is a

theory which maintains that something - more especially,

human thought - develops in a way characterized by what is

called the dialectic triad: thesis, antithesis and

synthesis.

[Popper 85, p. 313]

According to Popper, the dialectic process evolves in three steps:

1. There is some idea or theory or movement which may be called a

thesis.

2. Such a thesis will often produce opposition, because it will

probably be of limited value and will have its weak points. The

opposing idea or movement is called the antithesis.

3. The struggle between the thesis and the antithesis goes on until

some solution is reached which, in a certain sense, goes beyond both

thesis and antithesis by recognizing their respective values and by

trying to preserve the merits and to avoid the limitations of both.

This solution is called the synthesis [Ibidem, p. 313].

This does not mean that the struggle finishes necessarily in one

round. According to Popper, this conflict of ideas can continue:

Once attained, the synthesis in its turn may become the

first step of a new dialectic triad, and it will do so if

the particular synthesis reached turns out to be one-sided

or otherwise unsatisfactory. For in this case opposition

will be aroused again, which means that the synthesis can

then be described as a new thesis which has produced a new

synthesis. The dialectic triad will thus proceed on a
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higher-level, and it may reach a third level when a second

synthesis has been attained.

[Ibidem, p. 314]

COURANT'S DIALECTICAL APPROACH

The late mathematician Richard Courant is a prominent supporter of the

dialectical perspective. He wrote, in collaboration with his student

H. Robbins, a book on mathematical ideas and methods entitled What is

Mathematics?, first published in 1941, which is now a classic

reference for mathematics education. In the preface to this book, they

declare:

Mathematics as an expression of the human mind reflects the

active will, the contemplative reason, and the desire for

aesthetic perfection. Its basic elements are logic. and

intuition, analysis and construction, generality and

individuality. Though different traditions may emphasize

different aspects, it is only the interplay of these

antithetic forces and the struggle for their synthesis that

constitute the life, usefulness, and supreme value of

mathematical science.

[Courant & Robbins 78, preface]

Courant keeps supporting the same viewpoint in the 60's, in a debate

on applied mathematics, now calling attention to the danger of

one-sidedness:

Abstraction and generalization is not more vital for

mathematics than individuality of phenomena and, before all,

not more than inductive intuition. Only the interplay

between these forces and their synthesis can keep

mathematics alive and prevent its drying out into a dead

skeleton. We must fight against attempts to push the

development one-sidedly towards the one pole of the

life-spending antinomy.

[Carrier et al 62, p. 298]
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Courant reinforces the same opinion, in the centenary tribute to David

Hilbert, as quoted by P. Hilton:

Living mathematics rests on the fluctuation between the

antithetical powers of intuition and logic, the

individuality of grounded problems and the generality of

far-reaching abstractions. We, ourselves, must prevent the

development being forced to only one pole of the life-giving

antithesis.

[Hilton 76, p. 91]

TENSIONS IN MATHEMATICAL DISCOURSE

Construction and communication of mathematical knowledge are

intimately linked. Creation of mathematical objects is of course due

to individuals. However this creation is not spontaneous, it has

undoubtedly a social dimension, as it is stressed by R. Hersh:

Mathematical objects are created, not arbitrarily, but arise

from activity with already existing mathematical objects,

and from the needs of science and daily life.

[Hersh 79, p. 22]

The products of mathematical invention (objects, theorems and

theories) only acquire 'reality' (social reality) when they are

shared, communicated, that is, in practical terms, when they are

published in the form of papers in journals or books.

Consequently, scientific mathematical discourse should reflect the

tensions which govern mathematical construction and something else.

Mathematics textbooks, as they mirror above all the tensions between

scientific and pedagogic procedures, are a fortiori the battlefields

of conflicts of varied nature, for example, philosophical,

epistemological, psychological, and educational conflicts.
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In other words, the discourse of mathematics textbooks is a

dialectical process in the sense that its functioning is driven by

several tensions or conflicts such as logic vs. intuition, general vs.

particular, abstract vs. concrete, formal vs. informal.

As a matter of fact, according to the linguist V.N. Volosinov, the

presence of tension is universal:

Actually, any real utterance, in one way or another or to

one degree or another, makes a statement of agreement with

or a negation of something.

[Volosinov 86, p. 80]

Therefore it seems important to know what kind of tensions regulate

the dynamics of mathematical discourse.

2.2 DICHOTOMY OR DUALITY?

The writing of mathematics textbooks involves the solution of many

practical problems. For example, the author has to decide if he or she

will include applications or not; if the proof should come before or

after the theorem statement; if prerequisites should be given when

necessary or if they should be given at the beginning.

I expect that there exist some organising principles behind the myriad

of decisions the author makes. I agree then with Rene Thom, who said

that 'whether one wishes it or not, all mathematical pedagogy, even if

scarcely coherent, rests on a philosophy of mathematics' [Thom 73, p.

204].

In general authors do not declare their 'philosophy* at all. One of my

aims is to expose their 'philosophy' by means of the analysis of their

discourse. To do this I will use the technique of philosophical pairs,

that is, pairs of contrasting concepts or ideas.
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A pair of contrasting concepts can be considered either as a dichotomy

or as a duality. The pair forms a dichotomy if the concepts are

considered antagonic, competitive, mutually excluding, otherwise it

forms a duality, that is, the concepts are considered compatible,

cooperative, complementary.

There are two different ways of coping with the conflict between two

"constrasting" concepts (movements, ideas, tendencies).

MONISM

The first way is to look at the pair of concepts as forming a

dichotomy, that is, as if they were opposite or antagonic concepts,

without possibility of compromise. The only way to resolve the

dichotomy is by choosing one of the poles, at the expense of the

other. This means that one of the poles of the dichotomy should be

dominant, or in the extreme case, should eliminate the other. This

case can be illustrated, for example, by the monistic position adopted

by Morris Kline, who resolves the conflict logic vs. pedagogy within

the teaching of mathematics by opting for pedagogy, at the expense of

logic [Kline 70].

COMPLEMENT ARISM

The other way to resolve the conflict between two concepts (ideas,

movements, tendencies) is to acknowledge that the opposition between

them is not so acute, that they overlap in one or more aspects, and

that they can be reconciled. This is the case of the position held by

Peter Hilton, who, after discussing several 'dichotomies' such as pure

mathematics vs. applied mathematics and structure building vs. problem

solving, opts for the complementarist point of view:

In the case of all of these sterile and misleading

antitheses, those treated in the article and many others, we

need and we can have both sides of the artificial

opposition ... Good education involves a kaleidoscope of

qualities and attributes: its success depends on a

many-faceted approach ...

[Hilton 76, p. 96]
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HILTON'S APPROACH

In his important paper on the spread of false dichotomies, Hilton

discusses nine dichotomies: education vs. training, skill vs.

understanding, useful education vs. diverting education, elitism vs.

egalitarianism, art vs. science, old mathematics vs. new mathematics,

pure mathematics vs. applied mathematics, structure building vs.

problem solving, and axiomatics vs. constructiveness.

Hilton claims that all these nine dichotomies are false, in the sense

that 'the two concepts which are set in opposition to each other do

not form part of an either/or situation; that while the two concepts

under scrutiny are different, they have an essential overlap, and

that, when properly understood and applied, they can in fact mutually

reinforce each other'.

More precisely, Hilton calls dichotomy an opposition between two

concepts, ideas, or movements, an either/or situation, where one

should select one of the poles, at the expense of the other. In

set-theoretic terms, a dichotomy is analogous to a partitioning of a

set S into two mutually disjoint subsets P and Q.

Hilton is very concerned about the danger of one-sided movements in

mathematics education. Hilton's adversary is the movement called 'Back

to Basics', whose 'primitively reactionary' enthusiasts propose 'to

replace a system observed to have certain unsatisfactory features by

its precise opposite', more specifically, 'to restore what they see to

be the best in the old mathematics'.

Hilton's viewpoint is that we should stop thinking in terms of

dichotomies, and start thinking in terms of mutual complementarity.

Here complementarity has no set-theoretic connotation. It means that

many dichotomies which abound in the literature of mathematics

education should not be resolved by the domination of one of the poles

over the other, but by the equilibrium or balance between them.
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Hilton uses the term false dichotomy to refer to what I have called

duality. He recognises then the importance of the investigation of

dualities for mathematics education:

By giving serious attention to these dichotomies

[dualities], certain educational principles should emerge

which should help us to improve the quality of the teaching

and learning which take place in our schools and colleges.

[Ibidem, p. 77]

Therefore, both Hilton and Courant seem to be on the same side.

Courant has propounded that the construction of mathematical knowledge

is framed by permanent clashes between opposite tendencies, and Hilton

has assumed implicitly that the development of educational principles

is framed by dichotomies [dualities].

In this thesis, I support the same dialectical perspective as Courant

and Hilton, advocating that the discourse conveyed by mathematics

textbooks, as a reflection of both scientific and pedagogic

discourses, is also framed by tensions caused by conflicts between

philosophical, epistemological, psychological and pedagogic

tendencies, movements, and concepts.

This point of view coincides with the more generic hypothesis

propounded by Diane Macdonell: 'any text is, directly or indirectly, a

site of some unequal struggle between conflicting discourses and

positions [Macdonell 89, p. 54].

2.3 CONFLICTS IN MATHEMATICAL DISCOURSE

Mathematical discourse has three purposes or functions: (i)

transmission of information, (ii) construction of knowledge, and (iii)

negotiation of meanings.

These purposes can be conflicting in the sense that the addresser

gives relevance to one of these functions at the expense of the

others. The main conflicts that traverse the discourse of mathematics
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textbooks are between the 'logics' of transmission of information and

construction of knowledge, that is, LOGIC VS. HEURISTIC, and between

the 'logics' of transmission of information and negotiation of

meanings, that is, LOGIC VS. RHETORIC. Another major conflict is

between the 'logics' of scientific process and pedagogic process, that

is, LOGIC VS. INTUITION.

Therefore, there are three basic conflicts within mathematical

discourse: (i) LOGIC VS. HEURISTIC, (ii) LOGIC VS. RHETORIC, and (iii)

LOGIC VS. INTUITION. My suggestion is to categorize the many

dichotomic or dualistic conflicts which occur in mathematics education

using these three basic conflicts as headings.

The author of an undergraduate mathematics textbook can emphasize one

or two of these purposes at the expense of the other(s), or he/she can

seek an equilibrium between them. Therefore, a method convenient for

the detection of author's tendencies (preferences, biases, prejudices)

seems to be the analysis of the conflicts that govern mathematical

discourse. We can investigate, for example, how the author copes with

the tensions between use of logic and use of intuition, pedagogic

explanation and logical justification, mathematics as process and

mathematics as product.

2.3.1 Logic vs. Heuristic

The conflict logic vs. heuristic means the conflict between two

'logics': formal logic, the 'logic' that controls the communication of

formal mathematics, and heuristic, the 'logic' that governs the

construction of informal mathematics. In essence the conflict is

between two conceptions of mathematics: mathematics as construction of

knowledge vs. mathematics as transmission of information; mathematics

as a process vs. mathematics as a product.

Authors of undergraduate mathematics textbooks have to tackle the

following problem. How should mathematics be presented to the

learners: as an intellectual activity or as a body of knowledge?
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In the first case, we say that mathematics is seen as a process:

mathematics is invention, discovery, creation, construction. This

perspective is represented, for example, by George Polya who considers

mathematics as problem-solving.

In the second case, we say that mathematics is seen as a product:

mathematics is a body of knowledge, its cultural achievements should

be communicated, taught, learned, consumed, stored. This perspective

is represented, for example, by Jean Dieudonne, one of the members of

the Bourbaki group, who supports the use of axiomatic method in the

presentation of mathematics.

The influence of the dichotomy process vs. product in teaching and

learning mathematics has been recognized by many mathematics

educationalists. For instance, Erich Wittmann has said that- there are

two competing philosophic points of view: 'one orientated towards

abstract structures and the axiomatic-deductive style of presenting

mathematics, and a second one considering mathematics an activity and

emphasizing intuitive thinking as the source of mathematical

discovery' [Wittmann 81, p. 389].

These 'philosophies of mathematics presentation' are behind two

antagonic pedagogic models: one emphasizing the transmission of

information (lecture style), centred on the teacher, the presumed

owner of information, and the other, emphasizing the construction of

knowledge by means of mathematical activities, centred on the

learners.

In the first model, the transmission of information model, mathematics

is a structured collection of facts (theorems), names (definitions),

techniques (use of formulas and algorithms), and arguments (proofs of

theorems and propositions). The teacher, who is supposed to possess

this mathematical knowledge, should impart it to the students, who

should then memorize the facts, names and arguments, learn the

techniques, and reproduce what they have learned in examinations. This

model of teaching and learning mathematics is widespread: it is

adopted in almost all mathematical disciplines at almost all colleges
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and universities in the world.

In the second model, the construction of knowledge model, mathematics

should be recreated by the learners. This model is theoretically

worshipped but is practised by few teachers. It is commonly used at

the ends of the educational process: in the first years of primary

schools and at the graduate level.

In recent years however it has assumed more prominence in secondary

school mathematics in the United Kingdom through individualised

learning schemes, and through some of the investigational approaches

in GCSE. It is important to note that the tension between these two

models is currently reflected at a political level in the attitudes

towards education expressed by the British government.

The following table shows other pairs of contrasting concepts, which

can be categorized under the fundamental conflict LOGIC VS. HEURISTIC.

LOGIC HEURISTIC

transmission of information

product/fact

demonstration/proof

formal mathematics

theory building

deduction

certainty

rigour

definitive

definitions & theorems

construction of knowledge

process/know-how

invention/creation/discovery

informal mathematics

problem solving

induction/analogy

plausibility

understanding

provisory

exercises

Table 2.1 Logic vs. Heuristic

Generally speaking, authors of undergraduate mathematics textbooks are

not completely monist: rare are the textbooks without exercises or

without proofs of theorems. Apparently they recognize the duality

between information and know-how, attempting to impart both of them.
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However, some of them favour deductive logic against heuristic

reasoning, putting exercises at the service of theory-building, in the

form of gap-filling exercises. More details about gap-filling

exercises will be given in section 6.1.

Others, on the contrary, favour problem-solving or rather routine

exercise-solving, using theorems just as any other data, imitating the

style of presentation of many secondary school textbooks.

Only a deep analysis of proofs of theorems and of the content of

exercises can reveal how balanced are author's decisions with regard

to the conflict logic vs. heuristic.

2.3.2 Logic vs. Intuition

In the first decades of this century the philosophy of mathematics was

dominated by the controversies between three schools: logicism,

formalism and intuitionism.

Nowadays these foundational schools have no direct influence on the

development of mathematics or mathematics education at all. Perhaps

the names of the schools would be attractive: we could call logicism,

formalism and intuitionism the respective tendencies to emphasize

logic, form and intuition in mathematical education.

Intuition is a very controversial issue in philosophy, psychology,

mathematics education, and philosophy of mathematics. According to

M.R. Westcott,

Conceptions of intuition within philosophy range from the

most primitive of mental functions to the most sublime; from

simple awareness of existence to the apprehension of

ultimate truths.

[Westcott 84, p. 252]
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It would be too pretentious to give here an account of all the

epistemological and psychological features of intuition, that can be

found, for example, in the books [Noddings & Shore 84], [Fischbein 87]

and [Westcott 68]. In the following I will just present the concepts

of intuition held by some renowned mathematicians.

INTUITION ACCORDING TO HILBERT

It seems paradoxical that David Hilbert, one of the chief supporters

of the formalist school in the foundations of mathematics, does not

discard intuition from mathematics. He mysteriously begins his

remarkable book on the Foundations of Geometry with the following

quotation from the "constructivist" Kant:

Thus all human knowledge begins with intuitions, proceeds

from thence to concepts, and ends with ideas

[Kant 90, p. 569].

Hilbert & Cohn-Vossen relate the conflict logic vs. intuition to the

pair abstract vs. concrete:

In mathematics, as in any scientific research, we find two

tendencies present. On the one hand, the tendency toward

abstraction seeks to crystallize the logical relations

inherent in the maze of the material in a systematic and

orderly manner. On the other hand, the tendency toward

intuitive understanding fosters a more immediate grasp of

the objects one studies, a live rapport with them, so to

speak, which stresses the concrete meaning of their

relations.

[Hilbert & Cohn-Vossen 52, preface]

INTUITION ACCORDING TO POINCARE

Few mathematicians would disagree with Henri Poincare, who said that

intuition is the instrument par excellence of mathematical invention:
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This shows that logic is not enough; that the science of

demonstration is not all science and that intuition must

retain its role as complement, I was about to say, as

counterpoise or as antidote of logic ... Thus logic and

intuition have their necessary role. Each is indispensable.

Logic, which alone can give certainty, is the instrument of

demonstration; intuition is the instrument of invention.

[Poincare 58, p. 21].

INTUITION ACCORDING TO FELIX KLEIN

However the divergence that occurs among mathematicians concerns the

role of intuition in the communication of mathematics. Should

mathematical discourse be reduced to logic? Felix Klein (1893), for

example, contrary to the monistic position of M. Pasch and G. Peano,

affirms the complementarity between intuition and logic:

On one point Pasch does not agree with me, and that is as to

the exact value of the axioms. He believes - and this is the

traditional view - that it is possible finally to discard

intuition entirely, basing the whole science on the axioms

alone. I am of the opinion that, certainly, for the purposes

of research it is always necessary to combine the intuition

with the axioms.

[Klein 73, p. 228]

INTUITION ACCORDING TO WILDER

According to R. L. Wilder, intuition and knowledge are intimately

linked:

Intuition, as used by the modern mathematician, means an

accumulation of attitudes (including beliefs and opinions)

derived from experience, both individual and cultural. It is

closely associated with mathematical knowledge, which forms

the basis of intuition. This knowledge contributes to the

growth of intuition and is in turn increased by new

conceptual materials suggested by intuition.

[Wilder 67, p. 610]
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TYPES OF INTUITION

According to Poincare, there are many kinds of intuition, two of them

are the most important: (i) sensible intuition (I'intuition sensible),

that is, the appeal to the senses and the imagination, to which the

imagination is the principal contributor, and (ii) intuition of pure

number (I'intuition du nombre pur), that is, intuition of pure logical

forms.

J.J.A. Mooij, an analyst of Poincare's philosophy of mathematics,

introduced the felicitous term intuition of comprehension (intuition

de comprehension) to refer to Poincare's intuition of pure number

[Mooij 66, p. 115]. This is the intuition to which Poincare refers in

the following passage:

Faced with those complex buildings constructed by the

masters of Mathematics, it is not enough to verify the

solidity of each part and admire their carpentry, it is

necessary to understand their architecture. Now, to

understand the plan of the architect, it is necessary to

perceive at a glance the whole structure, and only the

intuition can give us the means to embrace everything at a

glance, [my translation]

[Poincare 1900, p. 125]

INTUITION ACCORDING TO DIEUDONNE

For Jean Dieudonne, mathematical intuition is the intuition of

abstract objects and it is opposed to sensory intuition, the intuition

of material things:

A mathematician's talent is measured by his imagination;

logic alone will never suggest a proof, it can only put it

in a rigorous shape. The mathematician's imagination is

based on a kind of "intuition" of the mathematical objects

he is studying, although this is very different from the

"intuition" of our senses, since mathematical objects are

mostly the result of a long process of elaboration and

abstraction which puts them completely apart from any
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correspondence with objects of the real world.

[Dieudonne 75, p. 39]

According to Dieudonne, mathematical intuition grows with abstraction:

The more abstract things are, the more they provide

intuition. Why? Because abstraction eliminates all that is

contingent within a theory. If you do the proper

abstraction, if you are guided by a flair (an intuition if

you want), you have eliminated the contingent relations.

What remains? The skeleton remains, and in this skeleton,

you can sometimes discover structures that otherwise you

could not dream of detecting. If you have not made the

effort of preliminary abstraction, you would not be able to

see the wood for the trees.

[Dieudonne 75, p. 54]

Dieudonne's approach is interesting for mathematics education, since

it allows us to transform the conflict logic vs. intuition, which

seems at first sight a conflict between things of different nature,

into a conflict between kinds of intuitions: intuition of the concrete

vs. intuition of the abstract. This means, for example, that the long

process of learning mathematics can be characterized as a transition

from the intuition of the concrete to the intuition of the abstract.

2.3.3 Logic vs. Rhetoric

Mathematics can be presented in different levels of formalization. For

ease of treatment, I will distinguish only three levels: formal,

quasi-formal, and informal.

Formal mathematics is developed following the so-called axiomatic

method. This method allows us to only use the rules of formal logic,

excluding the use of heuristic reasoning or rhetorical arguments.

According to this method, the theory should start with the

presentation of a finite number of undefined objects, and unproven

propositions called axioms, together with the permissible rules of
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inference (the game rules). Every theorem should be deduced from

previous theorems or axioms, by the exclusive use of the given rules

of inference. Only such proofs are considered rigorous; any other type

of argument should be rejected.

Examples of purely formal mathematics are those presented in two

well-known books: Foundations of Geometry by D. Hilbert, and Principia

Mathematica by A.N. Whitehead and B. Russell. Logical formalism is

often accompanied by 'formality' in the presentation. The following

excerpt from Principia Mathematica exemplifies what purely formal

mathematics looks like.

*213'22. H r . P p o a

QP,R.= .Q.ReP f'sect'P . 3 ! R-Q.= . Q.Jie Pf'sect'P .QGR.Q^R

[•213-21-161]

•213-23. I-:. Ppo e connex .Q.Re C'P, .D :QGR . v . RG. Q

[*213-l.*211-6'l7.*36-24]

•213-24. I-: 0 e sect 'P . R = P fc 0. D . sect'R = sect'P * CVC'R

Dem.

h.*36-29.Dh:. H p . D : i Z G P : (1)

[•211-1] D : a e sect 'P n CVC'R .D.aCC'R. R"a C a.

D.ae sect'R (2)

h :. Hp. D : a e sect'R . D . a C C'R . a C C'P. (P £ £)"a C a (3)

h . (3). *37-41-413 . D

h : Hp . a e sect'Pv .D.aC/S.jSr,P"(ar,/S)Ca.

[•22-621 .•37-2] D.^n P"a C a . P"a C P"/3.

[•211-1] D . £ n P " a C a . P " a C i S .

[#22-621] D.P"oCa (4)

h.(3).(4).Dh:.Hp.D:o£Sect'ii.D.aCC'i2.aesect'P (5)

|-.(2).(5).Df-.Prop

Figure 2.1 Russell & Whitehead's formalism
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Another example of formalism in mathematical writing is the collection

of graduate textbooks The Elements of Mathematics by N. Bourbaki.

However, they are not purely formal in the sense that several 'abuses'

of language are made and 'forbidden' examples are anticipated.

In contrast to the formal mathematics, there are books written

informally, such as Mathematician's Delight (1991) by W.W. Sawyer, or

Aventuras Matematicas (1986) by Miguel de Guzman, which are aimed to

the popularization of mathematics. Such authors wish to show the

importance, or the beauty of mathematics for the laymen. They have to

make a great effort in order to not bother readers with rigorous

definition or deductive reasoning. In other terms, they use more

rhetoric than logic.

Undergraduate mathematics textbooks are neither formal nor informal;

they are written in a quasi-formal style. The actual logic that

dominates such books is a mixture of formal logic and rhetoric; it is

in fact a 'logic' of negotiation, similar to the 'logic' of the oral

negotiation between lecturers and students.

Authors negotiate many things with the readers: the truth of theorems,

the use of language, the standards of explanation and understanding,

labour division, values and perspective. For the author, success in

this negotiation means the continued use of his or her textbook by

teachers and students.

NEGOTIATION OF PROOFS

Authors of undergraduate mathematics textbooks are not able to follow

Bourbaki's commandment that proofs should be given in full (no part

should be 'left to the reader' or relegated to exercises), and with

the utmost precision. [Dieudonne 82, p. 619]. For example, in Complex

Analysis textbooks, Jordan curve theorem is commonly presented without

proof and freely used, because its proof is in fact too demanding.

Sometimes, the author does not give the proof of a theorem because it

is too easy, or too technical.
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In short, authors should negotiate with the readers the acceptance of

theorems; they have to convince the readers to accept some theorems

without proofs, and other theorems with uncomplete proofs. And to do

this, they have obviously to resort to rhetoric.

NEGOTIATION OF INTUITIONS

From the viewpoint of pedagogy, explanation and understanding are the

crux of the question, and explanation in mathematical discourse often

implies the change from logical reasoning to intuitive and heuristic

reasoning, by the use of examples, figures, schemes, etc.

NEGOTIATION OF LANGUAGE

Authors should negotiate the tension between the constraining language

of formal logic and the plasticity of the natural language. This

negotiation takes the form of 'abuse' of mathematical language, by way

of poetic licence.

NEGOTIATION OF VALUES AND PERSPECTIVE

Authors, as human beings, necessarily hold personal or ideological

values and perspectives on mathematics, on learning, on teaching, on

communication, on mathematical knowledge, and many other subjects,

and, as human beings, they want to share them with the readers.

In my view, the ways authors attempt to communicate these values and

perspectives to the readers are the most important things to be

detected by discourse analysis. What is the essence of the author's

message, that thing that differentiate each one from the others?

In conclusion, undergraduate mathematics textbooks are not about

purely formal mathematics. Their authors give us a skeleton of formal

mathematics interspersed with rhetoric, or vice-versa. It is important

to observe the balance or imbalance between logic and rhetoric

obtained by the authors.

In the following table, we summarize some dichotomies associated with

the dichotomy logic vs. rhetoric.
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LOGIC RHETORIC

transmission of information

formal

definitions & theorems

formal proof

information

denotation

proving

authoritative knowledge

objective

monologue

logical reasoning

negotiation of meanings

informal

examples & figures

argumentation

expression

connotation

persuading

negotiable knowledge

intersubjective

dialogue

rhetorical argumentation

Table 2.2 Logic vs. Rhetoric

2.4 BRAIN DUALITY AND COMPLEMENTARITY

The dichotomies or dualities described above relate to human thinking.

It is no coincidence that among the theories of brain function there

is an aspect which relates physical forms (hemispheres) to function,

and that the functioning relates to some of the dichotomies we have

been discussing in closely analogous ways.

THE TWO HEMISPHERES OF THE BRAIN

, The human brain is formed by two hemispheres, the left and right

hemispheres, which are connected by nerve fibres called corpus

callosum. It is a consensus between researchers in neuropsychology

that 'there are differences in function between the two sides of the

brain and that the differences are found in normal subjects as well as

in patients' [Springer & Deutsch 89, p. 6].

According to the educationalist M. Raina,

The left hemisphere of the brain is a rational-linear mind

specialising in sequential processing, logical, analytical

thinking and verbalisation. It is responsible for most of
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the functions that involve linguistic and numerical

processes ... The right cerebral hemisphere is lateralized

for multiple processing. It houses spatial perception,

holistic understanding, perceptual insight, tactile

sensation, musical ability, visualisation and intuitive

ability. Its mode is metaphoric, analogic and holistic.

[Raina 79, p. 10]

Many dichotomies are associated with the asymmetric functioning of the

human brain. According to Springer and Deutsch, the dichotomic

characteristics usually attributed to the processes of left hemisphere

and right hemisphere can be separated into five groups, where 'the

descriptions near the top of the list seem to be based on experimental

evidence; the other designations appear more speculative' [Springer &

Deutsch 89, p. 284].

LEFT HEMISPHERE RIGHT HEMISPHERE

Verbal Nonverbal, visuo-spatial

Sequential, temporal, digital Simultaneous, spatial, analogical

Logical, analytical Gestalt, synthetic

Rational Intuitive

Western thought Eastern thought

Table 2.3 Left Hemisphere vs. Right Hemisphere

Springer and Deutsch alert us about the danger of dichotomania, that

is, the tendency of relating any dichotomy to the hemispheric

specialization. However, they themselves furnished the following list

of dichotomies and speculated that 'perhaps, as some have suggested,

they correspond to the separate processes of the two cerebral

hemispheres' [Springer & Deutsch 89, p. 286].
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DICHOTOMIES

Convergent

Intellectual

Deductive

Rational

Vertical

Discrete

Abstract

Realistic

Directed

Differential

Sequential

Historical

Analytical

Explicit

Objective

Successive

Divergent

Intuitive

Imaginative

Metaphorical

Horizontal

Continuous

Concrete

Impulsive

Free

Existential

Multiple

Timeless

Holistic

Tacit

Subjective

Simultaneous

Table 2.4 Springer & Deutsch's dichotomies

Researchers are divided with respect to the degree of cooperation in

which the two brain hemispheres work.

R. W. Sperry has argued that each hemisphere behaves in many respects

like a separate brain [Sternberg 90, p. 167].

M. Gazzaniga believes that the brain is organized into relatively

independent functioning units (modules) that work in parallel,

coexisting in a kind of confederation; D.E. Broadbent sees more

integration between the processing of the two hemispheres, sustaining

that 'the two hemispheres should be seen as performing different parts

of an integrated performance rather than totally separate, parallel

functions' [Sternberg 90, p. 172].

Jerre Levy, according to [Goldberg 89], declares that the hemispheres

usually work in collaboration:
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In the normal individual the two hemispheres are in constant

active integration and intimate collaboration. There is

nothing a normal person could do that depends only on one

hemisphere. Possibly, if you used an exceedingly simple

task, repetitive, habitual and boring, a normal brain might

show asymmetric processing, but the instant you increase the

task difficulty, it would instigate bilateral hemispheric

engagement.

[Goldberg 89, p. 121]

Brain division is a metaphor used by some mathematics educationalists

to describe the teaching of mathematics; there is a generalized

opinion that teachers and authors of textbooks emphasize the working

of the left hemisphere, neglecting the other hemisphere. See, for

example, [Elliott 80], [Nolder 84], and [Fidelman 85].

However, I agree with Springer and Deutsch who declare that:

Our educational system may miss training or developing half

of the brain, but it probably does so by missing out the

talents of both hemispheres.

[Springer & Deutsch 89, p. 298]

COMPLEMENTARITY

The psychologist Norman Cook suggests an interesting theory about the

functioning of the corpus callosum. He says that the

neurophysiological role of the corpus callosum is topographic

inhibition. This means that the corpus callosum reduces neural

activity in the hemisphere opposite to where activity s tar ts ,

operating at regional level (callosal fibres connect corresponding

regions of the two hemispheres in a point-to-point or topographic

manner).
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More precisely, 'topographic inhibition across the corpus callosum

suppresses in one hemisphere the exact same neuronal pattern of

activity that originated in the other, but at the same time allows

activity to develop in surrounding neurons representing complementary,

e.g., contextual, aspects of the original information.' This means

that 'equivalent areas of the two hemispheres end up active for

complementary aspects' [Springer & Deutsch 89, p. 315].

In summary, the complementarist (or dialectical) perspective suggested

by R. Courant and P. Hilton can be supported by the viewpoints of

neuropsychologists such as Jerre Levy and Norman Cook.

RIGHT HEMISPHERE OR LEFT HAND?

Perhaps moved by ideological motive, the psychologist Jerome Bruner,

in his book called On Knowing: Essays for the Left Hand (1979),

prefers to use the term 'left hand' instead of right hemisphere, and

'right hand' instead of left hemisphere. He confesses that

Since childhood, I have been enchanted by the fact and the

symbolism of the right hand and the left - the one the doer,

the other the dreamer. The right is order and lawfulness, le

droit ... Of the left hand we say that it is awkward ... The

French speak of the illegitimate descendant as being a main

gauche, and though the heart is virtually at the center of

the thoracic cavity, we listen for it on the left.

Sentiment, intuition, bastardy.

[Bruner 79, p. 2]

However, Bruner, accompanying the mathematicians Hilton and Courant,

alerts us about the danger of lateralization:

Reaching for knowledge with the right hand is science. Yet

to say only that much of science is to overlook one of its

excitements, for the great hypotheses of science are gifts

carried in the left hand.

[Ibidem, p. 2]
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2.5 GREAT CURRENTS

In this section I will discuss some significative alternatives to the

formalist philosophy dominant in the teaching and writing of

mathematics. These alternatives will be seen through the works of four

mathematics educationalists and philosophers: G. Polya, I. Lakatos, R.

Hersh, and P. Ernest.

One of the themes of the educational and epistemological works of

George Polya and Imre Lakatos is the conflict between logic and

heuristic. Both of them support a heuristic approach against a

deductivist approach; Polya was more interested in problem-solving

(problems to find), whereas Lakatos was more akin of theory-building

(problems to prove).

Reuben Hersh propounds, in line with Lakatos, that philosophers of

mathematics and mathematicians should abandon the dogma that

mathematical truth should possess absolute certainty, because it is

incompatible with the actual practice of working mathematicians.

Paul Ernest, with his social constructivism, propounds that

mathematics is essentially a social construct, establishing the

connection between subjective knowledge of mathematics and objective

knowledge of mathematics, and between creation and learning.

1. GEORGE POLYA

In his famous book How to Solve It (first edition: 1945), George Polya

points out that mathematics is two-faceted:

Yes, mathematics has two faces; it is the rigorous science

of Euclid but it is also something else. Mathematics

presented in the Euclidean way appears as a systematic,

deductive science; but mathematics in the making appears as

an experimental, inductive science.

[Polya 71, preface]

Polya is a discreet critic of the Euclidean 'pedagogy':
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It is not desirable that the teacher should present many

proofs in the pure Euclidean manner, although the Euclidean

presentation may be very useful after a discussion in which

the students guided by the teacher discover the main idea of

the solution as independently as possible.

[Ibidem, p. 71]

Polya extends his investigation on mathematical heuristic by

publishing two other books: Mathematics and Plausible Reasoning (1954)

(divided into two volumes: Induction and Analogy in Mathematics, and

Patterns of Plausible Inference), and Mathematical Discovery (1962).

In the latter book Polya stresses the point that, in mathematics

teaching, the development of know-how is as important as acquisition

of information, if not more:

Our knowledge about any subject consists of information and

of know-how. If you have genuine bona fide experience of

mathematical work on any level, elementary or advanced,

there will be no doubt in your mind that, in mathematics,

know-how is much more important than mere possession of

information. Therefore, in the high school, as on any level,

we should impart, along with a certain amount of

information, a certain degree of know-how to the student.

[Polya 81, preface]

'Know-how in mathematics', Polya says, 'is the ability to solve

problems - not merely routine problems but problems requiring some

degree of independence, judgement, originality, creativity' [Ibidem].

Polya has substantially developed a theory of plausible reasoning or

heuristic reasoning in mathematics, which can be called the logic of

mathematical discovery. Heuristic is the logic of plausibility as well

as formal logic is the logic of certainty:

Heuristic reasoning is reasoning not regarded as final and

strict but as provisional and plausible only, whose purpose
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is to discover the solution of the present problem. We are

often obliged to use heuristic reasoning. We shall attain

complete certainty when we shall have obtained the complete

solution, but before obtaining certainty we must often be

satisfied with a more or less plausible guess. We may need

the provisional before we attain the final. We need

heuristic reasoning when we construct a strict proof as we

need scaffolding when we erect a building.

[Polya 71, p. 113]

Therefore, heuristic reasoning should not be confounded with

demonstrative reasoning:

Heuristic reasoning is good in itself. What is bad is to mix

up heuristic reasoning with rigorous proof. What is worse is

to sell heuristic reasoning for rigorous proof.

[Ibidem, p. 113]

2. IMRE LAKATOS

According to R. Hersh, the book Proofs and Refutations (1971) by Imre

Lakatos, which is a development of his Ph.D. dissertation Essays in

the Logic of Mathematical Discovery (1961), written under the

influence of Karl Popper and George Polya, 'is the most interesting

and original contribution to the philosophy of mathematics in recent

decades' [Hersh 79, p. 14].

Lakatos calls deductivist style the Euclidean style of presenting

mathematics:

Euclidean methodology has developed a certain obligatory

style of presentation. I shall refer to this as 'deductivist

style'. This style starts with a painstakingly stated list

of axioms, lemmas and/or definitions. The axioms and

definitions frequently look artificial and mystifyingly

complicated. One is never told how these complications

arose. The list of axioms and definitions is followed by the
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carefully worded theorems. These are loaded with heavy-going

conditions; it seems impossible that anyone should ever have

guessed them. The theorem is followed by the proof.

[Lakatos 87, p. 142]

According to Paul Ernest, 'the absolutist view of mathematical

knowledge is that it consists of certain and unchallengeable truths'

[Ernest 91, p. 7]. Lakatos argues that the deductivist style is linked

to the absolutist philosophy of mathematics:

In deductivist style, all propositions are true and all

inferences valid. Mathematics is presented as an

ever-increasing set of eternal, immutable truths.

Counterexamples, refutations, criticism cannot possibly

enter .. . Deductivist style hides the struggle, hides the

adventure. The whole story vanishes, the successive

tentative formulations of the theorem in the course of the

proof-procedure are doomed to oblivion while the end result

is exalted into sacred infallibility.

[Ibidem, p. 142]

Lakatos concludes his criticism of pedagogical formalism, associating

it to authoritarianism:

It has not yet been sufficiently realised that present

mathematical and scientific education is a hotbed of

authoritarianism and is the worst enemy of independent and

critical thought.

[Ibidem, p. 142]

There is a vast literature on Lakatos' philosophy of mathematics. In

my view, the Ph.D. thesis The Epistemological and Educational

Arguments of Imre Lakatos's Proofs and Refutations by Judith Maxwell

Greig (1987) is one of the best works on it, containing a thorough

investigation of Lakatos's attack on formalism [Greig 87].
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3. REUBEN HERSH

In 1979 Hersh published a courageous paper on philosophy of

mathematics, Some Proposals for Reviving the Philosophy of

Mathematics, in a journal, Advances in Mathematics, specialized in

mathematical themes.

Hersh's targets are the two major 'schools' in the philosophy of

mathematics, formalism and Platonism (realism), represented, for

example, by Rene Thorn (Platonist) and Jean Dieudonne (formalist), who

were opponents in a famous debate on 'modern' mathematics during

1971-1973.

According to Hersh, both formalism and Platonism are incompatible with

the daily experience and practice of working mathematicians, and

should be abandoned:

The philosophical notions about mathematics commonly held by

the working mathematician [Platonism and formalism] are

incompatible with each other and with our actual experience

and practice of mathematical work. Many practical problems

and impasses confronting mathematics today have

philosophical aspects. The dearth of well-founded

philosophical discourse on mathematics has observable

harmful consequences, in teaching, in research, and in the

practical affairs of our organizations.

[Hersh 79, p. 11]

For Hersh, mathematicians can abandon both philosophies, Platonism and

formalism, if they abandon the dogma that mathematical truth should

possess absolute certainty. Hersh completes his argument declaring

that, mathematical knowledge is fallible:

We do not have absolute certainty in mathematics; we may

have virtual certainty, just as in other areas of life.

Mathematicians disagree, make mistakes and correct them, are

uncertain whether a proof is correct or not.

[Ibidem, p. 20]
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According to Hersh, 'mathematics deals with ideas'. His credo is based

on the following assumptions, which he considers not as philosophical

theses but facts of experience:

(1) Mathematical objects are invented or created by humans.

(2) They are created, not arbitrarily, but arise from activity with

already existing mathematical objects, and from the needs of science

and daily life.

(3) Once created, mathematical objects have properties which are

well-determined, which we may have great difficulty in discovering,

but which are possessed independently of our knowledge of them.

The first two propositions are reactions against Platonism and

formalism. The first proposition opposes the Platonist's belief in the

existence of ideal entities, independent or prior to human

consciousness. The second proposition opposes the formalist's opinion

that 'much of all of pure mathematics is a meaningless game'.

The third proposition suggests that mathematical objects, which are

created by individuals, are transformed into cultural objects by the

society, more specifically by the community of mathematicians. In

other words,

Once created and communicated, mathematical objects are

there. They become part of human culture, separate from

their originator. As such, they are now objects, in the

sense that they have well-determined properties of their

own, which we may or may not be able to discover.

[Hersh 79, p. 23]

4. PAUL ERNEST

Paul Ernest, in his recent book The Philosophy of Mathematics

Education (1991), propounds a new philosophy of mathematics, which he

calls social constructivism.
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According to Ernest, social constructivism views mathematics as a

social construction. In my view, the fundamental feature of Ernest's

philosophy is the linking he establishes between subjective

(individual, private) knowledge and objective (social, public)

knowledge:

So we have a creative cycle, with subjective knowledge

creating objective knowledge, which in turn leads to the

creation of subjective knowledge.

[Ernest 91, p. 84]

Ernest assumes the following seven propositions about knowledge

creation:

1. An individual possesses subjective knowledge of mathematics;

subjective and objective knowledge are distinct.

2. Publication is necessary for subjective knowledge to become

objective mathematical knowledge but not sufficient; this will depend

on its acceptance.

3. Published knowledge is subject to scrutiny and criticism by others,

following Lakatos' heuristic, which may result in its reformulation

and acceptance as objective knowledge of mathematics.

4. This heuristic depends on objective criteria.

5. The objective criteria for criticizing published mathematical

knowledge depend to a large extent on shared mathematical knowledge,

but ultimately they rest on common knowledge of language, that is, on

linguistic conventions.

6. A key stage in the cycle of mathematical creation is the

internalization, that is the inner subjective representation, of

objective mathematical and linguistic knowledge.
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7. Individual contributions can add to, restructure or reproduce

mathematical knowledge [Ernest 91, pp. 43-44].

The following figure 2.2 shows an illustrative diagram of this cycle.

PRIVATE REALM
CREATION

Public Criticism and
Reformulation

A

Publication

Subjective Knowledge
of Mathematics

SOCIAL
NEGOTIATION
PROCESSES

New Knowledge

Personal
Reformulation

SOCIAL REALM

New Knowledge

Objective
Knowledge of
Mathematics

Representation

LEARNING
Re-construction

Mathematical Enculturation

Figure 2.2 Ernest's Diagram
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CONCLUSION OF THE CHAPTER

Undergraduate mathematics textbooks reflect the struggles between

philosophical tendencies. In their discourses authors utilize three

conflicting 'logics':

- formal logic (the logic of demonstration)

- heuristic (the logic of discovery)

- rhetoric (the logic of social negotiation)

Formal logic gives structure to the architecture of formal

mathematics, organising the 'contents' of the textbook: axioms,

definitions, and theorems. Formal logic also contributes partially to

the organisation of mathematical argumentation: proofs.

Heuristic organises the readers' construction of mathematical

knowledge by means of mathematical activities: exercises and problems.

Rhetoric organises the negotiation of meanings (motivation,

persuasion, clarification, acceptance): examples, figures,

applications, historical notes, metadiscourse.
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CHAPTER 3

THE CONTROL OF MATHEMATICAL DISCOURSE

Introduction

My perspective is that the discourse conveyed by a mathematics

textbook is the result of the compromise the author establishes

between its three purposes: transmission of information, construction

of knowledge, and negotiation of meanings.

I have said in section 1.3 that each component of mathematical

discourse has its own 'logic': rules of formal logic govern

transmission of mathematical information, rules of heuristic control

the construction of mathematical knowledge, and rules of rhetoric

dominate the negotiation of meanings.

In general authors are not involved in explaining rules of formal

logic; it seems that rules of logic are 'natural', since learners are

all supposed to know such rules. This is a great mistake. Textbooks

that present notions of formal logic are rare. Heuristic rules are

less mentioned in textbooks, and rhetorical rules are never mentioned.

This situation is amazing. To learn mathematics seems the same thing

as to try to improve ability in chess without learning strategies or

tactics.

In the first three sections of this chapter I discuss respectively the

logical, heuristic and rhetorical schemes most often used by the

authors in the development of their discourse.

In the last section I give an outline of the analysis of mathematical

discourse I intend to develop in the following chapters.
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3.1 LOGICAL SCHEMES

Theorems and definitions are the core of formal mathematics. In this

section I am interested in the logical schemes used in the

presentation of theorems. There are four fundamental types of

theorems: implication, equivalence, existence, and uniqueness.

1. Implication Theorem

The majority of the theorems that appear in undergraduate mathematics

textbooks are explicitly stated (or can be stated), in the form of

implications, that is, propositions of the form 'if p, then q', or

symbolically p =* q. In this case, p is called antecedent or

hypothesis and q is called consequent or conclusion. This formal

standardization is misleading, because it hides deep differences

between theorems.

SUFFICIENT OR NECESSARY?

There are two ways of looking at an implication theorem of the form

(p =* q).

Sometimes (p =* q) represents the fact that 'p is a sufficient

condition for q'. This means rhetorically that the theorem's central

theme is the consequent q, and that the proposition p is just a

condition that guarantees that q holds; it is then a sufficient

condition for the validity of q.

For example, in the context of convergence of series, it is known that

some geometric series converge, and others diverge. The problem is to

find a simple test whereby we can know whether a given geometric

series is convergent or not, that is, to find a criterion of

convergence. This problem gives rise to the theorem

'if I q I < 1, then the series 1 + q + q + ... q + . . . converges',

which gives then a sufficient condition for convergence of the

geometric series.
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Sometimes the implication (p => g) represents the fact that 'q is a

necessary condition for p'. This means rhetorically that our topic of

interest is the antecedent p, and that the proposition q is just a

consequence of p.

For example, in the context of complex series, one problem is to know

what is the asymptotic behaviour of the general term of a convergent

series. This question gives rise to the theorem

'if the series z + z + ... + z + ... is convergent, then
1 2 n

l i m z = 0 ' ,
n

which gives a necessary condition for the convergence of a complex

series.

For many authors, any implication (p => q) can be read either as 'p

is sufficient for q' or 'q is necessary for p*. However, from the

viewpoint of ordinary language, this is not convenient.

We are not allowed to interpret any implication (p => q) as 'q is a

necessary condition for p'. It sounds nonsense to affirm, for example,

that the convergence of the geometric series is a necessary condition

for the fact that \q\ < 1. Analogously, we are not allowed to

interpret any implication (p => q) as 'p is a sufficient condition

for q'. For example, it seems absurd to say that the convergence of

the series J] z is a sufficient condition for the equality

lim z = 0.
n

Therefore, 'necessary' and 'sufficient' are words that convey

rhetorical meanings that are obfuscated by the use of formal logic.

Discourse analysis should enhance such rhetorical differences, which

are concealed by the language of formal logic.

In order to interpret a theorem given in the form of implication in

terms of sufficiency or necessity, we should look for the generating

problem: behind any theorem, there always exists a generating problem.
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This means that an implication theorem can be read 'p is a sufficient

condition for q' if the question that originates the theorem is 'under

what conditions does q occur?'. Analogously, it can be read 'q is a

necessary condition for p ' if the question is 'what are the

consequences that follow from p?

Nevertheless, there exist implication theorems that permit both

interpretations. For example, the theorem 'if f is differentiable,

then f is continuous' can be read in both ways: 'differentiability of

a function is a sufficient condition for its continuity' as well as

'continuity is a necessary condition for differentiability'. This

reading depends on the context of use.

IMPLICATION AND CLASSES

Some implication theorems can be translated to the language of classes

or sets; they express that a certain class is a subclass of another

one. For example, the theorem 'if the series £ a is absolutely

convergent, then it is convergent' can be translated to class language

as 'the class of absolutely convergent series is a subclass of the

class of convergent series'.

However, this translation cannot be extended to all implication

theorems; for example, the criterion of convergence of geometric

series cited above cannot be translated to the language of set theory.

EQUIVALENT PROPOSITIONS

There are several ways of expressing the same implication. It is known

for example that the implication (p =» q) is logically equivalent to

the following propositions:

(1) ~p v q,

(2) ~q => ~p,

(3) ~(p A ~q).

Proposition (2), (~q => ~p), called the contrapositive of the direct

implication, is much used in mathematics. For example, the necessary

condition for the convergence of complex series given above can be

rephrased as
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'if lim z * 0, then the series z + z + ... + z + ... is
n 1 2 n

divergent',

which can be interpreted as a sufficient condition for the divergence

of a series. So, by the simple use of logical equivalence, we obtain a

powerful tool for classifying series.

In other words, we can, from the logical point of view, transform a

'necessary' condition into a 'sufficient' condition and vice-versa: if

q is a necessary condition for p, then ~q is a sufficient condition

for ~p; analogously, if p is a sufficient condition for q, then ~p is

a necessary condition for ~q.

Readers of undergraduate mathematics textbooks are, in general,

supposed to know all these equivalences, and to use them. The logical

relations between statements are often given verbally, rather than

symbolically, using such words as 'necessary', 'sufficient', 'if,

'then', 'only if etc.

Discourse analysis should draw attention to the interplay between the

'calculus' of formal logic and the corresponding verbal 'calculus' of

the ordinary language.

For example, consider the following three "versions" of Liouville's

theorem:

1. Priestley's version: Let f be holomorphic and bounded in the

complex plane C. Then f is constant. [Priestley, p. 65]

2. Derrick's version: An entire function cannot be bounded on all of C

unless it is a constant. [Derrick, p. 99]

3. Depree 8 Oehrlng's version: An entire function that is not a

constant cannot be bounded in all of C. [Depree & Oehring, p. 196]
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A mathematician would say that, even though these three versions

appear to be different, they are logically equivalent. A logician

would recognise the equivalence pointing out however some minor

technical differences. For example, Derrick's version affirms more

things than the other versions.

From the viewpoint of discourse analysis, the differences are more

interesting than the equivalences: even though these three definitions

are logically equivalent, they appear to be different. In what sense

are they different?

In my view, Depree & Oehring's version is more significant than

Priestley's version, since it seems to express something about the

'behaviour' of non-constant entire functions, whereas Priestley's

version is set-theoretical and then static: it essentially describes

the intersection of two classes. Observation of these subtle

differences should be part of discourse analysis, since it can help

the uncovering of the overall discursive strategy of textbooks

authors.

CONVERSE OF A THEOREM

The converse of the implication (p =* q) is the proposition {q =*• p).

As a rule, mathematicians, when presented to an implication theorem,

ask about its converse, in order to feel the 'closeness' of the

relationship between hypothesis and conclusion. The maximum of

'closeness' is obviously the equivalence between them.

The converse of a theorem can be true or false. If the converse is

true, we have logical equivalence between p and q; in this case, q is

usually said to be a necessary and sufficient condition for p, and

vice-versa.

The standard tactics to show that the converse is false is by

exhibiting a counter-example.
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FALLACY

Some students are tempted to 'deduce' the proposition (~p => ~q) from

the direct implication: this false deduction can lead to an error. For

example, the ratio test of convergence of numerical series with

positive terms says that 'if lim a / a < 1, then the series £ a is

convergent'. The proposition 'if lim a / a £ 1, then the series £ a

is divergent' is false.

2. Equivalence Theorem

Equivalence theorems are those theorems in which both the direct

implication and the converse implication are true. Symbolically,

'p «=> q' means 'p =* q' and 'p <= q'. In words, 'p is necessary and

sufficient for q', or 'p if and only if q'.

Equivalence theorem says that the antecedent and the consequent are

two different ways of expressing the same thing. Sometimes such

theorems are called characterization theorem, since they characterize

some mathematical object.

For example, A.J. White gives the following theorem of

characterization of closed sets [White, p. 57]:

Let (X,d) be a metric space, and let F be a subset of X. The

following statements are equivalent:

(i) F is closed,

(ii) X ~ F is open,

(iii) if {x } is a sequence in F converging to x then x € F.
n

The existence of characterization theorems prove that mathematicians

look at mathematical objects from different viewpoints. Through

equivalence theorems we can therefore change perspectives. The choice

of perspectives is part of authors' discourse.

3. Existence Theorem

There are two types of proofs of existence theorem: (i) ostensive

proof (one exhibits the object or at least gives a construction of

it), (ii) non-ostensive proof (one does not exhibit the object).
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• Ostensive Proof

One can prove the existence of a mathematical object, by exhibiting

it. For example, to prove that every non-zero complex number has an

inverse, it is enough to show its inverse:

If z = (x,y) * (0,0), then z"1 = (x/(x2 + y2), -y/(x2 + y2)).

• Non-ostensive Proof

Sometimes one proves the existence of a mathematical object, without

exhibiting it. For example, one proves the Fundamental Theorem of

Algebra, which asserts that every polynomial equation has at least a

root, without exhibiting any root. The proof is by contradiction: the

non-existence is absurd!

Another example is the proof of the existence of an infinity of prime

numbers. This theorem is also proved by reductio ad absurdum. There is

no way of exhibiting all the prime numbers.

It is a sad fact of life in mathematics that sometimes we have to

prove the existence of objects, without knowing precisely what they

are.

4. Uniqueness Theorem

Proofs of uniqueness theorems are standard: one supposes that there

are two objects that satisfy the property and then show that they

coincide.

Sometimes the uniqueness refers to representation. For example, when

we represent a complex number in the form z = x + iy, we say that x is

THE real part and y is THE imaginary part, because we prove or accept

that the representation is unique. In other words, if z = x + iy and

z = x + iy , then x = x and y = y .
2 J2 1 2 J l J 2
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3.2 HEURISTIC SCHEMES

Mathematicians use logical and heuristic schemes to construct

mathematical theorems and theories, and to solve mathematical

problems. These same schemes are also used in the communication of

mathematical knowledge.

Heuristic reasoning in mathematics works in two directions: horizontal

and vertical.

By horizontal movement we compare mathematical objects and classes

that are at the same 'ontological' level, establishing similarities

and differences, analogies and disanalogies of structure and

behaviour.

By vertical movement we pass from one 'ontological' level to another

one: by generalization, we pass from objects to classes, and by

specification or particularization, we pass from classes to

subclasses, or to particular objects.

One of the difficulties of understanding mathematical discourse is due

to the fact that we have to deal with both movements at the same time.

For example, the set of complex numbers is presented as an extension

of the set of real numbers, that is, we pass from a class to a

superclass. On the other hand, complex numbers are shown to be

'analogous' to real numbers because both are fields, metric spaces,

and vector spaces.

In the following I will discuss two schemes of heuristic reasoning:

analogy (horizontal movements) and generalization (vertical

movements).

3.2.1 Analogy

According to the psychologists S. Vosniadou and A. Ortony,

The ability to perceive similarities and analogies is one of

the most fundamental aspects of human cognition. It is
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crucial for recognition, classification, and learning, and

it plays an important role in scientific discovery and

creativity.

[Vosniadou & Ortony 89, p. 1]

According to G. Polya, analogy is a sort of similarity: 'similar

objects agree with each other in some respect, analogous objects agree

in certain relations of their respective parts' [Polya 71, p. 37].

This concept of analogy is formalized by the psychologist D. Gentner:

An analogy is a mapping of knowledge from one domain (the

base) into another (the target), which conveys that a system

of relations that holds among the base objects also holds

among the target objects. Thus analogy is a way of focusing

on relational commonalties independently of the objects in

which those relations are embedded.

[Gentner 89, p. 201]

There are many kinds of analogies: analogy of objects, classes,

functions, operations, theories, definitions, theorems, proofs, etc.

SIMILARITY OF OBJECTS

Mathematical objects are similar (or analogous) if they share

attributes, that is, if they have common properties. In the language

of classes, they are similar if they belong to the same class.

Sometimes mathematicians identify analogous objects. For example,

fractions are identified with recurrent decimals. This identification

comes from the need to regard fractions as particular instances of

real numbers; it is then said that real numbers are a generalisation

of rational numbers. Another way to say this is to blur the

distinction between objects and signs: we say that fractions and

recurrent decimals are different 'representations' of rational

numbers.
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ANALOGY OF CLASSES OF OBJECTS

Two classes of objects are analogous if they have the same

mathematical structure. For example, complex numbers are analogous

(similar) to real numbers because they have the same algebraic

structure: both are fields. However this analogy is not too strong:

the field of real numbers is ordered, whereas the field of complex

numbers is not ordered. Complex numbers are also analogous to real

numbers in a geometric sense: both are real vector spaces. However,

this analogy is weak since they have different dimensions.

Authors of mathematics textbooks often use analogy as a rhetorical

device, hiding the fact that analogous classes or objects also present

disanalogies.

ANALOGY OF FUNCTIONS

Two functions are analogous if they have the same 'behaviour'. This

means that they are instances of the same high-order concept. For

example, continuous complex functions are analogous to continuous real

functions, because complex numbers and real numbers have a common

structure (they are topological spaces) that is preserved by

continuous functions.

ANALOGY OF OPERATIONS

I will deal with this type of analogy in section 9.1, where the

principle of the permanence of the formal law that guides the

extension of operations is discussed.

ANALOGY OF THEORIES

Sometimes a complete mathematical theory is constructed based on

analogy with known theories. Examples: (1) complex analysis is

'analogous' to Real analysis; (2) the theory of difference equations

is 'analogous' to the theory of differential equations, (3) calculus

of variations is 'analogous' to the theory of maxima and minima of

functions.
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ANALOGY OF DEFINITIONS

Analogy of definitions is important for the transference of techniques

or intuitions. For example, the derivative of a complex function is

formally analogous to the derivative of a real function. This implies

that many algebraic theorems can be easily transferred from one area

to another. However, the geometric interpretation is not transferable

from real case to the complex case.

ANALOGY OF THEOREMS

The important thing about analogous theorems is that they have in

general the same type of proof. An example, is the necessary condition

for the minima or maxima of functionals in Calculus of Variations:

Euler's differential equation is analogous to the equation f'(x) = 0

found in Calculus of Real Functions.

ANALOGY OF PROOFS

Authors of undergraduate mathematics textbooks often use analogy of

proofs as an excuse for the omission of proofs.

ANALOGY OF PROBLEMS

George Polya's trilogy (How To Solve It (1971), Mathematical Discovery

(1981), and Mathematics and Plausible Reasoning (1954)) is the best

reference for this subject.

EXAMPLE: USE OF ANALOGY IN STEWART & TALL'S TEXTBOOK

Stewart & Tall assume that they base their discourse on two organising

principles: analogy and geometric intuition. They declare in the

preface that

we have organised the material around two basic

principles: (1) generalize from the real case; (2) when that

reveals new phenomena, use the rich geometry of the plane to

understand them.

[Stewart & Tall, preface]
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That generalization from the real case means use of analogy becomes

clear from the following:

Unlike the gradual emergence of the complex number concept,

the development of complex analysis seems to have been the

direct result of the mathematician's urge to generalize. It

was sought deliberately, by ANALOGY with real analysis.

[Stewart & Tall, p. 5]

The following collection of explicit references to analogy found in

Stewart & Tail's textbook demonstrates how frequent is the use of

heuristic schemes in their discourse.

ANALOGY OF DEFINITIONS

'The notion of a limit lim f(z) is ANALOGOUS to the real case and

its properties follow by similar arguments.' [Stewart & Tall, p. 25]

'By ANALOGY with the real case, we say that a series £ z is

absolutely convergent if ... [Stewart &. Tall, p. 54]

'If f is a complex function defined on an open set S, then, by ANALOGY

with the real case, f is said to be differentiable at a point z 6 S

with derivative f'(z ) € C if ... ' [Stewart & Tall, p. 64]

'The next part of the grand plan is to define complex integration by

ANALOGY with the real case and establish the inverse relation between

differentiation and integration.' [Stewart & Tall, p. 95]

'Note that this [definition of limit of a sequence of complex numbers]

is IDENTICAL with the usual definition for real sequences.' [Stewart &

Tall, p. 49] (Here they use the term 'identity' instead of 'analogy'.)

ANALOGY OF GEOMETRICAL REPRESENTATIONS

'There is a natural geometric representation of complex numbers as a

plane, ANALOGOUS to that of the reals as a line.' [Stewart & Tall, p.

10]
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ANALOGY OF PROPERTIES

'In this chapter we shall develop some elementary properties of

sequences and series of complex numbers, mostly by direct ANALOGY with

the real case, and then specialize to a deeper study of power series. '

[Stewart & Tall, p. 48]

'In many ways results concerning complex differentiation follow

naturally by ANALOGY with the real case.' [Stewart & Tall, p. 65]

ANALOGY OF IDEAS

'A SIMILAR idea gives us the complex version of the General Principle

of Convergence' [Stewart & Tall, p. 50] (Here they use the term

'similarity' instead of 'analogy'.)

ANALOGY OF PROOFS

'Standard properties of complex limits may be proved by using methods

ANALOGOUS to the real case' [Stewart & Tall, p. 26]

ANALOGY OF TECHNIQUES OF COMPUTATION

'The computations are ANALOGOUS to the real case; ..." [Stewart &

Tall, p. 66]

DISANALOGY

'It is therefore not possible to use inequalities, ANALOGOUS to those

for reals, when discussing complex numbers.' [Stewart & Tall, p. 18]

'We apply these [Cauchy-Riemann equations] to prove that if a function

with connected domain has zero derivative, it must be constant. While

the result is ANALOGOUS to the real case, the proof is not.' [Stewart

& Tall, p. 64]
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3.2.2 Generalization and Particularization

According to Polya, 'generalization is passing from the consideration

of one object to the consideration of a set containing that object; or

passing from the consideration of a restricted set to that of a more

comprehensive set containing the restricted one' [Polya 71, p. 108].

HOW THEOREMS ARE GENERALIZED

We consider implication theorems T of the form H => C, where H means

hypothesis (or hypotheses) and C means conclusion. There are two basic

ways of generalizing theorems: (i) by 'weakening' the hypotheses, or

(ii) by 'strengthening' the conclusion.

• WEAKENING HYPOTHESES

One way of generalizing theorems is by 'weakening' hypotheses: the

theorem T is more general than theorem T if the hypotheses of T

imply those of T , but not vice-versa, while the conclusion is the

same [Davis & Hersh 86, p. 134]. In this case, it is usual to say that

we have 'weakened' the hypotheses of the theorem T ; this means that

the hypotheses of T were super-restrictive, that there were more

restrictions than necessary for the validity of the conclusion.

Davis & Hersh gave some examples of this type of generalization. I

will give the possible 'logic' behind each generalization.

EXAMPLE 1

Theorem: Every number that ends in 0 is divisible by 2.

Generalization: Every number that ends in 0, 2, 4, 6, or 8 is

divisible by 2.

Logic of generalization: There is a 'natural' partition of the set of

natural numbers: numbers that end in 0, in 1, . . . , in 9. The theorem

affirms something about the first class. What about other classes?

EXAMPLE 2

Theorem: If ABC is an equilateral triangle, then the angle at A equals

the angle at B.

Generalization: In an isosceles triangle, the base angles are equal.

Logic of generalization: the theorem affirms something about
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equilateral triangles. Triangles are classified in three classes:

equilateral, isosceles or scalen. What about other classes of

triangles?

2 2 , 2
c = a + b

2 2 2
c = a + b - 2ab cos C

EXAMPLE 3

Theorem: In a right triangle

Generalization: In any triangle

Logic of generalization: Pythagoras's theorem affirms something about

the sides of a right triangle. Triangles can be right-angled or not.

What about the other class?

• STRENGTHENING CONCLUSIONS

The second way of generalizing theorems is by 'strengthening' the

conclusion, that is, the generalized theorem has the same hypotheses,

while its conclusion implies the conclusion of the first theorem, but

not vice-versa. This means that the first theorem has deduced less

conclusions than it is possible to deduce.

EXAMPLE 4

Theorem: the complex exponential function is continuous.

Generalization: the complex exponential function is entire.

There is a third way to generalize theorems: by changing its setting

or environment. For example, we can pass from the tri-dimensional
3 4

environment 1R to the four-dimensional IR , or more generally, to the

n-dimensional environment (Rn. Another example: we can pass from metric

space to topological space, or from normed space to topological vector

space, or from the field of real numbers IR to the field of complex

numbers C. Despite the fact that this kind of generalization can be

included into the first case of generalization, it is worthwhile to

give it a particular relevance.

EXAMPLE 5

Theorem: if a 3-dimensional box has edges x, y, z, then its diagonal d

is given by

, , 2 2 2
d = vx +y +z
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Generalization: if a n-dimensional box has edges x , x , . . . , x ,
1 2 n

then its diagonal d is given by

, 2 2 2
= v x +x + ... + x

1 2 n

This particular example shows how important is this change in the

setting of theorems: we can transfer 'Euclidean' concepts to

n-dimensional vector spaces, and more generally, to

infinite-dimensional vector spaces.

3.2.3 Setting and Perspective

Mathematical discourse is dynamic; authors are constantly changing

either the setting (scenery, environment) of the subject or the

perspective (vantage point, viewpoint) or both.

For example, authors of Complex Analysis textbooks ordinarily

introduce complex numbers, setting the subject 'complex numbers' in

the algebraic context of generalization of real numbers: the problem

is to construct a field C that extends R, and allows a solution to the
2

equation x +1 = 0.

Afterwards, by way of geometric interpretation, they change the

perspective: they regard C as a vector space. And then, by way of the

introduction of modulus, they change again the perspective: they

regard C as a normed space. Finally, by way of introduction of

distance, they regard Cvas a metric space.

By hindsight, the reader should understand the general plan of the

author: to set the complex numbers as a set of numbers possessing

three different structures: algebraic, geometric and topological

structures.

Generalization and particularization participate in both setting and

change of perspective. For instance, by exemplification, the author

changes the level of generality and a fortiori changes the

perspective, passing from general to particular, from the class to the

object, from abstract to concrete. By referring to mother structures
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(fields, groups, vector spaces, topological spaces, etc.), the author

rises the level of generality, in a converse movement.

In order to perceive the heuristic reasoning of setting and selecting

perspectives which supports mathematical discourse, it is necessary to

perform a movement like the movement of binoculars: from general to

particular, and from particular to general.

3.3 RHETORICAL SCHEMES

The discourse of undergraduate mathematics textbooks is a mixture of

formal and informal discourse. On the one hand, there is the discourse

of formal mathematics, which is characterized by the discourse of

logical explanation and argumentation; on the other hand, there is the

discourse of informal mathematics, which is characterized by the

discourse of pedagogic explanation and argumentation.

The discourse of informal mathematics is essentially a rhetorical

discourse, a persuasive discourse, whereby meanings and values are

negotiated between author and reader. It is driven by the author's

educational and psychological conceptions (prejudices, bias,

preferences), which often seem to be unconscious.

In this section I will discuss the most neglected of the functions of

mathematical discourse: the rhetorical function. How does the author

explain concepts without (or as well as) defining them? How does the

author give evidence for the truth of propositions without (or as well

as) proving them? What else does the author negotiate other than

mathematics?

USE OF INTUITION

Intuition is necessary in mathematical discourse, because formal logic

is not clear enough to explain concepts, and often has insufficient

power to convince the student about the truth of propositions. I

agree, together with Polya, with the statement of Hadamard about the

main function of logic in mathematics:
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I think that everybody prefers intuitive insight to formal

logical arguments, including professional mathematicians.

Jacques Hadamard, an eminent French mathematician of our

times, expressed it so: "The object of mathematical rigor is

to sanction and legitimize the conquests of intuition, and

there never was any other object for it." Yet, if we exclude

professional mathematicians, almost nobody remains who would

be in a position to properly appreciate formal arguments.

[Polya 81, p. 129]

Intuition is a rhetorical tool; the author utilizes different

strategies of intuitive explanation such as imagery, exemplification,

metaphors, analogies, particularizations, models, etc. to convince the

reader about the validity of a proposition.

In mathematical discourse it is convenient to distinguish two modes of

intuitive explanation: EXAMPLES, and FIGURES. In other words, we have

to investigate (i) the rhetorical function of examples, particular

cases, models, etc., and (ii) the rhetorical function of figures,

diagrams, tables, figures of speech, etc.

• NEGOTIATING INTUITION

Authors often negotiate intuition explicitly. As an illustration, I

present below a collection of quotations from the textbook Real

Analysis by A.J. White, where he discusses or negotiates intuition.

We take an entirely NAIVE AND INTUITIVE VIEW of set theory. [White, p.

1]

... INTUITIVE JUDGEMENTS used in more complex situations which involve

conclusions REMOTE FROM OUR INTUITIONS may well lead to errors which

are less easy to detect. [White, p. 16]

We aim at a standard of proof which eliminates any reliance on

INTUITION, and in which each statement is a simple logical consequence

of its predecessors. However, it should be clearly realized that this

BANISHMENT OF INTUITION applies only to formal proofs. Obviously our

75



axiom scheme will be chosen so as to capture as many as possible of

our INTUITIVE IDEAS about the real numbers, and in this, as in any

other mathematical study, a clear INTUITIVE UNDERSTANDING is essential

to a proper grasp of the subject and as a means of conjecturing new

results and suggesting methods of proof. [White, p. 18]

Our last axiom for R [upper bound axiom] is in a different class from

the others. Its role in the real number system was only perceived and

crystallized towards the end of the nineteenth century, and so it

cannot realistically be regarded as INTUITIVE in content. [White, p.

30]

The definition of metric space given above is an abstraction based

largely on experience with the real numbers, and so it is natural,

particularly since we live in a world which is (at any rate

approximately) Euclidean, that our INTUITIONS about metric spaces

should be Euclidean in character. [White, p. 45]

The word 'compact' itself probably gives the best INTUITIVE

DESCRIPTION of the notion of compactness. [White, p. 64]

On the other hand, it can be shown that if

1/r
ii r=l

2
then {x } converges to n /6; but it would require an extraordinary

n

INTUITION to conjecture this result and remarkable technique to prove

it by elementary methods. [White, p. 89]

It should be noticed that, although the notion of finite sum has a

substantial INTUITIVE BACKGROUND, it still requires a formal

definition to introduce it into our mathematical system. The idea of

assigning a sum to an infinite subset of R has a more meagre INTUITIVE

CONTENT, and indeed INTUITION too freely applied can lead to serious

error. [White, p. 187]
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DISCOURSE OF OMISSION (CONCEALMENT, TACIT ASSUMPTION)

I call discourse of omission what the discourse analyst Teun A. van

Dijk has called the ideology of the unsaid:

The ideological nature of discourse in general, and of news

discourse in particular, is often defined by the unsaid.

[Dijk 86, p. 178]

This perfectly applies to mathematical discourse as I will try to show

in many places.

GAPS

Authors of mathematics textbooks do not tell all the truth;

mathematical discourse has in general many gaps. The author omits

details intentionally. This omission of details is an important aspect

of mathematical discourse.

It seems paradoxical that authors support the axiomatic treatment of

mathematics, but give an exposition with several gaps. Some gaps are

explicit; they are presented as exercises. Other facts are hidden,

mainly because they can disturb in one way or another their discourse.

NEGOTIATION OF VALUES

The author negotiates other things besides mathematics: values,

epistemological points of views, cognition, etc.

• NEGOTIATING IMPORTANCE

One way to negotiate the values of concepts, techniques and theorems,

is by the phrase 'it is important' or similar phrases.

EXAMPLE. In order to illustrate how authors negotiate the importance

of concepts and theorems, I present some quotations of the textbook

Real Analysis: An Introduction by A.J. White.

We now introduce some operations on sets. It is IMPORTANT to obtain

facility in handling these operations ...[White, p. 2]
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We are now ready to make what is possibly THE MOST IMPORTANT

DEFINITION IN MATHEMATICS - that of function. [White, p. 5]

It is IMPORTANT, particularly in formal arguments, to adhere strictly

to the terms of the above definition. [White, p. 6]

It is frequently convenient, and often increases our understanding, to

have alternative formulations of an IMPORTANT result or concept.

[White, p. 31]

In this chapter we concentrate on another IMPORTANT aspect of the real

numbers - the concept of distance. [White, p. 45]

Our final example concerns a simple but IMPORTANT METHOD of

constructing a whole family of metric spaces from a given metric

space. [White, p. 47]

The sequence {x } is said to converge to x if ... This is ONE OF THE
n

MOST IMPORTANT DEFINITIONS in analysis. [White, p. 49]

It is IMPORTANT to notice that the terms 'open' and 'closed', as they

have been defined here, do not carry the overtones of their everyday

meaning. [White, p. 56]

It is A FACT OF GREAT IMPORTANCE that the converse of Theorem 2-10

[Every compact subset of a metric space is closed and bounded] is true

for the Euclidean metric spaces. [White, p. 66]

There is another IMPORTANT THEOREM concerning continuous functions on

a compact metric space. [White, p. 68]

As a first IMPORTANT APPLICATION of the concept of uniform

convergence, we prove that the uniform limit of a sequence of

continuous functions is continuous. [White, p. 102]
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• NEGOTIATING COGNITION

Authors negotiate cognition by using phrases such as 'IT IS EASY' or

'IT IS DIFFICULT', and similar phrases. Authors use these

phrases as rhetorical devices to control the boundary between

triviality and significance. I continue exhibiting examples from the

same textbook Real Analysis by A.J. White.

According to White's definition, a metric space (X,d) is compact if

every infinite subset of X has a cluster point in X. White states the

following proposition, saying that it is true: A metric space (X,d) is

compact if and only if every open cover of X has a finite subcover.

[White, p. 67]

He begins the proof stating that 'half of this proposition is EASY',

and then he proves this easy part. Afterwards, he says 'the other half

of the proposition is more TROUBLESOME, and since we do not use the

result anywhere the proof is omitted. [White, p. 68]

The phrase 'it is easy to see' means rhetorically that 'the reader

should fill the details'. White is particularly fertile in devising

new modes to say that 'the reader should fill the details':

IT IS EASY TO VERIFY ... [White, p. 2]

IT IS CLEAR THAT ... [White, p. 2]

... and IT FOLLOWS EASILY THAT ... [White, p. 29]

IT IS EASY TO PROVE (by induction) that ... [White, p. 85]

... and the sequence {Aa } converges TRIVIALLY to 0. [White, p. 86]
n

IT IS EASILY VERIFIED THAT ... [White, p. 86]

IT IS NOT HARD to conjecture and prove that ... [White, p. 89]

79



EVIDENTLY, the sequence {f(x )> in f[X] converges to 1 ... [White, p.
n

99]

IT IS TRIVIAL THAT ... [White, p. 100]

The proofs of these results are left as an exercise, which should

present NO DIFFICULTY if the proofs of Theorems ... have been

understood. [White, p. 107]

On the other hand, the phrase 'it is difficult' is a sign that

something complicated is near to be presented.

This [inequalities] is an extensive and sometimes DIFFICULT SUBJECT.

[White, p. 39]

ab initio discussion of the integrability of the various

functions commonly used in analysis is likely to be both TEDIOUS AND

DIFFICULT. This reflection may make the rather dry and technical

nature of the next few theorems a little more palatable. [White, p.

143]

The following result substitutes monotone convergence for uniform

convergence; however, since the proof is rather STRENUOUS, we give

only a sketch. [White, p. 166]
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3.4 ANALYSIS OF MATHEMATICAL DISCOURSE: AN OUTLINE

Mathematical discourse is a discourse through which meanings, truth,

intuitions, values, behaviour, philosophical and ideological

viewpoints, etc. are negotiated between author and reader. Discourse

analysis of mathematics textbooks is the investigation of such

negotiations.

My approach is to regard mathematics textbooks as the battlefields of

the struggle between logic, heuristic and rhetoric. Therefore, this

approach gives relevance to the discursive schemes used by the author

throughout the textbook. In these negotiations authors use logical,

heuristic and rhetorical schemes. Logical schemes are used to make the

presentation rigorous, heuristic schemes are used to make it

comprehensible, and rhetorical schemes are used to make it acceptable.

In the following I present an outline of what will be developed in the

following chapters.

Mathematical discourse has an informational function. The organisation

of mathematical information involves description, explanation, and

argumentation, that is, the informational function is a sum of

descriptive function, explanatory function, and argumentative

function.

NEGOTIATION OF MATHEMATICAL OBJECTS

Mathematical discourse is about mathematical objects or concepts and

properties and relations between concepts. Authors of undergraduate

mathematics textbooks have a bunch of concepts (ideas, notions) to

impart to their readers. Among these concepts there are few

fundamental concepts that deserve deep analysis. Concepts are in

general presented through formal DEFINITIONS. Therefore, analysis of

the negotiation of concepts is synonymous to analysis of definitions.

This theme will be developed in chapter 4.
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NEGOTIATION OF TRUTH

Properties of concepts or relations between concepts are presented in

the form of THEOREMS, LEMMAS, PROPOSITIONS, COROLLARIES, etc., whose

truth is negotiated through PROOFS or RHETORICAL ARGUMENTS. This theme

will developed in chapter 5.

NEGOTIATION OF COMPREHENSION

Logical arguments are not enough to make readers to understand the

text. Mathematical discourse is also the discourse of pedagogic

explanation and argumentation. Therefore the authors make use of

illustrative devices: EXAMPLES and FIGURES. This theme will also

developed in chapter 5.

NEGOTIATION OF ACTIVITIES

Mathematical discourse has a heuristic function. Authors of

mathematics textbooks organise readers' activities through lists of

EXERCISES or PROBLEMS. Moreover, authors leave several GAPS in the

text to be filled by the readers. This means that the reader is

periodically invited by the author to construct his/her own

mathematical knowledge. The discourse analyst should then evaluate

what kind of heuristic schemes the reader has to use in order to solve

the exercises, and fill the gaps. This will be theme of chapter 6.

OTHER NEGOTIATIONS

Authors negotiate other things such as prerequisites, applications,

and contextualization. These topics will be developed in the same

chapter 6. Negotiation of ambiguities in nomenclature and notation

will be discussed in chapter 7.

ORGANISATION OF DISCOURSE

Authors organise the 'content' and the 'form' of presentation in

different ways. I will call ARCHITECTURE OF MATHEMATICS the way the

author organises the network of DEFINITIONS and THEOREMS. Naturally I

will call STYLE the way the author organises his or her discourse.

These topics will be developed in chapter 8.
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PART II

NEGOTIATION

OF

MATHEMATICAL KNOWLEDGE



CHAPTER 4

NEGOTIATION OF MATHEMATICAL OBJECTS

Introduct ion

Authors of undergraduate mathematics textbooks display their discourse

basically in terms of definitions, theorems and proofs. In this

chapter I will discuss the nature of mathematical definition, its

types and functions.

In the first section, I will discuss the conceptions of definition

held by three divergent schools: realism (Plato), nominalism (John

Stuart Mill, Robinson) and conceptualism (Kant).

In section 2, I will deal with mathematical definition, focusing on

the problem of the conception of mathematical object. In this case, I

will follow Kant's conceptualism, accepting that mathematical objects

are invented and not discovered. Furthermore, I will stress the

distinction between formal and informal definitions.

In section 3, I will describe some functions of mathematical

definition. By means of analysis of definitions, it is possible to

accompany how the theory develops driven by one of the four

principles: specification, generalization, classification and

extension by analogy.
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4.1 GENERAL THEORY OF DEFINITION

A definition involves two expressions: the term to be defined called

definiendum, and the defining expression called deflniens.

For example, in the mathematical definition 'if f is differentiable

everywhere in a domain S except for points at which f has poles, then

f is said to be meromorphic', the definiendum is 'meromorphic

function' and the definiens is 'function which is differentiable

everywhere in a domain except for points at which it has poles'.

NOMINAL AND REAL DEFINITIONS

In traditional logic two kinds of definitions are recognized: real and

nominal definitions.

• HEMPEL'S THEORY OF DEFINITION

According to the philosopher of science Carl G. Hempel, a real

definition is a statement of the "essential nature" or the "essential

characteristics" of some entity. For example, 'man is a rational

animal' is a real definition because rationality characterizes the

essence of the human species [Hempel 52, p.2].

On the other hand, a nominal definition is a convention which

introduces an alternative - and usually abbreviatory - notation for a

given linguistic expression. It may be characterized as a stipulation

to the effect that a specified expression, the definiendum, is to be

synonymous with a certain other expression, the definiens, whose

meaning is already determined. Therefore, a nominal definition

introduces a "new" expression and gives it meaning by stipulation

[Ibidem, p. 2].

Hempel soon replaces this 'nominalistic definition' of nominal

definition by a more 'realistic definition':

We may say that a nominal definition singles out a certain

concept, i.e., a non-linguistic entity such a property, a

class, a relation, a function, or the like, and, for
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convenient reference, lays down a special name for it.

[Hempel 52, p. 4]

Hempel criticizes the "definition" of real definition, because the

notion of essential nature is too vague. He replaces it by other two

types of definitions: (i) empirical analysis, and (ii) meaning

analysis.

Empirical analysis is not related to mathematics because ' i t states

characteristics which are, as a matter of empirical fact, both

necessary and sufficient for the realization of the phenomenon under

analysis'.

Meaning analysis or analytic definition is concerned with an

expression which is already in use and makes its meaning explicit by

providing a synonymous expression, which has to be previously

understood. Dictionaries for a natural language are intended to

provide analytic definitions for the words of that language.

• COHEN & NAGEL'S THEORY OF DEFINITION

According to the logicians M.R. Cohen and E. Nagel, a nominal

definition is an agreement or resolution concerning the use of verbal

symbols: a new symbol is to be used for an already known group of

words or symbols. The definiendum is thus to have no meaning other

than the definiens [Cohen & Nagel 36, p. 228].

In a real definition, they say, the definiens is an analysis of the

idea, form, type, or universal symbolized by the definiendum. Both the

definiens and the definiendum possess a meaning independently of the

process of definition which equates them. 'A real definition,

therefore, is a genuine proposition, which may be either true or

false* [Cohen & Nagel 36, p. 230]. This means that they interpret real

definitions as if they were Hempel's analytic definitions.

MATHEMATICAL DEFINITIONS

I am interested in discussing the nature of mathematical definitions:

Are they nominal or real definitions?
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Pascal, for example, in his L'Esprit de la Geometrie does not

recognize definitions in geometry other than nominal definitions

(definition de nom). The mathematician G. Peano has generalised this

opinion, saying categorically that 'in mathematics all definitions are

nominal' [Peano 73, p.237]. We can call them nominalists with respect

to definitions.

Cohen & Nagel, in opposition to Peano, believe in the existence of

real definitions in mathematics. They say, for example, that the

following definition is a real definition:

Figure A is similar to figure A' .=. The ratio of the distance between

any two points P, Q, on A and the distance between the corresponding

points P \ Q', on A' is constant. Df.

According to Cohen & Nagel, this is a true definition of what is

ordinarily meant by similar figures, because (i) the right-hand side

means precisely what the left-hand side does, and at the same time

(ii) the right-hand side offers an analysis of the structure of that

which both sides symbolize.

Following Cohen & Nagel, we could say by the same token that the

mathematical definitions of continuity of a function, stability of a

dynamical system, and probability of an event are real definitions as

well.

This dispute between 'realists' and 'nominalists' within mathematics

is just a reflection of a more general philosophical divergence.

According to R. Robinson, author of a monograph on definition, the

major philosophical problem in the theory of definition is precisely

the following one:

Do we define things, or words, or concepts? In other words,

are we to be realists, or nominalists, or conceptualists,

about definition?

[Robinson 54, p. 7]
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Translating this question to mathematics: are mathematical objects

things, words or concepts?

As it is expected, there are three philosophical doctrines (schools)

about definitions: realism, nominalism and conceptualism.

REALISM

Realists support that definitions should reveal the essence or nature

of the things defined. The Greek philosophers Socrates, Plato and

Aristotle are representatives of realism. 'Definition is in fact,

according to Plato, the end of the process of getting to know the most

real things there are, which he called Forms or Ideas' [Robinson 54,

p. 8].

NOMINALISM

Plato's belief in the objectivity of knowledge was undermined by the

nominalism of Sophists, Skeptics and Cynics. A more recent nominalist

was John Stuart Mill:

The simplest and most correct notion of a Definition is a

proposition declaratory of the meaning of a word: namely,

either the meaning which it bears in common acceptance, or

that which the speaker or writer ... intends to annex to it.

[Mill 1879, p. 86]

A contemporary nominalist is Robinson:

I propose that by definition we always mean a process

concerning symbols, a process either of equating two symbols

or of reporting or proposing a meaning for a symbol; and

that we never use definition as a name for a process that is

not about symbols, because in that usage it is ambiguous and

should be replaced by more specific terms.

[Robinson 54, p. 191]
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Robinson, despite his nominalism, points out the occurrence in

mathematics of the following five kinds of "definitions":

1. abbreviations,

2. the nominal definition of the symbols of the system,

3. the analysis of concepts,

4. the analysis of concepts into specified concepts of the system,

5. the improvement of concepts.

According to Robinson, the first two activities are nominal

definitions, whereas the others are not genuine definitions.

Robinson recognises then that mathematicians, besides giving nominal

definitions, are also involved with analysis and improvement of

concepts. Immanuel Kant has concentrated his attention on these latter

activities.

CONCEPTUALISM

Kant is the great supporter of conceptualism: 'to define, as the word

itself indicates, really only means to present the complete, original

concept of a thing within the limits of its concept' [Kant 90, p.

586].

According to Kant, there are three kinds of concepts: empirical, a

priori, and invented concepts. Empirical concepts cannot be defined

but only be made explicit. Moreover, he asks, what useful purpose

could be served by defining an empirical concept, such as, for

instance, that of water?

Concepts given a priori such as cause, substance, right, equity, etc.,

cannot be defined as well, but only be exposed. Therefore 'the only

remaining kind of concepts, upon which this mental operation

[definition] can be tried, are arbitrarily invented concepts':

A concept which I have invented I can always define; for

since it is not given to me either by the nature of

understanding or by experience, but is such as I have myself

deliberately made it to be, I must know what I have intended
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to think in using it.

[Kant 90, p. 587]

Consequently,

... mathematics is the only science that has definitions.

For the object which it thinks it exhibits a priori in

intuition, and this object certainly cannot contain either

more or less than the concept, since it is through the

definition that the concept of the object is given - and

given originally, that is, without its being necessary to

derive the definition from any other source.

[Ibidem, p. 587]

Kant can also be considered as a forerunner of constructivism: 'while

philosophical definitions are never more than expositions of given

concepts, mathematical definitions are constructions of concepts,

originally framed by the mind itself [Ibidem, p. 587].

It is interesting that in the theory of definition we came across the

same or at least analogous philosophical currents which pervade

mathematical education, namely realism or Platonism, nominalism or

formalism, and conceptualism or constructivism!

4 .2 MATHEMATICAL DEFINITION

Discussion about mathematical definition falls ultimately to the

notion of mathematical concept or object. Are there mathematical

objects? What is their nature?

According to formalists, there are no mathematical objects.

Mathematics just consists of axioms, definitions and theorems - in

other words, formulas [Davis & Hersh 86, p. 319].

According to Platonists, mathematical objects are real. Their

existence is an objective fact, quite independent of our knowledge.

They are immutable - they were not created, and they will not change

89



or disappear [Davis & Hersh 86, p. 318].

The analysis of mathematical discourse I propound is based on a

distinct perspective.

Contrary to formalism, I believe that mathematical objects exist, that

mathematical activity is not a meaningless game. Contrary to

Platonism, I see mathematical objects as products of human creation.

They exist, they are objective in so far as they are cultural objects.

In other words, mathematicians, through the act of definition, reify

concepts, that is, transform a diffuse and vague concept into a

mathematical object, that is, a cultural object, an object of social

use and manipulation.

This perspective is very akin to the one exposed by Davis & Hersh in

the book The Mathematical Experience. They reconcile the two seemingly

contradictory propositions, that (1) mathematics is a human invention

or creation, and that (2) mathematics is an objective reality, in the

sense that mathematical objects have definite properties. In short, I

make mine their dictum:

Mathematics does have a subject matter, and its statements

are meaningful. The meaning, however, is to be found in the

shared understanding of human beings, not in an external

nonhuman reality. In this respect, mathematics is similar to

an ideology, a religion, or an art form; it deals with human

meanings, and is intelligible only within the context of

culture. In other words, mathematics is a humanistic study.

It is one of the humanities.

[Davis & Hersh 86, p. 410]

This viewpoint is the reverse of Platonism, in the sense that

mathematical objects do not exist a priori as Perfect Forms, waiting

to be discovered by humankind. On the contrary, they are cultural

objects created by mathematicians, acquiring significance through the

social exchange of meanings. Like any other scientific theories,

mathematical theories are developed, corrected, refuted, forgotten, or
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rejected. We could say that the Platonic world of mathematical objects

exists, but as a result of human action.

FORMAL AND INFORMAL DEFINITIONS

The job of mathematicians is to produce (create or invent) new

mathematical objects, and investigate their properties and mutual

relations. These new objects are introduced into the mathematical

community through mathematical definitions, whether formal or

informal.

Generally speaking, I will say that an author is giving a formal

definition of a concept when he/she is defining it in terms of

previously accepted mathematical concepts. This mathematical

'formalism' should not be confounded with symbolic or linguistic

formalism. For example, a definition of simply connected region in

terms of 'holes' is informal. In fact, it cannot be transformed into a

formal definition, whatever the linguistic form it takes, because

'hole' is not an acceptable mathematical concept.

I will call informal definitions explications or explanations.

Authors of mathematics textbooks introduce new mathematical concepts

in several ways: (1) solely by means of a formal definition, (2) by

means of a formal definition together an explication, (3) solely by

means of an explication, (3) by means of a particular case, (4) by

means of an example.

EXAMPLE

In [Derrick, p. 24] we can read the following formal definition: 'a

set is open if all its points are interior points'. In this

definition, 'open set' is the definiendum, and 'a set such that all

its points are interior points' is the definiens.

Derrick defines open set in terms of interior points. The definition

of interior point of a set arises from the analysis of the topological

relation between a generic point of the complex plane and the given

set. In other words, given a set S, the points of the complex plane
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can be classified in three categories: a point z of the complex plane

is an interior point (some e-neighborhood of z is contained entirely

in S), an exterior point (some e-neighborhood of z is contained

entirely in the complement of S), or a boundary point of S (every

e-neighborhood of z contains points in S and points not in S).

Observe that the words 'interior', 'exterior' and 'boundary' are

descriptive words; they convey intuitive meanings to the mathematical

objects. Because of this, Derrick's definitions do not require further

explication.

Other authors prefer to first introduce an 'analytic' definition.

Marsden, for example, gives the following formal definition: 'a set A

is open if, for each point z € A, there is a real number e, e > 0,

such that if |z - z I < e, then z e A.'1 o '

Marsden knows that this formal definition is elusive, and hence that

the readers need a complementary intuitive explication. He explicates

the formal definition, saying that:

"This means that some small disk around z lies in A. Note that the
o

value of e depends on z ; as z gets close to the 'edge' of A, e gets

smaller. Intuitively, a set is open if it does not contain any of its

'boundary' or 'edge' points." [Marsden, p. 41]

Another author, Priestley, after giving a definition equivalent to

Marsden's, explicates openness in a different way:

"Informally, S is open if, from any given point in S, there is room to

move some fixed positive distance in any direction without straying

outside S; how large this distance can be will vary from one point to

another. It is a need for such 'elbow room' that dictates that the

sets in so many of our later theorems be open." [Priestley, p.6]

These examples illustrate the fact that in general formal definitions

are not clear-cut; supplementary explication are often necessary for

their understanding.
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Formal and informal definitions have opposite features. On the one

hand, formal definition tends to be concise, objective, precise,

rigorous, and logical. On the other hand, informal definition tends to

be detailed, value-laden, diffuse, motivating, and intuitive.

4.3 FUNCTIONS OF DEFINITIONS

According to the philosopher Mario Bunge, the chief functions of

definition in science are the following [Bunge 67, p. 136]:

(1) formation (introduction) of new signs. This may be done mainly

with the aim of abbreviating or simplifying expressions.

(2) formal introduction of new concepts on the basis of old concepts.

(3) specification of meaning: defining is a way of determining the

meaning of terms which may have been in pre-systematic usage before.

(4) interrelation of concepts: by linking concepts, definition

contributes to organization or systemicity.

(5) identification of objects: together with descriptions, definitions

supply criteria for the recognition of objects.

(6) logical hygiene: ambiguity and vagueness can be reduced if the

terms are defined.

(7) precise symbolization of certain concepts, and consequently exact

analysis of them.

In my view, the most important functions of definition in mathematical

discourse are those Bunge has mentioned in (2) and (4): mathematical

definitions contribute to development of the theory, introducing new

concepts, and to organization and systemicity of the theory, linking

concepts. This is in line with Cohen and Nagel who state the following

logical functions of definition:
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Logically, definitions aim to lay bare the principal

features or structure of a concept, partly in order to make

it definite, to delimit it from other concepts, and partly

in order to make possible a systematic exploration of the

subject matter with which it deals.

[Cohen & Nagel 36, p. 232]

How do definitions arise in mathematics? To answer this question it is

necessary to know the strategies and methods used by mathematicians to

develop new concepts. In the following I will discuss some of these

strategies: (1) specification, (2) generalization, (3) classification,

and (4) extension by analogy.

4.3.1 Specification

The development of mathematics is driven by two opposite forces: a

tendency for generalization, and a tendency for specification (or

particularization). The latter tendency is responsible for the

constant use in mathematics of definitions by specification.

Definition by specification or definition by genus and difference

contains two components, the genus and the differentia. For example,

in the definition 'circle is the plane figure having all its points

equidistant from a fixed point', the genus of "circle" is "plane

figure" and the differentia is "having all its points equidistant from

a fixed point".

In other terms, definition by specification means that a subclass

(species) of a given class (genus) is being determined.

Mathematicians do not define mathematical concepts without a purpose.

The important thing in the analysis of definitions is to know the

reasons for such definitions, why such a subclass or such a property

is being chosen.

For example, why do we define absolutely convergent series in the

study of series of complex numbers?
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These series are interesting for many reasons. One of them is

practical: we reduce the investigation of convergence of a complex

series to a known subject which is simpler, the investigation of the

convergence of a series of positive real terms. Another one is

theoretical: to separate convergent series in 'strongly' convergent

and 'weakly' convergent, where 'strong' means convergence

independently of the signs of the terms. Another one is operational:

we can multiply absolutely convergent series, whereas multiplication

of two convergent series is not always possible. Whatever the reason,

mathematicians have created the species (absolutely convergent series)

from the genus (convergent series).

COMPLEMENTARY DEFINITION

A definition by specification implies the automatic definition of the

complementary definition, that is, the definition of the negative of

the concept. For example, 'divergent series is a series that is not

convergent*.

Generally speaking, the primary concept is simpler than the

complementary concept, because there is a natural tendency to

conceptualize simple things instead of complex things. However, the

analysis of the complementary concept can be important to show the

limits of the primary concept. For instance, continuity becomes

clearer when the concept of discontinuity is made more explicit. The

concept of convergent series becomes clearer after exemplification of

some divergent series.

Nonexamples, anti-examples or counterexamples have the explicative

function of delimiting the range of the concept, by showing what the

concept cannot be. Few authors are aware of the importance of

complementary definitions.

Note 1: definition by genus and difference requires proof of

existence, otherwise it can be void or completely full. This is

usually provided by means of examples and anti-examples.
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Note 2: a specification can be regarded as a particular kind of

classification (the species and the complement).

TREE OF DEFINITIONS

Successive definitions by specification create a structure that can be

called a tree of definitions. For example, if we start with numerical

series, the definition of convergence divides the class of numerical

series into two subclasses: convergent and divergent series.

Afterwards, the concept of absolute convergence divides the subclass

of convergent series into two sub-subclasses: absolutely convergent

and conditionally convergent series. The subclass of divergent series

in its turn can be divided into oscillatory and properly divergent

series.

Diagrammatically:

numerical ser ies

convergent

divergent

absolutely convergent

conditionally convergent

osci1latory

properly divergent

4.3.2 Generalization

There exist at least two different notions of generalization:

(i) the creation of a super-class (as opposite to specification that

creates a sub-class): semicontinuity is a generalization of

continuity, in the sense that continuous functions are automatically

semicontinuous, i.e., the class of semicontinuous functions contains

the class of continuous functions.

(ii) generalization by abstraction of properties. For example,

topological space is a generalization of metric space, in the sense
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that metric space is an instance of topological space. The change in

this case is deeper than in the first case.

4.3.3 Classification

Classification is more global than specification. Specification means

dichotomous classification: we select a property, and then we divide a

class into exactly two classes: the class of the members that satisfy

the property, and the complementary class.

In classification, other criteria can be present. For example,

isolated singularities of complex functions can be classified,

according to the 'behaviour' of the function in their neighborhoods,

into removable singularities, poles, and essential singularities.

4.3.4 Extension by Analogy

The majority of definitions in Complex Analysis are of this type. I

will illustrate with an example how this type of definition appears.

Consider the definition of complex exponential function. The problem

is: how to define a 'good' extension of the real exponential function,

that is, a function f: C -> C that satisfies the equation

f(x) = eX, for all x € R,

and inherits many of the 'good' properties of the real exponential

function.

There are at least three possible solutions to this problem:

1. Ahlfors defines the complex exponential function as the solution of

the differential equation

f'(z) = f(z)

with the initial condition f(0) = 1. See [Ahlfors, p. 43].

2. Marsden defines the complex exponential function by means of a

formula involving its real and imaginary parts: if z = x + iy , then
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eZ = ex(cos y + i sin y)

See [Marsden, p. 25].

3. Priestley defines the complex exponential function by the power

series

See [Priestley, p. 22].

An extension by analogy needs explanation and justification. Marsden,

for example, uses two pages to persuade the reader that his definition

is acceptable.

The definition of complex exponential function requires a

reconceptualization of real exponential function. Ahlfors's definition

is intrinsic; it mimics the real case, but it does not depend on it.

Marsden's definition is operational, he gives a formula. It is perhaps

the easiest one: easy to memorize and to manipulate. However, it lacks

motivation. Priestley's definition is the classical one, but it

requires proof of convergence of a power series.

MULTIPLICITY OF DEFINITIONS

As we saw in the case of complex exponential function, the same

concept can be seen from different points of view. This is reflected,

for example, in the theorems of equivalence type, in which several

propositions or properties are shown to be equivalent. Therefore, in

this case one can choose one of these properties as the defining

property of the involved concept.

For example, there are two equivalent definitions of 'compact set' in

C:

(1) A set in C is compact if it is closed and bounded,

(2) A set X in C is compact if every family of open sets that covers X

has a finite subfamily that covers X.
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Authors of textbooks on Complex Analysis will choose (1) or (2)

according to their purposes and personal inclinations. Observe that

(1) is problem-solving oriented, it is more operational than (2), for

it works as a practical criterium of compactness, whereas definition

(2) is theory-building oriented, it is more convenient than (1) to be

used in the proofs of theorems.

Another difference occurs at the level of generality: definition (2)

is more general than definition (1) in the sense that it can be

applied for general topological spaces, where the first definition has

no meaning in this context.

In this case, the choice can reveal author's preference for one of the

poles of the following two dilemmas: problem-solving versus

theory-building, and generality versus particularity, discussed

respectively in section 2.3 and section 3.2.

Note I will discuss more on definitions in section 9.1, which deals

with the introduction of the concept of complex number.

By way of conclusion, in my view, the analysis of definitions in

mathematical discourse should be orientated in order to detect

authors' strategies in the choice of alternative definitions.

In short, this analysis should allows us to know what the philosopher

G. Granger calls mathematical style:

Style can be regarded, on the one hand, as a certain manner

of introducing the concepts of a theory, of linking them, of

unifying them; on the other hand, as a certain manner of

delimiting the intuitive content in the determination of

these concepts.'

[Granger 74, p. 30]
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CHAPTER 5

NEGOTIATION OF TRUTH AND COMPREHENSION

Introduction

In section 1, I am concerned with how authors of undergraduate

mathematics textbooks negotiate truth by means of proofs or rhetorical

arguments of the theorems.

Examples and figures are usually considered as pedagogic tools that

aid the understanding of mathematical definitions and theorems. They

are illustrative. They are rhetorical tools.

In section 2, I will discuss the role of examples in mathematical

discourse. Exemplification should be contrasted to setting.

Exemplification lowers the level of generality and abstractness,

whereas setting goes in the opposite direction.

In section 3, I will discuss the role of figures in mathematical

discourse. The use of figures should be contrasted with the use of

words and symbols. According to the psychologist A. Paivio, imagery

and verbal language are interconnected.
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5.1 NEGOTIATION OF TRUTH: PROOF OR RHETORIC?

Authors of undergraduate mathematics textbooks do not prove all the

theorems. For example, when the proof is too 'easy', authors usually

do not prove the theorem, leaving it to the reader. In the case the

proof is too 'difficult', authors do not prove it as well, sending the

reader to more advanced book.

'Ease' and 'difficulty' are not objective, but subjective matters.

This implies that proving or not proving is essentially a subjective

matter, a choice of each author. In other terms, the truth of the

theorems is a matter of negotiation between author and reader.

Even when the authors give a proof, such proof can be a partial proof

in the sense that some details are missing. This means that each

author negotiates the truth of theorems in a particular way, depending

on the characteristics of the theorems.

MODES OF NEGOTIATING PROOFS

Authors negotiate the truth of a theorem in different ways:

1. giving a complete formal proof, where 'complete' means that there

are no important points missing in the proof, and 'formal' means that

the reasoning is based only on formal logic,

2. giving a partial proof, omitting parts or details of the proof,

3. giving an outline of the proof,

4. giving the proof in a particular case,

5. giving an informal proof,

6. giving a wrong proof,

7. omitting the proof, but indicating how to prove (for example saying

that the proof follows by induction, analogy, etc.),

8. omitting the proof, but giving examples for which the theorem holds,

9. omitting the proof, but leaving it to the reader,

10. omitting the proof, but sending readers to read references,

11. omitting the proof, and saying nothing else,

12. omitting both the formal statement and the proof of the theorem.
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Note: This classification of kinds of negotiation of truth is neither

exhaustive nor mutually exclusive. There can be for example a

combination of these cases.

In the following example I show how a particular pair of authors make

use of these rhetorical devices.

EXAMPLE 1: STEWART & TALL

In their textbook Complex Analysis (1988), I. Stewart and D. Tall

negotiate the proofs of theorems with the readers in different ways. I

have found instances of all cases, except cases 4 and 12.

Case 1: Many of the theorems, as is expected in a textbook, have

complete formal proofs. Among them I cite the Fundamental Theorem of

Algebra, which is provided with two complete formal proofs. [Stewart &

Tall, p. 185, p. 233]

Case 2: Many parts of the proof of the first theorem, Theorem 1.1, are

left to the reader. [Stewart & Tall, p. 11]

Case 3: Stewart & Tall leave the proof of Schwarz's Reflection

Principle as an exercise, giving a hint, which can be considered a

sketch of the proof. [Stewart & Tall, p. 286]

Case 5: All the treatment of analytic continuation and Riemann surface

is informal. [Stewart & Tall, chapter 14]

Case 6: The proofs of proposition 4.3 and proposition 5.2 are wrong,

due to misprints. [Stewart & Tall, p. 66, p. 89]

Case 7: Parts of the proof of proposition 2.2 are left, because they

are analogous to the real case. [Stewart & Tall, p. 26]

Case 8: They state Picard's theorem, give two examples, however they

do not give the proof, because its proof 'requires machinery

considerably beyond the reach of this text'. [Stewart & Tall, p. 205]
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Case 9: De Moivre's Theorem is left as an exercise with an indication

(proof by induction). [Stewart & Tall, p. 20]

Case 10: The reader is sent to another textbook to see the properties

of Joukowski transformation. [Stewart & Tall, p. 256]

Case 11: Jordan Contour Theorem is just mentioned. [Stewart & Tall, p.

157]

In the following example I show that different authors negotiate the

truth of the same theorem in different ways. This example, the

Generalized Associative Law, is interesting because, besides

negotiating the proof of the theorem, authors are involved in

negotiating its statement.

EXAMPLE 2: GENERALIZED ASSOCIATIVE LAW

The following five authors omit the proof of the theorem, however they

justify this omission in different ways.

First author. Birkhoff & Bartee acknowledges the difficulty of proving

and even stating the generalized associative law:

One learns in high-school algebra the following somewhat

imprecisely stated principle: the result of performing any

associative operation on a sequence of n terms depends only

on the order in which they are listed and not on the order

in which they are combined. To actually prove this

principle, called the generalised associative law, from the

simple three-term associative law, or indeed to even

formulate it precisely, REQUIRES SOME RATHER SOPHISTICATED

REASONING.

[Birkhoff & Bartee, p. 25]

After this paragraph, Birkhoff & Bartee illustrate the theorem for the

case of five elements, however they omit the proof of this theorem and

the statement as well.
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Second author. BIyth & Robertson are extremely pragmatic:

There is, in fact, a general result which say that, for an

associative law, the way in which compound expressions are

bracketed does not affect the result. THE PROOF OF THIS IS

SOMEWHAT INVOLVED, SO WE SHALL SIMPLY ACCEPT IT.

[Blyth & Robertson, p. 2]

Third author. F.M. Hall uses the rhetoric of the obviousness of the

theorem, to justify the omission of the proof:

It is possible to give a formal proof by induction, but the

result is so obvious that TO DO SO WOULD RAISE UNNECESSARY

COMPLICATIONS.

[Hall, p. 201]

Notice the contrast between Hall and Birkhoff & Bartee: for Hall the

result is obvious, however for Birkhoff & Bartee, the result is

difficult even to formulate.

Fourth author. S. Lang avoids the statement and the proof of the

theorem, due to the complicated notations involved in it:

We omit the proof in the general case (done by induction),

because IT INVOLVES SLIGHT NOTATIONAL COMPLICATIONS WHICH WE

DON'T WANT TO GO INTO.

[Lang, p. 14]

Fifth author. CD. Mostow omit the proof because there are more

interesting things to do:

The assertion of this theorem is quite easily proved in any

given special case where the number of elements involved is

relatively small, and the truth of the theorem soon become

rather obvious. A complete proof of the theorem, however,
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make use of mathematical induction, which will not be

treated until the next chapter. We shall omit the proof of

Theorem 4.2 in order to get on quickly with more interesting

matters.

[Mostow, p. 9]

The following two authors omit the proof, leaving it to the reader as

an exercise.

Sixth author. J.T. Moore indicates the method of proof:

Problem. Use the Second Principle of Induction to prove the

"generalized" associative law: Any product a .a .a ... a
1 2 3 n

is independent of the position of parentheses.
[Moore, p. 27]

Seventh author. I. Herstein gives the method of proof and an example:

Problem. If S is a set closed under an associative

operation, prove that no matter how you bracket a , a , ...,

a , retaining the order of the elements, you get the same
n

e l e m e n t i n S ( e . g . ( a . a ) . ( a . a ) = a . ( a . ( a . a ) ) ; u s e
1 2 3 4 1 2 3 4

induction on n.)
[Herstein, p. 32]

Eighth author. J. Gilbert and L. Gilbert give the "wrong" statement.

They call generalized associative law what is a lemma.

Generalized Associative Law. Let n > 2 be a positive

integer, and let a , a a denote elements of a group
1 2 n

G. For any positive integer m such that 1 ^ m < n,

(a a ... a )(a ... a ) = a a ... a
1 2 m m+1 n 1 2 n

[Gilbert & Gilbert]
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The following authors prove the theorem in different ways.

Ninth author. S. Perlis uses the above theorem as a lemma to prove the

Generalized Associative Law [Perlis, p. 20].

Tenth author. N. Jacobson is another writer that introduces a lemma in

order to make the proof "easier". Nevertheless, he does not give the

formal statement of the theorem. [Jacobson, p. 39]

Eleventh author. Bourbaki' Associativity Theorem is probably the most

general of the Generalized Associative Laws. His statement is the

following:

Let E be an associative magma whose law is denoted by T. Let A be a

totally ordered non-empty finite set, which is the union of an ordered

sequence of non-empty subsets (B.). such that the relations aeB.,

6eB., i < j imply a < S; let (x ) . b e an ordered sequence of
j a aeA

elements in E with A as indexing set. Then

T . x = T. . (T _, x )aeA a lei aeB. a
1

[Bourbaki, p. 4]

Twelfth author. J. Lelong-Ferrand & J.M. Arnaudies essentially repeat

in their textbook the same theorem as Bourbaki. It should be noted

that Bourbaki's Treatise is not intended for undergraduate students,

whereas Lelong-Ferrand & Arnaudies' textbook is [Lelong & Arnaudies,

p. 45].

I have shown how different perspectives are held by the authors of

textbooks on the same theorem: the generalized associative law. This

proves an important point of my approach to mathematical discourse:

that authors are involved "in negotiating the truth of theorems, and

this negotiation involves not only logical devices, but rhetorical

devices.
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5.2 THE ROLE OF EXAMPLES IN MATHEMATICAL DISCOURSE

There are two kinds of examples in mathematics textbooks: examples

associated with definitions (examples serve to clarify concepts) and

examples associated with theorems (examples serve to clarify facts,

situations or relations).

5.2.1 Exemplifying Definitions

In mathematics we can define either particular or general objects.

Definition of a particular mathematical object obviously does not

require examples, since the defined object is its own example. In the

sequel we are interested in general mathematical objects.

Authors should give examples of a definition otherwise the definition

could be empty or superabundant. For instance, together the definition

of convergence of series, one should give an example of convergent

series, and also an anti-example, that is, an example of divergent

series.

LEVELS OF GENERALITY

Exemplification is related to levels of generality and levels of

abstraction.

Mathematical discourse occurs at several levels of abstraction. In

undergraduate mathematics it is usual to work consecutively or

simultaneously at different levels of generalization. Exemplification

means lowering the level of generalization or abstraction. Examples

serve to make the things more concrete, specific, particular.

Examples and definitions go in opposite directions: exemplification is

a movement from the general to the particular or specific, whereas

definition is a movement from the individual to the universal, from

concrete to abstract, from particular to general, from specific to

generic. The goal of exemplification is comprehensibility, whereas the

goal of definition is universality.

Sometimes it is convenient to consider a subclass, instead of a

particular object. This means that, in the process of understanding an
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abstract concept associated to a general class, it is convenient to

think first in terms of a particular subclass, and afterwards in terms

of a particular member.

For instance, the complex plane is an example of topological space.

Between complex plane and topological space there is the notion of

metric space. This is why many authors prefer to look at complex plane

as a metric space,

PEDAGOGICAL FUNCTION OF EXAMPLES

Examples have also a pedagogical function of facilitating the

comprehension of a definition. For instance, some definitions are so

complicated (for example, the definition of Riemann surface) that the

authors prefer to present the definition through an example. Stewart &

Tall approach Riemann surfaces investigating the logarithmic function

of complex numbers; Silverman introduces the Riemann surface through

the function V z.

HEURISTIC FUNCTION OF EXAMPLES: EXAMPLES ARE EXERCISES

In mathematics it is not sufficient to declare that a certain object

is an example of a given definition: sometimes a proof is necessary!

So, some examples are camouflaged exercises. For instance, it is not

enough to say that the series

2 2 2
1 - 1/2 + 1/3 - 1/4 + ...

is absolutely convergent; it is necessary to prove it.

5.2.2 Theorems: Examples and Counterexamples

Examples of theorems are their applications in particular cases. Its

function is to show how the formula or the technique works.

COUNTEREXAMPLES

After the proof of a theorem of implication type (p ^ q),

mathematicians ask automatically about the converse: what about

(q => p)? If the converse is false, it is necessary to give a

counterexample. Counterexamples are the antidotes to false
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conjectures.

For example, Cauchy-Riemann equations are necessary conditions for

analyticity, however they are not sufficient. The counter-example is

the following function defined by f(z) = z 5 / | z 4 | , z * 0, f(0) = 0,

for which the Cauchy-Riemann equations hold, but it is not analytic at

z = 0.

RHETORICAL FUNCTION OF EXAMPLES (EXAMPLES AS RHETORICAL DEVICES)

Sometimes the author states a general theorem, but instead of giving a

proof, he or she uses an example to 'illustrate' the validity of the

theorem.

Some authors [Derrick, for example] calls examples what usually are

called solved exercises.

5.3 THE ROLE OF FIGURES IN MATHEMATICAL DISCOURSE

Figures, together with examples, are commonly used in undergraduate

mathematics textbooks as tools of explanation, justification and

illustration.

Authors are divided as to the use of figures, even authors of

textbooks on the same subject. Consider for example the discipline

Complex Analysis: Stewart & Tall utilize nearly 140 figures in their

book Complex Analysis. On the other hand, in W.J. Thron's textbook

Introduction to The Theory of Functions of A Complex Variable there is

no figure at all.

Is there any ground for the non-use of figures in mathematics

textbooks? The answer is no, according to the psychologist Allan

Paivio. He proposes a dual- coding approach to imagery and verbal

language:

The two processes represent the activity of independent but

interconnected systems that are specialized for picking up,

storing, organizing, retrieving, and manipulating stimulus
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information. The imagery system deals with information

concerning concrete objects and events, the verbal system

with linguistic information.

[Paivio 79, p. 163]

5.3.1 Classification of Figures

The mathematics educationalist Stuart P.O. Plunkett classifies figures

in pictures and diagrams. A figure is a picture if it represents

spatial relations; a figure is diagram if it represents non-spatial

relations [Plunkett 79].

Pictures use spatial relations to represent spatial relations.

Examples of pictures are geometrical drawings, three-dimensional

models, maps, pictures (in the ordinary sense), and drawings.

Diagrams use spatial relations to represent non-spatial relations.

Examples of diagrams are Venn diagrams, tables, flow-charts, graphs.

In certain cases, for example Cartesian graphs, it is difficult to

distinguish between pictures and diagrams. Is the graph of the

function y = x a picture or a diagram? On the one hand, it is a

diagram, because it represents an 'algebraic' relation between x and
2

y. On the other hand, the equation y = x is the algebraic

representation of a parabola, and then, the Cartesian graph is a

geometric representation of a geometric object, that is, it is a

picture.

Nevertheless, this classification can be helpful to discourse analysis

because it can provide a general idea of the uses authors make of

figures.

5.3.2 Functions of Figures

My intention here is to consider figures according to their three

functions or dimensions: informational, heuristic or rhetorical.
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INFORMATIONAL FUNCTION

Figures as well as sentences and formulae serve to convey information.

Figures (pictures, according to Plunkett) are used in mathematics

writing to describe spatial situations or relations, specially for

visualization, for example, by representing tri-dimensional figures in

the plane.

Figures are also used as diagrams, to represent non-spatial relations.

Diagrams such as Venn diagrams, or the commutative diagrams in Algebra

are so important that now they belong to mathematical language.

HEURISTIC FUNCTION

Figures help construction of knowledge. To say the minimum: 'Draw a

figure' is one of the Polya's commandments to solve problems.

RHETORICAL FUNCTION

Figures enter in the negotiation of truth between author and reader.

They are used for convincing the readers of some truth, whose verbal

proof is complicated or non-convincing; they are sometimes used as a

part of the proof. Sometimes figures replace words completely in the

so-called 'proofs without words'.

Another rhetorical function of figures is to negotiate intuition.

Figure is an aid for comprehension, and memorization.

EXAMPLE

Let us examine the figures in the textbook Real Analysis (1968) by

A.J. White, which contains only 13 figures. I will classify figures in

pictures and diagrams, and according to what they illustrate:

definitions, examples or proofs.

Chapter 0 on Set Theory (Notation and terminology) contains five

figures, all of them are diagrams in Plunkett's sense: figures 0.1 and

0.2 are Venn diagrams illustrating the definitions of union,

intersection, complement, and symmetric difference of two sets; figure

0.3 shows the graph of y = x as an example of graph; figure 0.4 is a

L
in

LIBRARY >

VS..



pictorial representation of function; figure 0.5 shows an example of

Cartesian product.

Chapter 2 on Metric Spaces contains two figures: figure 2.1 is a

picture: it illustrates the proof that 'every open ball is an open

set'; figure 2.2 is a diagram: it illustrates the definition of

continuous function.

Chapter 3 on Real Functions contains five figures, all of them are

diagrams: figure 3.1 illustrates the proof of the Intermediate Value

Theorem; figures 3.2 and 3.3 illustrate examples; figure 3.4

illustrates the definition of uniform continuity; figure 3.5

illustrates the proof of a theorem.

In chapter 5 on the Riemann Integral, the only figure is a diagram:

figure 5.1 illustrates the proof of a theorem.

It is noteworthy that White expresses in his text his opinion about

the functions of figures. For example, he comments on the heuristic

power of figures, such as figure 2.1, of suggesting methods of proof:

Every open ball is an open set ... The proof is illustrated

by Figure 2.1. Although obstinately Euclidean, and to a

certain extent misleading, this sort of picture can be very

helpful in clarifying complicated situations and suggesting

methods of proof. The reader is recommended to supply

suitable diagrams to illustrate the results which follow ...

[White, p. 53]

White acknowledges that figures such as figure 3.5 are helpful to

give counter-examples:

A sequence of continuous functions may fail to converge

uniformly and still have a continuous poitwise limit.

However, complications like this can often be resolved with

the aid of a diagram.

[White, p. 103].
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Figure 3.1 has a rhetorical function: it participates in the intuitive

proof of the Intermediate Value Theorem given by White, before the

formal proof.

White uses figure 5.1 to negotiate intuition. White uses a figure

showing a CONTINUOUS function in order to i l lustrate the general

definition of Riemann integral of a BOUNDED function. Moreover, he

bases his argument on the figure:

A glance at Figure 5.1 shows that, INTUITIVELY, J b f(x) dx

is the closest we can get to the "area" under the graph of f

by approximating from inside with finite families of

rectangles.

[White, p. 141]

I will continue the discussion on figures in section 9.2, where I

consider the illustrations of Riemann surfaces.
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CHAPTER 6

NEGOTIATION OF EXERCISES AND APPLICATIONS

Introduction

In section 1, I will discuss the discursive functions of exercises:

heuristic function (exercise as a tool of teaching know-how),

rhetorical function (exercise as a tool of negotiating truth),

informational function (exercise as a tool of transmitting new

information).

In section 2, I will propound a classification of exercises in three

types: manipulative, definitional and inferential.

In section 3, I will deal with interactions between disciplines:

prerequisites, application and contextualization.
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6.1 EXERCISES

One of the purposes of a textbook is to provide activities for the

readers themselves to construct their knowledge. In undergraduate

mathematics textbooks this is materialized by lists of exercises or

problems, and by means of gaps intentionally left by the authors in

the expository text.

Ranging from the problem books of the Schaum's Outline Series to the

advanced books of The Elements of Mathematics by N. Bourbaki, almost

every mathematics textbook contains a set of exercises at the end of

chapters or sections.

There is then an apparent consensus among the authors of mathematics

textbooks about the educational value of problem-solving or

exercise-solving. However, a finer analysis shows that exercises have

sometimes purposes different from helping learners's construction of

mathematical knowledge.

FUNCTIONS OF EXERCISES

According to J.D. Depree and C.C. Oehring, authors of a Complex

Analysis textbook, exercises have many purposes:

In addition to their usual purpose of stimulating the reader

to interact with the mathematics, the exercises serve as

places to outline (through the hints) propositions which are

needed in later developments but whose proofs are

cumbersome, or similar to others presented, or otherwise

unsuited for detailed discussion in the text.

[Depree & Oehring, preface]

• HEURISTIC FUNCTION

'To stimulate the reader to interact with the mathematics' is the

heuristic function of exercises. Exercises are the text's complement.

Text provides theoretical information to the readers, while exercises

give them practice, know-how. Text means product, while exercises mean

process.
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• INFORMATIONAL FUNCTION

'To serve as places to outline propositions which are needed in later

developments' is the informational function of exercises.

Some exercises convey supplementary information. They are camouflaged

theorems. According to E.L. Lima, author of a Real Analysis textbook,

'they inform the reader about further results, some of which do not

appear in the text just for a matter of author's taste' [Lima,

preface]. I call them information-supplementing exercises.

• RHETORICAL FUNCTION

Other exercises have a rhetorical function: they participate in the

author's negotiation of truth. Authors leave to the readers the task

of proving propositions 'whose proofs are (i) cumbersome, or (ii)

similar to others presented, or (iii) otherwise unsuited for detailed

discussion in the text'. I call them gap-filling exercises.

6.1.1 Information-Supplementing Exercises

Theoretically orientated authors are used to give additional

information to the readers in the form of exercises.

Sometimes this information is later used as a fact. For example,

Derrick propounds the proof of an extension of Morera's theorem as an

exercise (exercise 23, section 2.3). Derrick's readers will have to

accept this theorem as true, even when they are not able to prove it,

because the author will use this result as a fact in the proof of

Weierstrass's theorem on the sum of a uniformly convergent series of

analytic functions (section 3.2).

EXAMPLE. One striking example of abuser of information-supplementing

exercises is A.J. White, in his book Real Analysis. He divides the

problem material into exercises (that belong to the text), and

problems (given at the end of the chapters).

The purpose of exercises is to provide practice:
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The exercises in the text are intended mainly to provide

practice in the manipulation of the definitions and the use

of the theorems. They form an integral part of the

discussion, and a conscientious attempt to work them all is

an essential step to understanding the text.

[White, preface]

However, problems have different functions:

The problems at the end of each chapter are of a different

kind. With one or two exceptions, the text does not depend

on them. For the most part, they are problems of the

"project" type, that is to say they invite the student to

fill out the details in a sequence of propositions which

provides further information on the subject matter of the

chapter or indicates the direction of some further

development. The hints are usually very copious, and the

details that remain are well within the capacity of any

student who has properly understood the text.

[Ibidem, preface]

This discourse sounds reasonable, however the practice does not

correspond to the discourse. For example, at the end of the chapter on

Metric Spaces, White demands the proofs of theorems that practically

cover a complete course on metric spaces, as we can see by the titles

of the problems: (a) alternative conditions for a metric, (b)

equivalent metrics, (c) a family of metrics for R , (d) further

examples of metric spaces, (e) continuous functions, (f) interior

points and open sets, (g) cluster points and closure points, (h)

distance from a subset, (i) compactness, (j) dense sets and separable

spaces, (k) connectedness, (1) products of metric spaces, (m) infinite

dimensional spaces, (n) the completeness axiom, (o) topological spaces

and generalized sequences, (p) uniformly continuous functions, (q)

characterization of compact spaces, (r) open sets in R, (s) reflexive

relations in a metric space.
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This set of 'problems' occupies nearly thirteen pages, while the

corresponding text occupies nearly twenty six pages, including the

exercises. This demonstrates clearly that White's intent is to use

problems or exercises as a means to convey more theoretical

information.

6.1.2 Gap-Filling Exercises

Authors of undergraduate mathematics textbooks as a rule do not prove

all the theorems they use, and they often omit parts of the proofs of

many theorems.

So, they have to negotiate the truth of propositions with the readers.

Such negotiation is sometimes unfair: the authors simply give to the

readers the trouble to fill the gaps without any help. As a

consequence of this 'negotiation', the reader becomes responsible for

the validation of the proposition. In case the reader is able to fill

out the gap, it's OK, the reader has done his or her part. In the case

the reader fails to provide the proof, then, he or she has no

alternative: he or she should accept unconditionally the truth of the

proposition on faith of the writer's authority.

Sometimes the author negotiates in advance the truth of propositions

given as exercises. For instance, E. Fischer says in the preface to

his textbook:

Even if the reader does not solve all the problems, we

expect him to read each one and to understand the result

contained in it. In many cases the results cited in the

problems are used as proofs of later theorems and constitute

a part of the development. When the reader is asked, in a

problem, to prove a result which is used later, this usually

involves paralleling work already done in the text.

[Fischer, preface]

Another author, K. Ross, considers that the learners should be

gradually prepared to cope with the lack of details in proofs, because

in advanced textbooks this economy in argumentation will be standard:
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In the early sections, the proofs are very detailed with

careful references for even the most elementary facts. Most

sophisticated readers find excessive details and references

a hindrance (they break the flow of the proof and tend to

obscure the main ideas) and would prefer to check the items

mentally as they proceed. Accordingly, in later chapters the

proofs will be somewhat less detailed and references for the

simplest facts will often be omitted. This should help

prepare the reader for more advanced books which frequently

give very brief arguments.

[Ross, preface]

Some authors decide to leave some 'dirty' job to the readers. For

example, W.R. Derrick, in his Complex Analysis and Applications says

at the end of the proof of a theorem:

The remaining proofs are immediate consequences of the

definition of a line integral in Section 2.1. Their

straightforward and SOMEWHAT TEDIOUS verification will be

left for the exercises.

[Derrick, p. 89]

6.2 CLASSIFICATION OF EXERCISES

There are many ways of classifying mathematical problems or exercises.

PURE AND APPLIED

The principal aim of an applied exercise is the application of the

mathematical theory to another field such as physics, biology,

engineering. To solve applied exercises learners should have some

previous knowledge of the field in which mathematics is being applied.

Applied exercises are intended to improve learners' ability to cope

with contextualized mathematics.

PROBLEMS TO FIND AND PROBLEMS TO PROVE

One of the best known classification of problems is Polya's

classification, who distinguishes two kinds of problems: 'problems to
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find', and 'problems to prove'.

The aim of a "problem to find" is to find a certain object,

the unknown of the problem ... 'Problems to find' may be

theoretical or practical, abstract or concrete, serious

problems or mere puzzles. We may seek all sorts of unknown;

we may try to find, to obtain, to acquire, to produce, or to

construct all imaginable kinds of objects .. . The principal

parts of such problems are the unknown, the data and the

condition.

[Polya 71, p. 154]

The aim of a "problem to prove" is to show conclusively that

a certain clearly stated assertion is true, or else to show

that it is false ... If a "problem to prove" is a

mathematical problem of the usual kind, its principal parts

are the hypothesis and the conclusion of the theorem which

has to be proved or disproved.

[Ibidem, p. 155]

ANALYSIS OF EXERCISES

I will now refine Polya's classification of problems in the context of

undergraduate mathematics textbooks.

• MANIPULATIVE EXERCISES

In undergraduate mathematics textbooks 'problems to find' correspond

to manipulative exercises, where the learners are asked to perform

some mathematical operations introduced in the text.

An exercise is manipulative (operational, technical, instrumental) if

it demands the use of some particular mathematical operation or

technique developed in the text, or techniques assumed to be

previously known such as arithmetic, algebraic manipulation,

techniques of calculus or linear algebra, etc. Exercises that ask for

drawing some figure or plotting some graph will also be included in

this category.
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Manipulative exercises' purpose is to improve learners' technical

abilities of manipulating mathematical objects.

• INFERENTIAL EXERCISES

I will call inferential exercises what Polya has called 'problems to

prove'. An inferential exercise demands the proof of a proposition.

It is interesting to investigate what kind of propositions the readers

are asked to prove. I distinguish the following types of inferential

exercises:

(i) application of a theorem (it is asked to apply a theorem to a

particular context or for a particular object),

(ii) completion of a theorem (gap-filling exercise, it is asked to

give the details of a proof left incomplete in the text),

(iii) corollary of a theorem, (it is asked to prove a consequence of a

theorem),

(iv) converse of a theorem (it is asked to prove the converse of a

theorem, or to give a counter-example)

(iv) criticism of a theorem ( it is asked to criticize a theorem,

exploring the limits of its validity)

(v) extension of a theorem (it is asked to prove an extension of a

theorem).

The aim of inferential exercises is to improve readers' capacity of

proving theorems.

Besides manipulative exercises (problems to find) and inferential

exercises (problems to prove) there is an intermediate category: the

definitional exercises.
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• DEFINITIONAL EXERCISES

An exercise of mathematics is definitional if it refers to a

particular definition (to check whether a particular object is an

instance of a general definition or not, to prove some property of the

concept, etc.).

Examples of definitional exercises are (i) to prove or disprove that a

given function is continuous; (ii) to show that a given set is

compact; (iii) to give an example of conditionally convergent series.

Some exercises introduce new definitions, mainly definitions of

particular objects such as gamma function, Legendre polynomial, Bessel

functions, etc.

The aim of a definitional exercise is to improve the understanding of

a definition.

Note: This classification takes into account that the majority of

exercises in undergraduate mathematics textbooks have as principal

clues some definite technique, concept or theorem.

Many authors of textbooks emphasize manipulative and definitional

exercises rather than inferential exercises. However there are authors

that do the opposite. In my view, learners should perform mathematical

activities in the following sequence:

(i) the first step should be manipulative: the learners should operate

with mathematical objects, before reflecting too much on their

essence;

(ii) the second step is ontological: once the learners have been

familiarized with mathematical objects through their manipulation,

they should try to understand their essence, investigating their

properties;

(iii) the third step is relational: the learners should try to

understand the relations between mathematical objects, investigating
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how they are articulated forming a kind of architecture.

EVALUATION OF EXERCISES

Exercises can be analysed also in terms of techniques of solution. The

solution of mathematical exercises depends on two things: (i)

understanding of the problem and (ii) identification of the clue.

• UNDERSTANDING

Understanding of mathematical exercises requires ability to understand

mathematical language, use of logic and intuition, ability of

interpretation, and of course factual knowledge, provided by the text,

such as the knowledge of definitions, theorems, proofs and examples.

• IDENTIFICATION OF THE CLUE

To identify the clue to solving the exercise, that is, to know what is

expected and what tools are to be used, the learners should use their

cognitive functions such as logical schemes, heuristic schemes,

intuition, visualization, ability to use symbols, ability to cope with

generality and abstraction, knowledge of facts and techniques, and of

course their experience in the solution of mathematical exercises.

The scheme of exercise analysis I propound is then, first, to observe

what the exercise is demanding: to perform operations, to instantiate

definitions, or to provide arguments; second, to find the clue to

solving the exercise: what to do and what tools are necessary.

EXAMPLE. Here I will analyse some of the exercises propounded by K. A.

Ross (1980) on Properties of Continuous Functions in his textbook

Elementary Analysis: The Theory of Calculus [Ross, 99-100], in order

to show how the scheme works.

Exercise 18.1: Let f be as in Theorem 18.1. Show that if -f

assumes its maximum at x e [a,b], then f assumes its
o

minimum at x .o

Classification: inferential exercise. Gap-filling exercise: it asks

for the completion of the proof of Theorem 18.1.
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Exercise 18.2: Reread the proof of Theorem 18.1 with [a,b]

replaced by (a,b). Where does it break down ? Discuss.

Classification: criticism of a theorem. It explores the limits of

validity of the Theorem 18.1.

Evaluation: this type of exercise is invariably difficult. However,

the author himself destroys the difficulty of this exercise revealing

in the text that the function f(x) = 1/x is continuous but unbounded
2

on (0,1), and that the function x is continuoi

but it does not have a maximum value on (-1,1).

2
on (0,1), and that the function x is continuous and bounded on (-1,1)

Exercise 18.3: Use calculus to find the maximum and minimum

of f(x) = x3 - 6x2 + 9x + 1 on [0,5).

Classification: operational exercise.

Evaluation: it has no relation with the text; it only requires the

remembering of prerequisites.

Exercise 18.6: Prove that x = cos x for some x in (0, n/Z).

Classification: inferential exercise. Application of a theorem.

Evaluation: the difficulty of the exercise lies in perceiving that the

Intermediate Value Theorem should be applied: the reader should

transform the equation x = cos x into the equation x - cos x = 0, and

then to look at the left side of this equation.

Exercise 18.7: Prove that x 2 = 1 for some x in (0,1).

Classification: repetitive exercise; it is analogous to the previous

exercise.

Exercise 18.8: Suppose that f is a real-valued continuous

function on R and that f(a)f(b) < 0 for some a,b 6 R. Prove

that there exists x between a and b such that f(x) = 0.
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Classification: inferential exercise. it is a corollary of the

Intermediate Value Theorem.

Exercise 18.9: Prove that a polynomial function f of odd

degree has at least one real root.

Classification: inferential exercise. This is an application of the

Intermediate Value Theorem.

Evaluation: it is a very demanding exercise. The author gives an

heuristic hint: to consider first the case of a cubic. Fortunately the

author provides the solution at the end of the textbook.

Exercise 18.10: Suppose that f is continuous on [0,2] and

that f(0) = f(2). Prove that there exist x,y in [0,2] such

that |y - x| = 1 and f(x) = f(y).

Classification: It demands the application of the Intermediate Value

Theorem.

Evaluation: the main difficulty is the presence of two variables; in

order to apply the theorems given in the section, it is necessary to

eliminate one of them. It is crucial to observe that we can assume

without loss of generality that x belongs to the interval [0,1]. Then

y should be x + 1. Therefore, the question is to prove that there

exists x in [0,1] such that f(x) = f(x + 1). Now it is enough to

repeat what was done in exercise 18.10: consider the left side of the

equation f(x) - f(x + 1) = 0, or equivalently, the left side of the

equation f(x + 1) - f(x) = 0. This is a difficult exercise.

Unfortunately the author destroys the pedagogical value and the beauty

of the exercise, by giving the following hint: consider the function

g(x) = f(x + 1) - f(x) on [0,11.
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6.3 INTERACTION BETWEEN DISCIPLINES

In most of the countries, if not all, the teaching of undergraduate

mathematics is hierarchically organised as a sequence of disciplines,

where each discipline is in general dependent on disciplines of the

previous year, and parallel disciplines are quite independent.

This curricular division of mathematics in disciplines is practically

universal. For example, Calculus, Real Analysis, and Complex Analysis

are taught as disciplines in different countries such as Great

Britain, France, Brazil, Iran.

Since undergraduate mathematics textbooks are pedagogic tools, they

should reflect this curricular organisation: the subject matter of a

textbook is a particular discipline. Sometimes it is difficult for the

readers to understand how such discipline is related with other

disciplines, because of authors' discourse: authors like to say their

textbooks are self-contained, independent of other disciplines.

There are two types of interaction between disciplines:

(a) internal interaction, that is, interaction between the given

discipline and other mathematical disciplines (prerequisite,

application), and

(b) external interaction, that is, interaction between the given

discipline and non-mathematical disciplines (motivation, application).

For example, Complex Analysis has the following characteristics:

(i) internal interaction: it has Calculus or Real Analysis as

prerequisites, and it can be applied to other mathematical disciplines

such as Partial Differential Equations or Stochastic Processes;

(ii) external interaction: it can be applied to non-mathematical

matters such as Electricity, and Fluid Dynamics, and some of its

topics can be motivated by non-mathematical disciplines such as Heat

Theory.
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In other terms, a discipline is articulated with other disciplines

through the relations of dependence (prerequisites), application and

motivation.

6.3.1 Prerequisites

As textbooks refer to disciplines which belong to a hierarchical

system, it is expected that their contents are to some extent

dependent on other subjects.

However, some authors seem to have an actual compulsion to declare

that their texts are autonomous, self-contained, attempting to negate

any kind of dependence on other disciplines or at least minimize this

dependence. For example, A.J. White begins the preface to his textbook

on Real Analysis uttering that:

The only absolute prerequisites for reading this book are an

interest in mathematics and willingness occasionally to

suspend disbelief when a familiar idea occurs in an

unfamiliar guise.

[White, preface]

White himself knows that this affirmation is just rhetorical:

But only an exceptional student would profit from reading

the book unless he has previously acquired a fair working

knowledge of the processes of elementary calculus.

[Ibidem, preface]

This is not original. Bourbaki says:

In principle, it [the series of books called Elements of

Mathematics] requires no particular knowledge of mathematics

on the reader's part, but only a certain familiarity with

mathematical reasoning and a certain capacity for abstract

thought.

[Bourbaki, preface]
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Nicolas Bourbaki as well as White corrects his rhetoric:

Nevertheless, it is directed especially to those who have a

good knowledge of at least the content of the first year or

two of a university mathematics course.

[Ibidem, preface]

White's and Bourbaki's discourses are identical: they are expressions

of the ideological discourse of the compartmentalization of

mathematical disciplines. This tendency should be opposed. According

to P. Hilton:

We must insist far less on the autonomy and (apparent)

independence of the various mathematical disciplines and

emphasize their (real) interdependence.

[Hilton 82, p. 160]

Authors try to solve the problem of prerequisites in the first

chapter. They use it as a reminder, a refresher, or as a sort of

foundations for the theory. Their discourse sometimes sounds strange:

This chapter is not to be read ... The reader can skip this chapter

In the following I will show that authors' tendency to isolate

mathematical disciplines from non-mathematical disciplines is still

stronger.

6.3.2 Applications

There are basically three types of authors of undergraduate

mathematics textbooks: (i) those who practically ignore any kind of

applications, (ii) those who give application only to other areas of

mathematics, and (iii) those who give applications of the theory to

non-mathematical disciplines.

I will illustrate this divergence within Complex Analysis textbooks

authors.
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NO APPLICATIONS

G.J.O. Jameson is an example of a purist author: his textbook

practically has no application whatsoever. He only propounds two

applied exercises, one about finite-dimensional division algebras and

one about a particular method of evaluating the probability integral,

topics that he himself considers 'slightly esoteric' [Jameson,

preface].

INTERNAL APPLICATIONS

Ahlfors is an example of internal applicationist. He applies complex

analysis to Dirichlet's problem and to linear differential equations.

PHYSICAL APPLICATIONS

Churchill & Brown develop physical applications in their textbook:

applications to Fluid Dynamics, Electrostatic Potential, and Heat

Conduction.

APPLICATIONS TO ENGINEERING

Some authors give applications; others simply discourse on

applications.

In the book [Weltner, K., et al, p. 220], the authors allude to

internal and external applications:

Internal applications, that is, applications within mathematics:

"Complex numbers are important in the solution of differential

equations."

External applications, that is, applications in other areas: "They

[the complex numbers] are also a useful concept in electrical

engineering, and they are indispensable in the study of quantum

physics."

In the book [Spencer, A.J.M. et al], it is noted down some

applications of complex analysis in engineering:
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Complex numbers arose from the study of algebraic equations,

and the theory which subsequently developed, called the

theory of complex variables, has found wide applications in

theoretical studies in many branches of engineering and

science. For example, complex impedance are used in

electrical engineering, complex potentials are used in fluid

dynamics and elasticity, and a complex time dependence is

used extensively whenever vibration and wave problems are

studied.

[Spencer et al]

Kreyszig classifies engineering problems, which may be treated and

solved by complex analysis in two types:

a) the first type is constituted by elementary problems, for which it

is sufficient the knowledge of complex numbers acquired in college

algebra and calculus. Examples: many applications in connection with

models of electric circuits and mechanical vibrating systems.

b) the second type of problems requires a deep knowledge of the theory

of complex functions. Examples: some problems in the theory of heat,

in fluid dynamics, and in electrostatics [Kreyszig].

Kreyszig, besides discoursing, shows applications: its book has a nice

chapter on applications, the chapter 17 on complex analysis applied to

potential theory.

MOTIVATION

Bak & Newman are very eclectic: they give applications to other

mathematical disciplines, applications to non-mathematical

disciplines, and they also use physical ideas to motivate mathematical

theorems [Bak & Newman].
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6.3.3 Contextualization

Another aspect of mathematical discourse is contextualization: (a)

historical contextualization, and (b) socio-cultural

contextualization.

Few authors contextualize the subject matter of their discourse.

HISTORICAL CONTEXTUALIZATION

Some authors contextualize their subject through reference to

historical events. Stewart & Tall is a rare example in terms of

Complex Analysis textbooks (see chapter 9.3).

SOCIO-CULTURAL CONTEXTUALIZATION

Socio-cultural contextualization is non-existent (no author is

interested to situate the topics they explore in their texts with

social or cultural reality; ethnomathematics is yet unthinkable in

undergraduate mathematics textbooks).

131



CHAPTER 7

NEGOTIATION OF NOMENCLATURE AND NOTATION

Introduction

In this chapter I am interested on the ways authors of undergraduate

mathematics textbooks negotiate the question of ambiguity in

mathematical nomenclature and symbolism.

In the first section I will discuss two problems of ambiguity in

mathematical nomenclature: synonymy, where the same mathematical

object is designated by different names, and homonymy, where different

objects receive the same name.

Afterwards I call attention on another important point, the relation

between naming and meaning. Should names convey meanings?

In section 2 I will deal with synonymy and homonymy in mathematical

notation.
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7.1 MATHEMATICAL NOMENCLATURE

Mathematicians, apart from creating mathematical objects, create their

own vocabulary. Mathematicians are likely to think that they are in

the same position as Humpty Dumpty, see [Carroll 62, p. 274]:

'When I use a word', Humpty Dumpty said in a rather scornful

tone, 'it means just what I choose it to mean - neither more

nor less'.

'The question is', said Alice, 'whether you can make words

mean so many different things'.

'The question is', said Humpty Dumpty, 'which is to be

master - that's all'.

According to the historian of mathematics Phillip S. Jones, as quoted

in [Greene 62, p. 488], 'mathematicians are inclined to think that

they are the complete masters; that, irrespective of what they may

mean elsewhere, in mathematics, words do as they are told, mean

exactly and only that which they are defined to mean'.

NAMING

In order to designate new mathematical objects, mathematicians either

invent new words (and then these words will be unique to mathematics)

or adapt words from ordinary language.

A new word has the advantage that it does not introduce ambiguity: it

denotes exactly the defined mathematical object and does not bear any

connotation at all. In this case the correspondences OBJECT - NAME and

NAME - MEANING are one-to-one. For example, 'hypotenuse' denotes 'the

side of a right-angled triangle opposite the right angle' and means

nothing more.

In the second case, where ordinary words are used as technical terms,

a clash of meanings always happens, namely, the clash between

technical meaning and ordinary meaning(s). In this case, mathematical

terms bring connotations from the ordinary language, which sometimes

can be an educational hindrance.
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For example, adjectives such as imaginary and irrational convey

negative connotations, as E. Hille remarks:

There is no other branch of mathematics where the

terminology shows such a marked distrust of the objects

named as the field of numbers. The terms radical, surd,

negative, irrational, and imaginary all have

noncomplimentary connotations, and in most cases these terms

indicate the opposition which once upon a time met these

revolutionary innovations.

[Hille, p. 19]

When mathematicians adapt words from the ordinary language to

mathematics, the technical meaning is either (i) subtly different from

the ordinary meaning, or (ii) very different from the ordinary

meaning. See [Marcus 80, p. 361], or [Orton 87, p. 127].

Words belonging to the class (i) are potential trouble-makers. For

example, the word similar as applied to geometrical figures belongs to

this class. Mathematical similarity of figures means more than the

likeness of their forms; it is a metric notion, involving

proportionality between their segments. Two mathematically similar

figures are 'similar' in the ordinary sense but not vice-versa. In

this case, learners tend to confound technical and ordinary meanings.

Topological terms such as open and closed are also sources of

confusion for the beginners, since in Topology 'closed' does not mean

'not-open'. It is hard, for example, to accept the existence of sets

which are simultaneously open and closed.

Perhaps words of the class (ii) provoke some perplexity among the

beginners but are not confusing. For example, square root of a number

has a technical meaning, which of course has no relation with the

ordinary botanical meaning.
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7.1.1 Synonymy and Homonymy

Terminology of mathematics changes with time: some terms seem stable

(for example, analytic function), others become obsolete and disappear

(for example, synectic function). It changes with geography as well.

For example, cr-algebra in Great Britain and U.S.A. is equivalent to

what in France is called tribu (tribe).

The following xenophobic opinion of J. Dieudonne illustrates how

sociological is the issue of mathematical terminology:

Concerning terminology, Bourbaki's attitude, as expressed in

his Directions for use, is to accept or at least tolerate

traditional terminology, unless it is ambiguous, or

ungrammatical, or incompatible with the normal use of

language. It turns out that in many fields of recent origin,

a number of mathematicians, mainly of Anglo-Saxon or German

origin, were guilty of particularly acute carelessness in

showing a total lack of imagination and a complete contempt

for their languages.

[Dieudonne 82, p. 621]

As a result of these historical and nationalistic clashes,

mathematical nomenclature is not standard. Each mathematical object

obviously receives a name. Problems of ambiguity arise when the

correspondence between objects and names is not one-to-one: (i) the

same mathematical object receives two or more names {synonymy), or

(ii) the same name is attributed to two or more mathematical objects

(homonymy).

SYNONYMY: MULTIPLICITY OF NAMES

Synonymy occurs mainly because different mathematicians observe and

give relevance to different aspects of the same mathematical object.

Textbook authors are not supposed to create names, but to select them

from among the existing ones. They react differently with respect to

the problem of the multiplicity of names. We can distinguish three

classes of authors:
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(i) those who use only one name, and do not mention any other names

(intolerant of ambiguity)

(ii) those who use only one but mention several names (tolerant, but

restrictive in use), and

(iii) those who mention and use several names (tolerant, and

eclectic).

EXAMPLE: DIFFERENTIABLE COMPLEX FUNCTION

Authors of Complex Analysis textbooks diverge about the naming of

dif ferent ia te complex function.

Authors who do not tolerate synonymy, that is, members of the class

(i) above are rare. G. J. 0. Jameson is one of them: he only uses the

term 'different ia te function'; consequently, his readers do not learn

what an analytic function is!

In my view, Jameson's attitude should be criticized. Authors should

not conceal the existence of terminological dispute among

mathematicians. We have to cope with the multiplicity of names in

mathematics because names are products of convention, and convention

depends on the will of the majority of the members of the mathematical

community.

I. Stewart and D. Tall intend to be rigorous: they only use the term

'dif ferent ia te function' until page 183, where they allow themselves

to use the term 'analytic function', after proving that every

differentiable function on an open disc is the sum of a power series:

Note that a complex function f is differentiable if and only

if it is analytic. The two words just emphasize different

points of view, and may be used interchangeably.

[Stewart & Tall, p. 183]

The great majority of the authors belong to the class (ii): in general

authors mention other names for 'differentiable function'. W. R.

Derrick is an example: he defines analytic (or holomorphic) function,

uses only the term 'analytic function', but, at the end of the
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chapter, he gives the following synonyms for analytic: holomorphic

(again!), monogenic, and regular.

The class (iii) is as small as class (i). E. Hille is an interesting

representative of this class: he is extremely tolerant and eclectic.

His book is called Analytic Function Theory, one of its chapters is

called 'Holomorphic Functions', and he defines 'differentiable'

function. Moreover, Hille mentions six synonyms for 'differentiable':

(1) holomorphic, (2) analytic, (3) monogenic, (4) regular, (5)

regular-analytic, and (6) synectic.

HOMONYMY: MULTIPLICITY OF OBJECTS

Contrary to synonymy, homonymy, that is, the attribution of the same

name to different objects, fortunately is not so frequent in

mathematical language; this proves that mathematicians are fertile

creators of names. On the other hand, as it will be shown in the next

section, homonymy of symbols is a genuine problem.

One intriguing example of geographical homonymy is the word billion,

which means a thousand millions in the United States and France, and a

million millions in Great Britain and Germany, although the British

media have now adopted the American usage.

In Complex Analysis, the term curve is confusing, because sometimes it

means the map, sometimes it means the path. It is amazing that curves

in mathematics can be straight! Another ambiguous term is region: some

authors use the term in the sense of an open connected set, whereas

others use it as an open connected set plus points of its boundary.

7.1.2 Description and Eponymy

According to Dieudonne, one of the principles orientating the

introduction of new technical terms in Bourbaki's textbooks is 'to

find names evocative of the notions they designate or of their

originators' [Dieudonne 82, p. 621].
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Thus, in mathematical nomenclature there are evocative and

non-evocative names, where the evocative names can be either

descriptive or eponymous. More precisely,

(i) descriptive names are names intended to evoke the notions by

describing their characteristic properties,

(ii) eponymous names are names intended to evoke their originators,

and

(iii) non-evocative names are neutral; they are just names, they do

not intentionally evoke anything at all.

The main purpose of using descriptive names is quite obvious: to

facilitate intuitive understanding. Examples of good descriptive names

are 'continuous' function, 'linear' function, ball, boundary,

'connected' set. A bad name is tribe to denote <r-algebra, because

sigma connotes enumerability, while tribe has no evocative

connotation.

Because of the need of frequent reference in their discourse,

mathematicians give names not only to mathematical objects, but also

to 'discursive' elements, such as theorems, axioms, equations,

formulae, etc. Examples of such descriptive names are: triangle

inequality, parallelogram law of vector addition, commutative property

of multiplication, fixed point theorem, chain rule, comparison test,

axiom of choice.

In undergraduate mathematics the learner becomes familiar with

eponymous terms such as Banach space, Hilbert space, Lebesgue measure,

Riemann integral, Cauchy's sequence, Taylor's series, Bessel function,

Peano's curve, etc.

Eponymous names of theorems, lemmas, axioms, etc. are even more

frequent; eponymy seems to be mathematicians' mania. For example, we

can find in Complex Analysis names such as Cauchy-Riemann equations,

Cauchy's theorem, Cauchy's integral formula, Schwarz's lemma,

Schwarz's reflection principle, Lipschitz condition, Parseval's

inequality, Dirichlet problem.
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Non-evocative names are not so frequent in mathematics. Examples are

field, group, ring, martingale, functor, syzygy.

Eponynous names, whenever possible, should be substituted or

supplemented by descriptive names, since they 'are ineffective and

inefficient means of conveying meaning in mathematical discourse'

[Henwood & Rival 80, p. 205].

NAMING OR NUMBERING?

Some textbooks authors prefer to use numbers, instead of names, for

the identification of theorems, axioms, etc. This type of referencing

gives a bureaucratic tone to mathematical style. See for example the

following proof of the Eilenberg criterion given by J. Dieudonne:

Suppose a and b are in the same connected component A of

C - H. As C - H is open in C and C is locally connected

((3.19.1) and (3.20.16)), A is open in C (3.19.5). By

(9.7.2) there is a path t -> y(t) in A, defined in I = [0,1],

such that •y(O) = a, ^(1) = b. As y{t) <£ H for any value of

t, the mapping (z,t) -> f(z,t) = s
a ^ m ^ 7 ! s

a ~(t) I
 i s

continuous in H x I, and f(z,O) = 1,

f(z,l) = s , ( z ) / | s , ( z ) | ; the result follows froma,b ' a,b '
(Ap.2.5).

[Dieudonne, p. 250]

In my view, the system of reference by names utilized for example by

Stewart & Tall is more helpful to the readers than Dieudonne's

numerical system of reference, because names such as Paving Lemma,

Estimation Lemma, and Identity Theorem are evocative.

By way of conclusion, discourse analysis should take into account the

following aspects of author's policy on nomenclature:

(a) multiplicity of names (mention the existing names or not),

(b) system of reference (naming theorems or numbering them),

(c) etymology (the author explains the linguistic meaning of the name

or not).
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7.2 MATHEMATICAL NOTATION

Symbols are undoubtedly the core of mathematical language. They are

used either to designate mathematical objects, classes of objects, and

functions or to designate operations, and relations.

In general Latin and Greek letters (lower-case and capital letters)

are used as symbols of mathematical objects, classes and functions.

Therefore, the learner of undergraduate mathematics is supposed to

know Latin and Greek alphabets. Some authors also use Gothic letters.

On the other hand, the class of operational and relational signs is

relatively small. In this case ambiguity is intentional. The

particular meaning is given by the context in which the symbol is been

used; this implies that ambiguity should be resolved by the context,

or by a suitable convention.

7.2.1 Homonymy of Symbols

Mathematicians use the same symbol to designate different things, for

many reasons. One reason is economy of symbols: they do not want to

overload their memory with a great arsenal of symbols. Another reason

is that they desire to stress analogy.

EXAMPLE: MEANINGS OF THE SIGN ( + )

A striking example is the symbol (+) often used in the definition of

vector space to denote two different operations: addition of scalars

and addition of vectors. These operations are 'analogous' in the sense

that both satisfy the properties of a group.

The meaning of the sign (+) is given by convention: if the author

makes the convention that Greek lower-case letters designate vectors

and Latin lower-case letters designate scalars, then a + p is a sum of

vectors, and not of scalars, while a + b is a sum of scalars, and not

of vectors.

Some authors show that tolerance to ambiguity is the price to be paid

by the elimination of complicated notations. For example, in

[Finkbeiner, p. 26], we can see what could be the 'rigorous' formal
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definition of vector space:

Definition 2.1. A system V = {\\ /-'; +, -, ©, ©} is culled a ir
space over (he. field ;T if and only if
(a) {/•': +, •} is a field fF whose identity elements are denoted by 0

and 1,
(b) {!'; ©} is a commutative group whose identity element is denoted 0,
(c) for all a, b £ /•' and all a, /3 £ I', a O a £ F and

(i) (« + 6) G a = (a © a) © (6 O a),
(ii) a O (a © /?) = (a © a) © (a O ft,
(iii) (a6) © a = a © (6 Q a),
(iv) 1 O a = a.

We can not cope with this 'rigorous' definition, because it is too

complicated. The following example shows how different authors cope

with sign ambiguity.

EXAMPLE: AMBIGUITY OF THE SIGN OF EQUALITY

A great obstacle for the authors of texts on complex numbers is to

explain the meaning of the 'equality' between the argument of the

product zw of two complex numbers and the sum of the arguments of z

and w. Authors attempt to overcome this obstacle in different ways. In

the following I present three different approaches.

First approach: For some authors, an equality between two mathematical

objects does not imply that the left side is the same thing as the

right side. For example, W. R. Derrick, in the context of arguments of

complex numbers, uses the sign of equality with a particular meaning.

According to Derrick, argument of a complex number is a number

determined up to a multiple of 2 71:

The angle of inclination of the vector z, determined except

for a multiple of Zn, is called the argument of z and is

denoted by arg z.

[Derrick, p. 12]
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For Derrick, the equality (or identity)

arg zw = arg z + arg w

has the following particular meaning:

... the polar angle of the vector zw is the sum of the

polar angles of the vectors z and w. Since the argument is

determined up to a multiple of Zn, the equation

arg zw = arg z + arg w

is interpreted to mean that if particular values are

assigned to any two of the terms, then there is a value of

the third term for which equality holds.

[Ibidem, p. 14]

Second approach: Other authors attempt to solve the problem of

ambiguity, by restricting the range of the argument. For example,

W. Ledermann first observes that:

Its value [The value of the angle 6] is, however, not

completely determined by the equations (1) x = r cos 9,

y = r sin 6, since arbitrary whole multiples of 2n can

evidently be added or subtracted from it.

[Ledermann, p. 22]

His solution is:

In order to obviate this ambiguity, we impose the further

condition that

-7i < 9 £ jr. (2)

For a given non-zero number z there exists one and only one

value of 9 which satisfies (1) and (2).

[Ibidem, p. 22]
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However, Ledermann's restriction will not be very helpful to solve the

problem of the argument of product of two complex numbers:

.. . it would not be correct to say that arg z z is equal

to 6 + 8 , because this number might fall outside the range

(2). All we can assert is that

arg (z z ) = arg z^ + arg z2 + 2kn,

where k = 0 or 1 or -1, and it is only on examining

condition (2) that we can decide which is the correct value

of k.

[Ledermann, p. 23]

Third approach: Other authors solve the ambiguity problem, by the use

of set theory notations, defining argument of a complex number as a

class. For example, H.A. Priestley defines the argument of a non-zero

complex number z as

[arg z] = { 6 e R: z = |z | e }.

He remarks that:

The bracket notation [arg z] is designed to emphasize that

the argument of z is a set of numbers, not a single number.

In fact, [arg z] is an infinite set, of the form

{ 6 + 2krc: k e 1},

where 6 is any fixed number such that

iG .,

e = z / j z .

[Priestley, p. 24]

We have now an actual equality, an equality between sets:
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[arg zw] = { 9 + </> : e € [arg z ] , <p <= [arg w]}

7.2.2 Synonymy of Symbols

Synonymy of symbols means that different symbols are used to designate

the same thing. For example, there exist at least four notations for

the derivative of a function:

(i) f'(x) (Lagrange's notation),

(ii) D f (Cauchy's notation),

(iii) dy/dx (Leibniz's notation), and

(iv) x (Newton's notation).

In this case, the choice of notation is not just a question of

personal taste. Each of them is convenient for some purpose: ease of

manipulation, clarity, association with other concepts, etc.

EXAMPLE: DETERMINANT OF UNITARY MATRIX

A. Graham, in his textbook Nonnegative Matrices and Applicable Topics

in Linear Algebra (1987), states and 'proves' that the determinant of

any unitary matrix equals 1, which is a false theorem.

His "proof" runs like this. Let U be a unitary matrix, that is, a

matrix having complex elements which satisfies the equation

U* U = I = U U* (1)

* — >
where U = U is the conjugate transpose of U.

To prove that |U| = 1 , where |U| denotes the determinant of U, we use

(1) and the result established in a previous section that

lu u*| = |u| u*|

Hence III = 1 = |U | IU* I = | U | 2 . The resul t follows.

The above argument presents th ree e r rors .
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First error: the determinant of a unitary matrix is not necessarily a

real number. To see this we calculate the determinant of the matrix

given as an example of unitary matrix at the top of the same page:

(1/5).

-1 + 2i

2 - 4i -2 - i

The determinant equals (4 - 3i)/5, which is not a real number.

Second error: the author uses the wrong equation

U u (2)

instead of

det U = det U ,

which is a direct consequence of two facts: (i) the determinant of the

transpose of U equals the determinant of U, and (ii) the determinant

of the conjugate of U is the conjugate of the determinant of U.

Third error: we can not infer from the equation |U| = 1 that |U| = 1 ,

even if determinant of U is a real number. In this case, it would be

equal to +1 or -1 .

What are the causes of such errors? I claim that these errors are due

to the bad choice of notation for the determinant of a matrix. In

fact, it seems that the author was induced in error by the similarity

between the symbol for the determinant of a matrix and the usual

symbol for the absolute value of a complex number.

Probably the error in the equation (2) was caused by a false analogy

with the equality between the absolute value of the conjugate of a

complex number z and the absolute value of z : I z I = I z I.

The second error, that |U| = 1 implies

caused by the association of the symbol IUI

U = 1 , seems to be

with the absolute value
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r
of a real or complex number. Actually, if z is a complex number, the

following implication is true : zl = 1 implies Izl = 1 .

All this mess could be avoided by the simple use of the more suitable

notation det U instead of U, as it is done for example in [Kreyszig].

In the discourse analysis of a textbook one should pay attention on

the way the author copes with ambiguity: does he/she conceal the

problem of ambiguity? Does he or she conceal the multiplicity of names

and symbols?
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CHAPTER 8

DISCOURSE ORGANISATION

Introduction

In section 1 I will argue that the notion of architecture of

mathematics is important for the discourse analysis of undergraduate

mathematics textbooks.

In section 2 I extend the discussion to the more broad concept of

style, which comprehends all the discursive strategies of textbook

authors.

In section 3 I will analyse the discourse of axiomatization of Complex

Analysis propounded by W.J. Thron.
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8.1 ARCHITECTURE OF MATHEMATICS

METAPHOR: MATHEMATICS AS ARCHITECTURE

Mathematicians sometimes use metaphors in order to express his

philosophical conceptions about the nature of mathematics. For

instance, N. Bourbaki in his paper The Architecture of Mathematics

(1950) conceives mathematics as a big city,

whose outlying districts and suburbs encroach incessantly,

and in a somewhat chaotic manner, on the surrounding

country, while the center is rebuilt from time to time, each

time in accordance with a more clearly conceived plan and a

more majestic order, tearing down the old sections with

their labyrinths of alleys, and projecting towards the

periphery new avenues, more direct, broader and more

commodious.

[Bourbaki 50, p. 230]

This metaphor reinforces the architectural features of mathematics. In

fact, Bourbaki uses this metaphor as a guideline for his conception of

mathematics as a hierarchy of structures. 'The organising principle',

Bourbaki says, 'will be the concept of a hierarchy of structures,

going from the simple to the complex, from the general to the

particular' [Bourbaki 50, p. 228].

According to Bourbaki, there is a central nucleus formed by the

mother-structures (algebraic structures, structures of order,

topological structures). Beyond this first nucleus, appear the

multiple structures, which are combinations of mother-structures, such

as topological algebra and algebraic topology. Further along, in the

periphery, there are the particular theories, such as theory of

numbers, real analysis, complex analysis, differential geometry. These

classical theories, however, have no longer their autonomy: they are

crossroads, 'where several more general mathematical structures meet

and react upon one another' [Bourbaki 50, p. 229].

The mathematics educationalist E. Begle (1979) gives a more
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'mathematical' picture of mathematics, that is, as a graph:

We can think of mathematics as an immense three-dimensional

linear graph, with facts and concepts as the nodes, and

operations and principles as the connecting arcs ... Thus we

can consider that part of the task of mathematics education

is to assist our students to construct in their own minds

selected parts of this mathematical network.

[Begle 79, p. 7]

The mathematician P. Halmos completes Begle's and Bourbaki's

metaphors, saying simply that mathematics is architecture:

Mathematics is security. Certainty. Truth. Beauty. Insight.

Structure. Architecture.

[Halmos 85, p. 127]

In my view, 'mathematics as architecture' is a metaphor which is

convenient for formalists. Despite my dislike for formalism, I believe

that the notion of architecture of mathematics as a way of organising

formal mathematics is important for discourse analysis.

ORGANISATION OF FORMAL MATHEMATICS

Architecture of mathematics is synonymous with organisation of formal

mathematics, that is, the network of its definitions and theorems. It

is through formal definitions that some authors of undergraduate

mathematics textbooks introduce mathematical concepts. It is through

theorems that they present properties and relations between concepts.

FLOW CHART OF THEOREMS

The core of the formal mathematics contained in a textbook is the set

of its theorems. This core is an organised set of theorems. It is

important to perceive it as a network, rather than as a mere sequence

of theorems.

It is inevitable that theorems are written one after another, however

this order of writing does not mean that the set of theorems is
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'linearly ordered', where each theorem has the same significance as

another one. On the contrary, theorems differ in importance: some of

them are more important than others, whatever the meaning of

"importance".

This collection of theorems is actually a network, a graph, where each

element is linked to other elements by the relation of dependence.

Analysis of the flow chart of dependence detect which theorems are

architecturally important, in the sense that they enter into the

proofs of many theorems; in a chart of dependence, such theorems are

the nodes from which a great number of arrows originates.

EXAMPLE

Few authors present a general overview of chapters showing how

theorems are linked. The author of the textbook Introduction to

Complex Analysis (1990), H.A. Priestley, is a rare exception. For

example, he shows the organisation of the theorems in chapter five

through the flow chart in figure 8.1.

CAUCHVS THEOREM (1)
(and the Deformation theorem (I))

Cauchy's integral
formula (5.1).

Holomorphic implies
infinitely differentiate
(5.5) I

Morera's theorem
(Cauchy converse)
(5.6)

Cauchy's formula
for derivatives (5.4)

'Liouville's
theorem (5.2)

Taylor's
theorem (5.9)

1
The Identity
theorem (5.14)

I
The Maximum-modulus
theorem (5.20)

Figure 8.1 Priestley's flow chart
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This flow chart indicates clearly the architectural importance of

Cauchy's integral formula and of Cauchy's formula for derivatives;

they are used as tools in the proofs of many other theorems.

The flow chart of dependence gives then a general idea about the way

the network of theorems is constructed by the author.

For example, the flow chart presented by Priestley shows that the

terminal theorems are Morera's, Maximum modulus, and Liouville's

theorems. As a matter of fact, Morera's theorem is a kind of converse

of Cauchy's theorem, and the maximum modulus and Liouville's theorems

are theorems about the 'behaviour' of analytic functions.

In order to illustrate how complicated can be a network of theorems, I

present in the figure 8.2 the flow chart of the theorems of the volume

I of Euclid's Elements of Geometry, according to [Granger 74, p. 46].
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Axiomas ( I

Figure 8.2 Elements of Geometry's dependence flow chart
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8.2 MATHEMATICAL STYLE

I understand by style the way the author organises his or her

discourse. More precisely, there are three kinds of organisation in

the discourse of undergraduate mathematics textbooks:

(a) organisation of mathematical information, that is, architecture of

mathematics;

(b) organisation of the negotiation authoi—reader: negotiation of

truth, intuitions, perspectives, values, etc.

(c) organisation of readers' activities, organisation of exercises

(text as a source of activities),

Style will mean the way the author copes with this treble

organisation.

HEURISTIC STYLE VS. FORMALISTIC STYLE

There exist two clearly conflicting styles of writing mathematics,

which, for simplicity, I call heuristic style and formalistic style.

The heuristic style emphasizes intuition, colloquial language,

problem-solving, whereas the formalistic style emphasizes rigorous

proof, precise language, theory-building.

HEURISTIC STYLE

G. Polya in the preface to his joint textbook with G. Latta, Complex

Variables (1974), propounds the following guidelines of what I call

the heuristic style:

1. Start from something that is familiar, useful, or challenging -

from some connection with the world around us, from the prospect of

some application, or from an intuitive idea.

2. Do not be afraid of using colloquial language when it is more

suggestive than the conventional precise terminology. In fact, do not

introduce technical terms before the student can understand the need

for them.
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3. Do not enter too early or too far into the heavy details of a

proof. First, give a general idea or just the intuitive germ of the

proof.

FORMALISTIC STYLE

N. Bourbaki and J. Dieudonne (one of the founders of Bourbaki's group)

support opposite principles:

1. From the axiomatic point of view, mathematics appears thus as a

storehouse of abstract forms - the mathematical structures .. . Of

course, it can not be denied that most of these forms had originally a

very definite intuitive content; but, it is exactly by deliberately

throwing out this content, that it has been possible to give these

forms all the power which they were capable of displaying and to

prepare them for new interpretations and for the development of their

full power'. [Bourbaki 50, p. 231]

2. 'The only thing that we believe indispensable is to write our

proofs so that the starting point (axiom or theorem) be clearly

precise as well as each reasoning step; for this it is necessary to

have a common language without ambiguity and not under the domination

of the diversity of "intuitions"; it is this language that the

axiomatic method and the "formalisation" of mathematics provide us'.

[Dieudonne 68, p. 249]

3. 'Returning to the overall conception of Bourbaki, proofs were to be

given in full (no part was ever "left to the reader" or relegated to

exercises), and (barring accidental mistakes, of which there were a

few) with the utmost precision' [Dieudonne 82, p. 619].

Bourbaki's treatise is not really intended for the use of

undergraduate students, however their principles are followed by

formalist authors of undergraduate textbooks.

There are two important variants of the formalistic style: Bourbaki's

style and Landau's style.
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BOURBAKI'S STYLE

The characteristics of Bourbaki's style are:

(a) emphasis on the architecture of mathematics,

(b) use of axiomatic method,

(c) maximum of generality,

(d) from general to particular,

(e) proofs of all theorems.

Despite the logical formalism, Bourbaki's texts have many examples,

exercises, metadiscourse and historical notes. Figures are few.

LANDAU'S STYLE

Edmund Landau wrote two textbooks in the early 30's in the so-called

Euclidean style, Satz-Beweis (theorem-proof) style or Landau's style,

translated as Foundations of Analysis (1951) and Differential and

Integral Calculus (1951).

Landau says in the preface to his textbook Grundlagen der Analysis

(1930):

My book is written, as befits such easy material, in

merciless telegram style {"Axiom", "Definition", "Theorem",

"Proof", occasionally "Preliminary Remark", rarely words

which do not belong to one of these five categories).

[Landau 51a, preface]

This textbook has no examples, and no figures. Motivation, intuitions,

explanations, and metadiscourse are given in the 'preliminary

remarks'.

How does he negotiate axiomatization with the students? He demands

from the readers knowledge of the language and good 'mental'

qualities:

I will ask of you only the ability to read English and to

think logically - no high school mathematics, and certainly

no higher mathematics. [Ibidem, preface for the student]
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However, as axiomatization means starting from the very beginning, the

author should make tabula rasa of readers' knowledge; knowledge is not

required:

Please forget everything you have learned in school; for you

haven't learned it.

[Ibidem, preface for the student]

In his second textbook Einfuhrung in die Differentialrechnung und

Integralrechnung (1934), Landau continues to write in Satz-Beweis

style. Despite the absence of figures, he now gives some examples.

There are no applications and no exercises.

In the next section, I will investigate Thron's discourse, who is a

follower of Landau's style.

8.3 THRON'S DISCOURSE

In this section I will analyse the discourse of W.J. Thron in his

textbook Introduction to The Theory of Functions of A Complex Variable

(1953), focusing on three aspects: architecture, activities, and

negotiation.

The scheme of discourse analysis I will use here is the following:

1. ARCHITECTURE OF MATHEMATICS: how mathematics is organised (author's

construction of mathematics). Two aspects are relevant:

(a) SETTING OF THE THEORY: foundations or pre-requisites,

(b) DEVELOPMENT OF THE THEORY: organisation of the contents; the

network of definitions and theorems.

2. ACTIVITIES: how readers' activities are organised (readers'

construction of mathematics). Analysis of exercises.

3. NEGOTIATION: how the author interacts with the readers,

(a) NEGOTIATION OF TRUTH: proofs or rhetorical arguments.
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(b) NEGOTIATION OF COMPREHENSION: figures, examples, appeals to

intuition, analogies, metaphors.

(c) NEGOTIATION OF LANGUAGE: nomenclature, notation, metadiscourse.

(d) OTHER KINDS OF NEGOTIATION: historical aspects, applications.

Note As it will be shown below, Thron's discourse is not a very common

discourse in the field of Complex Analysis; I have selected it because

it is a deviant case, in the hope that its analysis can help the

understanding of more "standard" discourses.

8.3.1 Architecture

How does Thron organise the mathematics in his text?

A. SETTING OF THE THEORY

Analysis of the preface and a scanning of the introductory part of his

text reveal that Thron is determined to give an axiomatic presentation

of Complex Analysis. He outlines his approach in the first paragraph

of the preface, which I will quote emphasizing some features with

bold letters.

A student of mathematics who is taking a course in the

theory of functions of a complex variable should in general

be mature enough to appreciate a rigorous treatment of the

subject. The better student will even have become quite

impatient with the phrase "it can be shown" which he is

likely to have encountered only too frequently in the years

before. A definite need thus exists for an introduction to

function of complex variables in which all results are

derived from a simple set of axioms. Since no such book is

available, I have attempted to fill the gap by writing a

text in which occur neither "intuitive proofs" nor theorems

for whose proofs the reader is refered to other sources.

[Thron, preface]

From this passage I presume that Thron's project is guided by the

following four principles:

1. The theory should start from its foundations (all results are
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derived from a simple set of axioms);

2. Every theorem should be proved (no phrase "it can be shown");

3. Proofs should be rigorous (no "intuitive proofs");

4. The text should be self-contained (no theorems for whose

proofs the reader is referred to other sources).

I will show that Thron will not be able to carry out these four

principles in the construction of his text; in fact, he will violate

all of them.

The first principle is violated because the set of axioms of set

theory chosen by Thron is incomplete. For example, both the axiom of

union (if X is a set, there is a set consisting of all elements of all

elements of X), and the axiom of power set (if X is a set, there is a

set consisting of all subsets of X) are used but neither given

as axioms nor proved.

Therefore, NOT ALL RESULTS IN THRON'S TEXTBOOK ARE DERIVED FROM A

SIMPLE SET OF AXIOMS.

Thron himself declares in the preface that the second principle will

be violated:

The only intentional exception to this rule is the omission

of those proofs that seemed to be simple enough to be left

as exercises for the reader. In certain borderline cases

outlines of proofs are given.

[Ibidem, preface]

Later on he will "negotiate" with the reader the truth of the theorems

by means of the following commandment, which is certainly incompatible

with rigorous treatment, or with axiomatic method of exposition:

Remark 2.1 If no proof is given for a theorem, it means that

the proof is left to the reader as an exercise.

[Thron, p. 8]
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Therefore, NOT ALL THEOREMS IN THRON'S TEXTBOOK ARE PROVED BY THE

AUTHOR.

The third principle is violated in many places, for example in section

28, where he confesses that he was not rigorous:

Remark 28.5 Throughout this section we have been fairly

careless as far as the difficulties that will arise from the

values co and 0 are concerned. It is hoped that the reader

noticed this and provided the missing arguments.

[Thron, p. 201]

Therefore, NOT ALL PROOFS IN THRON'S TEXTBOOK ARE RIGOROUS.

The fourth principle is violated for example by the following

Remark 2.7 It thus follows that apart from isomorphism there

exists at most one complete ordered field. The question

remains whether there can exist a set satisfying all the

requirements of a complete ordered field. A partial answer

to this is that, if there exists a set satisfying the Peano

axioms, then there exists a set that forms a complete

ordered field. This is shown by constructing real numbers

from the natural numbers. This process is carried out in

detail by E. Landau in his Grundlagen der Analysis.

[Thron, p. 15]

Therefore, THRON'S TEXTBOOK IS NOT SELF-CONTAINED.

INTUITION VS. RIGOR

In the third paragraph of the preface Thron refers to the conflict

between intuition and rigor. Thron "justifies" de-emphatization of

intuition in his text with the following argument:

Intuition and rigor are fundamental in mathematics. That the

former appears only in occasional remarks in the following

pages should not be taken to mean that I underrate its
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importance. However intuition is usually overemphasized in

the early years of a student's mathematical training, and it

was part of my job, as I saw it, to rectify this.. In

addition by its very nature intuition is subjective and as

such is best developed by the student himself to suit his

own needs.

[Ibidem, preface]

Thron's discourse is purely rhetorical. If Thron acknowledges the

importance of both intuition and logic, one expects that he endeavours

to give a balance between intuitive and logical reasoning in the text.

A scanning of his text shows that there are no figures, no examples,

and no applications in his text. This fact clearly implies that in

Thron's discourse practically there is no room for intuition.

Thron justifies the paucity of intuition in his text, declaring that

intuition is a subjective, personal matter, and not an interpersonal

matter: intuition is best developed by the student himself. This means

that, according to him, intuition is not negotiable between author and

reader.

In my view, this is an educational error, since author's intuitions

can help the development of readers' intuitions. Thron himself,

despite his adherence to logical formalism, makes appeal to intuition

in case logic does not work. For example, after a complicated

definition of orientable surface, Thron negotiates its intuitive

understanding:

The essential content of the definition in intuitive

language is that a surface is orientable if it is possible

to introduce a positive direction for a sufficiently large

family of curves on the surface and if this direction is

preserved under every continuous deformation, on the given

surface, of one curve of the family into another curve.

[Thron, p. 221]
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B. ORGANISATION OF THE CONTENTS

Thron's project is the axiomatization of Complex Analysis.

Thron starts with the axioms of set theory (section 1), the theory of

real numbers (section 2), and the theory of cardinal numbers

(section 3), as a preparation for the section 4, where he introduces

complex numbers.

Thron uses section 5 for the proof of the general associative and

commutative laws of the sums and products, which seems to be out of

context.

After this, as a preparation for the section 8 on the plane of complex

numbers, Thron deals with the theory of topological spaces (section

6), and the theory of metric spaces (section 7).

In section 9 he introduces differentiability of complex functions. In

section 10 he goes back to foundations, developing the theory of real

functions of real variables.

In section 11 he introduces curves and regions in the plane of complex

numbers.

As a preparation for the section 15 on integration, Thron presents

more foundational matters: some combinatorial topology (section 12),

Jordan curves (section 13), rectifiable and directed curves (section

14).

After this section the course is quite standard. However it should be

noticed that Thron displays some theorems of Complex Analysis in a sui

generis order. For example, the theorem on Cauchy-Riemann equations,

usually one of the first theorems of Complex Analysis, appears near

the end of the book, in section 27 on conformal maps (p. 183).
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8.3.2 Activities

In order to know what kind of activities Thron propound to his

readers, I made the classification of exercises of Thron's textbook in

six categories:

1. Proof of a theorem stated in the text, but unproven by the author;

2. Completion of a proof left uncomplete by the author;

3. Exercises to prove, that is, new theorems to prove;

4. Extension of the theory, where a new concept is introduced;

5. Exemplification;

6. Exercises to find, that is, routine exercises whose purpose is just

to apply the theory to particular objects or situations.

The table 9.1 shows the results of this classification.

CLASSIFICATION OF EXERCISES

PROOF OF A THEOREM STATED IN THE TEXT: 116

COMPLETION OF A PROOF: 24

EXERCISES TO PROVE: 22

EXTENSION: 2

EXEMPLIFICATION: 6

EXERCISES TO FIND: 33

OTHER TYPES: 23

TOTAL: 223

Table 9.1 Classification of exercises in Thron's textbook

DATA ANALYSIS

Exercises of type 1 and 2 are what I call gap-filling exercises.

The table shows that more than 607= of the exercises are gap-filling

exercises. This implies two things:

(i) Thron's text is very porous, in the sense that it has many gaps;

readers are often asked to do the author's job, that is, to prove

theorems.
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(ii) Thron uses the section of exercises, neither to train the

students, nor to open new perspectives to the readers, but to make

readers go back to the text. The text is all; exercises are then at

the service of the text.

8.3.3 Negotiation

(a) NEGOTIATION OF TRUTH

Thron negotiates the truth of the theorems in three ways:

(i) proving the theorem;

(ii) outlining the proof;

(iii) leaving the proof to the reader.

It was already shown that Thron leaves many theorems (to be exact,

140) to the readers to prove or to complete the proofs.

The question is: how does Thron prove theorems or outline proofs?

Thron is an adept of Satz-Beweis style forged by Edmund Landau, which

I have discussed in section 3.5. His textbook is a sequence of axioms,

definitions, and theorems, interspersed by rare remarks. No figures,

no examples, no motivations, no applications.

As a principle, Thron is economic with the use of arguments. Some

proofs are telegrams like the following "proof" of the theorem 19.10:

Proof. Th. 19.8 and Th. 19.7.

Some outlines of proof are rhetorical rather than logical; they look

like more a comment or a order than an argument. For example, the

outline of proof of the theorem 28.3 is an educated order:

Outline of proof A rather involved computation which the

student can carry through for himself ... [Thron, p. 192]

The outline of proof of the theorem 13.10 is a comment:
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Outline of proof A careful examination of the possible

configurations leads directly to this result. [Thron, p. 81]

Why does Thron use Satz-Beweis style?

One reason is practical: the foundations of the theory occupy much

space, and then it is necessary to reduce the space for argumentation

and explanation.

Another reason is authoritarianism: the author can control the whole

discourse, without paying attention to the learners' needs.

(b) NEGOTIATION OF COMPREHENSION

As I observed earlier, there are neither figures, nor examples in it.

Thron declares in the preface that he is a follower of Edmund Landau,

whose textbook Grundlagen der Analysis (1930) has neither figures nor

examples as well. However, Landau was more friendly with his readers

than Thron in the textbook Differential and Integral Calculus (1951),

where some examples appear, even though figures are still absent.

Absence of figures means that Thron has opted for verbalism and

symbolism; absence of examples means that Thron has opted for

generality and abstraction; the absence of both figures and examples

indicate that Thron will minimize other appeals to intuition.

APPEALS TO INTUITION

I mentioned above one example of appeal to intuition. Another remark

provides the intuition of Riemann surface:

Remark 31.3 An intuitive picture of what a Riemann surface

is can be obtained by the following consideration. Since

every analytic function can be generated by its power series

expansions, we provide ourselves with circular pieces of

paper, one for each element at each point of the domain of

existence of the function ... Starting with some element we

glue to its piece of paper (with the right amount of

overlapping) all pieces that belong to elements that are
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direct continuations of the original element and proceed

with this process until all pieces have been glued together

[Thron, p. 222]

Even in this case Thron rejects the use of illustrations.

(c) NEGOTIATION OF LANGUAGE

Definitions, names and notations are all established without

motivation, or any other type of negotiation. No alternative names, no

alternative notations.

Metadiscourse is made through the rare remarks. Sections have no

introduction.

(d) OTHER KINDS OF NEGOTIATION

Nothing about historical aspects of Complex Analysis. No applications.

8.3.4 Evaluation

Thron's axiomatization of Complex Analysis is incomplete and

non-rigorous, contrary to what he says in the preface. Thron's

construction of mathematics is not rigorous but his discourse is

"rigorousist". Thron is essentially a monist: he opts for rigor at the

expense of intuition.

Thron's basic error of architecture is his foundationalism: to

construct Complex Analysis on top of set theory, real numbers,

topology, and combinatorial topology, instead of using them as a

language, or as a tool, is an absurd project, from the viewpoint of

teaching and learning mathematics.

Thron adopts the Satz-Beweis style, which means maximum of

information, and minimum of explanation, and argumentation. Its use in

textbooks is pedagogically disastrous.
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Thron's textbook contains only axioms, definitions, theorems, proofs,

and occasional remarks. No figures, no examples, no applications, no

motivations. It is clear that Thron is not intended to negotiate

comprehension.

Moreover, the presence of so many logical gaps (lack of proofs, lack

of details in proofs) indicates that Thron's discourse is the

discourse of the imposition of truth.
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CASE STUDIES



CHAPTER 9

CASE STUDIES

Introduction

In this chapter I will investigate, as case studies, some aspects of

the discourse of Complex Analysis.

In section 1, I will analyse the discourse of the introduction of

complex numbers in Complex Analysis texbooks.

In section 2, I will analyse the discourse of the introduction of

Riemann surfaces, by which the authors open to the readers the

perspective of a new concept that is too complicated to be treated in

introductory textbooks.

In section 3 I will discuss the discourse of Stewart & Tail's textbook

on Complex Analysis.
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9.1 DISCOURSE ANALYSIS OF A CONCEPT: COMPLEX NUMBERS

Mathematicians have created several definitions of complex numbers. In

this section I am interested in investigating two things: What

definition of complex numbers do the authors of Complex Analysis

textbooks negotiate with the readers? What is their discourse on the

definition of complex number?

9.1.1 The Conflict Between Two Algebraic Definitions

First of all I will discuss the tension between two of the most used

definitions: (i) complex number as an expression of the form a + bi,

where a and b are real numbers and (ii) complex number as an ordered

pair of real numbers (a,b).

Historically speaking, the first definition came first. Mathematicians

have formally manipulated expressions such as 5 + v'(-15) as if they

possessed the same algebraic properties of real numbers, without

attributing 'meaning' to them, since the times of Cardan (Ars Magna,

1545) until Wessel (1797), who introduced the geometric interpretation

of complex number as a point in the plane. It is known that Gauss was

the first to use the notation a + bi or a + ib and to call it complex

number; therefore, I will refer to this definition as Gauss'

definition.

The second definition, complex number as an ordered pair of real

numbers, was first given by Hamilton (1837); therefore, this

definition will be called Hamilton's definition.

• COMPLEX NUMBER AS AN EXPRESSION

Some authors of Complex Analysis textbooks like L.V. Ahlfors introduce

complex numbers as symbolic expressions. I will show that this

approach is supported by a heuristic principle, the principle of the

permanence of the formal law.

AHLFORS' DISCOURSE

L.V. Ahlfors introduces complex numbers in the following way:
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It is fundamental that real and complex numbers obey the

same basic laws of arithmetic. We begin our study of complex

function theory by stressing and implementing this analogy

... From elementary algebra the reader is acquainted with

the imaginary unit i with the property i = -1. If the

imaginary unit is combined with two real numbers a, fS by the

processes of addition and multiplication, we obtain a

complex number a + i£.

[Ahlfors, p. 1]

Notice that Ahlfors emphasizes that complex numbers are expected to

obey the same arithmetical laws that govern the real numbers.

• THE PRINCIPLE OF THE PERMANENCE OF THE FORMAL LAW

This way of introducing complex number is based on a heuristic

principle called the principle of the permanence of the formal law,

which establishes the following:

Every time a newly introduced concept depends upon

operations previously employed, the propositions holding for

these operations are assumed to be valid still when they are

applied to the new concepts.

[Durege 1896, p. 9]

This principle is in general attributed to H. Hankel (1867), even

though it was previously formulated in other terms by M. Ohm (1822)

and G. Peacock (1833).

Hankel's principle can be invoked for example to justify the

definition of the power an, where n is a negative integer. The only

reason to define a as I/a is that the new concept should obey the

law

m . n m-n
a /a = a

which is known to be valid when m,n are positive integers, m > n.
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In the case of complex numbers, the principle says that the laws of

arithmetic (the properties that characterize real numbers as a field)

will remain valid for them. It is this principle that justifies the

use of the notation a + bi or a + ib.

Hankel's principle is just a heuristic principle, not a logical

principle. We have to be careful in using such a principle, because in

every extension of operations, some laws remain valid, while other

laws are broken.

For example, properties such as associativity and commutativity that

are valid for natural numbers remain valid for the addition of

integers, however the law of least element (every subset has a least

element) is broken. The properties of a ring possessed by the integers

remain valid for the addition and multiplication of rational numbers,

however, the property of the successor (each number has a successor)

is not valid any more. In the case of complex numbers, the law of

trichotomy (any two numbers are comparable) which is valid within real

numbers is broken in the case of complex numbers: it is not possible

to define an order relation compatible with the arithmetic operations

in the same way as for the real numbers.

It is educationally important to call attention not only to the gains

in the extension of an operation but also to its losses.

In summary, the choice of the definition of complex number as an

expression of the form a + bi or a + ib is grounded on a heuristic

principle.

• COMPLEX NUMBER AS A PAIR OF REAL NUMBERS

The definition of a complex number as a pair of real numbers is

usually considered as a formal definition, whereas the previous

definition is considered informal.

Many authors adopt it mainly because they consider it a 'rigorous'

definition: complex numbers are defined in terms of real numbers, and

not in terms of symbols. Nevertheless, they invariably get rid of the
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notation of complex number as a pair of real numbers in favour of the

Gauss' notation as soon as possible.

CHURCHILL & BROWN'S DISCOURSE

Churchill & Brown introduce complex numbers as Hamilton did:

Complex numbers z can be defined as ordered pairs z = (x,y)

of real numbers x and y, with operations of addition and

multiplication to be specified below ... The sum z + z and

product z z of two complex numbers z = (x ,y ) and z =
^ 1 2 1 1 1 2

(x ,y ) are defined by the equations

(x ,y ) (x ,y ) = (x x - y y , y x + x y )
I -V 2°2 I 2 ; n Ji 2 vz

[Churchill & Brown, p. 1]

The pedagogic problem of Hamilton's definition is that multiplication

of complex numbers appears arbitrary, artificial, out of the blue.

Churchill & Brown present their definition without any introductory

discourse; the reader has just to swallow it.

STEWART & TALL'S DISCOURSE

Stewart & Tall also adopt Hamilton's definition:

We define a complex number to be an ordered pair (x,y) of

real numbers. Addition and multiplication of complex numbers

are defined by:

(xx2 -

[Stewart & Tall, p. 10]
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After the definition, Stewart & Tall declare explicitly that they have

begun at the end of the historical process:

This definition is the culmination of several centuries of

struggle to understand complex numbers, and it shows how

elusive a simple idea can be.

[Stewart & Tall, p. 10]

Contrary to Churchill & Brown, Stewart & Tall prepare the reader to

accept Hamilton's definition through an introductory chapter on the

historical development of complex number and complex analysis.

However, they make clear that they will not slavishly copy history:

... we feel that cultural changes often affect the status

of conceptual problems: what was once an important

difficulty can become a triviality when viewed with

hindsight. It is not always necessary to drag today's

students through yesterday's hang-ups.

[Stewart & Tall, preface]

This reversal of history is reinforced in another context:

Though sometimes it is useful to see the development of the

theory in its historical context, it is not always necessary

to fight the historical battles again.

[Stewart & Tall, p. 8]

As Stewart & Tail's policy is to reverse history, they 'recover* the

notation a + ib as a logical consequence of field-isomorphism between

the set of complex numbers of the form (x,0) and the set of real

numbers. In other words, as x = (x,0), y = (y,0), and i = (0,1), we

can write

x + iy = (x,0) + (O.lKy.O).

Therefore, Stewart & Tall replace Hankel's heuristic principle used

implicitly by Ahlfors by a logical reasoning.
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In my view, both discourses, Stewart & Tail's and Ahlfors' discourses,

illustrates how distinctly dialectical authors' discourse can be.

On the one hand, Ahlfors's discourse (the way the definition is

formulated, the language used, and the overall context of logical

development of a theory) gives the impression that logic will be the

guide. The heuristic nature of the assumption is concealed. This can

disorient the learner, who thinks that logic is being used but cannot

understand or reconstruct any underlying logic for the principle. Few

authors are conscious enough to admit and declare they are doing

heuristic rather than logic.

On the other hand, Stewart & Tail's discourse (historical

introduction, discussion of controversies in the past) suggests that

complex numbers will be treated in a historico-critical perspective.

However, they opt for the formal definition, 'which satisfies our

modern standards of rigour' [Stewart & Tall, p. 1]. Paradoxically,

they invoke history in order to give support to an anti-historical

approach to complex numbers.

• THE MIDDLE WAY: NEHARI'S DISCOURSE

Z. Nehari solves the tension between Gauss' definition and Hamilton's

definition by the compromise, considering both of them as alternative

definitions. First he defines complex number as a symbol of the form

a + bi, alleging convenience. Afterwards, by way of contenting

critics, he presents Hamilton's definition as well.

It is interesting to observe how Nehari uses rhetorical and heuristic

schemes in support of his position.

Nehari starts his discourse by posing the following problem: a

quadratic equation with real coefficients may, or may not, have real

solutions. Is there a more general class of numbers in which such

equation always has solutions?

In order to solve this problem, he draws an analogy with negative

numbers:
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... let us suppose that we have no conception of negative

numbers and that we are called upon to solve the equation

x + a = b, where a and b are positive numbers. We would then

have to distinguish between two cases. If b a a, the

equation has a solution, and if b < a it has not. As we

know, this distinction is made unnecessary by the

introduction of negative numbers, i.e., BY POSTULATING THAT

the equation x + 1 = 0 has a solution and by denoting this

solution by -1 . This procedure may initially look rather

arbitrary, but it is then JUSTIFIED by showing that the

usual laws of arithmetic can safely be applied to negative

numbers, provided a few simple rules - such as, for example,

(-a)(-b) = ab - are observed.

[Nehari, p. 1]

Nehari does not justify the existence of negative numbers logically,

for example, by claiming that they can be defined as pairs of natural

numbers. He justifies the existence of negative integers by hindsight,

because they work arithmetically well. In other words, he uses

Hankel's heuristic principle.

He solves the problem of roots for the equation x + 1 = 0 by analogy:

The problem of finding a number whose square is a given

negative number can be treated in a similar way. We define a

number i by the equation

(1) i2 = -1

and we then show that the introduction of this number and

the use of numbers of the form

(2) a = a + bi

where a and b are real numbers, are compatible with the

usual laws of arithmetic if certain elementary rules are

observed.

[Ibidem, p. 2]
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Central to his argument is then the appeal to the analogy between

negative numbers and complex numbers (heuristic device). He takes for

granted that the reader has already accepted the 'existence' of

negative integers (rhetorical device).

According to Nehari, the use of the expression a + bi is convenient:

The use of the symbol i makes it possible to condense all

the laws of operation involving numbers of the form a + bi

into the following simple rule: Apply the usual rules of

-1.

[Nehari, p. 2]

2
algebra, and whenever i appears, replace it by -1.

Nehari then imagines a possible criticism of this heuristic

presentation:

At this point, one may object that all we have done is

invent a new symbol, and that this does not constitute A

PROOF THAT THERE EXISTS a number i with the very unusual

property i = -1.

[Ibidem, p. 2]

It is not clear whether he himself is raising the question or whether

he expects someone else will raise it. Anyway, he takes this criticism

into account in his discourse, for afterwards he will give Hamilton's

definition as an alternative.

Nehari affirms that Hamilton's definition solves the problems of

existence and legitimacy of use:

The question as to the existence of these numbers and as to

the legitimacy of their use in algebraic operations is,

however, easily settled once it has been realized that

operating with a number of the form (2) is the same as

operating with the two real numbers a and b according to

certain simple rules. It is entirely possible to discuss
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these numbers without ever mentioning the "imaginary"

number i.

[Ibidem, p. 2]

The problems pointed out by Nehari are of different natures: the

problem of the existence of complex numbers is a philosophical

problem, while the problem of legitimacy of their use is sociological.

Here Nehari is being rhetorical since legitimacy is established by

consensus and not by logic.

After all, Nehari is pragmatic: he resolves the dilemma by accepting

both definitions. The first, for convenience of use; the second,

because of rigour.

COMPARING NEHARI'S AND AHLFORS' DISCOURSES

Ahlfors also acknowledges that his definition of complex numbers as

symbols was defective:

So far our approach to complex numbers has been completely

uncritical. We have not questioned the existence of a number

system in which the equation x + 1 = 0 has a solution while

all the rules of arithmetic remain in force.

[Ahlfors, p. 4]

However Ahlfors shows that there is no need to adhere to the concept

of complex number as a pair of real numbers in order to solve this

sophisticated problem of existence. He constructs a field that

satisfies the required condition in the following way:

Consider all expressions of the form a + i|3 where a,0 are

real numbers while the sign + and i are pure symbols (+ does

not indicate addition, and i is not an element of a field).

These expressions are elements of a field F in which

addition and multiplication is defined by

(1) (a +i/3) +(? + iS) = (a + y) + i(/3 + 5),

(2) (a + i/3)(y +id) = (ay - 05) + i(a5 +
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(observe the two different meanings of the sign +).

[Ahlfors, p. 6]

Here Ahlfors calls attention to the problem of homonymy of the symbol

(+). This problem is similar to the case of vector space which I have

discussed in chapter 7.

Ahlfors' and Nehari's approaches are to some extent similar. Both

consider the definition of complex numbers as expressions as valid,

and both criticize this definition saying that there is a problem of

existence in this approach. However they diverge about the way of

solving this problem.

Nehari changes the notation and the conception in order to put his

approach right. On the other hand, Ahlfors proves that his approach

can be fixed without any change of notation or conception. Ahlfors has

then showed that Hamilton's definition can be avoided, because it is

not necessary even for introducing 'rigour' in the discourse. However

it is not clear from Ahlfors' text why he avoids the use of Hamilton's

definition.

MILLER'S DISCOURSE

K.S. Miller expects that his reader is already familiar with complex

numbers:

For example, the reader has an INTUITIVE notion of a complex

number a + bi where i = V(-l) and a and b are real.

[Miller, p. 1]

In my view, Miller is being rhetorical by using the term 'intuitive*

since there is no intuition involved with complex number, unless one

is provided with a geometric interpretation.

He suggests then that a complex variable z = a + bi can be seen as a

pair of real variables, however he warns that this approach should not

be carried to extremes:
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We do not wish to mislead the reader. While the technique of

considering a complex number as two real numbers enables us

to prove many theorems, this method of approach should not

be carried to extremes. The essential beauty and utility of

the theory of analytic functions rests on the treatment of

the complex variable as an entity and not as a pair of real

variables.

[Miller 60, p. 1]

Miller is affirming then that a function of a complex variable is not

exactly the same as a function of two real variables. For Miller, the

problem of considering complex number as a pair of real numbers is

really definitional, and not only notational. Miller's last sentence

is completely rhetorical since he appeals to 'beauty* and 'utility',

and says that a pair of real numbers is not an entity. For any

mathematician, a pair of real numbers is an entity, if entity means a

mathematical object.

Nevertheless, Miller will define complex numbers as ordered pairs of

real numbers!

• TENSION BETWEEN GAUSS' AND HAMILTON'S DEFINITIONS

Other authors acknowledge the existence of this conflict between

Gauss' and Hamilton's definitions, or at least between the notations

a + bi and (a,b).

PENNISI'S DISCOURSE

For example, L.L. Pennisi starts his introduction to complex numbers

by saying that he will adopt Hamilton's definition instead of Gauss'

definition, without any justification:

An approach to complex numbers is to consider the properties

of expressions of the form a + bi, where a and b are real

numbers and i is one of the imaginary roots of x + 1 = 0.

We shall approach the subject of complex numbers, however,
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by considering the set of all ordered pairs of real numbers.

[Pennisi, p. 1]

Pennisi only says that there are different approaches to complex

numbers; as he does not give more details, it seems that such

discourse is directed to the instructor, and not to the student.

This decision becomes clear on page 3, where Pennisi deduces that the

pair [a,b] can be written as a + ib:

[a,0] + [0,1] [b,0] = [a,0] + [0,b] = [a,b]

hence

[a,b] = a + ib

Thus [a,b] may be denoted by a + ib with the understanding

that a is [a,0], b is [b,0], and a + ib is a plus i times b.

[Ibidem, p.3]

Pennisi does not accept Gauss' definition because of formal rigour:

complex numbers should be set in terms of real numbers only and not in

terms of expressions. Pennisi accepts a + bi as a notation, but not as

a definition of complex numbers.

MORETTI'S DISCOURSE

Contrary to Pennisi, another author G. Moretti criticises the notation

of complex number as an ordered pair of real numbers:

Much of the practicality and simplicity of the theory would

be obscured if another notation, for example z = (x,y)

were used instead of z = x + iy.

[Moretti, p. 27]
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MARSDEN'S DISCOURSE

J.E. Marsden utilizes Hamilton's notation in his definition, however

he soon adopts Gauss' notation:

Rather than using (x,y) to represent a complex number, we

will find it more convenient to return to more standard

notation as follows ... A single symbol such as z = a + bi

is generally used to indicate a complex number ... The

reason for using the expression a + bi is twofold. First it

is conventional. Second, the rule i = -1 is easier to use

than the rule (a,b)(c,d) = (ac - bd, be + ad) although both

rules produce the same result.

[Marsden, p. 3]

Therefore, there exists conflict between mathematicians about Gauss'

definition and Hamilton's definition.

9.1.2 GEOMETRIC DEFINITIONS

Gauss' and Hamilton's definitions are algebraic. There are two

geometric definitions as well: complex numbers as points in the plane

(Argand), and complex numbers as vectors in the plane (Wessel).

MARSDEN'S DEFINITION

J.E. Marsden defines complex numbers geometrically, as Argand did:

The basic idea of complex number is credited to Jean Robert

Argand, who suggested using points in the plane to represent

complex numbers. The student will recall that the plane,

denoted by IR , consists of all ordered pairs (x,y) of real

numbers.

[Marsden, p. 3]

Marsden's definition is the following:

2

The system of complex numbers, denoted C, is the set IR

together with the usual rules of vector addition and scalar

multiplication by a real number a:
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a(x,y) = (ax,ay)

and the operation of complex multiplication defined by

(x ,y )(x , y ) = ( x x - y y , x y + y x )

1 °1 2 ° 2 1 2 ; 1 J 2 V2 Jl 2

[Marsden, p. 3]

It is noteworthy that Marsden suggests the definition of complex

numbers as points in the plane, but in fact he defines C

simultaneously as a real vector space and as a field. It is then

implicitly assumed that vectors in the plane correspond to points in

the plane.

In this way, he will easily give geometric meaning to the addition of

complex numbers and to the multiplication of complex numbers by real

numbers; however, in order to give some meaning to the multiplication,

he will revert to the notation a + bi.

Marsden's definition in terms of pairs of real numbers formally

coincides with Stewart & Tail's definition: however it has a different

character. Marsden's definition is essentially geometric, whereas

Stewart & Tail's definition is essentially algebraic.

DEFINITION, INTERPRETATION, OR REPRESENTATION?

Many authors use the words interpretation and representation instead

of definition, when they refer to geometric objects.

Pennisi, for example, says that 'according to Gauss, complex numbers

may be interpreted as points in a two-dimensional plane'. [Pennisi, p.

9]

Ahlfors explains why he adopts the term 'geometric interpretation' of

complex number, instead of definition:
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The geometric representation derives its usefulness from the

vivid mental pictures associated with geometric language. We

take the point of view, however, that ALL CONCLUSIONS IN

ANALYSIS SHOULD BE DERIVED FROM THE PROPERTIES OF REAL

NUMBERS, AND NOT FROM THE AXIOMS OF GEOMETRY. For this

reason we shall use geometry only for descriptive purposes,

and not for valid proof, unless the language is so thinly

veiled that the analytic interpretation is self-evident.

This attitude relieves us from the exigencies of rigor in

connection with geometric considerations.

[Ahlfors, p. 12]

Ahlfors's analytic rigour is not followed by some authors who use

geometric reasoning to prove theorems. For example, Nehari" proves the

triangle inequality using geometric reasoning:

It is also known from elementary geometry that the sum of

two sides of a triangle is larger than the third side,

provided the three vertices of the triangle do not lie on a

straight line. Applying this to the triangle (O,a,p) and

noting that its sides are | a | , | p |, | a - |31, we find that

|<x - /3[ ^ |oc| + | /3 | . If we replace (3 by -£ and observe that

| /31 = | -p |, we obtain the important inequality

| a

[Nehari, p. 8]

Therefore, authors who adopt algebraic definitions refer to geometric

definitions as geometric interpretation or representation of complex

numbers; on the other hand, authors who adopt geometric definitions

refer to algebraic definitions as notations for complex numbers.
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OTHER DEFINITIONS

• COMPLEX NUMBER AS A MATRIX

E.T. Copson does not accept the definition of complex number as a

symbol:

It is very desirable that we should provide a definition of

such numbers which depends only on real numbers, instead of

the formal introduction of the symbol V(-l) of elementary

algebra.

[Copson, p. 2]

Copson regards complex numbers as geometric transformations. He

defines complex numbers as matrices of the form

a b

-b a

where a,b are real numbers. In this definition, the imaginary unit is

the matrix

0 1
i =

-1 0

[Copson, p. 5]

Alternative definition in terms of matrices is given by B. Artmann: he

adopts as the imaginary unit the transpose of the matrix used by

Copson [Artmann, p. 77].

Copson's and Artmann's definitions are based on the same idea of

rotation and enlargement, the difference being just notational. Copson

represents a transformation by the following notation

(x \ y') = (x, y)

-b
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whereas Artmann uses the notation

a -b

b a

• COMPLEX NUMBER AS A POLYNOMIAL

Ahlfors asks readers to prove that the complex-number system can be

thought as the field of all polynomials with real coefficients modulo

the irreducible polynomial x + 1. [Ahlfors, p. 6]

This definition, due to Cauchy (1847), can be adequate for algebra,

but not for analysis or geometry.

RETROSPECTIVE

There are at least six different definitions of complex numbers:

1. complex numbers as symbols of the form a + bi;

2. complex numbers as pairs of real numbers (a,b);

3. complex numbers as points in the plane;

4. complex numbers as vectors in the plane;

5. complex numbers as matrices;

6. complex numbers as classes of polynomials.

The algebraic definitions 1 and 2 are the most used in Complex

Analysis textbooks.

Definition 1 is proper for algebraic manipulation; however, it lacks

'reality' and meaning.

Definition 2 has more 'reality' than definition 1; it facilitates the

connection between complex numbers and points in the plane; however,

multiplication is artificial, has no plausibility.

Definition 3 is adequate for the introduction of topological notions;

however, there is no meaning in adding and multiplying points.
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Definition 4 explains addition very well, however multiplication of

vectors seems artificial.

Definition 5 is adequate to explain addition and multiplication of

complex numbers; however it seems sophisticated to look at complex

numbers as matrices.

Definition 6 is more adequate for algebraic treatment, rather than for

analysis.

Geometric definitions (3,4,5) give geometric intuition and meaning to

complex numbers, whereas algebraic definitions (1,2,6) give us ease of

manipulation.

In summary, the adoption of a definition of complex number is not only

a matter of taste; it involves the defence of a perspective, a point

of view on complex numbers. There are advantages and disadvantages in

adopting a particular one. In my view, teachers should show to the

students the existence of this variety of perspectives, instead of

choosing a particular one from the outset. Equally important, as has

been stressed, is a realisation of the nature of the heuristic and

rhetorical devices used to advance a particular perspective.
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9.1.3 Preliminary Discourse on Complex Numbers

I am now interested in showing the variety of introductory discourse

to complex numbers. Churchill & Brown and Stewart & Tall represent

opposite points of views.

On the one hand, Churchill & Brown give no preliminary discourse. They

go straight to the definition of complex numbers as an ordered pair of

real numbers.

Stewart & Tall, on the contrary, are well aware of the rhetorical

aspects of mathematical discourse. They have devoted a whole chapter

to introduce the reader to the subject; to do what in rhetoric is

called the exordium or the proemium.

Stewart & Tall evoke historical events to negotiate their definition

of complex number. In the first chapter of their textbook, they give

an account of the history of complex numbers and complex analysis,

pointing to some definite steps in this history.

The first historical step was formal manipulation of complex numbers.

In sixteenth century Cardan and Bombelli manipulated symbols such as

5 + •/(-IS) and 5 - V(-15) as if they were ordinary numbers.

The second step was formal manipulation of complex functions. In the

eighteenth century John Bernoulli, Leibniz and Euler integrated and

differentiated complex functions.

The third step was geometric interpretation of complex numbers; this

was done by Wessel, Argand and Gauss at the beginning of the

nineteenth century.

The fourth step was the formal definition of complex numbers, which

according to Stewart & Tall, 'satisfies our modern standards of

rigour' [Stewart & Tall, p. 1]. Hamilton's definition of complex

numbers as ordered pairs of real numbers subject to certain explicit

rules of manipulation 'has placed the complex numbers on a firm

algebraic basis'. [Ibidem, p. 5]
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An interesting point in Stewart & Tail's account is the divergence

between John Bernoulli who affirmed that the logarithm of a negative

number is real and Leibniz who affirmed that it is complex.

What is log(-l)? This could be a good starting point for an

interactive teaching of Complex Analysis.

APPLICATIONS

J. Marsden's approach is tripartite: (a) he presents a historical

sketch before defining complex number, (b) he mentions applications of

complex numbers and complex analysis to other branches of mathematics,

and to non-mathematical fields as well, and (c) he talks about the

importance of the subject.

THE DISCOURSE ON EXTENSION

The majority of authors of Complex Analysis textbooks do not use the

historical approach in the introduction of complex numbers. History is

replaced by hindsight, and this causes some 'strangeness' in their

preliminary discourse. They try to justify the introduction of complex

numbers based on logical arguments.

• DERRICK'S PRELIMINARY DISCOURSE

Derrick, for example, says that complex numbers are defined in order

to remedy a defect of real numbers:

The real numbers have one basic FLAW: They do not provide

all possible solutions to polynomial equations. For example,
2

the equation x + 1 = 0 cannot be solved using real numbers,

since the square of any real number is nonnegative.

To remedy this defect, we define the set of complex numbers

C consisting of all ordered pairs z = (x,y) of real numbers

... [Derrick, p. 2]

Derrick says that the non-existence of roots to the equation
2

x + 1 = 0 is a defect of rea l numbers. Following th is reasoning we

could say t ha t real numbers have also many other ' de fec t s ' : the

equation 1/x = 0 has no real solutions; the equation 1 = 0 has no
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solution, etc. However, no one will try to construct an extension of

real numbers that includes a solution, for example, to the last

equation.

Therefore the notion of 'defect' is a purely rhetorical device. What

is its function? Does the author merely feel that he has to provide

some motivation, or does the use of the word 'defect' have a definite

purpose? It may be impossible to decide from the text, but the

discourse analysis provides the questions which a teacher has to be

aware of.

• MORETTI'S PRELIMINARY DISCOURSE

Moretti is also rhetorical:

So far, the operation V(-l) is meaningless because no real

number can be found whose square is a negative number. IF

SOME SENSE HAS TO BE GIVEN TO THE OPERATION, it is necessary

to step off the real axis, to find more points to associate

with the square roots of negative real numbers. However, the

points in a plane are defined by two coordinates, thus we

are NATURALLY led to the complex numbers, the word

"complex" meaning that one of these numbers is actually a

set of two real numbers and can be associated with a

point in a plane. [Moretti, p. 26]

Moretti asserts that it is 'natural' what took 200 years to be

realized: to think of associating complex numbers with points of a

plane.

FOUNDATIONS

W. J. Thron prefers to construct complex numbers axiomatically; he

starts talking about axioms of set theory, and develops the theory of

real numbers and cardinal numbers before introducing Hamilton's

definition.
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I have shown five distinct discursive procedures:

1. no preliminary discourse;

2. historical perspective;

3. reference to applications;

4. mathematical reasons (extension);

5. construction from the axioms.

The first and the last procedures are authoritarian; the learner has

to accept the complex numbers as they are.

The third procedure, reference to applications, is just rhetoric. To

say that complex numbers are applied in electrical engineering or in

fluid dynamics without providing details of the interaction between

mathematics and other disciplines is not enough.

The fourth procedure, to give intrinsic mathematical reasons for the

study of complex numbers, is also rhetoric. Hindsight in this case

seems artificial; it cannot substitute for history properly.

Among these five procedures, the only one that is educationally

interesting is the second procedure, historical perspective, as was

done by Stewart & Tall.

DUREGE'S APPROACH

In my view, better than Stewart & Tail's historical account is the

introduction of H. Durege's textbook Elements of the Theory of

Functions of a Complex Variable, published in 1896.

Durege gives a historico-critical account of the development of

complex numbers. He starts his introduction in the following way:

To follow the gradual development of the theory of imaginary

quantities is especially interesting, for the reason that we

can clearly perceive with what difficulties is attended the

introduction of ideas, either not at all known before, or at

least not sufficiently current. [Durege, p. 1]

189



Durege talks about Hankel's principle of the permanence of the formal

law, which he asserts 'is of the greatest importance for mathematics,

notwithstanding the fact that its assumption is by no means necessary

but arbitrary' .

Durege as well as Stewart & Tall does not hide the fact that complex

numbers were controversial. He cites for example that Euler taught

that, if a and b denote two positive quantities,

•(-a) , •/(-b) = •/(ab).

However this view was not generally accepted because it would be

absurd to assume that the product of two impossible quantities should

not also be impossible. According to Durege, Hutton's Mathematical

Dictionary (1796) says that in his time the views of mathematicians

were about equally divided on this point.

HISTORICAL DEVELOPMENT AND EDUCATION

Why do the authors of Complex Analysis textbooks hide the fact that

concepts such as complex numbers are the final results of the struggle

of mathematicians to understand them, and not the starting points, as

they present them?

In my view, this is done because, for the majority of teachers,

lecturers and textbooks authors, mathematical education means the

teaching of truths and certainty, and not of controversies and doubts.

Authors have then to resort to rhetorical devices in order to justify

the inversion of history, replacing the description of historical

events by its rationalization; replacing conjectures and refutations

by analytic rigour. History shows that the way to truth is sometimes

tortuous and difficult; hindsight 'corrects' history giving it order

and 'naturality'.

The ideology of many textbook authors is precisely to present this

'corrected' view of the subject.
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In the past polemics between scientists were more overt; in present

day texts authors take positions on polemical issues in a covert,

implicit way. One of the tasks of discourse analysis is to detect

them, uncovering their implicit messages.

9.2 DISCOURSE ANALYSIS OF A CONCEPT: RIEMANN SURFACES

In section 9.1 I have analysed the discourse of the first concept

given in Complex Analysis textbooks: complex numbers. In this section

I will analyse the discourse of the last concept given in such

textbooks: Riemann surfaces.

Formal definition of Riemann surface is considered difficult by the

majority of textbook authors and in general is not presented in

introductory texts on Complex Analysis. Authors usually negotiate the

intuition of Riemann surfaces, by means of analogy, examples and

figures.

In the following I will show that different authors conduct this

negotiation in different ways, with different perspectives.

THRON'S PRESENTATION

Thron's project is the axiomatization of Complex Analysis, as I

discussed in section 8.3. Thron gives the following definition of

Riemann surface:

DEFINITION 31.8. The Riemann surface of an analytic function

F(z) consists of its Riemann configuration and those

singular points which are poles or algebraic branch points.

[Thron, p. 225]

The difficulty of this definition is on the definition of Riemann

configuration:

DEFINITION 31.3. Let F(z) be an analytic function. Consider

the set S consisting of all pairs <z, P >, where z is any

complex number in the domain of existence of F(z) and P is
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a functional element of F(z) at z. Let < = <z, P >; then we

call z the place coordinate of C, and P the element

coordinate of ^. For every point ^ of S we define

neighborhoods N , p > 0 but less than the radius of

convergence of P , to consist of all points £, = <x, P > € S

for which | x - z | < p and P is a direct analytic

continuation of P . If m belongs to the domain of existence
z

of F(z), all possible <co, P > are also considered as points
CO

of S. Let T) = <oo, P >; then we define N to be the set of
oo co,d

all £ such that | x | > d; d is to be taken large enough so

that P converges for all Ixl > d, and such that P can be
00 I I ' x

obtained by direct analytic continuation from P . The space

S with the topological structure defined above is called the

Riemann configuration of the function F(z).

[Thron, p.. 221]

To complete the understanding of the definition of Riemann surface, it

is also necessary to see the definitions of algebraic branch point

(definition 31.7) and pole (definition 31.6), which involve more and

more definitions.

In order to facilitate readers' acceptance of the formal definition,

Thron attempts to make appeal to intuition, before the formal

definition:

An intuitive picture of what a Riemann surface is can be

obtained by the following consideration. Since every

analytic function can be generated by its power series

expansions, we provide ourselves with circular pieces of

paper, one for each element at each point of the domain of

existence of the function. The radii of our pieces we make

equal to the radii of convergence of the corresponding

functional element. Starting with some element we glue to

its piece of paper (with the right amount of overlapping)

all pieces that belong to elements that are direct

continuations of the original element and proceed with this

process until all pieces have been glued together. The
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resulting surface (the process can in general not be carried

out in three dimensions without having pieces interpenetrate

each other, which should not touch each other) is, apart

from certain boundary points to be added later, the Riemann

surface of the function.

[Thron, p. 222]

His 'intuitive' description of Riemann surface is inadequate for

several reasons.

(a) Thron attempts to give intuition to the readers without using

examples. The readers have then to apply the same intuition to v'z and

log z for example, which are qualitatively different multifunctions.

(b) In the first emphasized segment (we provide ourselves with

circular pieces of paper) Thron gives the impression that readers are

supposed to provide themselves with real pieces of paper; readers can

therefore confound mental picture with reality. The mental picture

proposed by Thron does not work in reality for example in the case of

log z, since infinite pieces of paper are necessary.

(c) Since Thron does not use figures in his text, it is difficult to

understand how one piece is glued to another: his comment 'with the

right amount of overlapping' is simply rhetorical and not

descriptive.

(d) The last emphasized segment 'the process in general can not be

carried out in three dimensions without having pieces interpenetrate

each other, which should not touch each other' is abstruse. Is Thron

describing a process that in general is impossible? Does this

affirmation mean that the process he is describing is mental and not

real?

Thron's appeal to intuition is not in tune with the rest of book where

he is extremely formal. This is a sign that the formal definition of

Riemann surface does not work, it is not clear. Thron's attempt to

transmit his intuition verbally to the reader fails because he does
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not use the appropriate tools (examples and figures).

This failure proves that in the case of Riemann surfaces adequate

intuitive explanation is essential for its understanding: formal

definition is not clear at all.

PRIESTLEY'S PRESENTATION

Priestley presents a modernized intuition of Riemann surface:

A multi-storey car park provides a good mental picture. The

floors of the car park represent copies of the plane, and

the ramps one up and down between levels indicate how these

copies are pasted together. The Riemann surface for the

logarithm is modelled by a car park with infinitely many

floor each of infinite extent, with a ramp joining each

floor to the next; see the figure ... For more complicated

multifunctions the car park designer might be said to have a

warped sense of humour.

[Priestley, p. 101]

Copies of C

Riemann surface for log z

Figure 9.1 Priestley's illustration
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Priestley does what Thron has not done. He tells readers that the

picture is 'mental' and not 'real', he uses an example, he indicates

how the branches are pasted together, and he uses a figure. Above all,

Priestley use a heuristic device: the analogy of Riemann surface with

a car park.

This is, in my view, an example of good combination of intuition and

heuristic that convey understanding of a concept, without logical

formalism: a necessary doorstep to the entrance into the rather

abstract theory of Riemann surfaces.

STEWART & TALL* S PRESENTATION

They stress that they will give an intuitive picture, and the reader

should not confound it with a rigorous definition:

Riemann invented a geometrical way to envisage multiform

functions, much more intuitively appealing than an

equivalence class of function elements, which involves

replacing C by a more complicated 'Riemann surface'. In the

case of the logarithm we can describe it informally in the

following terms, which should not be subjected to too deep

scrutiny of a logic-chopping kind. We are not attempting a

rigorous definition at this point: the informal description,

though it may sound far-fetched, is in fact capable of a

precise and rigorous rendering.

[Stewart & Tall, p. 268]

195



Figure 9.2 Stewart & Tail's illustration

Stewart & Tall make explicit that they are negotiating intuition. They

make clear that decisions are being taken with respect to the

conflicts between logic and intuition, analytical approach and

geometric approach, and between formal and informal.

Im my view, Stewart & Tall use the right amount of rhetorical devices

in their negotiation of Riemann surfaces.

DEPREE & OEHRING'S PRESENTATION

Depree & Oehring make analogy of Riemann surface of the function z

with a Japanese fan:

At the risk of repetition and of further degeneration toward

the intuitive in describing R [the Riemann surface of z ],

we remark that if we interpret the map w = z "dynamically",

we can think of it as fanning out a sector of angle 2a, much

like the opening of a Japanese fan. (Of course, the analogy

is imperfect since there is also radial motion.) If we think

of the fan as initially constituting a complete circle, then

opening it so as to double the angle would wind it above

itself to produce a model of R (without the final crossing).

[Depree & Oehring, p. 113]
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w,

Figure 9.3 Depree & Oehring's illustration

In the first paragraph we can 'feel' that Depree & Oehring somewhat

despise intuition: 'degeneration toward the intuitive' is a really

strong utterance against intuition.

This discourse against intuition is so frequent in their text that

they warn the reader in the preface:

Finally, a word to the student. There are many allusions to

"rigor" and "intuition" throughout the book, and perhaps you

will feel their purpose is for lauding the former and

deprecating the latter. On the contrary, each has an

important place in mathematics.

[Depree & Oehring, preface]

Depree & Oehring use the rhetoric of ambiguity; they warn about the

danger of 'degeneration toward the intuitive', and at the same time,

call attention on the subjectivity of a proof:

proofs which are considered rigorous, that is,

acceptable, by one generation often lose that status with

the passage of time and, occasionally, vice versa. In fact,

proof techniques which are accepted by certain

mathematicians may be rejected by their contemporaries. Thus

the decision whether or not a proof is rigorous seems to be

largely determined by intuition tempered by training: in any

event it is clearly a subjective decision.

[Depree & Oehring, preface]
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Depree & Oehring are an example of authors oscillating between

intuition and logic, which proves that mathematical discourse is a

dialectical process.

MORETTI'S PRESENTATION

He uses an ad hoc figure, that is, a figure that serves only for the

specific example w = Vz.

Figure 9.4 Moretti's illustration

In my view, Moretti's 'original' way of illustrating Riemann surface

is not adequate, since it is not generalizable. Moretti opts for the

particular at the expense of the general. Other authors do a better

job than Moretti's because they give a scheme that can be utilized in

other examples, whereas Moretti's construction only works for the

particular example.

FUCHS & SHABAT'S APPROACH

They illustrate the Riemann surface for the function w = z by making
2

an interesting analogy with the real function y = x .
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2 2

The real analogue of w = z , the function y = x , maps the

x-axis onto the non-negative y-axis. This mapping is

one-valued, but not one-to-one; each of the pair of points A

and B, corresponding to abscissae differing only in sign, is

transformed onto the same point A" = B". However, by taking

two separate representations of the positive y-axis, joined

together at the points y = 0 and y = + en we may consider

that A" lies on the one and B" on the other; the function y
2

= x can then be considered as giving a biuniform mapping of

the x-axis onto the "doubled" y-axis (y £ 0).

[Fuchs & Shabat, p. 82]

Figure 9.5 Fuchs & Shabat's illustration

Fuchs & Shabat have devoted a whole chapter to the construction of

'mental pictures' of Riemann surfaces of elementary functions. They

show clearly that it is possible to develop deep mathematical

reasoning by using heuristic and intuition, without appealing to a

logico-formal apparatus.

This discussion on Riemann surfaces suggests that Geometry is an area

where heuristic, intuition and rhetoric will be more pronounced than

in some other topics, and this would provide a productive area of

further research.
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Complex Analysis was chosen as one where it might have been thought

that there was less room for non-logical components of discourse. In

my view, the fact that this has proved not to be the case is

significant.

9.3 DISCOURSE ANALYSIS OF A TEXTBOOK: STEWART & TALL

My aim in this section is to apply the principles and techniques I

have propounded in previous sections to the discourse analysis of a

particular textbook on Complex Analysis.

Stewart & Tail's textbook, Complex Analysis (1988) is a relatively new

textbook; it was first published in 1983. Both authors are British

mathematicians. Ian Stewart is author of several books. David Tall is

also recognized as a mathematics educationalist; he. regularly

publishes papers on educational themes. Stewart & Tail's textbook can

be seen as a modern textbook, since it introduces some novelties in

terms of organisation of mathematical discourse.

I will use another textbook, Churchill & Brown's textbook, by way of

counterpoint. I will compare some aspects of Stewart & Tail's book

with Churchill & Brown's, seeking to show more differences than

similarities.

I will use the fifth edition of Churchill & Brown's textbook, Complex

Variables and Applications (1990). This is one of the most used

textbooks on Complex Analysis, whose two first editions (1948, 1960)

were written by the late Ruel V. Churchill alone. The authors are

American mathematicians.

I will divide Stewart & Tail's discourse into two parts: discourse on

non-mathematical themes, and negotiation (how they negotiate proofs,

definitions, etc.).

For ease of reference, I will sometimes use the abbreviations C & B

and S & T to refer respectively to Churchill & Brown and Stewart &

Tall.
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9.3.1 Discourse

In this section I will analyse some aspects of Stewart & Tail's

discourse on non-mathematical themes, which is an important component

of their overall discourse.

DISCOURSE ON THE SIMPLICITY OF COMPLEX ANALYSIS

One of the philosophical theses of Stewart & Tall is that complex

analysis is simpler or easier than real analysis. They start to defend

this thesis from the first paragraph of the preface:

Students faced with a course on 'Complex Analysis' often

find it to be just that - complex. In the sense of

'complicated'. It is true, of course, that the proofs of

some of the major theorems in the subject can demand a

certain technical versatility. But in many ways, on a

conceptual level, complex analysis is actually easier than

real analysis; it just isn't always taught that way.

[Stewart & Tall, preface]

In section 4 of chapter 0 Stewart & Tall say that complex numbers are

simpler than real numbers, and complex analysis is simpler than real

analysis:

To the modern ear the very name 'complex analysis' carries

misleading overtones: it suggests complexity in the sense of

complication ... And in fact complex numbers are not more

complicated than reals: in some ways they are simpler. For

instance, polynomials always have roots. Likewise complex

analysis is often simpler than real analysis: for example,

every differentiable function is differentiable as often as

we please and has a power series expansion.

[S & T, p. 8]

According to Stewart & Tail's argument, complex numbers are simpler

than real numbers, because all polynomials with real coefficients have

complex roots, whereas there exist polynomials with real coefficients

without real roots.
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By extending this reasoning, real numbers would be simpler than

rational numbers, because more polynomials have roots in the set of

real numbers than in the set of rational numbers. By the same token,

rational numbers would be simpler than integer numbers, and these in

turn would be simpler than natural numbers. Consequently, the natural

numbers would be the most complicated of number sets!

In section 6 of chapter 4, Stewart & Tall reinforce the argument that

complex analysis is simpler than real analysis because the behaviour

of complex functions is better than the behaviour of real functions.

They construct a sequence of real functions (b ) such that b is
n n

differentiable everywhere precisely n times, but differentiable

nowhere n + 1 times. Such 'pathological' functions do not exist in

complex analysis, which implies that complex analysis is simpler than

real analysis:

Real analysis is a very hairy subject indeed. But what is

the relevance of such bizarre functions in complex analysis?

The answer is: none whatsoever. They have been mentioned

once only to be dismissed. We shall find that no such

animals live in the complex world; as we have said in

Chapter 0, complex analysis is simple (relative to the real

case).

[S & T, p. 78]

In section 2 of chapter 10, after the proof of Taylor's theorem,

Stewart & Tall come back to their thesis:

At a stroke he [Cauchy] showed that complex analysis is

simpler than real analysis by reducing the general study of

differentiable complex functions to particular computations

with power series.

[S & T, p. 183]

Stewart & Tail's discourse on the simplicity of complex analysis seems

to be an exorcism; they attempt to exorcize the mystery and

mystification which has accompanied the development of complex
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numbers and complex analysis, since Cardan's use of such numbers in

his Ars Magna (1545).

The use of the term 'simple* as a negotiating tool has some

interesting features which we should take care to look for in

analysing this kind of discourse. It seems to be using a multiple

'register' device (see [Pimm 87]).

The use of the word 'simple' in the text is clearly applied to some

structural aspects internal to the mathematics, whereas its rhetorical

use indicates that the learner is supposed to find the text simple to

comprehend.

It is possible to admit this as a legitimate device for cultivating a

receptive attitude by the learner. The important thing here is to

recognise its presence. It falls within the logic vs. rhetoric

conflict discussed in section 2.3, and in fact exemplifies the way in

which such conflicts relate to different linguistic 'registers'.

• NEGOTIATION OF IMPORTANCE

This discourse on the simplicity of complex analysis can also be

regarded as part of the negotiation of the importance of Taylor's

theorem or The Fundamental Theorem of Algebra.

Compared to Stewart & Tall, Churchill & Brown are very laconic. With

regard to Taylor's theorem, C & B just say that it is one of the most

important results of the chapter on series [Churchill & Brown, p.

138]. With regard to The Fundamental Theorem of Algebra, they just say

that in elementary algebra courses, it is often stated without proof

[Churchill &. Brown, p. 131].

METADISCOURSE: DISCOURSE ON ORGANISING PRINCIPLES

In the preface Stewart & Tall promise to decomplicate the discourse of

Complex Analysis by using two rhetorical or heuristic principles:

To exhibit this inherent simplicity of complex analysis we

have organized the material around two basic principles: (1)
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generalize from the real case; (2) when that reveals new

phenomena, use the rich geometry of the plane to understand

them. [Stewart & Tall, preface]

In section 4 of chapter 0 Stewart & Tall explain the meaning of the

first principle:

The first [principle] is the direct generalization to the

complex case of real analysis. Definitions of limits,

continuity, differentiation and integration are the NATURAL

extension of the real notions, provided that we view them in

suitable terms.

[S & T, p. 8]

This means that Stewart & Tall will use ANALOGY to introduce concepts

of complex analysis. In section 3.2 I have already shown how varied

are the uses of analogy by Stewart & Tall in their textbook.

The second principle becomes: 'geometric insight is valuable and

should be cultivated'.

Thus, Stewart & Tall will emphasize ANALOGY and GEOMETRIC INSIGHT (I

prefer to say INTUITION). However, this is just rhetorical, since in

fact their discourse is governed by the permanent tension between

rigour and intuition: sometimes they emphasize analytic rigour,

sometimes they emphasize geometric intuition.

In my view, it is this tension that is educationally significant. In

this sense, Stewart & Tail's practice is fortunately better than their

rhetoric.

DISCOURSE ON THE CONFLICT INTUITION VS. RIGOUR

Stewart & Tall are aware of the tension between intuition and rigour.

In the preface, S & T declare that their aim is 'to encourage

geometric thinking, with the proviso that it must be adequately backed

up by analytic rigour'. Here I understand that 'geometric thinking'

means 'geometric insight' or 'geometric intuition', since they repeat
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the same thing in section 4 of chapter 0 in the following way:

and this brings us to our second major organizing

principle: geometric insight is valuable and should be

cultivated. Of course, this insight must be translated into

sound formal arguments; this can be done using modern

topological notions.

[S & T, p. 8]

Sometimes S & T give priority to logical formalism. For example, they

do not accept the geometric proof of the triangle inequality as a

proof but only as an interpretation:

The triangle inequality is a little harder to prove

directly, although its geometric interpretation is the

obvious fact that one side of a triangle is no longer than

the sum of the lengths of the other two sides.

[S & T, p. 15]

After this utterance, they give an algebraic proof of the triangle

inequality, which, in my view, is rather non-insightful.

Sometimes they opt for geometric reasoning, at the expense of analytic

reasoning. For example, after giving two methods of computing winding

number, the first analytic, and the second geometric, they affirm:

Comparison of the first 'bad' method shown with the final

'good' one gives a striking illustration of the dangers of

blind 'formula-crunching' analysis. Complex analysis is a

highly geometric subject, and the geometry should not be

despised.

[S & T, p. 136]

At the end of their textbook Stewart & Tall discourse on the value of

mathematical intuition:
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Towards the end of nineteenth century Felix Klein offered a

'proof of a theorem along the following lines: think of the

Riemann surface as being made of thin metal, and an electric

current flowing through it ... It would not, today, be

considered a logically convincing argument; but the physical

intuition certainly revealed some important mathematical

ideas. Today we are seeing the converse process, with

mathematical intuition providing important concepts for

physics. It is a two-way trade. And, whatever the

attractions of beauty for its own sake, it is vital to the

health of both mathematics and science that this trade be

maintained.

[S & T, p. 282]

DISCOURSE ON APPLICATIONS

In the preface of their textbook, Churchill & Brown fix two

objectives:

As was the case with the earlier editions, the first

objective of this edition is to develop in a rigorous and

self-contained manner those parts of the theory which are

prominent in the applications of the subject. The second

objective is to furnish an introduction to applications of

residues and conformal mapping.

[Churchill & Brown, preface]

Churchill & Brown's textbook is then clearly orientated towards

applications.

Stewart & Tall, contrary to Churchill & Brown, neglect applications.

In their textbook, there is only a short section on potential theory

that deal with applications. Despite this, Stewart & Tall discourse

several times on applications.

They start talking about applications in the first chapter:
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The abstruse invention of complex numbers, once described by

our mathematical forbears as 'impossible' and 'useless', has

become part of an aesthetically satisfying theory with

eminently practical applications in aerodynamics, fluid

mechanics and many other areas.

[S & T, p. 6]

In the introduction to the chapter on conformal transformations,

Stewart & Tall talk again about applications:

By studying differentiate functions one may prove theorems

about curves; by studying curves one may prove theorems

about differentiable functions. The latter technique is of

great importance in the advanced 'geometrical' theory of

differentiable functions, but only the former falls within

our present scope. The method has interesting applications

to potential theory and fluid dynamics, and we shall outline

the beginnings of these.

[S & T, p. 238]

It should be said that S & T use only four pages to develop potential

theory. S & T give only one 'applied' exercise:

Verify that the Joukowski transformation does, as claimed

above, give rise to an aerofoil shape. Look up pp 131-4 of

A. Kyrala, Applied Functions of a Complex Variable,

Wiley-Interscience, New York 1972, and see how to compute

flow-lines round it.

[S & T, p. 256]

This exercise appears to be suggesting that the readers should consult

other textbooks if they wish to learn applications of complex

analysis.

S & T talk again on application at the end of the textbook. Their aim

is to affirm the potential applicability of abstract mathematical

concepts such as Riemann surfaces, functions of several complex

207



variables and complex manifolds:

As an example, very recently complex manifolds and

automorphic functions have turned out to be important in

Quantum Field Theory, in the study of 'Gauge Fields'.

[S & T, p. 282]

Unfortunately this rhetoric is not followed by action. We only can

regard it as a component of their negotiation with the reader on the

importance of Complex Analysis.

DISCOURSE ON METHODS IN MATHEMATICS

S & T affirm the advantage of general principles over manipulative

ingenuity:

The tasks to which complex analysis may be set include the

explicit computation of definite integrals and the summation

of series. Although such problems are not as important a

part of pure mathematics as they once were, they are still

very useful in practical applications. Further, the power of

the method [calculus of residues] and its wide applicability

demonstrate the advantage of general principles and deep

theorems over any amount of manipulative ingenuity.

[S &. T, p. 212]

This principle seems to be contradicted by the following principle:

If one formalizes these ideas it becomes clear that the

restriction to power series and discs is inessential, this

is often the way in mathematics: the solution to a special

problem turns out to apply in a much more general setting.

[S & T, p. 261]

In the first quotation S & T affirm that it is important to

investigate general principles; in the second quotation, they affirm

that it is important to deal with special problems.
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This demonstrate that in fact S & T oscillate between general and

particular, which is a characteristic of mathematical thinking (see

section 3.2). Sometimes it is better to attack a particular problem,

sometimes it is better to invoke general principles: mathematical

reasoning develops through these oscillations from particular to

general and vice-versa.

CONCLUSION

I have shown that Stewart & Tail's textbook is permeated by

meta-mathematical discourses. With these discourses the authors

attempt to communicate philosophical messages such as the simplicity

of complex analysis, or the applicability of abstract mathematical

theories, and methodological messages such as the value of analogy and

geometric thinking.

9.3.2 Negotiation

Undergraduate mathematics textbooks are in general written in terms of

theorems, proofs, definitions, examples, etc. Discourse analysis

should take into account this discourse format.

I have propounded in the first two parts of this work that discourse

is a negotiation between author and reader; hence, discourse analysis

should analyse features of this negotiation such as

negotiation of truth (or analysis of theorems and proofs),

negotiation of concepts (or analysis of definitions),

negotiation of activities (analysis of exercises).

NEGOTIATION OF TRUTH

Stewart & Tall negotiate the truth of theorems in different ways:

giving formal proofs, not giving proofs, giving two proofs, indicating

how to prove, etc. This was discussed in section 5.1.

Here I am interested to show some examples of alternative proofs of

theorems, and how they justify its presentation.

209



ALTERNATIVE PROOFS

EXAMPLE 1. S & T first prove the formula

exp (z + w) = exp (z) exp (w)

using the formula for the product of two series [S & T, p. 60]. The

second proof uses the formula for the derivative of the exponential

function. There S & T argue that the first proof is CUMBERSOME [S & T,

p. 83]. Here they are negotiating cognition (see section 3.3).

EXAMPLE 2. In chapter 6 on integration S & T offer two alternative

definitions of integral of a complex function. Because of this, they

are obliged to furnish two different proofs for some theorems. For

example, the additivity of the integral has two proofs [S & T, p.

107]. Another theorem with two proofs is the estimation lemma [S & T,

p. 111].

EXAMPLE 3. S & T give two proofs of the continuity of the argument in

the cut plane. On the first proof they say:

The proof that follows is an inelegant 'bare hands'

reduction to properties of real functions: for a more

elegant approach see § 8.4.

[S & T, p. 123]

So, elegance justifies the presentation of a new proof.

EXAMPLE 4. S & T prove Cauchy's Residue Theorem in two ways; the first

proof uses the generalized Cauchy theorem, while the second proof uses

Laurent series. They say the second is 'instructive but less elegant'

[S & T, p. 214]. This means that elegance in mathematics is not all.

In section 5.1 I have shown that Stewart & Tall use almost all

possible strategies in the presentation of theorems. This means that

their presentation has more rhetoric and intuition than is supposed

because of their defence of analytic rigour.
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NEGOTIATION OF THE CONCEPT OF COMPLEX NUMBER

Stewart & Tall are well aware of the rhetorical aspects of

mathematical discourse. They have reserved, not only the preface, but

a whole chapter to do what in rhetoric is called the exordium or the

proemium: introduce the reader to the subject.

• HISTORICAL NOTICES

Stewart & Tall evoke historical events to negotiate their definition

of complex number. In the first chapter of their textbook, they give

an account of the history of complex numbers and complex analysis,

pointing out to some definite steps in this history, as I have

expounded in section 9.1.2.

STEWART & TALL'S DEFINITION OF COMPLEX NUMBER

In chapter 1 Stewart & Tall adopt Hamilton's definition of complex

numbers as ordered pairs of real numbers, as pointed out in section

9.1.1. After this definition they comment:

This definition is the culmination of several centuries of

struggle to understand complex numbers, and it shows how

elusive a simple idea can be'.

[S & T, p. 11]

ARTIFICIAL VS. NATURAL

Hamilton's definition of complex number has the disadvantage of

introducing the product of complex numbers in an artificial way.

Stewart & Tall however declare that complex numbers are not more

artificial than real numbers:

The logical status of complex numbers, which caused so much

distress during the eighteenth century, is now seen to be

very much on a par with that of the 'real ' numbers. What

puzzled the ancients was the obvious ARTIFICIALITY and

ABSTRACTION of the complex number system, in contrast to the

apparently NATURAL and CONCRETE real number system: but the

mathematician of today sees even the real numbers as
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possessing a similar artificiality and abstraction.

[S & T, p. 10]

In my view, the important educational question is not whether complex

numbers are more artificial than real numbers or not, but which

definition among the many existing definitions of complex number is

the most natural. I have investigated the discourse on complex numbers

with more details in section 9.1.

Contrary to Stewart & Tall, Churchill &. Brown neglect completely the

historical aspects of Complex Analysis. C & T go straight to the

definition of complex numbers as ordered pairs of real numbers; they

are interested in giving mathematical information and nothing else,

while Stewart & Tall are concerned in negotiating the whole subject

of Complex Analysis, and particularly the concept of complex number.

NEGOTIATION OF READERS' ACTIVITIES

Authors negotiate activities with the readers by means of exercises

given at the end of sections or chapters, and gaps left in the text to

be filled by the readers.

The importance of exercises in the learning of mathematics is obvious:

they serve to help learners to construct their own mathematical

knowledge, to acquire practice in techniques, to gain manipulative

ability, to increase their comprehension of definitions and theorems,

to conjecture, to prove, etc.

In my view, it is important to know what kind of activity or reasoning

exercises demand from the learners. It is convenient then to establish

criteria for the classification of exercises.

George Polya has propounded to divide problems into 'problems to find'

and 'problems to prove'. In the context of exercises in textbooks, I

will say practical or routine exercises are what Polya calls 'problems

to find', and theoretical exercises are what corresponds to 'problems

to prove'.
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Practical exercises are exercises demanding calculation, manipulation

of formulae, classification, etc.; they are orientated towards

particular objects rather than general concepts. The aim of practical

exercises is to give practice in manipulative techniques.

Theoretical exercises will be classified as closed or open exercises;

closed exercises are those which explicitly say what to prove, while

in open exercises the reader has to make a conjecture, and prove that

this conjecture is true. Theoretical exercises are orientated towards

general results instead of particular results. The aim of theoretical

exercises is to give practice in logic and heuristic: proving, and

conjecturing.

Discourse analysis of exercises should detect the balance or imbalance

between general and particular, practical and theoretical, closed and

open, etc. More detailed analysis of exercises was carried out in

chapter 6.

EXAMPLE OF ANALYSIS OF EXERCISES

Let us see, for example, the exercises at the end of chapter 11,

Laurent series, of Stewart & Tail's textbook.

Exercises 1 to 9, 11, 14, 16, 17 and 18 can be considered routine

practical exercises. For example,

Ex. 1: Find Laurent expansions for the following around z = 0 . . .

Ex. 2: Find Laurent expansions for the given functions on the stated

annuli .. .

Ex. 9: Describe the type of singularity at 0 of each of the following

functions . . .

Exercise 12 is a non-routine practical exercise, because the reader is

asked to construct an example of function satisfying given conditions.

It is more demanding than the use of formulae, it demands imagination.

Exercises 10, 19 to 22 are exercises to prove. They are closed in the

sense that the reader has to prove ready made theorems; the reader

knows in advance what to prove.
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Exercises 13 and 15 are open. Exercise 15, for example, asks whether

circles and straight lines in the complex plane have circles as images

in the Riemann sphere. Readers have to make a conjecture and prove the

conjecture; the result is not apparent.

In conclusion, the exercises are well distributed between practical

exercises (15 out of 22), theoretical closed exercises (5), and

theoretical open exercises (2).

Note: S & T are not very friendly with the readers, since they do not

furnish any solutions to the exercises. This fact makes learners more

dependent on instructors, the owners of the answers.

9.3.3 Organisation of Discourse

Stewart & Tail's textbook, with regard to discourse organisation, is

exemplary. It is a model that should be followed by other authors.

The first chapter is a historical introduction to the subject, with

some methodological considerations, and a preview of the subject. It

works as an enlarged preface.

The last chapter is an informal treatment of some advanced topics,

analytic continuation and Riemann surfaces, without precise

definitions, theorems or rigorous proofs. It looks like a conversation

as well as the first chapter. It ends with a section called the road

goes ever on . . . , suggesting that mathematics is a never ending story.

All intermediate chapters have an introduction and some of them

contain concluding remarks or concluding sections. For example,

chapter 4 on differentiation contains, besides introduction and text,

a concluding section called a glimpse into the future, where the

authors make a philosophical comparison between complex analysis and

real analysis.

It is interesting to observe how they end the chapter 6 on

integration:
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With minor exceptions, this chapter completes the natural

analogies between the real and complex theories of

differentiation and integration. From now on, new

possibilities will unfold [S & T, p. 117].
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CHAPTER 10 CONCLUSIONS AND EDUCATIONAL IMPLICATIONS

10.1 CONCLUSIONS OF THE PRESENT INVESTIGATION

The theme of investigation of this thesis has been mathematical

discourse, more precisely, the discourse underlying undergraduate

mathematics textbooks.

This thesis was divided into three parts. In the first part, my aim

was to establish theoretical frameworks for the analysis of

mathematical discourse.

In chapter 1, I have characterized discourse as a social interaction

through messages, that is, as a negotiation between addresser and

addressee mediated by a text. Therefore, analysis of the discourse

underlying mathematics textbooks means analysis of the negotiations

that the author establishes with the readers. I have argued that this

discourse is a complex amalgamation of the discourses of scientific

and pedagogic processes.

In chapter 2, I have characterized mathematical discourse as a

dialectical process. Contrary to common expectation, mathematical

discourse is not 'standard', objective, uniform, dominated by

precision and logic. It is driven by opposing forces analogous to

those regulating the development of mathematics.

Mathematics textbooks are regarded as the battlefields of the struggle

between logic, heuristic, intuition and rhetoric. More precisely,

mathematical discourse is controlled by the tensions logic vs.

heuristic (information vs. know-how), logic vs. intuition (rigour vs.

comprehension), and logic vs. rhetoric (proof vs. rhetorical

argument).

In chapter 3, I have described logical, heuristic and rhetorical

schemes used by the authors in their discourse. A great educational

problem in the mathematical discourse is that it is often hard for the

learners and perhaps also for the teachers to know whether the author

is reasoning logically, heuristically or rhetorically.
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In the second part, I have specified some items that are constantly

negotiated between author and reader.

In chapter 4, I have shown that the concept of mathematical object is

at the root of philosophical divergences. I have argued that

mathematical objects are not Platonic objects but cultural objects

(social constructs). This viewpoint facilitates the acceptance of the

multiplicity of definitions, proofs, and perspectives. Multiplicity is

not the exception, but the rule.

In chapter 5, I have discussed another crucial point, the negotiation

of truth and comprehension. Theorems presented in undergraduate

mathematics textbooks in general are not completely proved, and the

proofs sometimes are not rigorous at all. The truth of the theorems is

then negotiated through a mixture of formal proof, intuitive

explanation and rhetorical argumentation.

Proving is not everything; logical proofs are not necessarily

convincing. In fact authors need to complement their logical reasoning

in the proof with other resources in order to obtain learners'

comprehension and acceptance: negotiation of truth is intimately

linked with negotiation of comprehension and acceptance. To improve

comprehension authors use examples, figures, and appeals to intuition.

To improve acceptance authors use rhetorical devices. This means that

rhetorical, heuristic and logical devices are all mixed together.

In chapter 6, I have discussed the negotiation of activities, arguing

that exercises, besides being auxiliary for the learners' construction

of mathematics, are also at the service of the authors, since they use

them to complete the text, and to convey new information as well. I

have suggested a hierarchical classification of exercises,

(manipulative, ontological (definitional), and relational

(inferential)) as a device for the discourse analysis of exercises. In

the same chapter I have discussed the negotiation of applications,

prerequisites and historical contextualization.
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In chapter 7, I have discussed the ways authors deal with the problem

of ambiguity in terminology and notation. Multiplicity of meanings is

a discursive device used by mathematicians in order to take advantage

of analogies. Authors oscillate between tolerance of ambiguity, which

can become confusing for the learners, and intolerance, which can turn

into pedantry.

In chapter 8, I have discussed organisational features of mathematical

discourse. I have called style the way the author organises his or her

discourse, i.e., how he or she copes with the conflicts between the

three purposes of mathematical discourse: transmission of information,

construction of knowledge and negotiation of meanings.

In the third part, I have applied the theoretical tools developed in

previous chapters to three case studies. I have investigated the

discourse on complex numbers as an introductory discourse to Complex

Analysis. The second case study is another limit case, the discourse

on Riemann surfaces as a final discourse of Complex Analysis. The

third case study is the discourse analysis of a whole textbook on

Complex Analysis.

SUMMARY OF CONCLUSIONS

1. Mathematical discourse is not dominated by logical reasoning; it is

a complex combination of logical, heuristic, intuitive and rhetorical

reasonings.

2. Mathematical discourse is not neutral; on the contrary, it is a

dialectical discourse, governed by the tensions between logic and

heuristic, logic and intuition, logic and rhetoric.

3. Within mathematical discourse there exists sometimes another

explicit discourse, by which authors express their points of view

about metamathematical themes such as elegance, geometric intuition,

rigour, pedantry, axiomatic method, etc. However, ordinarily such

discourse is implicit. It is the attempt to uncover this implicit

discourse which is the aim of the tools of analysis developed here.
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4. When we look at mathematical discourse as author-reader

negotiation, we should pay attention to the authors' rhetoric: how

they motivate, persuade, express feelings, judge values.

10.2 EDUCATIONAL IMPLICATIONS

It is likely that the discoveries made through the application of

discourse analysis to just one area, Complex Analysis, would have

analogues in other fields of mathematics, and even a cursory

examination of other textbooks suggests that this is the case.

The analysis has led to the realisation that mathematical text is

permeated by the use of heuristic, intuition and rhetoric which all

interact, globally or locally, with the logical framework of

mathematics.

This challenges the belief systems of many teachers in higher

education, who believe that they give logical exposition in their

lectures. Textbook authors are usually such teachers, and so these

beliefs transferred through the construction of the text imply that

the rhetoric and the devices used are likely to be unconscious, and

therefore their impact upon readers unconsidered.

The chief aim of the analysis of mathematical discourse is then to

give teachers awareness of the use of rhetorical devices in

mathematical discourse.

Any mathematical message is transmitted through a discourse; this is

inevitable. Such message can be sometimes misunderstood only because

of the ignorance of the rhetorical strategies used by the transmitter.

Learning involves acceptance, and acceptance means persuasion;

teachers and textbook authors are involved in persuasion rather than

logical reasoning. In short, mathematics education is essentially a

rhetorical process.
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The techniques of discourse analysis I have devised can help teachers

and mathematics educationalists to understand teaching and learning

mathematics as a negotiation process, as a negotiation between

teachers and pupils, as a negotiation between authors and readers.

Consequently, discourse analysis can contribute to the demystification

of mathematics teaching and learning, which usually concentrate only

on the logical aspects of mathematics.

10.3 FURTHER RESEARCH

I believe that, besides the discourse of undergraduate mathematics

textbooks, it is also necessary to develop the discourse analysis of

school mathematics textbooks. Some of the theoretical frameworks

developed in this thesis will be useful, but it could perhaps prove

necessary to change emphasis or develop some new perspectives.

Contrary to undergraduate mathematics textbooks, school mathematics

textbooks differ greatly from country to country, in content and in

form.

In Brazil teachers of secondary schools depend heavily on textbooks.

Textbooks are their Bible: they give them all that they need to teach

mathematics: contents and exercises. Textbooks intended for pupils of

11-14 are accompanied by the teachers' manual, which gives the

solution to all the exercises propounded in the pupils' textbooks.

This manual is extremely important; without it many teachers are

unable to teach.

Because of this slavish attitude of teachers with respect to

textbooks, it is necessary to demystify textbooks, showing that

textbooks reflect perspectives; that many perspectives are possible.

Other types of research should be developed as well. Partially due to

my personal inclination for philosophical questions, I have emphasized

in this work theoretical aspects of mathematical discourse at the

expense of 'fieldwork'. My intention after my return to Brazil is to
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continue developing research on mathematical discourse.

I hope to conduct in collaboration with my colleagues and students of

Universidade de Sao Paulo investigations on the relationship between

the discourse of textbook authors and classroom discourse. The

following questions can probably function as starting points of

research:

(i) How influential is the discourse of textbook authors on TEACHERS'

pedagogic discourse?

(ii) How do STUDENTS/PUPILS perceive rhetorical and heuristic schemes

used by authors and teachers?

(iii) How do AUTHORS explain the choices they make . about the

dialectics between logic, heuristic and rhetoric?

Parallel to this research activities I intend to develop programmes of

work with Brazilian teachers to enable them to use textual resources

more profitably for themselves and their students.
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APPENDIX

LIST OF TEXTBOOKS UTILIZED IN THIS RESEARCH

We list below the sample of textbooks whose discursive aspects I have

partially analysed in this work.

[Ahlfors]: Ahlfors, Lars V. Complex Analysis, McGraw-Hill, New York,

3rd ed., 1979.

[Bak &. Newman]: Bak, Joseph and Newman, Donald J. Complex Analysis,

Springer-Verlag, New York, 1982.

[Birkhoff & Bartee]: Birkhoff, Garret and Bartee, Thomas C. Modern

Applied Algebra, McGraw-Hill, New York, 1970.

[Blyth & Robertson]: Blyth, T.S. and Robertson, E.F. Abstract Algebra,

1986.

[Bourbaki]: Bourbaki, N. Algebra I, Chapters 1-3, Springer-Verlag,

Berlin, 1989.

[Churchill & Brown]: Churchill, Ruel V. and Brown, James Ward. Complex

Variables and Applications, McGraw-Hill, New York, 5th ed., 1990.

[Copson]: Copson, E.T. An Introduction to the Theory of Functions of a

Complex Variable, Clarendon Press, Oxford, 1962. (first ed. 1935)

[Depree & Oehring]: Depree, John D. and Oehring, Charles C. Elements

of Complex Analysis, Addison-Wesley, Reading, Mass., 1969.

[Derrick]: Derrick, William R. Complex Analysis and Applications,

Wadsworth International Group, Belmont, California, 2nd ed., 1984.

[Dieudonne]: Dieudonne, J. Foundations of Analysis, Academic Press,

London, 1960.
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[Durege]: Durege, H. Elements of the Theory of Functions of a Complex

Variable, G.E. Fisher and I.J. Schwatt, Philadelphia, 1896.

[Finkbeiner]: Finkbeiner, Daniel T. II. Introduction to Matrices and

Linear Transformations, W.H. Freeman and Company, San Francisco, 1960.

[Fischer]: Fischer, Emanuel. Intermediate Real Analysis, Springer,

Newy York, 1983.

[Fuchs & Shabat]: Fuchs, B.A. and Shabat, B.V. Functions of a Complex

Variable, Pergamon Press, Oxford, 1964.

[Gilbert & Gilbert]: Gilbert, J. and Gilbert, L. Elements of Modern

Algebra, Prindle, Weber & Schmidt, Boston, 1988.

[Graham]: Graham, Alexander. Nonnegative Matrices and Applicable

Topics in Linear Algebra, Ellis Horwood, Chichester, 1987.

[Hall]: Hall, F.M. Introduction to Abstract Algebra, vol. 1, 1966.

[Herstein]: Herstein, I. Topics in Algebra, Blaisdell, New York, 1964.

[Hille]: Hille, E. Analytic Function Theory, vols. 1 and 2, Chelsea

Publishing Co., New York, 1973.

[Jacobson]: Jacobson, Nathan. Basic Algebra I, W.H. Freeman, New York,

1985.

[Jameson]: Jameson, G.J.O. A First Course on Complex Functions,

Chapman and Hall, London, 1985.

[Kreyszig]: Kreyszig, Erwin. Advanced Engineering Mathematics, John

Wiley & Sons, New York, 6th ed., 1988.

[Landau 51a]: Landau, Edmund. Foundations of Analysis, translation

into English of Grundlagen der Analysis, Chelsea Publishing Company,

New York, 1951.
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[Landau 51b]: Landau, Edmund. Differential and Integral Calculus,

translation into English of Einfuhring in die Differentialrechnung und

Integralrechnung, Chelsea Publishing Company, New York, 1951.

[Lang]: Lang, S. Algebraic Structures, Addison-Wesley, Reading, Mass.,

1967.

[Ledermann]: Ledermann, Walter. Complex Numbers, Routledge & Kegan

Paul, London, 1981.

[Lelong & Ferrand]: Lelong-Ferrand, J. and Arnaudies, J.M. Algebre,

Dunod, Paris, 1978.

[Lima]: Lima, Elon Lages. Curso de Analise Real, Vol. 1, IMPA, Rio de

Janeiro, 1987.

[Marsden]: Marsden, J.E. Basic Complex Analysis, W.H. Freeman, San

Francisco, 1973.

[Miller]: Miller, K.S. Advanced Complex Calculus, Harper & Brothers,

New York, 1960.

[Moore]: Moore, John T. Elements of Abstract Algebra, MacMillan, New

York, 1967.

[Moretti]: Moretti, G. Functions of a Complex Variable, Prentice-Hall,

Englewood Cliffs, N.J., 1964.

[Mostow]: Mostow, G.D. Fundamental Structures of Algebra, McGraw-Hill,

New York, 1963.

[Nehari]: Nehari, Z. Introduction to Complex Analysis, Allyn and

Bacon, Boston, 1961.

[Pennisi]: Pennisi, L.L. Elements of Complex Variables, Holt, Rinehart

and Winston, New York, 1963.
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[Perlis]: Perlis, Sam. Introduction to Algebra, Blaisdell, Walton,

Mass., 1966.

[Polya & Latta]: Polya, George and Latta, Gordon. Complex Variables,

John Wiley, New York, 1974.

[Priestley]: Priestley, H.A. Introduction to Complex Analysis,

Clarendon Press, Oxford, 1990.

[Ross]: Ross, Kenneth A. Elementary Analysis: The Theory of Calculus,

Springer, New York, 1980.

[Silverman]: Silverman, Richard A. Complex Analysis with Applications,

Dover, New York, 1984.

[Spencer et al]: Engineering Mathematics, vol. 2, van Nostrand, New

York, 1979.

[Stewart & Tall]: Stewart, Ian and Tall, David. Complex Analysis,

Cambridge University Press, Cambridge, 1988.

[Thron]: Thron, Wolfgang J. Introduction to The Theory of Functions of

A Complex Variable, John Wiley & Sons, New York, 1953.

[Weltner et al]: Weltner, K.; Grosjean, J.; Schuster, P. and Weber,

W.J. Mathematics for Engineers and Scientists, Stanley Thornes Ltd.,

Leckhampton, England, 1986.

[White]: White, A.J. Real Analysis: an introduction, Addison-Wesley,

London, 1968.
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