Estimation

Throughout this section, we assume we have n observations from a causal
and invertible Gaussian ARMA(p, g) process in which, initially, the order parameters,
p and g, are known. Our goal is to estimate the parameters,| @y, ..., ¢, 01,.. .,Bq,|
e will discuss the problem of determining p and ¢ later in this section.

We begin with method of moments estimators. The idea behind these estimators
is that of equating population moments to sample moments and then solving for the
parameters in terms of the sample moments. We immediately see that, if E(x;) =
i, then the method of moments estimator of y is the sample average, X. Thus,
while discussing method of moments, we will assume u = 0. Although the method
of moments can produce good estimators, they can sometimes lead to suboptimal
estimators. We first consider the case in which the method leads to optimal (efficient)
estimators, that is, AR(p) models,

Xe = Q1Xp-1+ + PpXe—p + Wi,

where the first p + 1 equations of (3.47) and (3.48) lead to the following:

Method of moments estimators:

Definition 3.10 The Yule-Walker equations are given by

7(h):¢1Y(h_1)++¢P7(h_p)s h = 1925---5}7, (398)
=7(0) = d1y(1) = = ¢py(p). (3.99)

In matrix notation, the Yule—Walker equations are

Ipp=vp. o =70)-¢"y. (3.100)

where I', = {y(k —j)}f,.’k:1 is a p X p matrix, ¢ = (¢1,...,¢p) isa p X 1 vector, and
¥p = (y(1),...,7(p)) is a p x 1 vector. Using the method of moments, we replace
v(h) in (3.100) by y(h) [see equation (1.36)] and solve

b=17"5, 00 =90 -3,1"%,. (3.101)

These estimators are typically called the Yule—Walker estimators. For calculation
purposes, it is sometimes more convenient to work with the sample ACF. By factoring
¥(0) in (3.101), we can write the Yule—Walker estimates as

é =R, pp. =9(0) [1 -4, R, ] (3.102)

where R, = {p(k - N oy is a px p matrix and pp = (A(1),.... A(p)" isap x |
vector.

For AR(p) models, if the sample size is large, the Yule—Walker estimators are
approximately normally distributed, and &2 is close to the true value of o2 . We state
these results in Property 3.8; for details, see Section B.3.



Property 3.8 Large Sample Results for Yule-Walker Estimators
The asymptotic (n — o) behavior of the Yule—Walker estimators in the case of
causal AR(p) processes is as follows:

Vi (¢ - ¢) iN(O,cri.r,;‘), 52 5 52 (3.103)

The Durbin—Levinson algorithm, (3.68)—(3.70), can be used to calculate $ without
inverting p Or Ié,,, by replacing y(h) by y(h) in the algorithm. In running the
algorithm, we will iteratively calculate the /& X 1 vector, ¢3h = (q?hl, — (5,,;,)’, for
h =1,2,.... Thus, in addition to obtaining the desired forecasts, the Durbin-Levinson
algorithm yields ¢y, the sample PACF. Using (3.103), we can show the following

property.

Property 3.9 Large Sample Distribution of the PACF
For a causal AR(p) process, asymptotically (n — ),

Vi b SN@©1), for h>p. (3.104)
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Fig. 3.4. Simulated AR(2) model, n = 144 with ¢1 = 1.5 and ¢> = —.75.

Example 3.27 Yule—Walker Estimation for an AR(2) Process

The data shown in Figure 3.4 were n = 144 simulated observations from the AR(2)
model
Xy = l.Sxt_l - .75)(,_2 + W,

where w, ~ iid N(0, 1). For these data, y(0) = 8.903, 6(1) = .849, and p(2) = .519.
Thus,

o (di) [ 1 .849]7' (.849) [1.463

¢= (éz) =849 1 (.519) - (—.723)

and
2 = 8.903 [1 —(.849, .519) (1‘463)] =1.187.

-.723

By Property 3.8, the asymptotic variance—covariance matrix of ¢ is

1 1187[ 1 84917 [ .058% -.003
144 8.903 |.849 1 “ | -.003  .0582]|

and it can be used to get confidence regions for, or make inferences about ¢ and
its components. For example, an approximate 95% confidence interval for ¢, is
—.723 + 2(.058), or (-.838, —.608), which contains the true value of ¢ = —.75.

For these data, the first three sample partial autocorrelations are ¢ = p(1) =
849, sy = ¢ = —.721, and ¢33 = —.085. According to Property 3.9, the asymp-
totic standard error of ¢33 is 1/ V144 = .083, and the observed value, —.085, is
about only one standard deviation from ¢33 = 0.



Example 3.28 Yule-Walker Estimation of the Recruitment Series

In Example 3.18 we fit an AR(2) model to the recruitment series using ordinary
least squares (OLS). For AR models, the estimators obtained via OLS and Yule-
Walker are nearly identical; we will see this when we discuss conditional sum of
squares estimation in (3.111)—(3.116).

Below are the results of fitting the same model using Yule-Walker estimation in
R, which are nearly identical to the values in Example 3.18.
rec.yw = ar.yw(rec, order=2)
rec.yw$x.mean # = 62.26 (mean estimate)
rec.yw$ar = 1.33, -.44 (coefficient estimates)
sqrt(diag(rec.yw$asy.var.coef)) # = .04, .04 (standard errors)
rec.yw$var.pred # = 94.80 (error variance estimate)

To obtain the 24 month ahead predictions and their standard errors, and then
plot the results (not shown) as in Example 3.25, use the R commands:
rec.pr = predict(rec.yw, n.ahead=24)
ts.plot(rec, rec.pr$pred, col=1:2)
lines(rec.pr$pred + rec.pr$se, col=4, 1lty=2)
lines(rec.pr$pred - rec.pr$se, col=4, 1lty=2)

In the case of AR(p) models, the Yule—Walker estimators given in (3.102) are
optimal in the sense that the asymptotic distribution, (3.103), is the best asymptotic
normal distribution. This is because, given initial conditions, AR(p) models are linear
models, and the Yule—Walker estimators are essentially least squares estimators. If we
use method of moments for MA or ARMA models, we will not get optimal estimators
because such processes are nonlinear in the parameters.

Example 3.29 Method of Moments Estimation for an MA(1)
Consider the time series
Xe =wp + 0wy,

where |#| < 1. The model can then be written as
Xt = Z(_G)jxt—j + wy,
j=1

which is nonlinear in 6. The first two population autocovariances are y(0) = o2.(1+
6%) and y(1) = crf‘,ﬂ, so the estimate of 6 is found by solving:

(1) _ 0
P0)  1+62

A1) =

Two solutions exist, so we would pick the invertible one. If | 5(1)| < 1, the solutions
are real, otherwise, a real solution does not exist. Even though |p(1)| < % for an

invertible MA(1), it may happen that |5(1)| > % because it is an estimator. For
example, the following simulation in R produces a value of p(1) = .507 when the
true value is p(1) = .9/(1 +.9%) = .497.



set.seed(2)
mal = arima.sim(list(order
acf(mal, plot=FALSE)[1] #

When |p(1)| < %, the invertible estimate is

_ 44 2
g 1 VI-4p()° (3.105)

2p(1)

c(9,0,1), ma = 0.9), n = 50)
.507 (lag 1 sample ACF)

It can be shown that™
1+ 6% +40% +6°+ 6%\
n(1 —62)>2 ’

6 ~ AN [,

AN is read asymptotically normal and is defined in Definition A.5. The maximum
likelihood estimator (which we discuss next) of @, in this case, has an asymptotic
variance of (1 — 6%)/n. When @ = .5, for example, the ratio of the asymptotic
variance of the method of moments estimator to the maximum likelihood estimator
of # is about 3.5. That is, for large samples, the variance of the method of moments
estimator is about 3.5 times larger than the variance of the MLE of § when § = .5.

Maximum Likelihood and Least Squares Estimation

To fix ideas, we first focus on the causal|[AR(1)|case. Let

Xr =+ d(xe—1 — ) + wy (3.106)

wher¢ |¢| < 1land w, ~iid N(0, o2). Given data we seek the likelihood

Ly, ¢,02) = f(xl,xz,...,xn | U, b, 0'3,).

In the case of an AR(1), we may write the likelihood as

L(u ¢, 00) = f(x) f(x2 | x1) -« f(xn | Xn),

where we have dropped the parameters in the densities, f(-), to ease the notation.
Because x; | X1 ~ N (u + ¢(x,—1 — p), 0:2){ we have

S (x | Xe-1) = fwlCxr — 1) = ¢(xi-1 — )},

where f,,(-) is the density of w,, that is, the normal density with mean zero and
variance 2. We may then write the likelihood as

L ¢, 0) = fx) | ]| foo l06 = ) = (it = )]
=2



To find f(x;), we can use the causal representation
Xy =M+ Z ¢ wi;
j=0

to see that x; is normal, with mean u and variance o2 /(1 — ¢?). Finally, for an AR(1),

the likelihood is

L(p ¢, 0) = 2o )1 = ¢) exp [— S;“ -4 )] , (3.107)
where
S @) = (1= ¢)0r1 = p? + ) 10 = ) =l — ). (3.108)
=2

Typically, S(u, ¢) is called the unconditional sum of squares| We could have also
considered the estimation of y and ¢ using unconditional least squares, that is,
estimation by minimizing S(y, ¢).

Taking the partial derivative of the log of (3.107) with respect to o'; and setting
the result equal to zero, we get the typical normal result that for any given values of u
and ¢ in the parameter space, orfu = n~'S(y, ¢) maximizes the likelihood. Thus, the
maximum likelihood estimate of o2, is

or =n"'S(a, ), (3.109)

where /i and ¢ are the MLEs of yu and ¢, respectively. If we replace n in (3.109) by
n — 2, we would obtain the unconditional least squares estimate of oﬁ,.

If, in (3.107), we take logs, replace 0'3, by 6‘3,, and ignore constants, £ and q5 are
the values that minimize the criterion function

I(u, ¢) = log [n~"'S(, )| — n~" log(1 — ¢*); (3.110)

that is, /(, ¢) < —21og L(u, ¢, 52).>¢ Because (3.108) and (3.110) are complicated
functions of the parameters, the minimization of /(y, ¢) or S(y, ¢) is accomplished
numerically. In the case of AR models, we have the advantage that, conditional on
initial values, they are linear models. That is, we can drop the term in the likelihood
that causes the nonlinearity. Conditioning on x;, the conditional likelihood becomes

L g0 | x0) = [ ] fio G = ) = ¢Ceis = )]

=2

= 2na2) D2 exp l——Scz(g_’;b)] , (3.111)

where the conditional sum of squares is



Se(i @) = ) [(xi = @) = plx,1 — I (3.112)

t=2

The conditional MLE of o2 is

e = Sc(fl, )/ (n — 1), (3.113)

and /i and ¢ are the values that minimize the conditional sum of squares, Sc(u, @).
Letting & = u(1 — ¢), the conditional sum of squares can be written as

Se(i @) = > I = (@ + px, ) (3.114)

t=2

The problem is now the linear regression problem stated in Section 2.1. Following
the results from least squares estimation, we have & = X — q’;i(l), where 1) =
(n-1)"" Z;‘;ll x;,and X2y = (n—1)"' 3, x,, and the conditional estimates are then

NIRRT (3.115)
1-¢
ég _ E?:Z(xt — X(z))(xlr—l - 'f(l)) (3.] 16)

20 (X1 — X1y)?

From (3.115) and (3.116), we see that /i ~ X and ¢ ~ p(1). That is, the Yule—Walker
estimators and the conditional least squares estimators are approximately the same.

The only difference is the inclusion or exclusion of terms involving the endpoints, x;
and x,,. We can also adjust the estimate of oﬁ, in (3.113) to be equivalent to the least
squares estimator, that is, divide S¢(f2, #) by (n — 3) instead of (n — 1) in (3.113).



For general AR(p) models, maximum likelihood estimation, unconditional least
squares, and conditional least squares follow analogously to the AR(1) example. For
general ARMA models, it is difficult to write the likelihood as an explicit function
of the parameters. Instead, it is advantageous to write the likelihood in terms of the
innovations, or one-step-ahead prediction errors, x; — xﬁ‘l. This will also be useful
in Chapter 6 when we study state-space models.

For a normal ARMA(p, g) model, let 8 = (@, ¢1,...,¢p, 61,...,05) be the
(p + g + 1)-dimensional vector of the model parameters. The likelihood can be
written as

L(B, 0'3,) = l_lf(xI | Xf1senns X1).
t=1

The conditional distribution of x, given x,_y,..., x| is Gau551an with mean x/~ Iand

variance P!~!. Recall from (3.71) that P!~! = 'y(O) [ 1= ¢7;). For ARMA models,

¥(0) = o2 2o a,lff, in which case we may write

0 -1 def
-1 2 2 2 € 2
Pt :G-w ij l_l(l_(bfj) = G-wrh
j:[] J':]

where r; is the term in the braces. Note that the r, terms are functions only of the
regression parameters and that they may be computed recursively as 7,51 = (1—¢2,)r;
with initial condition r; = Z;';O tﬁf. The likelihood of the data can now be written as

L(B.02) = 2na)y ™2 [ (Bra(B) - - ra(B)] 2 exp [ 2(‘”], 3117
where o )
[(x’ r{(ﬁ)(ﬁ)) ] (3.118)



Both x! ~! and r, are functions of 8 alone, and we make that fact explicit in (3.117)-
(3.118). Given values for B and o2, the likelihood may be evaluated using the
techniques of Section 3.4. Maximum likelihood estimation would now proceed by
maximizing (3.117) with respect to g and 0'3‘,. As in the AR(1) example, we have

&2 =n"18(B), (3.119)

where f3 is the value of 8 that minimizes the concentrated likelihood
1(B) = log [n”'S(B)] +n™" ) logri(B). (3.120)
t=1

For the AR(1) model (3.106) discussed previously, recall that x(l) = p and x,"l —
U+ ¢(x,—y — p), fort = 2,...,n. Also, using the fact that ¢;; = ¢ and ¢y, = O for
h > 1, we have r| = Z;’.‘;Oqﬁzj =(1-¢)Lrn=>0-¢)11-¢?) =1,and in
general, r, = 1 fort = 2, ..., n. Hence, the likelihood presented in (3.107) is identical
to the innovations form of the likelihood given by (3.117). Moreover, the generic
S(B)in (3.118) is S(u, ¢) given in (3.108) and the generic /() in (3.120) is I(y, ¢) in
(3.110).

Unconditional least squares would be performed by minimizing (3.118) with
respect to 3. Conditional least squares estimation would involve minimizing (3.118)
with respect to 8 but where, to ease the computational burden, the predictions and
their errors are obtained by conditioning on initial values of the data. In general,
numerical optimization routines are used to obtain the actual estimates and their
standard errors.



