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The problem of on-line learning in two-layer neural networks is studied within the framework
of statistical mechanics. A fully connected committee machine with K hidden units is trained by
gradient descent to perform a task defined by a teacher committee machine with M hidden units
acting on randomly drawn inputs. The approach, based on a direct averaging over the activation
of the hidden units, results in a set of first-order differential equations that describes the dynamical
evolution of the overlaps among the various hidden units and allows for a computation of the
generalization error. The equations of motion are obtained analytically for general K and M and
provide a powerful tool used here to study a variety of realizable, overrealizable, and unrealizable
learning scenarios and to analyze the role of the learning rate in controlling the evolution and
convergence of the learning process.

PACS number(s): 87.10.+e, 02.50.—r, 05.20.—y

I. INTR.ODUCTION

Layered neural networks are the focus of an intense re-
search efI'ort for their ability to implement input-output
maps of relevance to classification and regression tasks.
Two-layer architectures with N input units, a single in-
ternal layer with an arbitrary number H of hidden units,
and one output unit sufFice to represent nontrivial scalar
functions of N-dimensional variables. Exact representa-
tion of Boolean functions requires at most H = 2 units
[1]; continuous functions can be approximated with ar-
bitrary accuracy if the number H of hidden units is not
constrained [2,3].

A neural network of fixed architecture is character-
ized by the internal parameters (J) that quantify the
strength of the interneuron couplings [1,4,5]. Specific
maps ( = fg(g) from an %-dimensional input space g
onto a scalar ( are selected through the choice of param-
eters (Jj. Learning refers to the modification of these
couplings so as to bring the map fg implemented by the
network as close as possible to a desired map f The.
degree of success is monitored through the generalization
error, a measure of the dissimilarity between fg and f.

Learning from examples in layered neural networks
is usually formulated as an optimization problem [4,5],
based on the minimization of a learning error defined
as the additive error over a training set composed of P
independent examples (g", (~), with (~ = f((") for all
1 ( p & P. Statistical physics has provided useful tools
for investigating the properties of such models, based on
the use of the replica method to account for the disorder
introduced by the difFerent possible ways in which a train-
ing set of fixed size can be chosen. The method has been
successfully applied to the analysis of single-layer percep-
trons [5] and some simplified two-layer structures (e.g. ,
coinmittee machines [6]). The analysis of more compli-
cated multilayer networks is hampered by technical diK-

culties due to the complex structure of the solutions in a
space of order parameters [7], which describe in this case
correlations among the various neurons in the trained
network as well as their degree of specialization towards
the implementation of the desired task.

An alternative approach is to investigate on-line learn-
ing [8]. In this scenario the couplings (J) are adjusted af-
ter the presentation of each example so as to minimize the
corresponding error. The resulting changes in the cou-
plings are described as a dynamical evolution, with the
number of examples playing the role of time. The average
that accounts for the disorder introduced by the indepen-
dent random selection of an example at each time step
can be performed directly, without invoking the replica
method. The resulting equations of motion for the rel-
evant order parameters characterize the structure of the
space of solutions and allow for a computation of the
generalization error.

In spite of the apparent simplicity resulting from the
avoidance of the replica method, this program has up
to now been carried out only for single-layer perceptrons
[9—11] and some severely restricted two-layer architec-
tures [12—14]. We have applied the method outlined in
[14] to the analysis of a very general learning scenario: a
two-layer student network composed of N input units, K
hidden units, and a single linear output unit, trained to
perform a task defined through a teacher network of simi-
lar architecture except that its number M of hidden units
is not necessarily equal to K. The result was unexpected:
the dynamical equations for the order parameters can be
obtained analytically for general K and M in the large
N liInit. The resulting equations of motion can be inte-
grated accurately even for large networks and provide a
powerful tool to study learning in multilayer networks.

In this paper we restrict ourselves to soft committee
machines [14], for which the output unit is linear and
the couplings &om all hidden units to the output unit
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are positive and of unit strength. In Sec. II we describe
the student and teacher networks and define the order
parameters needed to compute the generalization error.
A gradient descent rule for the update of the student
couplings results in first-order difFerential equations for
the dynamical evolution of the order parameters. These
equations of motion are obtained analytically for gen-
eral K and M and provide a tool to study realizable
(K = M), overrealizable (K ) M), and unrealizable
(K & M) learning scenarios. Section III is devoted to a
heuristic discussion of the role of the learning rate in the
convergence of on-line learning. A rigorous analysis of the
structure of the solutions for realizable cases is presented
in Sec. IV, where we discuss a suboptimal transient due
to dynamical trapping in the symmetric subspace, the on-
set of specialization associated with breaking the symme-
try among the student hidden units, and the subsequent
exponential convergence to an optimal solution with per-
fect generalization. In Sec. V we consider two examples
that demonstrate the power of the approach developed
here when applied to the analysis of overrealizable and
unrealizable learning scenarios. Section VI contains a
summary and discussion of the results presented in this
paper and some comments on the extension of our ap-
proach to the analysis of other learning scenarios.

II. DY'NAMICAL EQUATIONS
FOR THE ORDER PARAMETERS

Our discussion focuses on the soft committee machine
[14], in which all the hidden units are connected to the
output unit with positive couplings of unit strength and
only the input-to-hidden couplings are adaptive. Con-
sider a student network consisting of N input units,
K hidden units, and one linear output unit. Hidden
unit i receives information from input unit r through
the weight J,„, and its activation under presentation of
an input pattern g = ((q, . . . , (~) is x; = J; g, with
J; = (J;q l. . . , J;~) defined as the vector of incoming
weights onto the ith hidden unit. As all the hidden-to-
output weights are fixed to be +1, the overall output of
the student network is

o'(J g) = ) g (J; g)
i=1

(.
'" = ). g (B- 4") .

%e will use indices i, j, k, l, . . . to refer to units in the
student network and n, m, . . . for units in the teacher
network.

The error made by a student with weights J on a given
input g is given by the quadratic deviation

K M

~(J, 6) —= —[~r(J, C) —C]' = — ).g(*') —):g(y-)
i=1 n=l

The performance on a typical input defines the gener-
alization error

~ (J) = (~(J ~))It'I (4)

with

Q RC= (6)

The averaging yields an expression for the generaliza-
tion error in terms of the order parameters Q;g, R;„,and
T . For g(z) = erf(x/~2) the result is

through an average over all possible input vectors g, to
be performed implicitly through averages over the ac-
tivations x = (xq, . . . , +Jr) and y = (yq, . . . , yM). Note
that both (x;) = 0 and (y ) = 0, while the components of
the covariance matrix C are given by overlaps among the
weight vectors associated with the various hidden units
as follows: (x;x~) = J, Jy = Q;g (between the ith and
kth student units), (x;y„) = J; B„=B;„(betwee nthe
ith student unit and the nth teacher unit), and (y y )
= B„B = T„(between the nth and mth teacher
units). The averages over x and y are performed using
a joint probability distribution given by the multivariate
Gaussian

1 TC —1y'(x, y) = exp ——(x, y) C (x, y) )

where g is the activation function of the hidden units
and J = (J;)q&,&Ir is the set of input-to-hidden adaptive
weights.

Training examples are of the form (g+, (,')'). The com-
ponents of the independently drawn input vectors g" are
uncorrelated random variables w'ith zero mean and unit
variance. The corresponding output (+ is given by a
deterministic teacher whose internal structure is that of
a network similar to the student except for a possible
difference in the number M of hidden units. Hidden
unit n in the teacher network receives input information
through the weight vector B = (B q, . . . , B rv) and its
activation under presentation of the input pattern g~ is
y~ = B g~. The corresponding output is

T+ ) arcsin /1+ T„„/1+ T

l 8,„
x'1+ q;;pl+ T ) '

where 1 & i, k & K sum over the student hidden units
and 1 & n, m & M sum over the hidden units of the
teacher. The parameters T are characteristic of the
task to be learned and remain fixed during training, while
the overlaps Q;I, among student hidden units and R,
between a student and a teacher hidden units are deter-
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mined by the student weights 3 and evolve during train-
ing.

A gradient descent rule for the update of the student
weights

J"+' = J"——Vg e (J",(e"),

JP+1 Jgs + 9 $P gv,
2 2 ~ 2

with

~," = g'(x,") ):g(y.")—):g(*,") (1O)

defined in terms of both the activation function g and its
derivative g'. The time evolution of the overlaps R,. and
q;A, is then given by

where the learning rate q has been scaled with the input
size N, results in

three possible two-dimensional reductions (g'(u) ug(v)),
(g'(u) v g(v)), and (g'(u) v g(u)) and the one-dimensional
reduction (g'(u) ug(u)), for a total of five different in-
tegrals. A similar counting for I4 must take into ac-
count the initial symmetry under the pairwise exchange
u ++ v and to ~ z. The term proportional to q2

involves not only the four-dimensional integral I4 for
u g v g tv g z but three distinct three-dimensional
reductions (g'(u)g'(v) [g(m)]'), ([g'(u)]'g(v)g(~)), and
(g'(u)g'(v)g(v)g(va)); four distinct two-dimensional re-

( ( ) ()[()]) ([ ( )] ( ) ())
([g'(u)]2[g(v)]2), and (g'(u)g'(v)g(u)g(v)); and the one-
dimensional reduction ([g'(u)] [g(u)] ), for a total of nine
difFerent integrals.

It is a remarkable property of multivariate Gaussian
integrals that, as proven in the Appendix, all such inte-
grals as generated &om I3 and I4 through dimensionality
reduction do not need to be evaluated independently: the
corresponding results follow &om imposing the appropri-
ate constraints on the general expressions for I3 and I4.
There is no need to evaluate fourteen difFerent integrals
and the equations of motion reduce to a surprisingly com-
pact form in terms of only I3 and I4

and

2
'" = g ( ) Is(i, n, m) —) Is(i, n,j)

The dependence on the current input g~ is only
through the activations x and y and the corresponding
averages can be performed using the joint probability dis-
tribution (5). ln the thermodynamic limit I(I -+ oo the
normalized example number n = p/K can be interpreted
as a continuous time variable, leading to the equations of
motion

dR,„
do!

'" = g(b;y„),

'" =@& ) I,(i, k, m) —) Is(i, k, j) &

+g & ) Is(k, i, m) —) I&(k, i,j) &

) I4(i, k, n, m)
n)m

= g (8, xg) + g (8I,x;) + g'(b, hk) . (13)
(14)

The averages in Eq. (13) require the evaluation of two
types of multivariate Gaussian integrals. Terms propor-
tional to g involve the three-dimensional integral

Is = (g'(u) vg(m)),

where the argument u of g' is one of the components
of x., while both v and tu can be components of either
x or y. The term proportional to g involves the four-
dimensional Gaussian integral

I =( () () ( )g())

Arguments assigned to Is and I4 are to be interpreted
following our convention to distinguish student &om
teacher activations, i.e. , Is(i, n,j):—(g'(x;) y g(x~)),
and the average is performed using the three-dimensional
covariance matrix C3 that results &om projecting the full
covariance matrix C of Eq. (6) onto the relevant subspace.
For Is(i, n, j) the corresponding matrix is

(q;, a,„q,, )
R2n Tnn Rjn

(q,, a,„q,, )
where u and v are components of x while m and z can
be components of either x or y.

Permutational symmetries that arise when some of the
arguments in I3 and I4 are constrained to be equal re-
sult in contributions to the averages in Eq. (13) that re-
quire the evaluation of integrals of reduced dimension-
ality. Terms proportional to g involve not only the
three-dimensional integral Is for u P v g m but its

The equations of motion for the order parameters take
the form (14) for any choice of the activation function
g, even though it might not always be possible to obtain
analytic expressions for the integrals I3 and I4.

The two multivariate integrals in Eq. (14) can be per-
formed analytically for g(x) = erf(x/v 2). Is is given in
terms of the components of the C3 covariance matrix by
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C23(1 + Cll) C12C13
I3 ———

vr &+ &ii

A3 ——(1+Cll)(1+ C33) —C13 .

The expression for I4 in terms of the components of the
corresponding C4 covariance matrix is

4 1
!I4 ——— arcsin

~

QA4 (QA1+A2)
'

where

A4 ——(1+Cll)(l + C22) —C,',
and

AO A4C34 C23C24(1 + Cll) C13C14(1 + C22)

+C12+13+24 + +12+14+23
Al A4(1 + C33) C23(1 + Cll)

—C13(1+C22) + 2C12C13C23,
A2 ——A4(l + C44) —C24(1+ Cll)

—C14(1+ C22) + 2C12C14C24 .

The dynamical equations (14) are the main result of
our paper. Together with the analytic expressions for
I3 and I4, they provide a tool for analyzing the learning
process for a general soft committee machine with an ar-
bitrary number K of hidden units trained to perform a
task defined by a soft committee teacher with M hidden
units [15]. Results previously obtained for a soft comlnit-
tee machine with two hidden units trained by a single-
layer teacher [14] are recovered for K = 2 and M = l.
The set of coupled first-order differential equations pro-
vided here are exact in the thermodynamic limit; leading
corrections are of order 1/N. The equations can be in-
tegrated accurately even for large values of K and M to
obtain the dynamical evolution of the order parameters,
which determine the time evolution of the generalization
error (7) and provide valuable insight into the process of
learning in multilayer networks.

In what follows we apply the tools developed in this
section to the analysis of a variety of learning scenarios.
The tasks to be learned are characterized by the number
M of teacher hidden units and the matrix T = B B
We consider uncorrelated teacher vectors, with T
T h . Two cases are of interest. (i) All teacher hidden
nodes are equally relevant to the implementation of the
target task, as described by an isotropic teacher with
T = T. The actual value of T is of no importance as
long as it does not depend on n; we have used T = 1 in
the analysis and simulations to be presented here. (ii) An
anisotropic teacher with uncorrelated but graded weight
vectors that can be ordered according to their relevance
in determining the output: T, & T, for ni ( n2. As a
special case of such a graded teacher we consider T = n.

The time evolution of the order parameters B; and
Q;I, follows from integrating the equations of motion (14)
from initial conditions determined by a random initializa-

tion of the student vectors (J;jl&;&Ic. This initialization
results in random norms Q,; for the student weight vec-
tors, represented here through the independent initializa-
tion of each Q;, from a uniform distribution in the [0, 0.5]
interval U[0, 0.5]. Overlaps Q, A, between independently
chosen student vectors J, and JI, are of order 1/~K and
vanishingly small in the regime N &) K. Initial values
for Q;I„ i g k, are independently drawn from a uni-
form distribution, U[0, Qo], with Qe « 1. The overlaps
B; between a randomly initialized student vector J; and
an unknown teacher B are also small numbers of order
1/~N for N )) K and N )) M. Initial values for each
B; are independently drawn from a uniform distribution
U[O, Ro], with Ro « 1. The numerical results shown in
this paper for Qo ——Re ——10 are indistinguishable
from those obtained with Qo ——0. No difFerences arise
&om setting Bp = 0 for graded teachers, but it is nec-
essary to keep a nonzero Bp in order to break the sym-
metry among teacher nodes and achieve specialization in
the case of isotropic teachers.

III. ROLE OF THE LEARNING RATE

We now examine the role of the learning rate g in the
convergence of the training process. The time evolution
of the order parameters and. the generalization error for
different values of g reveals three distinct regimes: a low

g regime characterized by a long suboptimal transient
due to trapping in a symmetric subspace of solutions,
a regime of optimal g values characterized by a rapid
escape &om the symmetric subspace followed by conver-
gence to the optimal solution, and a high g regime char-
acterized by an uncontrolled growth of the norms of the
student vectors.

We illustrate the corresponding evolution of the order
parameters through numerical results shown in Fig. 1 for
the realizable case K = M = 3. The teacher is graded
and specified by T = n b . Three different regimes
are clearly observed. Learning at small g, illustrated for
g = 0.1 in Fig. 1(a), results in a system trapped for
very long times in a symmetric subspace controlled by
an unstable suboptimal solution that exhibits no differ-
entiation among student hidden units. The evolution of
the overlaps B,. indicates that during the transient the
student vectors J; become identical to each other and
model the various teacher units with the same degree of
success. The only differentiation is the one among the
teacher vectors, due to their different norms T = n.
Trapping in the symmetric subspace prevents the spe-
cialization needed to achieve the optimal solution and the
generalization error remains finite, as shown in Fig. 1(d).
The symmetric solution is unstable and the perturbation
introduced through nonsymmetric initial conditions for
the norms Q;; eventually takes over, but the transient
can be very long. In the example presented here, the
first signs of specialization appear around o, = 750. Fast
specialization is achieved by choosing a larger value of g,
as shown in Fig. 1(b) for q = 0.9. In this regime the over-
laps B; evolve first within the symmetric subspace, but
the unstable solution is quickly abandoned as the system
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FIG. 1. Dependence of the overlaps be-
tween various student and teacher vectors
and the generalization error on the normal-
ized number of examples n, for several val-
ues of the learning rate g. The overlaps are
shown for (a) 17 = 0.1, (b) g = 0.9, and (c)
g = 3.6. The generalization error for these
three cases is shown in (d). The teacher is
characterized by T = nb . Initial condi-
tions are R, = 0 and q, I, = U[0, 0.5]h, I, .
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evolves towards the optimal solution. The student units
become specialized and the matrix B of student-teacher
overlaps becomes identical to the matrix T, except for
a permutation symmetry associated with the arbitrary
labeling of the hidden units. As shown in Fig. 1(d), an
early plateau in the generalization error is followed by a
monotonic decrease towards zero once the specialization
begins. The ability to reach the optimal solution is lost
for very large Iv, as illustrated for rl = 3.6 in Fig. 1(c).
The large g regime is characterized by an uncontrolled
growth of the norm of the student weight vectors with no
specialization. The generalization error no longer decays
to zero, but approaches a value e = eg(n -+ oo) ) 0,
as shown in Fig. 1(d). The three learning regimes illus-
trated in Fig. 1 correspond to those found in the detailed
analysis of the K = 2, M = 1 case [14].

The evolution of the generalization error eg with the
normalized number of examples o, provides a useful
heuristic characterization of the three learning regimes
discussed above. Consider the number o.* of examples
needed to achieve-a fixed level of performance, chosen
here to be e~ = 0.01. We have investigated the de-
pendence of o.* on g for realizable learning scenarios
with K = M. Results shown in Fig. 2 for several val-
ues of K correspond to learning a teacher specified byT„= n b . The time evolution is followed up to
n = 4000. The divergence of o.* at small g signals
trapping in the symmetric subspace, which prevents the
system &om achieving the required level of performance
within the allotted time. The subsequent monotonic de-
crease of n* with g indicates faster convergence to the
optimal solution. The minimum value of o.* identifies the
optimal learning rate g p&, increases in o.* for g ) g p$
culminate in a cutoK at g „. The failure of the system
to achieve a low generalization error within the allotted
time for g ) g „signals nonconvergent training.

A more rigorous evaluation of g pt and g „ follows
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FIG. 2. Dependence of the number of examples ~* needed
to achieve eg = 0.01 on the learning rate g for several values
of the number K = M of hidden units.

&om the stability analysis of the optimal solution to be
found in Sec. IV. We conclude this section with a dis-
cussion of the heuristic estimates of q pq and q „ob-
tained &om Fig. 2. The dependence of g pt and g
on the number K of hidden units in both student and
teacher networks shown in Fig. 3 exhibits a monotonic
decrease suggestive of inverse proportionality. It is of par-
ticular interest to examine the minimal number of exam-
ples needed to achieve the desired level of performance.
The dependence of n ~t ——n*(g ~t) on the number K
of hidden units shown in Fig. 4 indicates an exponential
increase for K ) 5.

A Anal heuristic observation concerns the transient be-
havior due to trapping in the symmetric subspace. Re-
sults shown in Fig. 1 indicate that the time needed to
escape from the symmetric subspace increases with de-
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FIG. 3. On the left is the dependence of the optimal and maximal learning ratesrates on the number K = M of hidden units.
On the right, the same data are shown on logarithmic scales (base e).

creasing g. This behavior is easily understood by cons~-
ering the equations of motion (14) in the small q regime:
the term proportional to g can be neglected, resulting
in a system of equations that becomes independent of g
under the rescaling o.g = o.. A universal plateau in the
eg(n) curve will terminate at a value nT, which signals
the onset of specialization. Trapping times in the small
fl regime are expected to increase as nT = nT/rI with
decreasing g.

The range of validity of the small q scaling can be
estimated through the product o.* = go.*, shown in Fig. 5
as a function of g for several values of K. Scaling is seen
to hold in a range 0 & g & g*. The decrease of g* with
increasing K signals an earlier onset of quadratic effects
in the time evolution of the order parameters, indicating
an increase in the magnitude of the I4 terms relative to
the Is terms in the equations of motion (14).

IV. STRUCTURE GF THE SOLUTIGNS

One of the most important aspects of learning in mul-
tilayer networks is the specialization of the hidden units,
an essential ingredient to the emergence of generaliza-
tion ability. Numerical solutions for the time evolution
of the order parameters and the generalization error for
large networks of the type studied here indicate that the
training process takes place in two phases: a symmet-
ric phase that exhibits no differentiation among student
hidden units and a subsequent phase characterized by
a specialization of the student nodes leading to optimal
network performance.

In this section we present an analysis of the subopti-
mal solution that controls the symmetric phase, the onset
of specialization, and the optimal solution to which the
system converges asymptotically. For simplicity we con-
sider a learnable scenario with K = M and. focus on an
isotropic teacher T = u, 1 & m, n &M.
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FIG. 4. Logarithm of the minimal number of examples
needed to achieve e~ = 0.01 as a function of the number
K = M of hidden units.

FIG. 5. Small q scaling for several values of the number
K = M of hidden units. The product n* = go.* remains
constant in the small g regime.
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A. Suboptimal solution: The symmetric plateau

Curves for the time evolution of the generalization er-
ror for difFerent values of g shown in Fig. 6 identify trap-
ping in the symmetric phase as a small g phenomenon.
We therefore consider the equations of xnotion (14) in
the small g limit and neglect terms proportional to g2.
The symmetric phase is characterized by undifferentiated
student vectors of sixnilar norms Q;; = Q for all 1
i ( K, sixnilar correlations among themselves q;I,
C for all 1 ( i, k ( K, i g k, and similar correlations
with the teacher vectors R; = R for all 1 ( i, n ( K.

The dynamical equations for R, Q, and C follow di-

rectly form Eq. (14)

K z. . ( Q
!eg(J) = ——+ arcsin!

6 EI+ qr
O

+(K —1) arcsin! EI+ J

—(2K) arcsin
& 2(1+q), (21)

*=0*=
2K —1 '

Fixed point solutions for Eq. (20) follow from setting
dR/dn = dq/dn = dC/dn = 0 and require Q = +C.
Since the solutions with C = —Q are unphysical for K &
2, we focus on the Q = C subspace to obtain

dR 2 1 1+Q —KR R
dH ~ (1+Q) g2(1+ q) R2 gl+ 2Q

s(Ic —1)(1+q —c)
)Q(1 + Q)2 C2

dQ 4 1 KR Q
(1+q)

t g2(1+ q) —R2 QI+ 2Q

C(K —1).(")-'l
dC 4 1 KR(1+ Q —C) C
dn xr (1+Q) +2(1+q) R2 pl+ 2Q

(1+q) [q + C(K —2)] —C'(K —1)

g(1+ q)' —C

(20)

The generalization error (7) is given in this regime by
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FIG. 6. Dependence of the generalization error on the num-
ber of examples a. for difFerent values of the learning rate g.
Results are shown for M = K = 3. The teacher is character-
ized by T = 6 . Initial conditions are R, = U[0, 10 ]
and q;), = U[0, 0.5]h, ), .

QK(2K —1)
(22)

The corresponding generalization error is given by

K ( I ')——K arcsin!
6 ), 2K)

A simple geometrical picture explains the relation
Q' = O' = K(R') at the symmetric fixed point. The
learning process confines the student vectors (J;)x&;&Ic
to the M-dimensional subspace 8~ spanned by the set
of teacher vectors jB„)x&„&M. For T = 6„ the
teacher vectors form an orthonormal set B = e„, with
e e = b, 1 & n, m & M, andprovideanex-
pansion for the weight vectors of the trained student
J; = P„xR; e„. The student-teacher overlaps R,„are
independent of i in the symmetric phase and independent
of n for an isotropic teacher: A; = A* for all 1 ( i (- K,
1 ( n ( M. The expansion J* = R* P x e„results
in Q' = O' = M(R*) = K(R') for the'M = K case
considered here. This geometrical description identi6esJ' as a vector pointing in the (1, . . . , 1) direction in the
M-dimensional space spanned by the (e„), but it does
not provide information on its norm Q'.

The symmetric solution discussed here is unstable and
it describes the asymptotic learning behavior only when
initial conditions for the order parameters are chosen
to satisfy the symmetric constraints. For M = K and
T = h„, the requirements are R;„= Ro for all i, n
and q, ), = qo for all i, k. Results shown in Fig. 7 cor-
respond to a symmetric initialization with qo ——0.5 and
Bo ——0 for M = K = 3 hidden units. The asymptotic
values Q' = C' = 0.2 R' = 0.2582, and e* = 0.0203 are
in agreexnent with the theoretical predictions of Eqs. (22)
and (23).

The speci6c values assigned to the order parameters
as initial conditions are largely irrelevant, as they control
the behavior of the system only during the short transient
needed to relax onto the symmetric phase described by
Eqs. (22) and (23), but nonsymmetric initializations of
the student vectors with respect to the teacher vectors,
whatever their nature and magnitude, introduce a fun-
damental perturbation that eventually drives the system
away &om the symmetric subspace. The length of the
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symmetric plateau is controlled by the degree of asym-
metry in the initial conditions (as observed in [14] for
the K = 2, M = 1 case) and by the learning rate rI. The
small g analysis developed in this section results in a uni-
versal curve for the generalization error as a function of
the rescaled variable a, = go; for any specific choice of
initial conditions. As shown in Fig. 8 for M = K = 3,
trapping in the symmetric subspace is seen to control the

0.5
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0.0
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600 800

FIG. 8. Universal dependence of the generalization error
on n = ga. for M = K = 3. The teacher is characterized
by T = 6„.Initial conditions are B, = U[0, 10 ] and
Q, g = U[0, 0.5]b,g.
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generalization error up to o.~ 600 for initial conditions
R, = U[0, 10 ~

] and Q;y = U[0, 0.5]h, ~, as in Fig. 6.
Escape times for identical initial conditions are expected
to scale like nT 600/rl, in quantitative agreement with
the shrinking symmetric plateau shown in Fig. 6.

An additional feature of Fig. 6 remains unexplained by
the small g truncation of the equations of motion lead-
ing to Fig. 8: the universal curve of eg as a function
of n predicts a unique value of the generalization error
at the symmetric plateau. The increase in the height
of the plateau with increasing g observed in Fig. 6 is
obviously a second-order eKect; in order to account for
it we need to reexamine the structure of the symmet-
ric solution under the full equations of motion (14). We
show in Fig. 9 the evolution of the order parameters and
generalization error for M = K = 3 starting &om the
same initial conditions used in Figs. 6 and 8. Curves for

q = 0.1 and g = 0.9 reveal that the symmetric phase is
in both cases characterized by student-teacher overlaps
R; = R* = I/QK( 2K—1) for all i, n and student-
student overlaps Q, A, = C* = 1/(2K —1) for all i g k. It
is the norms Q;, = Q of the student vectors that deviate
&om the predictions of the small q analysis: the value
of Q does not converge to Q" = C" = 1/(2K —1) but
remains larger at a value Q = Q' + b, . As illustrated in
Fig. 9, the gap 4 between diagonal and ofF-diagonal ele-
ments increases with increasing g. This is the mechanism
for excess generalization error; a first-order expansion of
Eq. (21) around R = R*, C = C', and Q = Q' + b,
yields

K vr t' I ) 2K-I——14ccccic
~

~

+ BI, (24)
6 (2K) 2K+ 1

FIG. 7. Evolution of the order parameters and generaliza-
tion error in the symmetric subspace. Results for M = A = 3
are shown here for (a) the student-student overlap q, (b) the
student-teacher overlap B, and (c) the generalization error.
The teacher is characterized by T = b . Initial condi-
tions are R, = RD ——0 and Q, l, = Qo = 0.&.

in agreement with the trend observed in both Figs. 6 and
9.

The excess norm L of the student vectors has a simple
interpretation in terms of the geometrical picture devel-
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oped earlier in this section: learning at 6nite g results
in student weight vectors not completely con6ned to the
subspace 8~. The weight vectors of the trained student
can then be written as J; = B' P i e„+J+, where J+
indicates the component of J, in the orthogonal subspace:
J, . e~ = 0 for all 1 & n & M. Student weight vectors
are not constrained to be identical; they difFer through

orthogonal components J, , which are typically uncorre-
lated: J+ JI, ——0 for i g k. Correlations Q;y = C still
satisfy C = t

' = M(B*), but norms Q;; = Q are given
by Q = M(R') + ]] J ~]

. The gap is then identified
as 4 =~] J ]] . Learning at very small r) tends to elimi-
nate J:second-order efFects become negligible and the
student vectors are more eQ'ectively confined to 8~.
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FIG. 9. Evolution of the order parameters and generalization error for small and intermediate learning rates. Results for
M = K = 3 are shown for rI = 0.1 and rl = 0.9 as follows: student-student overlaps Q, q for (a) rl = 0.1 and (b) q = 0.9,
student-teacher overlaps R, for (c) g = 0.1 and (d) rI = 0.9, and generalization error for (e) g = 0.1 and (f) rl = 0.9. The
teacher is characterized by T = 8 . Initial conditions are R, = U[0, 10 ] and Q, & = U[0, 0.5]6,&.
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B. Onset of specialization error (7) is given in this regime by

dB 2 1 1+Q —R
d~ ~ (1+q) g2(1+ q)

RS(K —1)
/2(1+ Q) —S2

R (1 + Q) S(K —1) —RC(K —1)
/1+ 2Q g(1+ Q) 2

dS 2 1 1+Q —S'(K —1)
da. m (1+Q) /2(1+ q)

BS S
/2(1+ Q) —R2 +1+2Q

(1+q) [R ~ S(K —2)] —SC(K —1)

g(1 + Q)2 C2

dQ 4 1 R S(K —1)
dn m (1+Q) +2(1+ Q) —R2 Q2(]. + Q) —S2

+

Escape from the symmetric subspace signals the onset
of hidden unit specialization. As shown in Fig. 9, the
process is driven by a breaking of the uniformity of the
student-teacher correlations: each student node becomes
increasingly specialized to a specific teacher node, while
its overlap with the remaining teacher nodes decreases
and eventually decays to zero.

The matrix of student-teacher overlaps can no longer
be characterized by a unique parameter, as we need to
distinguish between a dominant overlap B between a
given student node and the teacher node it begins to
imitate and secondary overlaps S between the same stu-
dent node and the remaining teacher nodes. The stu-
dent nodes can be relabeled so as to bring the matrix
of student-teacher overlaps to the form B; = Bb;„+
S(l —h,„). The emerging differentiation among student
vectors results in a decrease of the overlaps Q;i, = C for
i g k, while their norms Q;; = Q increase. The ma-
trix of student-student overlaps takes the form Q, i,
Qb';g+ C(1 —b i, ).

In order to describe the incipient specialization as the
student network escapes from the symmetric subspace
we extend the small g analysis of the preceding section
to allow for S g R. The dynamical equations for R, S,
Q, and C follow &om the truncated form of Eq. (14)

Q
!eg(J) = ——+ arcsin!

vr 6 E1+ Qr
C+(K —1) arcsin!

&1+ J
( R

[, /2(1+ Q) )
S—2(K —1) arcsin

( V'2(1+ q) )
(26)

The constraint Q = C is consistent with the equations
of motion (25): dq/dn = dC/dn to first order in r, s,
and q, at Q = C. Under this constraint the equations of
motion (25) reduce to

dR 2 1 1+Q —R2 RS(K —1)
dn 7r (1+Q) /2(1+. q) R2 /2(1+ q)

R+ S(K —1) ~ Q(S —R)(K —1)
gl + 2Q

We now investigate the equations of motion (25) in
the vicinity of the symmetric fixed point (22) through
deviations r = R —R*, s = S —S*, q = Q —Q',
and c = C —C* from R* = S' = 1/QK(2K —1) and
Q* = C* = 1/(2K —1). The geometrical interpretation
of the symmetric fixed point developed in the preceding
section provides an expansion for the student weight vec-
tors J,* = P„ i R;„B„.The orthogonal components J;
can be neglected in the small g regime, resulting in norms
Q;; = Q and overlaps Q;i, = C fully determined by the
student-teacher overlaps; for R; = Rh, + S(l —b, ) we
obtain Q = R2 + S (K —1) and C = 2RS + S2(K —2).
A first-order expansion in the deviations r and s yields
Q = Q*+2R' [r+s(K—1)] and C = C*+2R' [r+s(K—1)].
Therefore q = c = 2R*[r + s(K —1)] and the fixed point
equality Q* = C' is preserved to first order. This obser-
vation is consistent with numerical results as illustrated
in Fig. 9: it is the difFerentiation between B and S that
signals the escape &om the symmetric subspace; the dif-
ferentiation between Q and C occurs for larger values of

Q C(K —1)
gl + 2Q g(1+ q)2 —C2

4 1 (1+Q)S —RC
~ (1+Q) +2(1+ Q) —R'

(1+Q) [R+ S(K —2)] —SC(K —1)
+2(1+ Q) —S'

V'1+ 2Q

(2 + Q) [Q + C(II —2)] —C' (II —1)

)g(1 + Q)2 C2 (25)

ds
do!

2 1 1+Q —S2(K —1)
~ (1+Q) +2(1+q)

BS
+2(1+Q) —R'

pl+ 2Q)
'

R + S(K —1) —Q(S —R)
,/1+ 2Q

dQ 4 1 B
7( (1+Q) +2(1+ Q) —R'

S(K —1)
+2(1+ Q) —S2 (27)

for an isotropic teacher T = b . The generalization which are expanded to first order in r, 8, and q to obtain
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1 (2K —1) 2K(4K2 + K —1)
7r K(2K + 1) /2 (2K —1)s/2

2K(4Ks —2K2 —3K + 1)
(2K —1)s/2

1 (2K —1) 2K(4K2 + 2K —1.)
vr K(2K + 1) / (2K —1)s/2

2K(4Ks —2K2 —4K + 1)
(2K —l)s/'

(2K —1) 4K /2 4Ks/2 (K 1)
vr K(2K+ 1) / (2K —1) (2K —1)

K'(4K —1)
(2K —1)'/2 (28)

The corresponding generalization error is given by

2 K/2 2K/ (K —1)
~ (2K + 1)i/2 ~ (2K + 1)i/2

K' (2K —1)'/'
+ ~ (2K+1)i/" ' (29)

with e* = (K/6) —(K /vr) arcsin(1/2K), as in Eq. (23).
The geometry of student vectors confined to 8~ im-

poses the additional constraint q = 2R*[r + s(K —1)].
The first-order change in the generalization error (29)

overlap S = 8* + s between the same student node and
the remaining teacher nodes is weakened. It is the second
mode that provides the mechanism: this relevant pertur-
bation (A2 ) 0 for all K ) breaks the R = S symmetry
in the required way. The corresponding eigenvector V2
is characterized through its direction s = —pr to obtain
p = (4K2 —4K+2)/(4Ks —8K2+6K —2) = 1/(K —1).
Note that p & 0 for all K, to guarantee s & 0 for r & 0.
The dependence of A = A2 on the number Ã = M
of hidden units is shown in Fig. 10(a); as K -+ oo,
A (2m K) i: the time constant associated with the es-
cape &om the symmetric subspace increases linearly with
the size K of the network.

We now investigate the general conditions under which
positive deviations &om B* and negative deviations &om
S* will be sustained and enhanced by the dynamical
evolution (31). We propose s = pr, with—p ) 0 to
guarantee s & 0 for r & 0. The growth of a positive
fluctuation r requires r' ) 0, a condition satisfied for) pR = (4K2 —5K + 2)/(4Ks —8K2 + 6K —2).
At p = p~, r = 0 and the deviation r remains sta-
tionary. The growth in absolute value of a negative
fluctuation s requires s & 0, a condition satisfied for
p ( ps = (4K —4K + 2)/(4K —8K + 5K —2). At
p = pp, s = 0 and the deviation s remains stationary.

0.06—

e, (J) —e* = Kz (2K —1) /

vr (2K + 1)'/'

[r + s(K —1)], (30)

0.04—

0.02—

t'i 't 1

m (2K —1)'/'(2K + 1) /2

/ (4K —5K + 2) (4K —8K + 6K —2) l
(4K' —4K+ 2) (4K' —8K'+ 5K —2)

4s) (31)

vanishes under the condition QK(2K —1)q = 2[r +
s(K —1)]. As long as this geometric constraint is sat-
isfied, the order parameters R, S, and Q = C can experi-
ence fiuctuations around R* = S* and Q* = C' without
affecting the value e* of the generalization error. The
equations of motion for the fluctuations of B and S are

0.0

1.0 —'

0.5—

(b)

10

The dynamical evolution described by the linearized
equations of motion (31) is characterized by eigenval-
ues Ai —— vK(2K —1) an—d A2 ——vK, with v
(2/m ) (2K —1) i/2 (2K + 1) s/2. The first mode corre-
sponds to an irrelevant perturbation (Ai ( 0 for all K);
its associated eigenvector Vi ——(1, 1) describes a pertur-
bation with r = s that does not break the B = S symme-
try. The onset of specialization requires an enhancement
of the overlap R = R* + r between a given student node
and the teacher node it is learning to imitate, while the

0.0
10

FIG. 10. Dependence of (a) the escape rate A and (b) ps
(upper curve) and ps (lower curve) on the number K = M
of hidden units.
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The dependence of both pg and pR on the num-
ber K = M of hidden nodes is shown in Fig. 10(b).
In order to satisfy both i ) 0 and s ( 0 as re-
quired for further specialization, the ratio p between

]s] and r must be confined between the two curves:

pR ( p ( p~. Note that ps ) pR for aB K and their dif-
ference Ap = ps —pn vanishes as 1/K as K -+ oo. The
eigenm. ode value p satisfies the condition pR ( p ( ps
for all K. As K + oo, both pg and pR, as well as p, go
to zero as 1/K.

We have thus identified the mechanism for the onset of
specialization: positive Huctuations r that enhance the
overlap B accompanied by negative Huctuations 8 that
weaken S. The ratio p between the decrease in S and
the increase in R must be in the range (p~, ps) for the
Huctuations to be dynamically amplified, leading to fur-
ther specialization. In the large K limit both ps and
pR become vanishingly small and so does the required
value of 8; the onset of specialization in large networks is
primarily controlled by an enhancement in A.

Specialization as described here and illustrated in
Fig. 9 is a simultaneous process in which each student
node acquires a strong correlation with a specific teacher
node while becoming decorrelated &om the remaining
teacher nodes. Such a synchronous escape from the
symmetric phase is characteristic of learning scenarios
where the target task is defined through an isotropic
teacher. In the case of a graded teacher we find that
specialization occurs through a sequence of escapes &om
the symmetric subspace, ordered according to the rel-
evance of the corresponding teacher nodes. The pro-
cess is illustrated for K = M = 4 in Fig 11. The
evolution of the student norms shown in Fig. 11(a) for

g = 0.03 demonstrates the asymptotic specialization in
which each student node imitates a specific teacher node:
Qii m T44 ——4, Qss M T3$ —3 Q44 + T22 —2 and
Q22 —+ Tii ——1. Sequential escape of the student weight
vectors kom the symmetric subspace follows the order
imposed by the relevance of the corresponding teacher
weight vectors. The evolution of the generalization error
shown in Fig. 11(b) reflects these successive transitions: a
plateau characteristic of trapping in the symmetric sub-
space is followed by a monotonic decrease where three
observable inHection points correspond to the specializa-
tion of i = 1 onto n = 4, followed by that of i = 3 onto
n = 3, and that of i = 4 onto n = 2. There is no visible
signature of the subsequent specialization of i = 2 onto
n = 1. Such a structure in the eg(u) curve, not uncom-
mon in realistic learning scenarios, signals the existence
of graded teacher nodes.

C. Optimal salution: Convergence te perfect
generalization

The onset of specialization has been described in the
preceding subsection as a breaking of the B = S symme-
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FIG. 11. Dependence of (a) the length of the student vec-
tors and (b) the generalization error on the normalized num-
ber of examples a. for a graded teacher characterized by
T = nb . Results are shown for M = K = 4. Initial
conditions are R;„=0 and Q, g = U[0, 0.5]h,g.

try: each student node becomes specialized to a specific
teacher node (R increases), while its correlation with the
remaining teacher nodes weakens (S decreases); the sec-
ondary overlap S decays to zero as the process contin-
ues. Further specialization involves the decay to zero of
the student-student correlations C and the growth of the
norms Q of the student vectors. The subsequent evolu-
tion of the system converges to an optimal solution with
perfect generalization.

Numerical experiments as illustrated in Fig. 9 indicate
that the decay of the oH'-diagonal elements S and C to
zero precedes the convergence of R and Q to their asymp-
totic values. This observation is confirmed by a linear
analysis of the truncated equations of motion (25) around
the asymptotic Fixed point at S* = C' = 0, R' = Q* = 1.
We therefore describe convergence to the optimal solu-
tion by applying the full equations of motion (14) to a
phase characterized by R; = R6, and Q;& = Qb;i, . The
resulting dynamical equations for R and Q are
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=2 "l 1+Q —R' R
m (1+Q) +2(1+ Q) —R~ i/1+ 2Q

dQ 4 R Q 4

dci vr (1+Q) +2(1+ Q) R~ v'1+ 2Q 7r~ ill + 2Q

Qx K —1 —+ arcsin —2 arcsin
6 (1+Qr ~ g2(] + Q) r

B
(2(1+ 2Q —R ) j il+ 2Q j i+2(1+ 2Q)(1+ 2Q —Rs)) )

(32)

The generalization error (7) is given in this regime by

(R') = Q' = 1.
This Axed point corresponds to the optimal solution, with
e* = 0.

The asymptotic behavior follows &om linearizing the
equations of motion (32) around the fixed point at R* =
Q' = 1. We first consider the small rI regiine and neglect
terms proportional to g in the equation of motion for Q.
The resulting truncated version of Eq. (32) is indepen-
dent of the size K of the networks. The time evolution
of the deviations r = 1 —R and q = 1 —Q is given by

('r') 2 ~3 ( —4 3/2&

«) 9 &
4 -3r «r (35)

in the small g regime. The eigenvalues are Aq ———6vg
and Aq

———v)7, with v = 2i/3/(9m). The corresponding
eigenvectors are V'i ——z(3, —4) for the fast mode and
Vq ——~(1,2) for the slow mode. Note that Ai ——6Az.

The linearization of the full equations of motion (32)
around the R' = Q' = 1 fixed point leads to

K ~ . |' Q
!cg(J) = ——+ arcsin!

6 &1+ Qr

~+2(1+ Q))
The fixed point solution of Eq. (32) follows from setting
dR/da = dQ/da = 0 to obtain

6
@max-

@

sr~3
K —1+3/~5

As g —+ g „the relaxation time diverges as

with A = (z ~3)/4, independent of K.
The generalization error decays to e' = 0 for all learn-

0.4

0.2—

The existence of two negative eigenvalues for a Gnite
range of values of g implies exponential convergence of
the order parameters R and Q to their optimal values.
In the small g regime convergence is controlled by the
slow eigenvalue Aq and both r and q decay as exp(Aqa).
The relaxation time r = —1/Aq decreases with increas-
ing g until the crossing of the eigenvalues illustrated in
Fig. 12. As g increases further, the slow mode is the
one associated with Ai and r, q exp(Aia). The relax-
ation time r = —1/Ai increases with increasing il and
diverges as il —i rj „, defined by Ai(il = il „) = 0.
The fixed point at R' = Q' = 1 becomes unstable as Ai
turns positive; the optimal solution with e' = 0 is not
accessible for g ) g „. Exponential convergence of the
order parameters to their optimal value is guaranteed for
0 & g & g, with

2i/3 ( —4 3/2 5 (r)
9 "!q(4—2~v) ( 3+vv) r qqr —'

(36)

with )M = ~3 (2/2r)(K —1 + 3/~5). The eigenvalues are
Ai ———vq(6 —gp) and Aq

———vg, with v = 2i))3/(9vr)
as before. Note that Az still depends only linearly on g,
while Az has acquired a quadratic contribution of op-
posite sign. The eigenvector Vq —— ~(1,2) remains~5
unchanged, while Vz acquires a dependence on g that
is easily obtainable but of no relevance to the analysis
that follows. The dependence of both eigenvalues on g is
shown in Fig. 12 for M = K = 3.

—0.2—

0.0 0.5
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FIG. 12. Dependence of the decay eigenvalues Ai (curved
line) and A2 (straight line) on the learning rate 2l for
M = K = 3.
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FIG. 13. On the left is the dependence of the maximal and optimal learning rates on the number K = M of hidden units.
On the right, the same data are shown on logarithmic scales (base e).

ing rates in the range (0, g „). In order to identify the
corresponding relaxation time consider the expansion of
Eq. (33) to second order in r and q:

~~3
p 3K —1~3/~5 (40)

K~3 1 2 1
(2 —q) ——(2 —q)' ——q(q — )

vr 3 12 3

(39)

Since the mode associated with A2 cannot contribute to
the asymptotic decay of the linear combination (2r —q),
the linear term decays as exp(Aqcx). This rate of conver-
gence is to be compared to that of the quadratic terms
q2 and qr, which decay as exp(2A2n) in the small q
regime. Since in this regime Az ——6A2, it is the quadratic
terms that control the decay of the generalization error.
The corresponding relaxation time 7 = —1/2A2 decreases
monotonically with increasing g and reaches its optimal
value at the crossing between 2A2 and Aq. As g increases
beyond g~~t defined by Aq(g = q~~t) = 2A2(g = godet),
the relaxation time 7 = —1/Aq increases with increasing
g and diverges as g ~ g „,as described in Eq. (38). The
learning rate g ~& that guarantees the fastest asymptotic
decay for the generalization error is given by

Results (37) and (40) for the maximal and optimal
learning rates establish the asymptotic 1/K decay of
both g „and g zt and imply a surprisingly general re-
sult: g ~t ——(2/3)g „for all K. The full dependence of
both quantities on the number K = M of hidden units,
shown in Fig. 13, is in good agreement with the heuris-
tic data of Fig. 3. The analytic results obtained here for
an isotropic teacher (T = h ) provide reliable predic-
tions for more complex learning scenarios (T„=n b ).
The optimal decay rate A ~t

———2A2(g = g ~t) is given
by

8 1

9K —1+ 3/~5
(41)

and shown as a function of K in Fig. 14. As K m oo,
A &t 8/(9K): the time constant associated with con-
vergence to the optimal solution increases linearly with
the size K of the network. For the K = 3 curves shown
in Fig. 12 the corresponding values are g „=1.628 (for
Aq ——0), g ~t

——1.086 (for Aq ——2A2), and A zq
——0.266.
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LEARNING SCENARIOS
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FIG. 14. Dependence of the optimal convergence rate A p$

on the number K = M of hidden units.

The discussion of Secs. III and IV has focused on a
learning scenario in which both student and teacher net-
works have the same number K = M of hidden units.
The equations of motion (14) describe the evolution of
the order parameters for arbitrary K and M and provide
a tool for investigating both overrealizable (K ) M) and
unrealizable (K ( M) scenarios. In this section we con-
sider two examples that demonstrate the power of the
approach developed here when applied to the analysis of
general learning scenarios. We focus on a graded teacher
with T = n b for all 1 & n, m & M.

In the overrealizable case K & M the learning pro-
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cess is found to prune unnecessary hidden nodes. As an
example consider a teacher with M = 2 hidden units
to be learned by a student with K = 3 hidden units.
The time evolution of the order parameters is shown in
Figs. 15(a)—15(c) for xj = 1. The picture that exnerges
is one of specialization with increasing n: asymptoti-
cally the first student node imitates the first teacher node
(Rxx m Txx) while ignoring the second one (Rx2 -+ 0),
the second student node imitates the second teacher node
(R22 ~ T22) while ignoring the first one (R2x ~ 0), and
the third student node gets eliminated. The evolution
of the student norms shown in Fig. 15(a) dexnonstrates
Qxx m Txx ——1, Q22 m T22 ——2, and Q33 M 0 as a ~ oo.
The student-student overlaps Q, x, shown in Fig. 15(b) re-
veal an intermediate regime in which both surviving stu-
dent nodes are anticorrelated while correlated with the
node to be pruned. As overlaps involving the third stu-
dent node decay to zero with Qss, the two surviving stu-
dent nodes become increasingly uncorrelated. The over-
lap between student and teacher hidden nodes shown in
Fig. 15(c) clearly displays a small n behavior dominated
by the symmetric solution, followed by a transition onto
the specialization required to obtain perfect generaliza-
tion. The corresponding evolution of the generalization
error is shown in Fig. 15(d).

In this overrealizable scenario in which the student
has more resources than necessary for the implementa-
tion of the task as defined by the teacher, error min-
imization results in a pruning of the excessive student
nodes. The resulting learning process is a special case
of realizable learning of an anisotropic teacher: consider
a teacher with M = K hidden units, characterized byT„=T„b,withT =n for 1&n&MandT„=O
for M ( n ( M = K. The task is to be learned by a
student network with E = M hidden units. The special-
ization required to achieve perfect generalization results
in a student network in which M nodes become special-

ized to the M active teacher nodes, in a one-to-one corre-
spondence, while the remaining M —M = E —M nodes
specialize to the artificially introduced null teacher nodes,
becoming themselves disconnected &om the input layer
to imitate B„=0 for M ( n & K.

In the unrealizable case K ( M the student does not
have enough resources to implement the task and cannot
achieve perfect generalization as a ~ oo. As an example
consider a teacher with M = 4 hidden units to be learned
by a student with K = 3 hidden units. The time evolu-
tion of the order parameters shown in Figs. 16(a)—16(c)
for g = 0.6 reveals an initial behavior dominated by a
symmetric solution in which all three student nodes have
the same overlap with any given teacher node and the
only diQ'erentiation is due to the graded norm T = n
of the teacher weight vectors. Trapping in the symmetric
subspace is followed by a process in which each student
node specializes to one of the three dominant teacher
nodes. The specialization of student node i to teacher
node n results in R2 ~ Q;;T „, so that R; ~ T„„as
Q;; -+ T„„.The evolution of the norm of the student vec-
tors shown in Fig. 16(a) demonstrates Qxx -+ T22 ——2,
Q22 + T44 —4 and Q33 M Tss —3 as a -+ oo.
The student-teacher overlaps shown in Fig. 16(c) indi-
cate that as each student node imitates one of the dom-
inant teacher nodes, it ignores the other two dominant
nodes (Rxz -+ Tz2 while Rxs and Rx4 ~ 0, R24 ~ T44
while R22 and R23 —+ 0, and R33 M T33 while R32 and
R34 m 0), but all three student nodes retain some over-
lap with the less dominant teacher node n = 1 (note the
residual asymptotic value of Rxx, R2x, and Rsx). The
nonvanishing component in the direction of Bq results
in persistent correlations among the three student vec-
tors, as shown in Fig. 16(b). Note that the specialization
of the student nodes does not occur simultaneously, but
is ordered according to the relevance of the correspond-
ing teacher nodes, resulting in a cascade of specializa-
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FIG. 15. Dependence of the overlaps and
the generalization error on the normalized
number of examples n, for a three-node stu-
dent learning a two-node teacher: (a) the
lengths of student vectors, (b) the correla-
tion between student vectors, (c) the overlap
between various student and teacher vectors,
and (d) the generalization error. The teacher
is characterized by T = nb . Initial con-
ditions are R; = 0 and Q, i, = U[0, 0.5]6,a.
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the generalization error on the normalized
number of examples o., for a three-node stu-
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tion transitions. The evolution of the generalization er-
ror shown in Fig. 16(d) reveals this structure: a plateau
characteristic of trapping in the symmetric subspace is
followed by a monotonic decrease where two observable
inflection points correspond. to the specialization of i = 2
onto n = 4 followed by that of i = 3 onto n = 3. An
asymptotic residual error e g 0 is the signature of un-
realizable learning.

VI. CONCLUSIONS AND DISCUSSIDN

%'e have investigated on-line learning of continuous
functions through gradient descent in a very general
learning scenario. The target function is generated by a
soft committee machine with M hidden units. The stu-
dent is a network of the same architecture with K hidden
units; its weights are updated after the presentation of
each randomly drawn example.

The average over the input distribution is performed
analytically in the thermodynamic limit and yields equa-
tions of motion for the order parameters that describe
the correlations among student nodes and their overlaps
with the teacher nodes they are learning to imitate. The
dynamical equations are exact and can be integrated ac-
curately, providing a powerful tool to monitor the spe-
cialization of hidden units and the emergence of gener-
alization ability in multilayer networks. The solution is
valid for arbitrary M and K, allowing for the investiga-
tion of reahzable (K = M), overrealizable (K ) M), and
unrealizable (K ( M) learning scenarios.

For the realizable learning of a task defined by an
isotropic uncorrelated teacher, the student network con-
verges to the globally optimal solution when trained with
a fixed and suKciently small learning rate g & g . The
asymptotic convergence is exponential and optimal de-
cay of the generalization error to zero is achieved with

'Qopt = (2/3)gmax.
This fast decay is to be contrasted with the one re-

cently found for on-line learning of realizable dichotomies
[11], for which learning at axed g results in a residual
error e (x: g. Asymptotic convergence to the optimal
solution requires in this case a monotonically decreasing
learning rate; if g o, ' with z ( 1, the generalization
error decays to zero as eg(n) n '. The intrinsic slow-
ness of this process is due to the binary character of the
corresponding error signal: even as the student weight
vector J approaches the optimal solution J* with e* = G,
the error e(J, (') made on an arbitrary input ic is either 0
or 1. If an example is misclassified, the error signal con-
veys no information about the closeness between J and
J*; if g is kept fixed, the large weight adjustments AJ
made in response to such error signals cause persistent
fluctuations that prevent the convergence of J to J*.

This observation highlights the advantage of building
networks of continuous as opposed to discrete units: as
J approaches J* the error signal (3) is intrinsically small
for arbitrary inputs Ir„allowing for the learning process
to converge exponentially fast at fixed g. The use of er-
ror functions of the type (3) for multilayer networks with
continuous units leads to training by the widely used gra-
dient descent algorithm, as investigated here; networks
with discrete units require the use of perceptron-type
learning algorithms, which have generated much theoret-
ical interest [4,5] but are of limited practical use. To
those concerned with the desirability of implementing
binary classifications, we remark that linearly separa-
ble dichotomies of the type discussed in [9—ll) can be
well approximated in the model analyzed here by setting
M = K = 1 and increasing the efFective steepness of the
nonlinear activation function g(x) through increasing the
norm T of the teacher vector.

Learning at a constant g in continuous neural net-
works has been investigated using stochastic approxima-
tion theory to obtain a master equation for the dynamical
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evolution of the student weight vectors J [8]. Nonvanish-
ing quadratic deviations

~~
J —J'

~~
oc g were found to

persist asymptotically, indicating a lack of convergence
to the desired solution J . The statistical-mechanics ap-
proach implemented here involves a change of representa-
tion from the student weight vector J = {J,)i&,&a to the
order parameters R, = J; . B and Q, i, = J; .Jg, which
are self-averaging in the thermodynamic limit. It is the
N ~ oo limit that provides a continuous time description
in which fluctuations are eliminated and asymptotic con-
vergence to the global solution can be achieved at finite,
constant g.

Realizable learning for a soft committee machine
trained by an isotropic uncorrelated teacher is the con-
tinuous version of the model analyzed by Schwarze in
what remains the most complex investigation of off-line
learning in multilayer networks [6]. Our analysis of the
continuous model within the on-line learning paradigm
yields a dynamical description of the learning process
that confirms and expands the results in [6]. The early
and intermediate stages of the dynamics are controlled
by a strongly attractive solution that is symmetric under
permutation of the student hidden nodes. The system
eventually escapes this suboptimal solution and evolves
towards an optimal solution in which each student node
is correlated with a particular hidden node of the teacher
network. We are able to monitor the dynamics of spe-
cialization, the process that characterizes the transition
between these two regimes, and find that escape &om the
symmetric phase is synchronous when the target task is
defined through an isotropic teacher, but occurs through
a sequence ordered according to the relevance of the cor-
responding teacher nodes when the teacher is graded.

The ability to follow the dynamical evolution of the
student network &om arbitrary initial conditions to
asymptotic convergence reveals a crucial aspect of train-
ing a committee machine: trapping in the symmetric sub-
space provides a substantial and unwelcome contribution
to the total training time (or number of examples) needed
to achieve a desired level of generalization ability. At-
tempts at reducing the total training time by fine tuning
the asymptotic decay of the generalization error to zero
are misguided and overlook the basic role of the trapping
time as a limiting factor. The strategy to reduce trap-
ping times is to use the largest possible training rate g
compatible with asymptotic convergence to the optimal
solution. This observation cautions against schedules for
a monotonic decrease of the learning rate as proposed in
[ll], which result in ineKciently low values of g at inter-
mediate times controlled by the symmetric solution.

The detailed investigation of realizable learning is com-
plemented in this paper by two examples that illustrate
the power of the method developed here when applied to
the analysis of overrealizable and unrealizable learning
scenarios. In the overrealizable case K ) M, learning
leads to pruning of unnecessary student nodes, a process
easily understood when interpreted as a special case of
realizable learning of an anisotropic teacher. The unreal-
izable case K ( M leads to qualitatively different adap-
tive behavior to compensate for the lack of resources as
would be needed to implement the target task. A detailed

analysis of this &equently encountered learning scenario
will be reported elsewhere [16].

The theoretical &amework developed in Sec. II has
been extended into a tool to investigate learning &om
noisy data with weight-decay regularization [16]. Other
possible extensions allow for nonlinear output units, un-
restricted and adaptive hidden-to-output weights, corre-
lated teacher vectors, and correlated input components.

We conclude this discussion with a general comment on
the relation between the on-line and the off-line learning
paradigms. Off-line learning is formulated as a problem
in equilibrium statistical mechanics, in which averages
over the distribution of student weight vectors J and av-
erages over the disorder introduced by the random selec-
tion of training examples occur on different time scales.
Training examples are held fixed while the exploration
of J space that leads to thermal equilibrium takes place.
The ensemble average over different realizations of the
training set is assumed to occur over a much longer time
scale; the replica method is used to perform the corre-
sponding quenched average.

One way to avoid the technical difBculties intrinsic to
quenched averaging is to invoke the annealed approxima-
tion, based on neglecting the separation between time
scales: weights and examples are assumed to undergo si-
multaneous equilibration through a joint exploration of
J and g spaces [5]. The resulting Gibbs distribution,
controlled by the learning error, favors training examples
that are compatible with the current student hypothe-
sis as represented by J. Annealing is not an efBcient
learning strategy; efFicient learning strategies are based
on precisely the opposite selection criterion [17]. Exam-
ples that contradict the current hypothesis and are as-
sociated with large errors e(J, g) are to be preferred, as
they convey sizeable information about the target task
and result in a reduction of the entropy associated with
the effective volume of the current space of hypothesis.

On-line learning can be considered as a mechanism to
restore the separation between time scales while revers-
ing the role of J and g. A current network configuration
J is held fixed. while the average over all possible ways of
selecting the next training example is performed. This
average avoids the technical complications of the replica
method and generates a dynamical evolution in the space
of student weights. The average over g at fixed J is dom-
inated by the examples that give the largest contribution
to the gradient V'~e(J, g). Such examples reveal a large
discrepancy between the current hypothesis and the tar-
get and are most useful to the training process.

ACKNOWLEDGMENTS

This work was supported by the EU Grant No. CHRX-
CT92-0063. D.S. would like to thank the Niels Bohr In-
stitute and the CONNECT group for their hospitality.

APPENDIX: MULTIVARIATE GAUSSIAN
AVERAGES

Consider an n-dimensional space x = (xi, . . . , x )
and a set of functions (f~), 1 ( j ( n. The goal is
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to compute an average of the form

I- = (fi(»)" f--i(x--i) f-(x-)) (Al)

makes it unnecessary to compute the reduced-
dimensionality integrals.

We now summarize a proof of Eq. (A6), based on the
identity

with respect to the multivariate Gaussian distribution

P(x ')= „exp ——(x„) C„'(x„)), (A2)
Q(2n. )"iC„ i

controlled by the covariance matrix C with components|;~
= (x;x~) for 1 ( i, j ( n. The result of such an av-

erage will depend on the parameters of the distribution,
so that I„=I„(C„).

For the same set of n functions (f~), 1 (j ( n, , con-
sider now the average

I„,= (f,(* ) f„(*„)f„(*„))
to be performed in an (n —1)-dimensional space x
(xq, . . . , x„ i) with respect to the multivariate Gaussian
distribution

—-(x-)*t:.'(x-) )
d'gy ' ' ' CLQ~

Q(2vr)"

&exp ——p C g +x I y (A7)

1I (C ) = "
exp ——(x ) C„'(x ))g(2~)" iC i

x fg(xg) . . f„(x„). (A8)

Consider the average (Al) with respect to the distribu-
tion (A2)

1
'P(x.„g) =

V'(2~)" 'IC--il
1

x exp ——x~ i C
2

(A4)
The expression (A7) is now substituted into (A8) to ob-
tain

C;~ for 1 (i,j ( (n —1),
C;„ i for 1&i (n,
C„ i; for 1&i (n. (A5)

Note that C follows from C by imposing the coordinate
constraint x„=x„ i. The identity

I„g(C„ i) = I„(C„) (A6)

controlled by the covariance matrix C i with compo-
nents (;z

——(x;x~) for 1 ( i, j ( (n —1). The results will
depend on the elements of this reduced-dimensionality
matrix, so that I i ——I„ i(C„ i).

The claim is that the reduced dimensionality integral
I i requires no independent evaluation. The corre-
sponding result follows from specializing the result for
I (C„) to the singular covariance matrix C„defined as

I-(~-) = "
exp —-(y-)'&-(y-))

Q(2vr)"

&& fi(ui) " f (u ) (A9)

expressed in terms of the Fourier transforms

GZ
f&(u) = f, (x) e'"*

2~
(Alo)

Note that (A9) is a particularly suitable form for the eval-
uation of I„(C„)since the singularity due to iC„i has been
eliminated and the constraints (A5) due to dimensional-
ity reduction are easily imposed on some of the compo-
nents of C itself, while they acct in a complicated way
all the components of C

To prepare for the replacement of C„by C„ it is con-
venient to rewrite Eq. (A9) by decoupling y„ from the
other components

I (C )= f „"„exp ——(y —i) e —i(y —e)) A(yi) . .f i( |)y-
(27r)" 2

x j "
exp( ——(y )') f (All)

where

(A12)

for all 1 ( i, j ( (n —1). An expression for I (C ) follows from substituting the matrix components de6ned in
Eq. (A5) onto Eq. (All):



ON-LINE LEARNING IN SOFT COMMITTEE MACHINES 4243

I n(C n)
= exp ——(yn z) Cn z(yn —z) f](y.].) ' ' ' fn —z(yv —2)

gx gn —z

(2z.)n —1

dg y„
X exp ——(y„) I"

Q+n —1,n —1 ( Q+n 1,n—1—

expressed in terms of the convolutionary Fourier transform

n —2
1 ) C;„,y,

n —1 n —1s i=1
(AI3)

( ) = f-- (*) f-(*) '"*.
2~

(A14)

Note that under the transformation (A5) the components of C in Eq. (A12) become

C, „g C~„
(A15)

for all 1 ( i, j & (n —2).
The computation of I z(C z) proceeds along similar lines. The (n —1)-dimensional version of Eq. (A7) is

substituted into Eq. (A4) to obtain

dye ' dye -1In 1(Cn —1 )—= exp (Xn—1) Cn, —1 (yn —1) f1 (yl ) fn z(yn —2—)&(yn —1)
(2vr)" —' 2

(A16)

expressed in terms of the Fourier transforms of Eqs. (A10) and (A14). The component y q is now decoupled from
the other components to obtain

dye . . dy pp--~( --~) = exp --(y--. ) C--z(y--z) fi(yi)" f.-z(y.—.)(2') 2

X
dgn —1 y. i

exp ——(g~ y)—1, —1 ) (/o —1, —1

n —2
1 ) C;,„,y;

n —1 n —1 i=1
(A17)

where the components of C q are given in Eq. (A15).
A comparison of Eq. (A13) to Eq. (A17) establishes the identity (A6). As an example of the application of this

identity in the context of our paper, consider the evaluation of Is(i, n, j)—:(g (x;) y g(xz)) discussed in Sec. II.
A two-dimensional integral such as Iz(i, n)—:(g'(x;) y„g(z;)) does not need to be evaluated independently once a
general result for Is has been obtained, since Iz(i, n) = Is(i, n, i). An expression for Iq(i, n) is obtained by applying
the solution (15) and (16) for Is to the singular covariance matrix

(Q,; R,„Q;, )R;„T„„R,„
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