28.1 General Classes of Synthetic Polymers

Synthetic polymers can be divided into two major classes, depending on their method of preparation. **Chain-growth polymers**, also known as **addition polymers**, are made by **chain reactions**—the addition of monomers to the end of a growing chain. The end of the chain is reactive because it is a radical, a cation, or an anion. Polystyrene—used for disposable food containers, insulation, and toothbrush handles, among other things—is an example of a chain-growth polymer. Polystyrene is pumped full of air to produce the material known as Styrofoam[®].

Step-growth polymers, also called condensation polymers, are made by combining two molecules while, in most cases, removing a small molecule, generally water or an alcohol. The reacting molecules have reactive functional groups at each end. Unlike chain-growth polymerization, which requires the individual molecules to add to the end of a growing chain, step-growth polymerization allows any two reactive molecules to combine. Dacron[®] is an example of a step-growth polymer.

Dacron[®] is the most common of the group of polymers known as **polyesters**—polymers with many ester groups. Polyesters are used for clothing and are responsible for the wrinkle-resistant behavior of many fabrics. Polyester is also used to make the plastic film called Mylar[®], needed in the manufacture of magnetic recording tape. This film is tear-resistant and, when processed, has a tensile strength nearly as great as that of steel. Aluminized Mylar[®] was used to make the Echo satellite that was put into orbit around the Earth as a giant reflector. The polymer used to make soft drink bottles is also a polyester.

28.2 Chain-Growth Polymers

The monomers used most commonly in chain-growth polymerization are ethylene (ethene) and substituted ethylenes. In the chemical industry, monosubstituted ethylenes are known as **alpha olefins**. Polymers formed from ethylene or substituted ethylenes are called **vinyl polymers**. Some of the many vinyl polymers synthesized by chain-growth polymerization are listed in Table 28.1.

Chain-growth polymerization proceeds by one of three mechanisms: **radical polymerization**, **cationic polymerization**, or **anionic polymerization**. Each mechanism has three distinct phases: an *initiation step* that starts the polymerization, *propagation steps* that allow the chain to grow, and *termination steps* that stop the growth of the chain. We will see that the choice of mechanism depends on the structure of the monomer *and* the initiator used to activate the monomer.

Table 28.1 Some Important Chain-Growth Polymers and Their Uses			
Monomer	Repeating unit	Polymer name	Uses
$CH_2 = CH_2$	$-CH_2-CH_2-$	polyethylene	film, toys, bottles, plastic bags
$CH_2 = CH$ Cl	-СН ₂ -СН- С1	poly(vinyl chloride)	"squeeze" bottles, pipe, siding, flooring
$CH_2 = CH - CH_3$	$\substack{-\mathrm{CH}_2-\mathrm{CH}-\\ \\ \mathrm{CH}_3}$	polypropylene	molded caps, margarine tubs, indoor/outdoor carpeting, upholstery
CH ₂ =CH	-CH ₂ -CH-	polystyrene	packaging, toys, clear cups, egg cartons, hot drink cups
CF ₂ =CF ₂	-CF ₂ -CF ₂ -	poly(tetrafluoroethylene) Teflon®	nonsticking surfaces, liners, cable insulation
$CH_2 = CH$ $C \equiv N$	$\begin{array}{c} -\mathrm{CH_2}\mathrm{-CH}\mathrm{-}\\ \\ \mathrm{C}\mathrm{\equiv N} \end{array}$	poly(acrylonitrile) Orlon [®] , Acrilan [®]	rugs, blankets, yarn, apparel, simulated fur
CH ₂ =C-CH ₃ COCH ₃ O	$-\mathrm{CH_2}\!\!-\!$	poly(methyl methacrylate) Plexiglas [®] , Lucite [®]	lighting fixtures, signs, solar panels, skylights
$\begin{array}{c} \operatorname{CH}_2 = \operatorname{CH} \\ \downarrow \\ \operatorname{OCCH}_3 \\ \downarrow \\ \operatorname{O} \end{array}$	$\begin{array}{c} -\text{CH}_2 - \text{CH} - \\ \text{OCCH}_3 \\ \text{O} \end{array}$	poly(vinyl acetate)	latex paints, adhesives

