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Electrodynamics 
⚡The Helmholtz Theorem 
⚡Boundary Conditions 
⚡The Electrostatic Potential 
⚡Work and Energy 
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Maxwell’s Equations
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• The most basic of Maxwell’s Equations of Electrostatics is Gauss’s Law: 

    ,    with      . 

• We saw during last class (and you know this since kindergarten!) that the solution is: 

    . 

• Furthermore, we can consider the charge density (a distribution), to be a sum of point charges: 

 

• For a point charge, the electric field is given by: 

 

• Now, how can we be sure that the solution above is unique?

⃗∇ ⋅ ⃗E = − ∇2ϕ =
1
ϵ0

ρ( ⃗x ) ⃗E = − ⃗∇ ϕ

ϕ( ⃗x ) =
1

4π ϵ0 ∫ d3x′ 
ρ( ⃗x ′ )

| ⃗x − ⃗x ′ |

ρ( ⃗x ) = ∑
i

qi δ( ⃗x − ⃗x i)

⃗E q = − ⃗∇ ϕq( ⃗x ) = − ⃗∇ ( 1
4π ϵ0

q
| ⃗x − ⃗x q | ) =

q
4π ϵ0

⃗x − ⃗x q

| ⃗x − ⃗x q |

Gauss’s Law & Electrostatics
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• Put another way: given only the equation 

    , 

can we find a unique solution? 

• No! We can add to  any field  which solves the homogeneous equation,  , i.e., 

  . 

• However, if we specify not only the divergence of a field, but also its curl (“rotational”), then the equations yield 
a unique solution. 

• In other words, for any field , once we specify: 

 

  , 

then there is a unique solution for  . This is the Helmholtz Theorem. 

⃗∇ ⋅ ⃗E =
1
ϵ0

ρ( ⃗x )

⃗E ⃗H ⃗∇ ⋅ ⃗H = 0

⃗∇ ⋅ ( ⃗E + ⃗H) =
1
ϵ0

ρ( ⃗x ) + 0

⃗F

⃗∇ ⋅ ⃗F = Sdiv

⃗∇ × ⃗F = ⃗S rot

⃗F

Helmholtz Theorem
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• We will show that, given the pair of equations: 

        and            , 

then the unique solution for the vector field  is given by: 

    ,    where 

    ,    and 

 

• So, we have to specify not only the sources of the divergence and curl on the “bulk" (volume), 

but also the behavior of the field itself ( ) on the boundary (the surface of the volume)!

⃗∇ ⋅ ⃗F = Sdiv
⃗∇ × ⃗F = ⃗S rot

⃗F

⃗F = − ⃗∇ Ψ + ⃗∇ × ⃗R

Ψ =
1

4π ∫v
d3x′ 

Sdiv( ⃗x ′ )
| ⃗x − ⃗x ′ |

−
1

4π ∮s(v)
d ⃗s′ ⋅

⃗F ( ⃗x ′ )
| ⃗x − ⃗x ′ |

⃗R =
1

4π ∫v
d3x′ 

⃗S rot( ⃗x ′ )
| ⃗x − ⃗x ′ |

−
1

4π ∮s(v)
d ⃗s′ ×

⃗F ( ⃗x ′ )
| ⃗x − ⃗x ′ |

⃗F

Helmholtz Theorem
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Sdiv and ⃗S rot in v

⃗F in s(v)
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• In order to prove this theorem, let’s start by recalling that: 

        ,    and that 

 

• Now let’s rewrite the field itself as: 

 

              

• But we also know that   , so we can rewrite the field as: 

⃗∇
1

| ⃗x − ⃗x ′ |
= −

⃗x − ⃗x ′ 
| ⃗x − ⃗x ′ |

⃗∇ ⋅ ( ⃗∇
1

| ⃗x − ⃗x ′ | ) = − 4π δ( ⃗x − ⃗x ′ )

F( ⃗x ) = ∫v
d3x′ ⃗F ( ⃗x ′ ) δ( ⃗x − ⃗x ′ ) = −

1
4π ∫v

d3x′ ⃗F ( ⃗x ′ ) ⃗∇2
x

1
| ⃗x − ⃗x ′ |

= −
1

4π
⃗∇2
x ∫v

d3x′ 
⃗F ( ⃗x ′ )

| ⃗x − ⃗x ′ |

⃗∇ × ( ⃗∇ × ⃗A ) = ⃗∇ ( ⃗∇ ⋅ ⃗A ) − ⃗∇2 ⃗A

⃗F ( ⃗x ) = −
1

4π
⃗∇x( ⃗∇x ⋅ ∫v

d3x′ 
⃗F ( ⃗x ′ )

| ⃗x − ⃗x ′ | ) +
1

4π
⃗∇x × ( ⃗∇x × ∫v

d3x′ 
⃗F ( ⃗x ′ )

| ⃗x − ⃗x ′ | )

Helmholtz Theorem: proof
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• The first term can be “massaged" to appear more graceful, as follows: 

①  

     

                    !!! 

• In a completely analogous way (YOU work it out!) we have that: 

②  

               !!!

= ∫v
d3x′ ⃗∇x ⋅

⃗F ( ⃗x ′ )
| ⃗x − ⃗x ′ |

= ∫v
d3x′ ⃗F ( ⃗x ′ ) ⋅ ⃗∇x

1
| ⃗x − ⃗x ′ |

= ∫v
d3x′ ⃗F ( ⃗x ′ ) ⋅ (− ⃗∇x′ ) 1

| ⃗x − ⃗x ′ |

= − ∫v
d3x′ ⃗∇x′ ⋅ [

⃗F ( ⃗x ′ )
| ⃗x − ⃗x ′ | ] + ∫v

d3x′ [ ⃗∇x′ ⋅ ⃗F ( ⃗x ′ )] 1
| ⃗x − ⃗x ′ |

= − ∮s(v)
d ⃗s′ ⋅ [

⃗F ( ⃗x ′ )
| ⃗x − ⃗x ′ | ] + ∫v

d3x′ [Sdiv( ⃗x ′ )] 1
| ⃗x − ⃗x ′ |

= 4π Ψ

= ∫v
d3x′ ⃗∇x ×

⃗F ( ⃗x ′ )
| ⃗x − ⃗x ′ |

= − ∮s(v)
d ⃗s′ × [

⃗F ( ⃗x ′ )
| ⃗x − ⃗x ′ | ] + ∫v

d3x′ [ ⃗S rot( ⃗x ′ )] 1
| ⃗x − ⃗x ′ |

= 4π ⃗R

Helmholtz Theorem: proof
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• Therefore, we arrive at the final result that:  

           ①  ② 

 

• Some familiar cases are the electrostatic field with boundary conditions such that  as .  We then have that  

  ,    , and  ,  with the result that: 

  

• For the magnetostatic field with boundary conditions such that  as   , we have that    ,     and 

 ,  with the result that: 

 

⃗F ( ⃗x ) = −
1

4π
⃗∇x +

1
4π

⃗∇x ×

⇒ ⃗F ( ⃗x ) = − ⃗∇xΨ + ⃗∇x × ⃗R

⃗E → 0 x → ∞
Sdiv → ρ/ϵ0

⃗S rot → 0 Ψ → ϕ

⃗E ( ⃗x ) = − ⃗∇xϕ = − ⃗∇x[ 1
4π ϵ0 ∫ d3x′ 

ρ( ⃗x ′ )
| ⃗x − ⃗x ′ | ]

⃗B → 0 x → ∞ Sdiv → 0 ⃗S rot → μ0
⃗J

⃗R → ⃗A

⃗B ( ⃗x ) = ⃗∇x × ⃗A = ⃗∇x × [ μ0

4π ∫ d3x′ 
⃗J ( ⃗x ′ )

| ⃗x − ⃗x ′ | ]

Helmholtz Theorem: proof
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• The Helmholtz theorem highlights the need to consider carefully the boundary conditions of our fields: 

    ,    with 

                     

                  

• Notice that we can always add constant to the “potentials” :   ,  

• Therefore, the component perpendicular to the surface (and parallel to ) is needed to specify the divergence 
component  ( ); 

• The component parallel to the surface (perpendicular to ) is needed to specify the curl component  (  ) .

⃗F = − ⃗∇ Ψ + ⃗∇ × ⃗R

Ψ =
1

4π ∫v
d3x′ 

Sdiv( ⃗x ′ )
| ⃗x − ⃗x ′ |

−
1

4π ∮s(v)
d ⃗s′ ⋅

⃗F ( ⃗x ′ )
| ⃗x − ⃗x ′ |

⟸ ⃗F ⊥

⃗R =
1

4π ∫v
d3x′ 

⃗S rot( ⃗x ′ )
| ⃗x − ⃗x ′ |

−
1

4π ∮s(v)
d ⃗s′ ×

⃗F ( ⃗x ′ )
| ⃗x − ⃗x ′ |

⟸ ⃗F ||

Ψ → Ψ + c ⃗R → ⃗R + ⃗c

d ⃗S
Ψ → ϕ

d ⃗S ⃗R → ⃗A

Boundary conditions
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d ⃗S ⃗F
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• The simplest situation is one where we want to 
find the electromagnetic fields in around 
sources which are in complete isolation. We 

then have , and the boundary is pushed 
off to infinitely far away from the sources, so we 

naturally take   at   . 

• Another common situation is when we place 
sources inside and/or in the vicinity of 
conductors, insulators or magnetic materials, 
which constrains the electromagnetic fields on 
the surfaces of those materials.

v → ℝ3

⃗F → 0 | ⃗x − ⃗x ′ | → ∞

Boundary conditions
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• When charges are static and there are no currents (  ), the Maxwell equations reduce to: 

                  ,         

• In the absence of non-trivial boundary conditions, the solution is then simply: 

        , 

  

• In this case the electrostatic field is the gradient of a scalar function ( ), and one of the 
properties of the gradient is that, along any path, the integration of the gradient gives back 
the scalar function itself, i.e.: 

      ,        the potential difference between  and .

⃗J = 0

⃗∇ ⋅ ⃗E =
ρ
ϵ0

⃗∇ × ⃗E = 0

⃗E ( ⃗x ) = − ⃗∇ ϕ

ϕ( ⃗x ) =
1

4π ϵ0 ∫ d3x′ 
ρ( ⃗x ′ )

| ⃗x − ⃗x ′ |

ϕ

∫
B

A
d ⃗l ⋅ ⃗∇ ϕ = ϕ(B) − ϕ(A) A B

The electrostatic potential
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• Evidently, this property is connected with the notion of work in an electric field. Let’s recall the 
Lorentz force: 

           

• Therefore, the work done by the electric field on a point charge  is: 

 

 

• The work needed to move that charge arbitrarily away (to infinity and beyond!) is then given by: 

 

• This means that we can associate this energy at any given point with a potential energy: 

                

⃗F L = q ( ⃗E + ⃗v × ⃗B )
q

WAB = ∫
B

A
d ⃗l ⋅ (q ⃗E ) = − q∫

B

A
d ⃗l ⋅ ⃗∇ ϕ = = − q ΔϕAB

⇒ WAB = q (ϕA − ϕB)

WA→∞ = q ϕA

WA→∞ → U( ⃗x A) ⟹ ⃗F ( ⃗x A) = − [ ⃗∇ U] ⃗x A

= − q [ ⃗∇ ϕ] ⃗x A

= q E( ⃗x A)

The electrostatic potential
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• Sorry to bother you with such trivialities, but at this point we need to talk about units. 

• Coulomb’s Law: 

     ,           ,       

• Electric field: 

                 

• Electrostatic potential: 

                   (Volt) 

        (Watts/Ampère)        ,        and         

• Example: a spark produces fields of strength 

⃗F q1 q2
=

1
4π ϵ0

q1 q2
̂r

r2
ϵ0 = 8.85 × 10−12 ℂ2

N m2
1ℂ = 6.2 × 1018 e

⃗F q = q ⃗E ⇒ [E] =
N
ℂ

⃗E = − ⃗∇ ϕ ⇒ [ϕ] = [E]m =
N m
ℂ

= V

1 V =
N m
ℂ

=
N m /s
ℂ/s

=
W
A

[E] =
V
m

103 − 104 V/m

A word about units
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• Let’s warm up our brain muscles by working out some very, very simple examples. 

• First, let’s compute the electric field of a spherically symmetric charge density  . 

    ,     

• Using spherical symmetry we can use the integral form of this equation: 

    ,    to derive immediately that: 

    ,    where     

• We can also compute the potential, using that, for spherical symmetry, we have  

ρ(r)

⃗∇ ⋅ ⃗E = − ∇2ϕ =
ρ(r)
ϵ0

ρ(r) →

∮r
d ⃗S ⋅ ⃗E =

Q(r)
ϵ0

4π r2 Er(r) =
Q(r)

ϵ0
Q(r) = 4π∫

r

0
dr′ r′ 2 ρ(r′ )

−
∂
∂r

ϕ(r) = Er(r) ⟹ ϕ(r) = −
1

4πϵ0 ∫
r

0
dr′ 

Q(r′ )
r′ 2

Warming up…
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Spherical coordinates: 

 ⃗∇ ϕ = ̂r
∂ϕ
∂r

+ ̂θ
1
r

∂ϕ
∂θ

+ ̂θ
1

r sin φ
∂ϕ
∂φ

⃗∇ ⋅ ⃗E =
1
r2

∂ r2Er

∂r
+

1
r sin θ [ ∂ sin θ Eθ

∂θ
+

∂ Eφ

∂φ ]



• Basic example #2: axial (cylindrical) symmetry  [ notation:  ] : 

 

• Using axial symmetry we can try to write the integral form of this equation: 

 

• However, notice that in this case the volume (and the charge) can diverge. Nevertheless, the field should not 
blow up. Let’s write this for a very very long cylinder of height , for which we can neglect the contribution 
from the top and bottom: 

     

• The potential can be computed in the same way from: 

 

• Notice that unless the linear charge density  for  , then   !!  Why??…

s → ρ

⃗∇ ⋅ ⃗E = − ∇2ϕ =
ρ(s)
ϵ0

∮s
d ⃗S ⋅ ⃗E =

Q(s)
ϵ0

Z

(2πs Z ) Es =
Z
ϵ0 ∫

s

0
ds′ s′ ρ(s′ ) =

Z
ϵ0

λ(s) ⟹ Es =
1
ϵ0

λ(s)
2π s

−
∂
∂s

ϕ(s) = Es(s) ⟹ ϕ(s) = −
1

2πϵ0 ∫
s

0
ds′ 

λ(s′ )
s′ 

λ → 0 s → ∞ |ϕ | → ∞

Warming up…
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Cylindrical coordinates: 

 ⃗∇ ϕ = ̂s
∂ϕ
∂s

+ φ̂
1
s

∂ϕ
∂φ

+ ̂z
∂ϕ
∂z

⃗∇ ⋅ ⃗E =
1
s

∂ s Es

∂s
+

1
s

∂ Eφ

∂φ
+

∂Ez

∂z

sφ

z



• Basic example #3: planar symmetry/Cartesian coordinates:  

• Using planar symmetry we can again try to write the integral form of this equation: 

 

• However, once again the volume (and the charge) can diverge, since the area in the plane x-y diverges. Nevertheless, the field should not 
blow up at some position.  

• In addition, we should specify what is exactly this closed. Let’s assume that we integrate from  to some position  . We then have, for 
some area  in the plane x-y: 

     

   ,   where we defined the field at  in terms of the field at  :    

• If the charge is bounded to some region not too far from the plane , then we can determine the value of the field at infinity. Since there is 
no difference between “up" and “down”, we can take   and write: 

     

• But we can rewrite the first integral as: 

     

⃗∇ ⋅ ⃗E = − ∇2ϕ =
ρ(z)
ϵ0

∮s
d ⃗S ⋅ ⃗E =

Q(z)
ϵ0

z = − ∞ z
A

A [Ez(z) − Ez(z → − ∞)] =
A
ϵ0 ∫

z

−∞
dz′ ρ(z′ ) =

A
ϵ0

σ (z)

⟹ Ez + Ez,∞ =
σ (z)
ϵ0

z → − ∞ z → + ∞ Ez(z → − ∞) ≡ − Ez,∞

z = 0
z → + ∞

2 Ez,∞ =
σ∞

ϵ0
⟹ Ez =

σ (z)
ϵ0

−
σ∞

2ϵ0
=

1
ϵ0 [∫

z

−∞
dz′ ρ(z′ ) −

1
2 ∫

∞

−∞
dz′ ρ(z′ )]

Ez =
1
ϵ0 [ 1

2 ∫
z

−∞
dz′ ρ(z′ ) +

1
2 ∫

z

−∞
dz′ ρ(z′ ) −

1
2 ∫

∞

−∞
dz′ ρ(z′ )] ⟹ Ez =

1
2 ϵ0 [∫

z

−∞
dz′ ρ(z′ ) − ∫

∞

z
dz′ ρ(z′ )]

Warming up…
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Cartesian coordinates: 

 ⃗∇ ϕ = ̂x
∂ϕ
∂x

+ ̂y
∂ϕ
∂y

+ ̂z
∂ϕ
∂z

⃗∇ ⋅ ⃗E =
∂ Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z



• The simplest application would be for a pair of planes of equal and opposite charge — a 
capacitor . In that case we have, between the plates: 

    , 

while outside the capacitor we have: 

   . 

• Therefore we get the field inside the capacitor: 

     

• The electric potential is, therefore: 

    ,    and the potential difference is        

Ez =
σ

2ϵ0
− (−

σ
2ϵ0 ) = +

σ
ϵ0

Ez =
σ

2ϵ0
+ (−

σ
2ϵ0 ) = 0

Ez =
σ
ϵ0

ϕ = −
σ
ϵ0

z + C Δϕ =
σ
ϵ0

d =
q

A ϵ0
d

Warming up…
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+σ

−σ

d

Capacitance: 

C =
q

Δϕ
=

Aϵ0

d

A



• The force of an electric field  on a charge  is given by:  

                     

• Therefore, the potential energy of a small charge that is placed in this capacitor is: 

     

• As we add more and more charges to the capacitor (bringing them in pairs from  to each plate), the energy 
increases such that: 

 

• But  , so  , and we can write: 

 

• This, of course, is simply the statement that the energy density in the electric field is given by: 

⃗E q

⃗F = q ⃗E ⇒ ⃗F = − ⃗∇ U = q ( − ⃗∇ φ) U = q φ

dU = dq Δϕ = dq
q
C

±∞

U(q) = ∫
q

0
dq

q
C

=
1
2

q2

C

E = q/(Aϵ0) q = E × Aϵ0

U(q) =
1
2

E2 A2ϵ2
0

Aϵ0

d

=
1
2

ϵ0 (A d ) E2 =
1
2

ϵ0 V E2

ρE =
1
2

ϵ0 E2

Potential and potential energy
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−σ

d

Capacitance: 

C =
q

Δϕ
=

Aϵ0

d

A



• In these examples we have only considered charge distributions which are somehow bounded in one or 
more dimensions, but the space is zero everywhere else, such that the field drops to zero at infinity. 

• Now let’s suppose that we introduce some non-trivial boundary conditions, which constrain the field 
over some surface (or surfaces). 

• There are (generically) two types of boundary conditions for a scalar field ( ) on a given surface: 

Dirichlet b.c. :      (or constant) 

Neumann b.c. :    

• Now, how can we accommodate all of this into our formal solution in terms of the Green function? 

         

• Therefore, we obtain: 

 

• But what about the boundary conditions?…

ϕ

ϕS = 0

( ⃗∇⊥ϕ)S
= 0

∇2
xϕ( ⃗x ) = −

ρ( ⃗x )
ϵ0

⇒ ∇2G( ⃗x , ⃗x ′ ) = δ( ⃗x − ⃗x ′ ) ⇒ G( ⃗x , ⃗x ′ ) = −
1

4π
1

| ⃗x − ⃗x ′ |

ϕ( ⃗x ) =
1

4π ϵ0 ∫ d3x′ 
ρ( ⃗x ′ )

| ⃗x − ⃗x ′ |

Boundary conditions
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Perfect 
conductor⃗E ⊥ = 0

Green’s functions  
are not  
unique!



• At issue here is the fact that the Green function is not unique — it is degenerate with respect to terms which solve the 
homogeneous equation: 

        , where 

    over the domain of interest. 

• Therefore, we have that in fact the general solution for the Green function is: 

 

• Now, what are these homogeneous solutions? From the equation  we get immediately that some of those solutions are: 

    , 

where  is a constant scalar and  is a constant vector . 

• In terms of the electric field, these correspond to: 

        (notice that  !)

∇2G( ⃗x , ⃗x ′ ) = δ( ⃗x − ⃗x ′ ) ⇒ G → G + ϕh

∇2ϕh( ⃗x ) = 0

G( ⃗x , ⃗x ′ ) = −
1

4π
1

| ⃗x − ⃗x ′ |
+ ϕh( ⃗x )

∇2ϕh = 0

ϕh( ⃗x ) = ϕ0 − ⃗ℰ0 ⋅ ⃗x

ϕ0
⃗ℰ0

⃗E h = − ∇ϕh = − ⃗ℰ0
⃗∇ ⋅ ⃗E h = 0

Boundary conditions and Green’s function

ELECTRODYNAMICS I / IFUSP / LECTURE 1 20



• These solutions are hardly unique. You can in fact construct 
a whole functional space of harmonic functions. 

• Here is just one example, a simple solution with planar 

symmetry, valid in : 

 

• There are, of course, infinitely many such solutions — if you 
have time, it is a fascinating topic! 

• Any combination of harmonic functions may work in terms 
of the Green function — but it is up to us to determine 
which works for each problem, in terms of satisfying the 
boundary conditions.

ℝ3

ϕh → eaxeiay − eaxe−iay → eax sin ay

Boundary conditions and Green’s function
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• Now, clearly when we solved for any of the previous 
problems, we didn’t use any of these harmonic functions. 
Why is that? 

• Because we have always assumed a kind of boundary 
condition: if we move infinitely far away from the source, 
the field must vanish! 

• This is a physical condition: we know that the interactions 
fall with the distance — at least for electromagnetism.  

• We must become increasingly insentivive to the sources of 
forces and fields, as we move away from them*. This was in 
fact a hidden assumption that we made earlier!

Boundary conditions and Green’s function
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⃗E → 0

* There is a caveat: radiation! We will get back to this later…22



• The harmonic functions are one way in which we can impose boundary conditions over some 
surface. 

• Another way uses "copies" of the Green function itself. 

• A good way of visualizing the basic Green function is to regard it as the potential of a point 
charge: 

 

• Now, suppose that our problem is such that a whole region is shielded from us by the boundary. 
Anything that goes inside of that boundary is irrelevant if we want to compute the fields on the 
outside region — this is guaranteed by the Helmholtz Theorem. 

• This means, in particular, that we can in principle put as many “point charges” inside that shielded 

region as we want — after all, in that region,  

• The only issue is that we must pick those charges, as well as their positions, carefully such that we 
end up with the boundary conditions that we want to impose.

∇2ϕq = ∇2[ q
ϵ0

×
1

4π
1

| ⃗x − ⃗x q | ] = −
q
ϵ0

δ( ⃗x − ⃗x q) = −
ρq( ⃗x )

ϵ0

∇2ϕq( ∈ V ) = − (q/ϵ0) δ( ⃗x − ⃗x q) = 0

Boundary conditions and Green’s function
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• A simple application of this idea is the so-called “method of images”. 

• In its simplest incarnation, the method is applied to the case of a point charge  at a position 

, but in the presence of an infinite plane (at ) that is also grounded — 

hence,  . 

• In the absence of the plane, the potential of the charge would be simply: 

 

• But the plane changes everything, of course, because the potential above does not satisfy 
 . 

• Now, notice that the charge and the observer are in fact assumed to be in the  region, so 
anything that happens at  is quite irrelevant: all the physics is determined by what 
happens in the volume  together with the conditions at the boundary . 

• This means that we could add a “homogeneous term” like the one we found in the previous 
page:  , where the charge  is located in the region  !

q
⃗x q = {0,0,Z0} z = 0

ϕ(z = 0) = 0

ϕq =
q
ϵ0

×
1

4π
1

| ⃗x − ⃗x q |

ϕ(z = 0) = 0

z > 0
z < 0

z > 0 z = 0

ϕq′ q′ z < 0

Boundary conditions and Green’s function
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q

q′ 

 
here !

∇2ϕq′ = 0

 
here , but  

who cares?

∇2ϕq′ ≠ 0
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• If we think a bit about this, the “phantom" point charge in the  region will 
cancel the potential of the “real" charge if it has an equal but opposite charge 

( ), and if it is placed exactly opposite the real charge:  

• Then, the potential of the two charges (the real and the “phantom”, or “image" 
charge), is: 

 

 

• Notice that for  the two terms above cancel out, giving us  . 

[A question for you: suppose that we have only a very thin conducting plate at , 
and that somebody is behind that plate. What would that observer measure?….]

z < 0

q′ = − q ⃗x q′ = {0,0, − Z0}

ϕ =
q

4πϵ0

1
| ⃗x − ⃗x q |

−
q

4πϵ0

1
| ⃗x − ⃗x q′ |

ϕ =
q

4πϵ0 ( 1
| ⃗x − Z0 ̂z |

−
1

| ⃗x + Z0 ̂z | )
z = 0 ϕ(z = 0) = 0

z = 0

Boundary conditions and Green’s function
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• Solutions to the Laplace equations with boundary conditions: Green’s functions 
for Dirichlet and Neumann conditions 

• Variational techniques 

• Relaxation method 

• Jackson, Ch. 1

Next class:
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