

PMI-3325

LAVRA DE MINAS: MINERAÇÃO A CEU ABERTO AULA 6C - 2018

Lavra de Rochas Ornamentais

Prof. Giorgio de Tomi e Prof. Dennis Travagini

SUMARIO

- Métodos de lavra para rochas ornamentais
- Características do planejamento e gerenciamento de lavra de rochas ornamentais
- Equipamentos e prática da indústria

(Material fornecido pela Profa. M. Cardu, Politécnico di Torino, 2016).

Quarrying of dimension stones

Management and planning of quarrying activities for dimension stones

GENERAL CHARACTERISTICS OF DIMENSION STONES

The morphological and structural variability of deposits, and the natural variety of physical characteristics of the stones exploited, give reason to the <u>very large range of quarry layouts</u> which can be found <u>even in the same geographical area</u>.

GENERAL CHARACTERISTICS OF DIMENSION STONES

As a consequence, the range of technical solutions developed and adopted for the extraction of the rock is extremely wide too, often reflecting the traditions and the experiences of a specific contest.

CARRARA Marble Basin (Gioia, Colonnata)

Same technique, with different methods employed

Quarry types

A – Surface hillside

A1 – Horizontal slicing: in massive isotropic bodies or bodies with horizontal weak planes.

A2 – Inclined slicing: in bodies with inclined weak planes (gravity is exploited to ease blocks removal).

B – Surface, pit

in flat land: descending horizontal slicing, below ground level.

C – <u>Underground, room and pillars</u>

C1 – Front attack: blocks are taken from the front wall of the room.

C2 – Descending slices: the stope is opened at the top and the body in then exploited by descending slices (often it's an evolution of C1)

Dimension stone quarrying

Production of commercial blocks

Quarry of "Luserna Stone" - Piemonte

EXTRACTION STRATEGIES

A – large volumes of rock are cut and then divided into blocks

B – blocks are directly cut from the rock body

QUARRYING METHODS AND CUTTING TECHNOLOGIES

I – Cutting: blocks are separated by means of kerfs.

I1 – diamond wire

12 - chain saw (or belt, or disc) cutter

13 – flame jet

I4 – water jet

II – Splitting: blocks are separated by fractures, induced in pre-determined planes.

II1 – explosive (cord, gunpowder)

II2 – hammer and feather, wedging, other separating devices

113 - line drilling

 III – Cautious blasting: blasting with minimal breakage, suitable pieces are selected from the muck.

Main cutting technologies:

Dynamic splitting

Diamond wire sawing (hard and weak stones)

Chain sawing

Main cutting technologies:

Dynamic splitting

Diamond wire sawing (hard and weak stones)

Chain sawing

Main cutting technologies:

Dynamic splitting

Diamond wire sawing (hard and weak stones)

Chain sawing

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

PMI 3325 - Lavra a Céu Aberto

Dynamic Splitting

Goal

- to produce commercial blocks:
- regular shape
- volume between 2 and 15 m³,
- to be subsequently reduced into slabs
- · architectural items.

Production cycle

- Primary cut
- Bench Tipping
- Clipping and squaring blocks
- Handling

Diamond wire saw

General principle of operation: to cut the rock, according to a predetermined plane, by means of a flexible made abrasive.

"Standard" application: creation of a loop in which the wire runs at high speed, always sprinkled with water for cooling (15 - 50 I / min), to progressively affect the stone, creating an ever more deep groove.

Main features of the diamond wire sawing method:

Tool material	Diamonds
Tools geometry	Random
Depth of the elementary cut	10 ÷ 30 μm, variable
Width of the cut	≅ 1 cm
Flushing	Water (≅ 50 l/min)
Tools speed	20 ÷ 40 m/s
Flexible support type	Steel cable
Length	> 100 m
Guidance	Pulleys
Beads type	Impregnated
Beads	35 ÷ 40 number/m
Wire cost	150 ÷ 170 US\$/m
Productivity	$1 \div 7 \text{ m}^2/\text{h}$
Service life	9 ÷ 12 m ² /m

Diamond wire saw

Diamond wire saw

The wire: Galvanized steel cable

(Continuous coating of the wire with thermoplastic resin)

Operating configurations

Horizontal cut

Vertical cut with descending loop

Vertical cut with ascending

CHAIN CUTTER

CHAIN CUTTER

Control of "feed" and "cutting motion"

The arm is mounted on a tubular gun carriage, separate from the engine.

The arm usually has a length of 3.5 m and the frame that supports has a width of 5-6 m and a height of 3.2 to 4.5 m.

Cutting arm is able to make horizontal and vertical cuts on different planes.

Underground exploitation: weak rocks

- self moving chain cutter on tracks
- cutting arm is able to make horizontal and vertical cuts on different planes and "back cuts".

"self-moving" chain cutter - underground of the Lasa quarry (BZ)

Underground of the Lasa quarry (BZ)

The first phase of the excavation is realized only with the chain cutter; one can then proceed with mixed technology (chain cutting + diamond-wire saw).

CHAIN CUTTING + DIAMOND WIRE

Weak rocks (low-step 3 m)

diamond wire + chain cutter

chain cutter only

CHAIN CUTTING + DIAMOND WIRE

Weak rocks (low-step 3 m)

BIBLIOGRAFIA

• CARDU, M. (2016); Notas de Aula. Contato:

https://didattica.polito.it/portal/pls/portal/sviluppo.scheda_pers_swas .show?m=001990

• Vidal, F.H.W., Azevedo, H.C.A. e Castro, N.F. (2013). "Tecnologia de rochas ornamentais: pesquisa, lavra e beneficiamento." CETEM, 2013.