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Py % Tyz Taz cos(n,x)
Pny - sz cry tzy cos(n,y) {... (1.1)
P, Tz Tyz % cos{n,z)

vwhere cos{n,z) is the cosine of the
angle between the n and =z
directions, and similarly for
cos(n,y) and cos(n,z).

FI1G.1.2

1.1,3 TRANSFORMATION OF AXES

If a new set of orthogonal axes =z=', y’, z'
are chosen, the stress components in this coordinate
system are related to the stress components in the
original =z, y, 2z system as follows:

Sy =A84ar vee (1.2)

vhere S; is the stress matrix with respect
to the z'y’z! axes,

S is the stress matrix with respect
to the &£ ¥y 3 axes,

A 1is the direction cosine matrix,

i.e.,

4 = | cos(x',z) cos(z?,y) cos(xz',z)
cos(y',x) cos(y’,y) cos(y',z)
eos(a',x) cos(z’,y) cos(z’,z)

AT is the transpose of 4.

1.1.4 PRINCIPAL STRESSES

It is possible to show that there is one set of
axes with respect to which all shear stresses are
zero and the normal stresses have their extreme
values. The three mutually perpendicular planes
vwhere this condition exists are called the prineipal
planes, and the normal stresses acting on these
planes are the principal stresses.

The principal stresses, ¢y, 62 and 03 (the
maximum, intermediate and minimum stresses respect-

ively) may be found as the roots of the equation

3 2 - =
o; -J;cri +ch£ J3 =0 oo (1.3)

where Jy = 0_1#0 #0, = o(bulk stress)
=y ... (1.43)
- e 2_o 2_o 2
J2 = czcymyczmzoz I
ees (1.4b)
J3 =000 -01T %-01T 2-0.12

Yz TY2 Yyzx 22Y

+ thytyzrzz oo (1.4c)

J1 (or 8), J2, J3 are often known as the first,
second and third stress invariants, as they remain
constant, independent of the coordinate system.

In terms of the principal stresses,

J1 = 0 =0y + 02 +03 oo (1.52)
Ja = 03102 + 0203 + 030y oo (1.5b)
J3 = 010203 ree (1.‘56)

The directions of the normals to the principal
planes are given by

A.
cas(ni,x) = 2 ces {1.6a)
/fr 2.p 247 2
Ai +Bi +C'1:
B
cos(ni,y) = ... (1.6b)
’ /o 24.p 205 2
Ai +B1: +C£
C
cos(ni,z) = e .es (1.6€)
fy 2.p 2.p 2
Ai +B1', +C1:
where A'i = (cyfci) (dz'ci)-szTyz
B; = Taytzz ~ Ty (az'qi)
Ci = sz‘ryz 'Tzz(oy'ai)

and © ; are the principal stresses
(i = 1,2,3). -

1.1.5 MAXIMUM SHEAR STRESS

The maximum shear stress occurs on a plane whose

normal makes an angle of 45° with the o0; and 03
directions.

The maximum shear stress, Tmgxr &t a point is

given by
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ANALYSIS OF STRAIN ' 5

apz
€ = -3 «o. (1.15b)
where py, Pz are the displacements in the =z and

z directions.. A positive normal strain corresponds
to a decrease in length. '

The shear strain Yz, is the angular change in
a right angle in a material and is related to the dis-

placements px and pz as
:I) op .
= ol 2
Y::y = 52 Fr (1.16)

A positive shear strain represents an increase in the
right angle and 2 negative shear strain represents a
decrease in the right angle.

_  Considering the zy and yz planes similarly,
the six strain components are related to the displace-
ments P, Py, Pz in the z, ¥y and =z directions as

3p 3p ap
= o == = e
€ = 3% Yzy 3 rr-gRR (1.17a)
P, 3p o
= - i = o e o =2
ey 3y sz 1% 3y (1.17b)
3 ap p
2 z <
E = = == Y = e ea =, (1.17¢)
2 oz 2% o 3z
As for shear stresses Y'j =Y.
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FIG.1.7
1.2.2 STRAIN IN A PLANE

Considering again a two-dimensional strain situ-
ation, the normal strain €g in a plane inclined at
@ to the z axis is

€ _+€ e ~€ Y,
€g = ;22 00820 + =2 gin2e
2 2 2
.o. (1.18)
and the shear strain is
Yo = Yuz cos28 - (ez-ez) §in2o ees (1.19)

(Note that the above expressions éorrespond to those
for the normal and shear stresses (Section 1.1},
except for a factor of % in the last term).

1.2.3 TRANSFORMATION OF AXES

If a new set of orthogonal axes =z', y', z' are
chosen, the strain components in this coordinate
system are related to the strain components in the
original =z, y, 2z system as

D, = ADAT vee (1.20)

where D is the strain matrix in the
z, Yy, 2 system,

i.e., €, %Y::y %"sz
D = |yx & ¥yl ... q.2n)
Fow %Yzy €2

Dy is the strain matrix in the
z!, y', 2! system.

A4 is the direction cosine matrix
defined in Section 1.1.3.

AT is the transpose of A.

In matrix operations, it is convenient to use the
double suffix notation and to define X¥y;; as e€;4.
The strain matrix is then )

oz exy €xz

D = £ € € oo (1.22)

yx ¥y Y2

€ € €
z2 yz 22

1.2.4 PRINCIPAL STRAINS

Analogous to the principal planes of stress, there
are three principal planes of strain. The shear
strains in these planes are zero and the normal strains
are the principal strains. The major and minoxr prin-
cipal strains are respectively, the greatest and least
normal strains at the point. For an isotropic
elastic material, the principal planes of strain can
be shown to coincide with the principal planes of
stress. :
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The principal strains are determined, in a simil-
ar manner to principal stresses, as the roots of the
equation

3 2 7. =
81: -I1€7: +Iz€7: Iy =20 oo (1.23)

where I3 =ex+ey+ez .eo (1.24a)
YZ
In=€€ +€¢ +¢cec -
zy yz zzx 4
2 2
CYuz _ Yem
4

cee 51.24b)
€ I
1'3_-:553_ _'.EILZ_.__HIEE_.
4

T Y=z 4
2 .
- ezyg + Y.‘L"Il Y:cz sz
4 4

ver (1.24¢)

Iy, Iz, I3 are the strain invariants, analogous to
the stress invariants.

In two-dimensional systems, the principal strains
€31, €3 are as follows:

.e. (1.25)

€3 € +€
= Z 2. - 2 2
} b /e ¢ ) Y

€3

and the principal planes are inclined at an angle 0,
to the = and z axes, where

Y
8 = ktan ! —Z2- eee (1.26)
£ _~£
x 2
1.2.5 MAXIMUM SHEAR STRAIN
Ymgz = €1 - €3 .ee (1.27)

where €; = maximum principal normal
strain,

€3 = minimm principal normal
strain. :

Ymgz Occurs on a plane whose normal makes an angle of
45° with the €; and €3 directions.

1.2.6 MOHR'S CIRCLE OF STRAIﬁ

A geometrical solution for strains in any direct-
ion is provided by Mohr's circle of strain (Fig.l1.8).
The only difference between the. circle of strain and
the circle of stress is that, in the circle of strain,
the ordinate represents only one-half the shear strain
(i.e. the ordinate axis is v/2). As in Fig.l.4, the
axes 1-3 represent the principal axes, z-z the
horizontal and vertical space axes and x'-z’ the
axes in direction at an angle €' to the -z axes.

The diameter of the circle is equal to the maximum
shear strain /—-—2——2-
Yaz = V(€€ * Yy

The pole construction as described for the Mohr
circle of stress may be adapted for the Mohr circle
of strain.
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FIG.1.8 Mohr circle of strain.

1.3 Equilibrium Equations
1.3.1 CARTESIAN COORDINATES
By considering the equilibrium of the element

_shown in Fig.l.1 in the Cartesian coordinate system,

the following equilibrium equations are obtained:

a0 oT, oT
XL MR, Z2_y_o0

oo (1.28
oz © oy | oz ceee (e282)

ves (1.28D)

et
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E, (1 '“hvvvh)

vhere a =
( 1+vh) { l-vh-thvvvh)

... (1.53a)
Eh( VY, Y vh)

( 1+vh) { l'vh'z"hv"vh)
oo (1.53b)
Eh Voh
1=9y=29) Vo
.ee {1.53¢)
E v( I-Vh)
19 =29 Vo
ve. (1.53d)

modulus of elasticity in the
horizontal direction

g
o
§

E, = modulus of elasticity in the
vertical direction

Poisson's ratio for effect
of horizontal stress on com-
plementary horizontal strain

~F
I

= Poisson's ratio for effect
of horizontal stress on
vertical strain

V., = Poisson's ratio for effect
of vertical stress on
horizontal strain.

It can be shown that

E v :
E’l =2 . (1.54)
v vh

The elastic constant f 1is a shear modulus and
cannot be expressed in terms of the Young's moduli or
Poisson's ratios. f is often denoted as G,.

Strains in terms of stresses:

c V.0, V40 o
z_hy _vhz ... (1.552)

& T BB
@ h h Ev
v,0. 0. V.0
e =--hz ¥y __vha vee (1.55D)
y B B E
vV, .0 Vv, O [+ :
ez T - h;z—-hvg—l'l'f' eee (1.55¢)
h "h v
T T
= X . Z=
€2 = F G, ve. (1.55d)
T, T,
€ - M2 - -’éi ve. (1.55€)

ees (1.55%)

In some works (e.g. Urena et al, 1966) vp, is
denoted merely as v, and the use of Vv,; is avoid-
ed by using equation (1.54).

The fact that the strain energy must be positive
imposes restrictions on the values of the elastic
parameters. For a cross-anisotropic material with.a
vertical axis of elastic symmetry, Hearmon (1961)
gives these restrictions as

a>0 .es (1.563)
d>0 ' ... (1.56b)
f>o0 4 ee. {1.56¢)
a®> b2 .o (1.564d)

(atb)d > 20% ees (1.56€)

ad > ¢® - ves (1.566)

In terms of the Poisson's ratios, these restrictions
impose the limits

1-v-2v, v, >0 ve. (1.573)

1-v,>0 ... (1.57b)

1+ vy, > 0 ees (1.57¢)

1.6 Differential Equations of
Isotropic Elasticity
1.6.1 EQUATIONS IN TERMS OF STRESSES

Cartesian Coordinates

2
V2o +_1__3_ze.=_‘)_(ix.+£+&)+2£
I+v 3x°. I1-v 3 Jy 2z o

... (1.582)

2
V3o -+_L§_G.=L(§£+£+§§)+2.al
¥ 13vay? 1-v 8z W 93 3y

ees (1.58b)

2 N
V2o .,;._1-_.89:—\-’_. .?.Z..;..a_z_.;..a.é),l.g_a_z.
2 149 3z2 1-v 0z O Oz 3z
" s ves (1.58¢)
2, ‘ -
vir 4-1.3°@ ¥, 32 .. (1.58d)

y2 I+v Y3z 33 3y

2
v 5l 3% ¥, &

B oy R & oz

.o (1.58e)





















