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FRgure 1. High-thro ugh put omics research. Genomics advanced by the development of high-speed DNA sequencing is now accompanied by transcriptome profiling using
DNA microarrays. Proteome profiling is joining the high-throughput race as 20D-gel electroph oresis co mbined with mass spectrograplyy is advancing. Metabolome profiling
is also rapidly advancing with the development of better GCMS, LCMS and NMR technologies. Isotopomer profiling followed by challenging with isotopically labeled
substrate allows determination of flux profiles in the cell (Muxome).



Metabolic engineering is the improvement of cellular activities by
manipulation of enzymatic, transport, and regulatory functions of
the cell with the use of recombinant DNA technology. The
opportunity to introduce heterologous genes and regulatory
elements distinguishes metabolic engineering from traditional
genetic approaches to improve strains.

... An interactive cycle of a genetic change, an analysis of the
consequences, and the design of a further change...

Toward a Science of Metabolic Engineering.

James E. Bailey Science, 252: 1668-1675.
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The knockout or
overexpression of genes,
usually used in Genetic
Engineering, frequently
does not result in product
yield improvements due a
resistance in the
metabolism. Therefore, a
better knowledge of the
metabolism is needed to
promote metabolism
engineering as a whole to
improve biotechnological
processes.

Vallino & Stephanopoulos,
1992
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Metabolic engineering is an enabling science, and distinguishes itself from
applied genetic engineering by the use of advanced analytical tools for
identification of appropriate targets for genetic modifications and possibly
even the use of mathematical models to perform in silico design of optimized
cell factories. Nielsen & Jewett, 2008 FEMS Yeast Res.



Table 3. Frequency of precursor metabolites and cofactors in a
Saccharomyces cerevisiae genome scale model”

TABLE 1. Overview of reactions, metabolites, and ORFs in
reconstructed metabolic networks®

No of No of
No. of No. of N of Total no % of ORFs Precursor metabolite reactions Cofactor reactions

Organism = ke metabolic * involved in Shsredy i gl A

reactions metabolites ORFs of ORFs metabolism Fructose-6P 18 ADP 146

Ribose-5P 20 NADH 65

H. pylori 444 340 268 1,638 16 o ittt b il =

H. influenzae 477 343 362 1,880 19 3-Phosphoglycerate 6 NADP* 8
E. coli 720 436 695 4,485 15 Phosphoenolpyruvate 12
S. cerevisiae 1,175 584 708 5,773 12 Pynwate z
Acetyl-CoA 32
2 The reconstructed networks are described in references 6, 8, 17, and 18. 2-Oxoglutarate B
b The value is based on a recent gene count (3). ;";g;f:;’: ?2

*The data are taken from the metabolic model developed by Forster
etal. (2003).
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FIG. 1. Frequency plot of the number of reactions that each metabolite appears in for four different reconstructed metabolic networks. For
each metabolic network the 10 metabolites that appear in the most reactions are listed. PP, pyrophosphate; COA, coenzyme A. The numbers in
the box specify the numbers of reactions the 10 most frequently used metabolites participate in for the four different microorganisms.
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Tools for analysis of cellular metabolism can be grouped into three
categories, all of them developed from the same mathematical model:
(1) Metabolic flux analysis,
(2) Flux balance analysis and
(3) Metabolic pathway analysis (Elementary mode analysis).



( Metabolic Flux Analysis Measured fluxes Equations to solve Solution B\
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Metabolic pathway analysis
(Elementary (flux) analysis)

S.r =0 (Eq 2) ri> 0 (Eq 3)
Elementary mode analysis calculates all solutions in the admissible
flux space by solving Eq 2 in conjunction with the thermodynamic
constraint (3) and additional non-decomposability and systematic
independence constraints. Each solution (re)presents an elementary
(flux) mode.



Flux Balance Analysis
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Interpretacao Geomeétrica

EM1*

: : EMS*
Metabolic Flux Analysis : Flux Balance Analysis Metabolic PathwayAnaIysis/

Admissible flux cone

v O cone de fluxos admissiveis representa todas as possiveis vias que podem
existir.

v Alguns modos elementares ficam na face ou na base do cone.

v" AFM identifica somente uma via que se localiza em qualquer local do cone.
ABF representa somente uma via em qualquer local do cone e satisfaz a
funcao objetivo definida.

v" AVM identifica todas as vias geneticamente independentes, com vias extremas
em azul e modos elementares em vermelho.



Labeled carbon

substrate
C1-C2-C3-C4-C5-C6

__0,0,0.0,0

bio-products + biomass

FIGURE 2. Protocol for '*C-based flux analysis. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com. ]

Mass Spectrometry Reviews, 2009, 28, 362-375
TANG ET AL.
© 2008 by Wiley Periodicals, Inc.



Metabolic Engineering
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FIG. 2. Illustration of how measurement of the *C enrichment
patterns can be used to identity active pathways. EMP, Embden-Mey-
erhof-Parnas; ED, Entner-Doudoroff; PP,

pentose phosphate.
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Redes metabolicas em escala gendomica.
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Metabolic Engineering
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Metabolic Engineering
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Fluxos metabodlicos
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Fig. 3. The future of engineered biocatalysts. Pathways, enzymes, and genetic  those elements are synthesized at a FAB and incorporated into a ghost
controls are designed from characteristics of parts (enzymes, promoters, etc.)  envelope to obtain the new catalyst. The design of the engineered catalyst is
by means of pathway and enzyme CAD software. The chromosomes encoding  influenced by the desired product and the production process.
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