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a b s t r a c t

Genome-based Flux Balance Analysis (FBA) and steady-state isotopic-labeling-based Metabolic Flux

Analysis (MFA) are complimentary approaches to predicting and measuring the operation and regulation

of metabolic networks. Here, genome-derived models of Escherichia coli (E. coli) metabolism were used for

FBA and 13C-MFA analyses of aerobic and anaerobic growths of wild-type E. coli (K-12 MG1655) cells.

Validated MFA flux maps reveal that the fraction of maintenance ATP consumption in total ATP

production is about 14% higher under anaerobic (51.1%) than aerobic conditions (37.2%). FBA revealed

that an increased ATP utilization is consumed by ATP synthase to secrete protons from fermentation. The

TCA cycle is shown to be incomplete in aerobically growing cells and submaximal growth is due to limited

oxidative phosphorylation. An FBA was successful in predicting product secretion rates in aerobic culture

if both glucose and oxygen uptake measurement were constrained, but the most-frequently predicted

values of internal fluxes yielded from sampling the feasible space differ substantially from MFA-derived

fluxes.

& 2010 Elsevier Inc. All rights reserved.
1. Introduction

The metabolic fluxome is one of the most direct descriptions of
metabolic network operation (Lee et al., 1999; Ratcliffe and Shachar-
Hill, 2006; Sauer, 2006; Tang et al., 2009; Wiechert, 2001; Wiechert
et al., 2007; Wittmann, 2002). Quantifying the fluxome and the
structure and potential of the metabolic network through which it
flows are therefore important goals in systems biology in the rational
engineering of industrial microbes (Boghigian et al., 2010; Fong et al.,
2005; Kim et al., 2008; Koffas and Stephanopoulos, 2005; Liao and
Oh, 1999; Meadows et al., 2010; Stephanopoulos, 1999). Several
experimental and theoretical toolsets have been used to measure the
fluxome and to analyze metabolic networks, their capabilities,
performance and regulation and to predict and understand the
effects of genetic changes (Antoniewicz et al., 2007a; Becker et al.,
2007; Bordel and Nielsen, 2010; Feist et al., 2009; Price et al., 2004;
Sauer, 2006; Sauer et al., 1999; Schmidt et al., 1997; Suthers et al.,
2010; Wiechert, 2002; Wiechert and de Graaf, 1997; Wiechert et al.,
2001; Wittmann, 2002; Zamboni et al., 2005). Two of the most
successful approaches, constraint-based and metabolic flux analysis,
both focus on metabolic steady-state (where the fluxes are constant)
and employ modeling methods.
ll rights reserved.
Constraint-based models use a stoichiometric approach to
study the fluxome of metabolic networks, in which all possible
net flux distributions (feasible flux space) are constrained by
observed cellular input and output measurements (external fluxes)
and by mass balance and thermodynamic equations (Price et al.,
2004). Flux balance analysis (FBA) probes this solution space to
identify metabolic flux distributions that optimize certain objec-
tives (usually maximizing growth). This and other constraint-based
methods have been successfully used to predict growth and by-
product secretion of microbes (Fong et al., 2005; Park et al., 2007;
Segre et al., 2002; Varma and Palsson, 1994). One common
challenge in interpreting FBA results is the existence of multiple
optimal intracellular fluxes that meet the objective equally well.
Therefore, the intracellular fluxes within the metabolic network
(internal fluxes) have been studied mostly from the properties of
the optimal solution space (Khannapho et al., 2008; Mahadevan
and Schilling, 2003; Reed and Palsson, 2004), or by an arbitrary
choice of optimal flux distributions (Papp et al., 2004; Segre et al.,
2002).

Isotopic steady-state metabolic flux analysis (MFA) is an
experimentally based method of obtaining internal carbon and
energy fluxes, by tracking atom rearrangements that are measured
in labeling experiments(Antoniewicz et al., 2007a; Nanchen et al.,
2007; Sauer et al., 1999; Schmidt et al., 1997; Wiechert and de
Graaf, 1997; Wiechert et al., 1997; Wittmann, 2002; Zamboni et al.,
2009; Zamboni et al., 2005). Labeled substrates are supplied to

www.elsevier.com/locate/ymben
dx.doi.org/10.1016/j.ymben.2010.11.004
mailto:xwchen@msu.edu
dx.doi.org/10.1016/j.ymben.2010.11.004


X. Chen et al. / Metabolic Engineering 13 (2011) 38–48 39
cells, and the labeling of metabolic end-products, including bio-
mass components, is obtained by analytical chemical techniques.
Fluxes are estimated by optimized fitting of internal fluxes to the
measurements of labeling and external fluxes. The resulting flux
maps quantitatively describe flow through metabolism. Results
from an MFA also include estimates of the forward and reverse
rates through reversible reactions in the form of exchange flux
estimates. Exchange fluxes report on substrate cycling and are
therefore important to understand metabolic efficiency and reg-
ulation. However, since carbon labeling measurements are used,
MFA can only describe the metabolic activities related to carbon
flow and ignores non-carbon metabolism and transport.

MFA and FBA are thus inherently complementary in describing
fluxes through metabolism, and the combination of both is likely to
provide greater insights into evolution and behavior of metabolic
networks. Some comparisons between MFA and FBA findings have
been reported. Segre et al. (2002) and Shlomi et al. (2005)
developed novel minimization of metabolic adjustment (MOMA)
and regulatory on/off minimization (ROOM) methods to predict
metabolic response to genetic perturbations of E. coli and yeast. The
MOMA and ROOM solutions based on genome-scale FBA optimal
solutions were compared with an MFA determined flux maps in
earlier studies (Emmerling et al., 2002; Hua et al., 2003; Jiao et al.,
2003; Peng et al., 2004). Schuetz et al. evaluated different objective
functions for predicting intracellular fluxes of an E. coli model
containing 98 reactions. The biologically meaningful objective
functions were identified by comparing the optimal solutions with
13C based metabolic flux ratios. However to our knowledge, no
studies have reported genome-scale FBA modeling and 13C-MFA of
the same system under the same conditions and using the same
structural network model. Applied to a model system, this would
allow a direct detailed comparison of the fluxes derived by the two
approaches and an exploration of their synergistic capability to
enhance our understanding of microbial physiology.

E. coli is a model organism for studying metabolism and it has
been used to establish and test a wide range of biochemical and flux
analysis tools. The ability to grow in the presence or absence of
oxygen also makes these cells a model organism for studying
growth under conditions which are important for biotechnology
and bioenergy applications (Kim et al., 2009; Lin and Tanaka, 2006).
Here a 13C-MFA network model was generated for E. coli based on a
previous genome-scale constraint-based model (Reed et al., 2003).
This includes a complete description of all carbon rearrangements
in E. coli central metabolism. The 13C-labeling of proteinogenic
amino acids and intracellular metabolic intermediates after growth
in labeled medium as well as substrate uptake and product
secretion rates were determined using GC and LC mass spectro-
metry, NMR spectroscopy, enzymatic assays and gas analysis
methods. Labeling and external flux measurements were per-
formed with wild-type E. coli (K-12 MG1655) cultured in M9
minimal medium supplemented with glucose as sole carbon and
energy source under aerobic and fermentative conditions. The
resulting MFA maps were compared with results from FBA using a
genome-scale constraint-based metabolic model (iJR904) (Reed
et al., 2003) to test the accuracy of FBA external flux predictions,
assess an FBA based internal flux predictions, and evaluate meta-
bolic optimality and efficiency of an ATP usage by E. coli during
growth in the absence and presence of oxygen.
2. Materials and method

2.1. Bacterial strain, growth medium and culture conditions

E. coli K-12 MG1655 was purchased from American Type Culture
Collection (Manassas, VA, ATCC number: 47076). Cells were grown
in defined minimal medium (M9) with glucose (2 g/l throughout)
as the sole carbon source (Sambrook and Russel, 2001). Both
aerobic and anaerobic cultures were incubated at 37 1C and
250 rpm in a Labnet 311 DS Digital incubator. Cell growth was
measured using a spectrophotometer (Beckman DU 800, Fullerton,
CA). Cells were harvested at middle log-phase by centrifugation at
2000g and 4 1C.

In 13C-labeling experiments, the glucose used was 20% (mol/mol)
U–13C glucose and 80% (mol/mol) [1–13C] glucose (Sigma). 1H and 13C
NMR were used to directly validate the purity of glucose in the
medium of the same experiments, in which cells were harvested for
MFA. C1 labeling of glucose was 98.870.6% for aerobic media and
98.771.1% in anaerobic media. C6 labeling of glucose was 20.470.4%
for aerobic media and 19.970.5% in anaerobic media. Isotopic steady-
state was confirmed for OD600 values between 0.40 and 0.80 for
aerobic culture and between 0.25 and 0.46 for anaerobic culture by
analyzing the labeling of amino acids (data not shown).

2.1.1. Aerobic culture

For growth rate, labeling and substrate uptake/product secre-
tion, analyses of aerobic cultures, cells were precultured overnight
in 30 ml M9 medium containing unlabeled glucose in 250 ml Bellco
triple baffled shake flasks. Experimental cultures were started at
OD600E0.01 by transferring around 200 ml preculture to 30 ml
fresh medium containing labeled glucose. Cells were harvested at
the middle of log-phase (OD600E0.7).

An O2-enhanced experiment was performed in PYREX Erlen-
meyer flasks sealed with gas impermeable septum caps. Cells were
cultured in 30 ml medium in the flask with 35% O2 in the head-
space. Growth was monitored between OD600 values of 0.02 and
1.0. The headspace was 255 ml and the amount of O2 consumed
was measured by gas analysis of the headspace and was o10% of
the initial amount in the enhanced O2 experiments; the level of O2

remained substantially higher than the level present in air
throughout the whole culture period.

2.1.2. Anaerobic culture

For growth rate, labeling and substrate uptake/product secre-
tion, analyses of anaerobic cultures, 250 ml PYREX Erlenmeyer
flasks each containing 30 ml M9 medium were sealed with septum
caps and flushed with N2 for 30 min. Anaerobic conditions in the
headspace were confirmed by measuring O2 content using para-
magnetic response gas analysis. Around 700 ml cells were trans-
ferred to the flask by injection through the septum after anaerobic
conditions were established. Cells were precultured overnight
under anaerobic conditions in M9 media with unlabeled glucose.
Experimental cultures started at OD600E0.01 and were harvested
at the middle of the log-phase (OD600E0.4).

2.2. Determination of substrate uptake and product secretion

Cells were harvested by centrifuging at 2000g and 4 1C. Cultured
medium was sterilized by passing through a 0.22 mm filter. The
concentrations of the uptake substrate and secreted products
(glucose, acetate, ethanol, formate and succinate) were measured
in 30 ml culture using commercial enzyme assay kits according
to the manufacturer’s instructions (R-Biopharm, Inc., Marshal, MI)
and by NMR (succinate and lactate) from fully relaxed 1H NMR
spectra of lyophilized culture medium resuspended in D2O—using
methyl-phosphonic acid as an internal standard. O2 uptake and CO2

secretion rates were measured by paramagnetic response and infra-
red gas analysis using, respectively, a paramagnetic O2 detector
(Series 1100, Servomex Co., http://www.servomex.com/) and an
infrared CO2 detector (ADC 255-MK3, Analytical Development Co.)
(Goffman et al., 2005). To measure an O2 uptake and CO2 secretion

http://www.servomex.com/
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rates in the aerobic cultures, cells were inoculated aerobically into a
250 ml PYREX Erlenmeyer flask with 120 ml medium. The flask was
sealed with septum cap between OD600 of 0.55 and 0.83. Gas
samples at different time points were collected when the flasks
were sealed. For the anaerobic culture, cells were inoculated
anaerobically in 250 ml PYREX Erlenmeyer flask with 150 ml
medium and gas samples were collected between OD600 0.16
and 0.42.

Substrate uptake rates and production secretion rates were
calculated using the equation (Sauer et al., 1999)

v¼
Cðt2Þ�Cðt1Þ

ðODðt2Þ�ODðt1ÞÞ f
m,

where C(t) and OD(t) are the extracelluar metabolite concentra-
tions and OD600 at time t;m is the growth rate of the culture; and f is
the conversion coefficient between OD600 and biomass dry weight
per unit volume of media. We determined the conversion coeffi-
cient f to be 0.4270.03 g dry weight/liter medium/OD600 for
aerobic culture and 0.5970.02 g dry weight/liter medium/OD600.
2.3. GC–MS analysis of amino acids

Amino acid sample preparation was based on previously
reported methods (Nanchen et al., 2007; Schwender et al., 2003).
Cells were washed twice with 0.9% NaCl, resuspended in 6 N HCl at
110 1C for 24 h, and dried under a stream of N2 at 60 1C to remove
HCl. Samples were re-dissolved in 0.1 N HCl, passed through
0.2 mm filter twice to remove cellular debris and dried under an
N2 stream and 60 1C. Amino acids were derivatized using
N-Methyl-N-[tert-butyldimethyl-silyl]trifluoroacetimide (MTBSTFA,
Sigma Aldrich) as reported by Allen et al. (2007) and Schwender
et al. (2003). GC–MS analysis was performed on an Agilent 5973 inert
MSD benchtop quadrapole mass spectrometer as previously
described (Allen et al., 2007; Schwender et al., 2003). GC–MS signals
were corrected for natural abundance of O, N, H, Si and S in the
derivative parts of the molecules (Schwender et al., 2003).

We selected the fragments suitable for 13C-MFA reported by
Allen et al. (2007). We ran amino acid standards, corrected for
natural abundance and compared these with theoretical values
(Table S5). All selected fragment standards corrected to within 1%
of theoretical values.
2.4. NMR analysis of secreted products

1H and 13C NMR analyses were used to measure the labeling and
concentration of secreted metabolites. Of about 15 ml of cell
culture was centrifuged to obtain the supernatant for an NMR
analysis. The pH of the supernatant was increased to about 9 by
addition of 500 mM NH4OH. The samples were lyophilized and re-
dissolved in 0.7 ml D2O. 1H NMR and 13C NMR analyses were
performed on Varian Unity 500 and Inova 600 instruments,
respectively, with 5 mm probes. 1H NMR spectra were obtained
at 499.74 MHz with a pulse of 6 ms. An acquisition time of 4 s was
used, followed by a recycle delay of 1 s. 13C NMR spectra were
performed at 150.84 mHz with a pulse of 6 ms. An acquisition time
was set to 1.3 s, and a recycle delay was set to 80 s to allow full
relaxation of carboxylate groups. Compounds were identified using
Spectral Database for Biological Compounds (http://riodb01.ibase.
aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi) and Biological Mag-
netic Resonance Data Bank (http://www.bmrb.wisc.edu/). The
enrichment of 13C was determined as previously described
(Dieuaide-Noubhani et al., 1995; Ratcliffe and Shachar-Hill,
2006; Rontein et al., 2002).
2.5. LC–MS/MS analysis of intracellular metabolites

The liquid chromatography was performed with an ACQUITY
UPLCs pump system (Waters). Samples in the autosampler were
kept at 4 1C, whereas the liquid chromatography analysis was
carried out at room temperature. Phosphorylated metabolites were
separated by an ion chromatography on an IonPacs AS11
(250 mm�2 mm, Dionex) column equipped with a guard column
AG11 (50 mm�2 mm, Dionex) at a flow rate of 0.35 mL min�1, as
previously described by Alonso et al. (2010). The MS/MS analyses
were performed with a Quattro-PremierTM (Waters), triple quad-
rupole mass spectrometer. Mass spectra were acquired using
electrospray ionization in negative ion mode, using multiple
reaction monitoring. The capillary voltage, extractor voltage and
rf lens setting were set at 3.00 kV, 5 V and 0.0, respectively. The flow
rates of cone gas and desolvation gas were 50 and 800 L h-1,
respectively. The source temperature and desolvation temperature
were 100 and 350 1C, respectively. The [M–H]�1 were fragmented
by collision-induced dissociation with argon as the collision gas at a
manifold pressure of 2.67�10�3 mbar. Collision energies and
source cone potentials, optimized for each transition using Waters
QuanOptimize software, were found to be, respectively, 25 V and
15 eV for Glc6P and Fru6P, (Alonso et al., 2010), 3 V and 22 eV for
2PG or 3PG, and 10 V and 16 eV for PEP. The selected daughter ions
are [H2PO4]– (m/z¼97) for Glc6P, Fru6P and 2 or 3PG, and [PO3]�

(m/z¼79) for PEP. For a phosphorylated metabolite containing
n atoms of carbon, we follow n+1 transitions: [M0–H]�/97,
[M+1–H]�/97, y, [M+n–H]�/97. Data were acquired with the
MassLynx 4.0 software and processed for calibration and for
quantification of the analytes with QuanLynx software (Waters).
For the sampling, 15 mL of E. coli suspension culture (approxi-
mately OD600¼0.6 and 0.3 for aerobic and anaerobic cultures,
respectively) were quickly filtered through a nylon membrane
filter (Whatmans, 0.45 mm pore size and 47 mm diameter), and the
cells retained on the filter were rinsed with 15 mL of 2.6% NaCl
(Bolten et al., 2007). The filter was then transferred to a test tube
and frozen in liquid N2. Intracellular metabolites were extracted
using boiling water [as previously described by Alonso et al.
(2010)]. Dried extracts were resuspended in 100 mL of Milli-Q
water to be analyzed by LC–MS/MS.

2.6. Flux balance analysis

The expanded genome-scale constraint-based stoichiometric
model of E. coli K-12 (iJR904 GSM/GPR) developed by Reed et al.
(2003) was used for FBA. The model was developed for E. coli

K-12 MG1655 and included 931 unique biochemical reactions. FBA
simulations were performed using the Cobra Tool Box 1.3.3 (Becker
et al., 2007) in MATLAB. The uptake rates of glucose and/or O2 were/
was used in the FBA analysis to predict external secretion rates and
internal net fluxes. Maximizing cellular growth rate was used as the
objective function for all FBA simulations. Robustness analysis
(Edwards and Palsson, 2000) was used to predict product secretion,
substrate uptake and ATP synthase rates as functions of growth rate.
Flux variability analysis (FVA) (Mahadevan and Schilling, 2003) was
used to predict the range over which internal fluxes can vary, while
still maintaining the maximal growth rate. The distribution of
individual internal flux distributions in the range defined by an FVA
was estimated by uniform random sampling of metabolic solution
space, using the Cobra toolbox (Becker et al., 2007).

2.7. Construction and modeling of the MFA 13C isotopic network

A MFA isotopic network of wildtype E. coli K-12 MG1655 was
constructed by simplifying the genome-scale metabolic model and

http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi
http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi
http://www.bmrb.wisc.edu/
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mapping carbon atoms in reactants to products (Reed et al., 2003).
The goal of model simplification is to reduce the number of
metabolites that are accounted for (which reduces the number
of variables in the MFA model) while keeping intact the carbon flow
in the network. Strategies used in simplification include pooling of
metabolites that are rapidly and reversibly interconverted, collap-
sing multiple irreversible steps of linear pathways into single
reactions, and grouping metabolites with the same carbon skeleton
and non-differential carbon labeling (Ratcliffe and Shachar-Hill,
2006). The resulting 13C isotopic MFA network (Table S4 in
Supplemental materials) includes the full central metabolic net-
work and amino acid and nucleotide biosynthesis.

2.8. 13C-metabolic flux analysis

We incorporated measured external fluxes, labeling measure-
ment and a literature-derived biomass composition (Neidhardt and
Edwin Umbarger, 1996) into the MFA 13C-network to identify
internal fluxes in metabolism. All external fluxes in Table 1, except
O2 and CO2, were used in an MFA. The formate and ethanol
secretion rates measured are underestimates of real rates due to
evaporation, and were therefore used to set the lower bounds for
these external fluxes in both MFA and FBA simulations. Labeling
measurements of amino acids by GC–MS and of secreted acetate
and lactate (by an NMR) were also included in an MFA. Since �98%
of the biomass was made during the labeling period, GC–MS data
were corrected for an unlabeled biomass. The biomass composition
was converted to production rates of individual biomass compo-
nents, and was incorporated into the simulations.

2.9. Optimization and statistics

The 13C isotopic network model was implemented in the
13C-FLUX software to obtain detailed maps of carbon and energy
flow through metabolism (Wiechert et al., 2001). Given a set of
starting initial fluxes, the 13C-Flux software searches the feasible
solution space of an isotopic network for a solution that best fits the
labeling and flux measurements (minimizing the sum of squared
residuals weighted by the standard deviation of each measurement
(SSres)). Multiple sets of initial fluxes are necessary to avoid finding
only local minima in the search. Here, around 700 initial flux sets
were generated by sampling the feasible solution space. The initial
fluxes were supplied to 13C-flux software to start independent
simulations.

The simulations were performed in parallel on a SGI 1024-core
cluster of 128 nodes (2 quad-core Xeons at 2.3 GHz, 8 GB of memory
Table 1
Physiological parameters and external fluxes of aerobic and anaerobic cultures. m is

the growth rate and f is the measured conversion coefficient between OD600 and

biomass dry weight per liter medium. Glucose (glc), acetate (ac), formate (for) and

ethanol (Etoh) concentrations were measured using enzyme assay kits and O2 and

CO2 concentrations were measured using an infrared-gas analyzer. Lactate (lac) and

succinate (succ) were measured by an NMR spectroscopy (see methods). Values are

given as the mean SD n¼3. n.d.: Not detected.

Aerobic Anaerobic

m (1/h) 0.5870.01 0.4270.01

f (g dry weight/od/l) 0.4270.03 0.5970.02

Vglc (mmol/g dry weight/h) 8.770.5 14.972.4

VO2 (mmol/g dry weight/h) 11.971.5 0

Vac (mmol/g dry weight/h) 5.870.2 7.670.6

VCO2 (mmol/g dry weight/h) 11.871.1 n.d.

VLac (mmol/g dry weight/h) n.d. 1.170.1

Vsucc (mmol/g dry weight/h) n.d. 0.7670.09

Vfor (mmol/g dry weight/h) n.d. 416.3

VEtoh (mmol/g dry weight/h) n.d. 46.5
and 250 GB of local disk per node) at the High Performance
Computing Center, Michigan State University. The automation of
this process was implemented in Perl by Dr. Hart Poskar (Plant
Biology Department, Michigan State University). The distribution of
SSres from about 700 simulations was shown in Supplementary
Materials (Fig. S4). The global SSres is 86.6 for an aerobic fitting that
used 153 measurements and 283.6 for an anaerobic fitting that used
157 measurements. A correlation plot of the measurement con-
straints used in fitting and model predicted results was shown in
Fig. S5. A statistical analysis was performed using the EstimateStat
tool in 13C-flux to provide confidence intervals for each flux.

Although all labeling experiments had at least three biological
replicates, the standard deviation of most GC–MS signals was o1%
which may overly state the accuracy of these results and give
unreasonable flux estimation by overly constraining particular
parameters. We estimated the accuracy of our labeling measure-
ments to be 0.5%, which was typically larger than the biological
replicate standard deviation. We therefore increased the biological
replicate standard deviation of GC–MS data by 0.5% (Table S5).
Deviation of glucose uptake, substrate secretion and NMR labeling
measurements were established from the biological replicates.
A biomass composition of E. coli B/r from the literature (Neidhardt
and Edwin Umbarger, 1996) was used to estimate effluxes of
biomass production in the MG1655 strain. Most calculated biomass
effluxes are less than 1% of glucose uptake rate. An error of 50% was
used for the effluxes in an MFA, because this reflects a reasonable
error for these small measured values.

A confidence interval of each optimized flux was obtained from
a method based on least squares approach (Wiechert et al., 1997),
and was determined from multiple experiments (biological varia-
tions, nZ3). The resulted flux maps, optimized net fluxes and
forward/backward fluxes of reversible reactions are shown in Fig. 1,
Table 2 and Fig. S1 (Supplemental materials).
3. Results

3.1. Growth parameters and uptake/secretion rates

The measured growth parameters and uptake/secretion fluxes
are shown in Table 1. During an anaerobic growth, the glucose
uptake and acetate secretion increased by �70% and �31%,
respectively, as compared to an aerobic growth. No lactate,
succinate, formate or ethanol were detected in the aerobic culture
medium by either enzyme assay or 1H NMR. We measured CO2

level in the anaerobic culture and did not find a significant buildup
of CO2 in sealed flasks. This is because formate instead of CO2 is
produced from pyruvate in fermentation to reduce production of
NADH. CO2 released from pentose phosphate pathway, TCA cycle
and biomass synthesis is refixed by phosphoenolpyruvate carbox-
ylase through anaplerotic pathway. These growth rates and
external fluxes are consistent with literature reports (Fischer
et al., 2004; Hua et al., 2006; Neidhardt, 1996; Nicolas et al., 2007).

3.2. 13C-metabolic flux maps

Aerobic and anaerobic 13C-flux maps are shown in Fig. 1 and
Table 2 for central metabolism, and the supplementary materials
contain the detailed biosynthetic fluxes. Neither the aerobic nor
anaerobic flux map shows significant rates of substrate cycling
(Table 2). The aerobic flux map (Fig. 1A) is characterized by
significant carbon flows through glycolysis and the oxidative
pentose phosphate pathway (OPPP). About 27% of glucose taken
up was directed to the OPPP through glucose-6-phosphate dehy-
drogenase (G6PDH2r). Carbon flow through citrate synthase (CS)
and aconitase (ACONT) in TCA accounts for 16.1% of the glucose



Fig. 1. 13C-flux maps. 13C net fluxes of central metabolism determined from best fitting with 153 (aerobic) (A) and 157 (anaerobic) (B) measurements of uptake, secretion,

biomass accumulation rates and 13C-labeling. Replicated cultures are 4¼3. Values represent the optimum net fluxes7confidence intervals (see methods). All fluxes are

reported as values relative to the glucose uptake rates. Reversible fluxes are listed in Table 2. Solid lines represent central metabolism reactions. Dashed lines represent non-

central metabolism reactions. Gray lines represent reactions with very low activity. Size of black arrows is proportional to flux values relative to glucose uptake rates.

Abbreviations: ACCOA, acetyl-coenzymeA; AC, acetate; AKG, a-ketoglutarate; CIT, citrate; ETOH, ethanol; E4P, erythrose-4-phosphate; CO2, carbon dioxide/formate; FUM,

fumarate; GLX, glyoxylate; G3P, glyceraldehyde-3-phosphate; GLYC, glycerol; HIS, histidine; H6P, hexose-6-phosphate; Lac, lactate; MAL, malate; OAA, oxaloacetate; PEP,

phosphoenolpyruvate; PYR, pyruvate; R5P, pentose-phosphates; SUCC, succinate; S7P, sedoheptulose-7-phosphate; 6PGC, 6-Phospho-D-gluconate.

Table 2
Exchange fluxes of reversible reactions through metabolism.

Flux description Aerobic flux
(mmol/gDW/h)

Anaerobic flux
(mmol/gDW/h)

H6P3G3P+G3P 072.1 075.8

E4P+TKC2P3H6P 0.570.9 0.1570.37

R5P3G3P+TKC2P 5.470.6 0.9772.06

Ser3Gly+mlthf 0.370.10 0.570.2

Thr3Accoa+Gly 0.0470.04 0.0370.17

Exchange fluxes of other reversible reactions could not be determined with the

current labeling measurements. Abbreviations: ACCOA, acetyl-coenzymeA; E4P,

erythrose-4-phosphate; G3P, glyceraldehyde-3-phosphate; Gly, Glycine; H6P,

hexose-6-phosphate; mlthf, 5,10-methylenetetrahydrofolate; R5P, pentose-phos-

phates; TKC2P, the two carbon substituted enzyme intermediate in the reaction

catalyzed by Transketolase; Ser, serine; Thr, threonine. Values are given as the

mean7SD n¼3.
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uptake rate. Interestingly, there is no significant flux flowing
through a-ketoglutarate dehydrogenase (AKGDH) and succinyl-
CoA synthetase (SUCOAS), which makes the tricarboxylic acid
(TCA) cycle incomplete.

The anaerobic flux map is characterized by high flux through
glycolysis, moderate flow in the OPPP, and little or no flow around
the TCA cycle. The glucose uptake rate is about two fold higher in an
anaerobic than an aerobic growth consistent with less efficient use
of carbon for biomass production (growth). Flux going to the
pentose phosphate pathway through G6PDH2r is about 16.8% of
the glucose uptake rate. The TCA cycle reactions operate at low
rates to produce biosynthesis precursors (a-ketoglutarate and
oxaloacetate). Small amounts of fumarate are produced by
nucleotide and arginine biosynthesis and most of it is reduced to
succinate by succinate dehydrogenase.

3.3. Validation of 13C-metabolic flux analysis results

In order to provide a rigorous comparison for FBA findings, and
because the flux maps obtained disagree significantly with the
previous reports, we performed several independent tests of the
MFA results.

3.3.1. Validation with labeling of intermediate metabolites by LC–MS
13C-labeling of intermediate metabolites which participate in

glycolysis and TCA were measured to test the MFA-derived flux
maps under both anaerobic and aerobic conditions (these mea-
surements were not used in the estimation of intracellular fluxes).
Labeling in intracellular glucose-6-phosphate (G6P), fructose-6-
phosphate (F6P), 2/3-phosphoglycerate (3PG) and phosphoenol-
pyruvate (PEP) were measured using LC–MS. These additional
independent labeling measurements agree well with the MFA
modeling results as shown in Fig. 2, Table 3 and Fig. S7. During the
construction of the 13C-network, G6P and F6P are grouped into a
hexose-6-phosphate pool (H6P), and 2PG, 3PG and PEP are grouped
into a PEP pool (PEP). The LC–MS data also supported the grouping
strategy used in 13C-network construction as G6P and F6P had
similar labeling patterns as did 3PG and PEP (Fig. 2).

3.3.2. Validation of aerobic flux map using O2 and CO2 measurements

CO2 secretion and O2 consumption rates of an aerobic culture
were used to independently validate the flux map (Table 3 and
Fig. 4). The measured VCO2 was 11.871.1 mmol/gDW/h (Table 3)



Fig. 2. Validation of flux maps using intracellular metabolite labeling measured with an LC–MS. Histograms represent the distribution of mass isomers measured and modeled

for each metabolite. Error bars represent standard deviation calculated from nZ2 (G6P and F6P measurements are only 2, and the range was used in this case). 2/3PG represents

the combined pool of 2-phospho-D-glycerate and 3-phospho-D-glycerate. The modeled distributions of mass isomers were calculated using flux values in Fig. 1 and Fig. S1.

Table 3
Validation of aerobic flux map by independent experiments. MFA estimations were

obtained using flux values in Fig. 1 and Fig. S1 (see text).

Validation quantity MFA estimation Measurement or
theoretical value

O2 (mmol/gDW/h)a 10.970.4 11.971.5

Aerobic CO2 (mmol/gDW/h) 12.770.8 11.871.1

Redox balanceb 11.970.4 11.971.5

Anaerobic Redox balanceb 99.3% 100%

a Estimated from production and consumption of reductants in the aerobic flux

map.
b Estimated from redox change between substrates and biomass/secreted

metabolites.
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and was not used in the initial MFA analysis; this measured value
matched the flux estimated by an MFA (12.770.8 mmol/gDW/h).
MFA was used to estimate an O2 consumption based on the
production and consumption of reductants in the aerobic flux
map (Table 3). The net production of reductant (NADH and NADPH)
generated by central metabolism was obtained by summing the
fluxes producing reductant and subtracting the fluxes consuming
reductant in central metabolism. The amount of reductant needed
to generate new biomass was calculated from the biomass produc-
tion rates and reductant requirements per unit biomass component
(Stephanopoulos et al., 1998). The remaining reductant was
assumed to be oxidized by O2 for ATP synthesis resulting in a
calculated oxygen consumption rate (VO2) of 10.970.4 mmol/
gDW/h. Uncertainty in the calculated rate of reductant production
was dominated by the standard deviation of one reaction (NAD(P)H
production reaction by GAPD: G3P3PEP). This calculated value is
conservative as it does not include several minor metabolic
activities which were not considered in the model and consume
oxygen directly (e.g. fatty acid desaturation), but is still consistent
with the measured VO2 (11.971.5 mmol/gDW/h). O2 uptake and
CO2 release are both closely connected to TCA fluxes and the
agreement of these independent measurements with the flux map
that strongly support the TCA flux values obtained.

3.3.3. Validation by redox balance
13C isotopic MFA analysis tracks only carbon flow, but not the

redox status in metabolism (Wiechert, 2001; Wittmann, 2002;
Zamboni et al., 2009). The MFA solutions in the absence of labeling
constraints only satisfy the balance of carbon; however, carbon-
balanced solutions are not necessarily balanced in redox. Since the
balances of redox states between feeding substrates and the
biomass and secreted metabolites were not used in the MFA
analysis (which is based only on labeling and measured external
fluxes), and they provide another independent way to validate the
MFA predictions. The redox balance was considered for both
aerobic and anaerobic conditions (Table 3). In the aerobic case,
the secreted products and accumulated biomass create a change of
the redox state that can be offset by an electron transport. As an
electron transport is dependent on oxygen consumption, measur-
ing the uptake of oxygen and comparing with that of the model
provide a check of the model assumptions and results. Under
anaerobic conditions, the redox state of substrates must match
what is produced in biomass and products, because there is no O2

present (Allen et al., 2009). Comparison between experimental and
modeled numbers shows agreement in both cases. Aerobic cultures
consume 11.971.5 mmol/gDW/h O2 consistent with the model-
determined value of 11.970.4 mmol/gDW/h. Here again the
standard deviation was dominated by the uncertainty in the
NAD(P)H production reaction rate GAPD: G3P3PEP. In the anae-
robic case, a redox change of 0.04 in biomass per glucose uptake
was obtained, representing 99% or greater agreement between
substrate uptake rates, biomass composition and secretion rates for
the redox state of carbon.

3.4. ATP maintenance costs in aerobic and anaerobic culture

Fig. 3 compares ATP production and consumption for biomass
production and maintenance under aerobic and anaerobic



Fig. 3. ATP production and utilization in aerobic and anaerobic metabolisms. ATP production and utilization rates in units of mmol/gDW/h are shown for the aerobic (A) and

anaerobic conditions (B). ATP production and utilization rates per glucose uptake rate are shown in (C). An FBA predicted activity of anaerobic ATP synthase, using the

robustness analysis (D). ATP synthase catalyzes the reaction: ADP[c]+Pi[c]+4H+
[c]¼ATP[c]+H2O[c]+3H+

[m], where subscript c and m represent cytoplasm and inter-membrane

space. Glucose and O2 uptake rates of 16.8 and 0 mmol/gDW/h were supplied to the FBA model to simulate the anaerobic culture with growth rate of 0.42 1/h. ATP synthase

consumes 8.2 mmol/gDW/h ATP during maximal growth state.
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conditions. We define the ATP maintenance cost to be the
difference between the rate of ATP synthesized metabolically
and the ATP consumed in the biomass production. For an aerobic
growth, surplus reductant was converted to an ATP using the P/O
ratios previously described (Feist et al., 2007). The maintenance
was calculated to consume 17.2 mmol ATP/gDW/h. For the anae-
robic culture, the reductant was nearly balanced and made no
significant contribution to the ATP production, which is predomi-
nantly glycolytic. The resulting ATP maintenance flux was
16.4 mmol/gDW/h. Aerobic culture produces about 5.3 ATP per
glucose consumed (or 46.3 mmol ATP/gDW/h) via central meta-
bolism and respiration, and ATP maintenance accounts for 37.2% of
the production. Anaerobic cultures produce about 1.96 ATP per
glucose uptake (or 32.1 mmol ATP/gDW/h) via central metabolism,
and about 51.1% is used for maintenance.
3.5. Flux balance analysis

FBA was used to predict the cellular growth rate in aerobic
and anaerobic cultures. Aerobic growth rates were first predicted
using only the measured glucose uptake rate, and then FBA
predictions were made by further constraining both the measured
glucose and O2 uptake rates and maximizing growth rate (referred
to as O2-limited predictions). The O2-limited prediction of growth
rate (0.6570.08 1/h) is consistent with the observed growth rates
in both regular aerobic and O2-enhanced culture (0.5870.08 1/h).
The predicted growth rate without the O2 uptake constraint
(0.8070.05 1/h) is significantly higher (38%) than the measured
growth rate. The anaerobic growth rate (0.3870.08 1/h) was also
predicted by an FBA using the measured glucose uptake rate and
with a zero O2 uptake rate, and is consistent with the measured
growth rate (0.4270.01 1/h). Standard deviations in the FBA
prediction were obtained from the measurement standard devia-
tions on the glucose and O2 uptake rates.

FBA was used to predict the secretion rates of metabolites and
internal fluxes. The FBA predicted product secretion rates that agree
well with MFA results (Fig. S2 in Supplemental materials), even
though these were not used as constraints in the prediction. The
range of the internal fluxes corresponding to measured growth
rates were obtained by Flux Variability Analysis (FVA) (Becker et al.,
2007). As shown in Fig. 5A, an FBA predicts a fairly wide range of
flux values for the OPPP reactions (0–32% of glucose uptake rate at
G6PDH2r). The sampling results show that most flux distributions
of the OPPP are close to zero, and substantially lower than MFA-
derived fluxes (Fig. 5B). For example, the flux through G6PDH2r
yielded from sampling is between 0 and 1 mmol/gDW/h, while the
experimentally derived flux from an MFA is 2.570.7 mmol/gDW/h.



Fig. 4. Aerobic O2 consumption rate (A) and CO2 secretion rate (B) determined by an

FBA robustness analysis, MFA and direct measurements. Glucose uptake rate

(8.7 mmol/gDW/h) was used for an FBA prediction in both A and B. An O2 uptake

rate of 10.4 mmol/gDW/h was used in O2 constraint FBA prediction to simulate the

observed aerobic growth (m¼0.58 1/h). Unlimited O2 supply was assumed for

no-O2-constraint FBA prediction.

Fig. 5. Comparison of anaerobic internal fluxes from MFA and FBA. Glucose and O2

uptake rates of 16.8 and 0 mmol/gDW/h were used to constrain the FBA model to

simulate the anaerobic culture with measured growth rate (0.42 1/h). The growth

rate in the FBA model was constrained between 95% and 100% of the measured

value. (A) Ranges of pentose phosphate pathway fluxes predicted from Flux

Variability Analysis. Triangles represent an MFA estimation. (B) FBA predicted flux

distribution by uniform random sampling of metabolic solution space, using the

Cobra toolbox (see methods). Green bars represent values obtained from an MFA.

Abbreviations: G6PDH2r, glucose-6-phosphate dehydrogenase; GND, phosphoglu-

conate dehydrogenase; EDA, 2 dehydro 3 deoxy phosphogluconate aldolase.
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We also used the constraint-based model to examine the
sensitivity of the maximal growth rate to an ATP synthase activity
using the robustness analysis (Fig. 3D) (Mahadevan and Schilling,
2003). Glucose and O2 uptake rates of 16.8 and 0 mmol/g/h were
constrained in the model to simulate the anaerobic culture. ATP
synthase was predicted to operate in reverse, consuming an ATP to
expel protons to maintain the intracellular pH and consumes about
8.2 mmol/g/h ATP at the observed growth rate of 0.42 1/h.
4. Discussion

4.1. TCA, Glycolytic and OPPP fluxes

The aerobic flux map revealed moderate carbon flux entering
the non-cyclic TCA reactions (16.1% of glucose uptake rate). The
moderate flux through CS and ACONT is consistent with previous
13C-labeling flux analyses (Nicolas et al., 2007) and (Fischer and
Sauer, 2003), but these studies reported a complete TCA cycle,
which disagrees with the results obtained here.

To further test the TCA flux values, we had made measurements
of labeling in intracellular CO2/HCO3

� based on labeling in
the terminal carbon of arginine, which is made directly from
CO2/HCO3

� . The GC–MS based CO2 labeling values (see Table S6)
of 3170.02% agrees well with model predicted CO2 labeling (32%).
This additional measurement therefore supports our flux map
predicted TCA activity. We also used FBA to predict the aerobic
growth rate by constraining the AKGDH and SUCOAS fluxes to zero.
Glucose and O2 uptake rates were set to be the same as in Fig. 2A.
The results also show that zero fluxes of AKG and SUCOAS do not
alter the predicted maximal growth rates in Fig. 2A. This finding
seems surprising since AKGDH and SUCOAS produce two NADH
(which aerobically can be converted into ATP) and two ATP. The
lack of cyclic operation of TCA cycle may reflect the reduced
availability of the electron transport chain for NADH recycling in
these cells (as discussed below in the context of oxygen use). The
biosynthesis flux maps reveal a significant production of fumarate
(9.4% of glucose uptake rate) as a by-product from RNA/DNA and
arginine synthesis (Fig. S1 in Supplemental materials) which are
substantial, but appear not to have been included in most previous
MFA analyses (Emmerling et al., 2002; Fischer and Sauer, 2003;
Fischer et al., 2004; Nicolas et al., 2007; Peng et al., 2004; Schmidt
et al., 1999; Zhao and Shimizu, 2003). However, differences in the
exact growth conditions and/or differences between wildtype
strains in some of these studies may also contribute to the different
TCA fluxes in this study and prior studies. Studies that included
fumarate production from RNA/DNA and arginine synthesis
involved very different strains (Antoniewicz et al., 2007b) or
species (Masakapalli et al., 2010).
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The anaerobic flux map showed high fluxes through glycolysis
(81.9% of glucose uptake at glucose-6-phophate isomerase)
and moderate fluxes through the OPPP (16.8% of glucose uptake).
We calculated the net production of redox carriers in central
metabolism, and found that the OPPP is secondary to glycolysis as a
source of reductant. Schmidt et al. (1999) examined fermentation
in E. coli W3110 by an MFA using an NMR labeling data (Szyperski,
1995) and by-product secretion rates (Ingraham et al., 1995) from
the literature, and reported very high fluxes(74% of glucose uptake)
through glucose-6-phosphate dehydrogenase (G6PDH2r) for an
anaerobic growth (Schmidt et al., 1999). The difference between
OPPP fluxes measured here and the values reported by Schmidt
et al. (1999)may be caused in part by the use of a different strain
from the one used here and/or by their use of literature values for
the by-product secretion rates that were obtained in experiments
with strains and growth rates different from those used in the
labeling experiments.
4.2. Regulation of metabolic efficiency by proton transport across

membrane

Cells require energy for maintenance in addition to growth
(defined as net biomass production). Maintenance activity includes
transport of substrate and product metabolites and ions for
homeostasis, as well as turnover of cell components. The main-
tenance energy for aerobic and anaerobic growths was found to be
17.2 and 16.4 mmol ATP/gDW/h, respectively, accounting for 37.2%
and 51.1% of the total ATP produced. The maintenance ATP per unit
biomass production was calculated to be 29.7 mmol/gDW for an
aerobic growth and 39.1 mmol/gDW for anaerobic growth. The one
third increase in anaerobic maintenance energy per gram produc-
tion of biomass obtained here indicates a striking change of
intracellular maintenance activity.

The energetic cost of secreting protons produced in fermenta-
tive metabolism may contribute to a significant portion of an
increased ATP maintenance observed during anaerobic growth. The
FBA predicted growth rate of anaerobically cultured E. coli assum-
ing an ATP maintenance flux of 7.6 mmol ATP/gDW/h (Reed et al.,
2003) was 0.3870.08, which is in agreement with our measure-
ment of 0.4270.01. The results of this FBA analysis were examined
for all reactions that consume ATP at the maximal growth rates,
which identified ATP synthase as the main consumer of ATP in
addition to the growth reaction.

We used robustness analysis (Mahadevan and Schilling, 2003)
to test the sensitivity of maximal growth rate to flux through ATP
synthase (Fig. 3D) (Becker et al., 2007). ATP synthase is required
to consume about 8.3 mmol/gDW/h of ATP in order to maintain
the maximal growth rate of the cells. The ATP was assumed to
pump four protons per ATP (Reed et al., 2003) from the cytoplasm
across the cell membrane. Thus, the increased maintenance ATP in
anaerobic growth is not due to more membrane leakage or higher
costs of substrate uptake than an aerobic growth, as has been
suggested (Stouthamer and Bettenhaussen, 1977). It is due to the
need to secrete excess protons accumulated during fermentation to
maintain an intracellular pH. The electron transfer chain does
not function in an anaerobic growth; therefore, the secretion of
protons must be achieved via ATP synthase. This maintenance ATP
thus appears to decrease the metabolic efficiency of E. coli under
anaerobic conditions.

To test the idea of intracellular proton accumulation reducing
ATP availability for growth, we created an in-silico ‘knock-in’ strain
from the wildtype iJR904 FBA model. The ‘knock-in’ strain allowed
Formate Hydrogen Lyase (FDH) activity by introducing two reac-
tions into iJR904 allowing for the removal of hydrogen (a product of
FDH): hydrogen diffusion through the cytoplasm to the cell
membrane and hydrogen diffusion across the membrane to the
media. The product secretion and growth rates were predicted for
the ‘knock-in’ strain and the wild-type (Table S3 in Supplementary
materials). Maximal growth was still assumed as the objective
function for this anaerobic prediction, and the same glucose uptake
rate of 16.8 mmol/gDW/h was used in both cases. Similar secretion
rates were predicted in both the ‘knock-in’ and wildtype for most
end-products, except that the formate production was replaced by
CO2. But a 16% increase in the growth rate and a yield of H2

(28.0 mmol/gDW/h) are predicted in addition to the ethanol
production (13.0 mmol/gDW/h). H2 is a clean bioenergy substi-
tutes for fossil fuels. Therefore, knocking in formate hydrogen lyase
to ethanol producing E coli yields a biofuel by-product at no added
cost. Yoshida et al. (2005) constructed FHL overexpressing E coli.

strains for hydrogen production. The mutants were constructed in
E. coli W3110 by inactivating the FHL repressor (hycA) alone (SR12)
and in combination with overexpressing the FHL activator (fhlA)
(SR13). The cells were cultured anaerobically in the BC medium
with 100 mM glucose. In addition to H2 production, the mutant
showed a 25% higher growth rate under anaerobic conditions in the
BC medium supplied with glucose. These observations are con-
sistent with our prediction that over-expressing FHL in an anae-
robic grown E. coli may reduce intracellular proton accumulation,
saving ATP for biomass production and producing H2 at the same
cost. Therefore, reduction of ATP expenditure on proton secretion
may have practical potential in fermentative bioenergy production.
4.3. Limited oxidative phosphorylation results in submaximal aerobic

growth

FBA and MFA can be used to test the metabolic optimality of
organisms under the designed selective pressure. It has been
assumed in most FBA studies that cells maximize growth under
glucose limited conditions (Ibarra et al., 2002; Pramanik and
Keasling, 1998; Reed and Palsson, 2004). We measured the growth
rate of aerobically cultured E. coli, and found it to be 30% less than
the rate predicted by FBA if the glucose uptake rate is the only
limiting factor for cell growth. The aerobic MFA flux map also
showed that the CS and ACONT fluxes are o20% of the glucose
uptake rate, indicating potentially non-optimal ATP production. On
the other hand, the growth is predicted by an FBA to be close to
the observed rate if both glucose and oxygen uptake fluxes are
constrained to be at their experimentally measured values.

These results suggest that the maximal growth of the cell is
repressed either by the availability of environmental O2 or by the
ability to move electrons through the electron transfer chain. We
examined the effect of elevated O2 (35% O2 level in the headspace),
but found no change in growth rate compared to normoxic
conditions (Fig. S3 in Supplemental materials). Therefore, O2

availability seems not to be limiting, and thus repressed oxidative
phosphorylation may be responsible for the non-maximal growth.
Decreased rates through oxidative phosphorylation would restrict
the consumption rate of reductant (NADH and FADH2), resulting in
the modest TCA cycle fluxes seen in the aerobic flux map. This is in
agreement with the hypothesis based on a thermodynamics
analysis by Heijnen (1991, 2009, 1999) that the capacity of the
electron transport chain is a key factor limiting cell growth, Our
result is also consistent with the transcriptional analysis of wild-
type E. coli and a mutant overexpressing NADH oxidase (Vemuri
et al., 2006). As glucose uptake rate was increased, some of the
genes involved in TCA cycle and respiration were repressed in wild-
type cells. This repression was relieved in cells over-expressing an
NADH oxidase.

This raises the question of why selective pressure fails to result
in the maximal growth efficiency. One possible explanation is that
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the wild-type MG1655 E. coli strain is not optimized for growth
under these conditions. Adaptive evolution of E. coli MG1655 on
glucose in minimal media over 500 generations, led to increased
growth rates as well as glucose and O2 uptake rates (Ibarra et al.,
2002). However, these evolved strains do not show consistent
significant changes in the glucose to oxygen uptake ratio, suggest-
ing no relative increase in the expression of respiratory chain
proteins to glucose uptake proteins. Further work is required to
determine whether additional constraints are responsible for the
apparent suboptimal growth rate or whether a longer term
adaptive evolution would lead to an improved growth efficiency
of E. coli under limited glucose supply.

4.4. Prediction of external and internal fluxes by FBA

FBA is successful in predicting external fluxes (net entry into
and efflux from the metabolic network) given sufficient knowledge
of the network and enough measurements to constrain the feasible
range of flux patterns. Maximal growth is generally used as the
objective function in FBA (Pramanik and Keasling, 1998; Varma and
Palsson, 1993). However, biological systems may function with
different (Schuetz et al., 2007) or multiple objectives and con-
straining the solution space with more measurements may be
needed to bypass the requirement for these unknown objectives or
physicochemical constraints in FBA. Thus, we have shown above
that E. coli does not grow at the predicted maximal rates in an
aerobic batch culture in glucose minimal media and that further
constraining the constraint-based model’s solution space with
oxygen uptake rate measurements improved the FBA predictions
for growth rate and by-product secretion rates. Since O2 availability
is not limiting (based on our O2-enhanced experiments and
estimates of O2 concentrations), this implies that the activities of
respiratory enzymes are insufficient for efficient degradation of
glucose due to unknown but potentially, biologically important
reasons.

FBA has a limited ability to predict internal fluxes. While the
fluxes established from an MFA were within the FBA feasible range,
the values of MFA-derived fluxes differ substantially from the
most-frequently predicted values of internal fluxes yielded from
sampling the feasible space. This implies that a number of flux
distributions may be shared by silent phenotypes, but are not
necessarily useful in describing the actual distribution of internal
fluxes. Therefore, caution should be exercised when interpreting
internal flux distributions obtained by choosing an arbitrary set of
results from FBA linear programming solvers or by randomly or
systematically sampling the solution space in the absence of an
experimentally derived MFA flux map.
5. Conclusion

MFA describes the metabolic status of a biological system by
determining its intracellular carbon flow. A genome-scale con-
straint-based model contains the full stoichiometric description of
a biological system and predicts the metabolic capacities of the
system, using the pre-assumed objectives. Comparing the theore-
tical capacities with the working status can bring new physiological
discoveries. For example, in this study, we showed from the
synergy of MFA and FBA that TCA is non-cyclic in an aerobic
growth of E. coli on glucose in defined media and that the
suboptimal growth is due to the limited oxidative phosphorylation.
In addition, FBA is able to pinpoint key reactions that restrict an
MFA established metabolic network from reaching its full meta-
bolic capacities, and thus provides directions for rational strain
design. It was possible here to identify a potential target, formate
hydrogen lyase, for improving the biofuel application. Therefore,
both rational strain design and physiological insight from meta-
bolic flux analysis benefit substantially from the use of both FBA
and MFA, using the same underlying network and experimental
conditions.
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